WO2019053764A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2019053764A1
WO2019053764A1 PCT/JP2017/032794 JP2017032794W WO2019053764A1 WO 2019053764 A1 WO2019053764 A1 WO 2019053764A1 JP 2017032794 W JP2017032794 W JP 2017032794W WO 2019053764 A1 WO2019053764 A1 WO 2019053764A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color
image
imaging device
color image
Prior art date
Application number
PCT/JP2017/032794
Other languages
English (en)
French (fr)
Inventor
拓洋 澁谷
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to PCT/JP2017/032794 priority Critical patent/WO2019053764A1/ja
Priority to JP2019541503A priority patent/JP6886026B2/ja
Publication of WO2019053764A1 publication Critical patent/WO2019053764A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • H04N23/16Optical arrangements associated therewith, e.g. for beam-splitting or for colour correction

Definitions

  • the present invention relates to an image pickup apparatus, and more particularly to a color image pickup apparatus for obtaining an image of a wide dynamic range by combining images picked up by a plurality of image pickup elements whose light reception amounts are changed by spectral or exposure control.
  • OLED Organic Light Emitting Diode
  • HDR High Dynamic Range
  • an imaging device that captures an image to be displayed can also support HDR.
  • the amount of light that can be photoelectrically converted by the imaging device is limited, and when the amount of light is large, saturation occurs at a predetermined level or higher. That is, the dynamic range of the imaging device is limited, and in practice it is considerably narrower than human vision.
  • the increase in the number of pixels of the imaging device (densification) makes the individual pixel size smaller, and the dynamic range tends to be narrower.
  • the incident light is split to form the same subject image on two imaging devices, the exposures of the two imaging devices are made different and imaged simultaneously, and the two images are combined to enlarge the dynamic range.
  • Patent Document 2 See, for example, Patent Document 2.
  • the exposure of the color component with a small saturation amount is reduced to increase the substantial saturation amount, and the saturation amount of each color component is calculated.
  • the dynamic range is expanded by adjusting to the color component having the largest saturation amount (see, for example, Patent Document 3).
  • the dynamic range of the imaging device described here indicates the ratio of the light amount at which the output of the imaging device is saturated when the light amount at which the output of the imaging device is the reference level is 1.
  • an imaging device configured to split incident light and receive the light by two imaging devices is mainly used for broadcasting applications, and is configured to separate incident light into colors and receive each color component by three imaging devices.
  • the image quality such as signal-to-noise ratio (hereinafter referred to as S / N ratio), color reproducibility and frequency band is inferior to that of the plate type imaging device.
  • S / N ratio signal-to-noise ratio
  • color reproducibility and frequency band is inferior to that of the plate type imaging device.
  • the three-plate type imaging device is to have the same configuration, an imaging element is added to each of the color components, and physical arrangement is difficult. Even if this can be realized, the number of imaging elements is doubled, so that the cost of the imaging device is significantly increased.
  • the S / N ratio of the color component whose exposure is reduced is deteriorated. Furthermore, since the difference between the saturation amounts of the color components is at most about three times, the dynamic range can not be dramatically expanded.
  • the object of the present invention is to obtain a good S / N ratio, high gradation and wide frequency band with no blurring of the subject, color video in low luminance area, and wide dynamic range with color video in high luminance area.
  • An object of the present invention is to provide an imaging device capable of obtaining good color reproducibility.
  • Another object of the present invention is to provide an image pickup apparatus capable of obtaining a wide dynamic range image by combining images picked up by a plurality of image pickup elements whose light reception amounts are changed by spectral or exposure control.
  • the imaging device decomposes the luminous flux incident from the lens into a first luminous flux having a relatively small quantity of light and a second luminous flux having a relatively large quantity of light, and decomposes the second luminous flux into each color component of red light, green light and blue light.
  • Color separation optical system a mosaic color filter imaging device for receiving the first light flux, three monochrome imaging devices for receiving each of red light, green light and blue light, and electrical signals obtained from the respective imaging devices are converted And a signal processing unit that produces a color image.
  • the signal processing unit mainly generates a color image of a high brightness area by an electric signal obtained from the mosaic color filter imaging device, and generates a color image of a low brightness area mainly by an electric signal obtained from three monochrome imaging devices.
  • the color image of the high luminance area and the color image of the low luminance area are synthesized to generate one color image.
  • the above-described imaging apparatus has an exposure control unit that controls the exposure of the imaging element, and when it is desired to capture an image with a wider dynamic range, the exposure control unit lowers the exposure of the mosaic color filter imaging element.
  • the gain correction section lower the gain.
  • subject blurring does not occur, and good S / N, high gradation and wide frequency band can be obtained for color images in low brightness areas, and color images in high brightness areas are good with wide dynamic range Color reproducibility can be obtained.
  • FIG. 6 is a diagram showing the relationship between the amount of light incident on the imaging device and the signal output of the imaging device according to the first embodiment.
  • FIG. 6 is a diagram showing the relationship between the amount of light incident on the imaging device and the signal output of the imaging device according to the first embodiment.
  • FIG. 7 is a diagram showing the relationship between the amount of light incident on the imaging device and the signal output of the imaging device according to the second embodiment.
  • FIG. 7 is a diagram showing the relationship between the amount of light incident on the image pickup element according to Embodiment 2 and the signal output of the image pickup apparatus.
  • FIG. 6 is a diagram showing the relationship between the amount of light incident on the imaging device and the signal output of the imaging device according to the first embodiment.
  • FIG. 7 is a diagram showing the relationship between the amount of light incident on the imaging device and the signal output of the imaging device according to the second embodiment.
  • FIG. 7 is a diagram showing the relationship between the amount of light incident on the image pickup element according to Embodiment 2 and the signal output of the
  • FIG. 16 is a diagram showing a relationship between an amount of light incident on an image sensor according to Embodiment 3 and a signal output of the image sensor.
  • FIG. 16 is a diagram showing a relationship between an amount of light incident on an image pickup element according to Embodiment 3 and a signal output of the image pickup apparatus.
  • FIG. 1 is a block diagram showing a configuration example of an imaging device according to an embodiment of the present invention.
  • the imaging device 1 includes a color separation optical system 11, a mosaic color filter (C, color) imaging element 12C, a monochrome imaging element 12R for red (R, red), and a monochrome imaging element 12G for green (G, Green). And a monochrome imaging element 12 B for blue (B, Blue), a video signal processing unit 13, an exposure control unit 14, and a central processing unit (CPU) unit 15.
  • a color separation optical system 11 a mosaic color filter (C, color) imaging element 12C
  • a monochrome imaging element 12G for green (G, Green).
  • a monochrome imaging element 12 B for blue (B, Blue)
  • a video signal processing unit 13 an exposure control unit 14
  • CPU central processing unit
  • the mosaic color filter image pickup device 12C has a configuration in which minute color filters arranged in a mosaic shape are provided on the image pickup device, and a single image pickup device can obtain a color image or a color image.
  • the red (R, red) monochrome imaging device 12R has a configuration in which a red single color filter is provided on the imaging device.
  • the monochrome imaging element 12G for green (G, Green) has a configuration in which a green monochromatic filter is provided on the imaging element.
  • the monochrome imaging device 12B for blue (B, Blue) has a configuration in which a blue monochromatic filter is provided on the imaging device.
  • the imaging device (12C, 12R, 12G, 12B) it is possible to employ a solid-state imaging device such as a CCD (Charge-Coupled Device) image sensor or a CMOS image sensor.
  • a CCD Charge-Coupled Device
  • the CPU unit 15 controls each unit of the imaging device 1. Further, the exposure control unit 14 controls the exposure of the mosaic color filter imaging device 12C and the monochrome imaging devices 12R, 12G, and 12B according to the control from the CPU unit 15, respectively.
  • an electronic shutter or the like can be employed as the circuit or means for controlling the exposure, but it is not limited thereto.
  • Incident light from the subject is imaged by the lens 2 and is separated by the color separation optical system 11 into a first light beam BE1 having a relatively small light amount and a second light beam BE2 having a relatively large light amount.
  • the second light beam BE2 is further decomposed into red light, green light and blue light.
  • the separated first light beam BE1 is photoelectrically converted into a first electrical signal as a color signal (C signal) by the mosaic color filter imaging device 12C.
  • the second luminous flux BE2 separated into red light, green light and blue light is R signal, G signal and B signal as second electric signal and third electric signal, respectively, in each of the monochrome imaging elements 12R, 12G and 12B. It is photoelectrically converted to a fourth electric signal.
  • the C signal, R signal, G signal, and B signal are input to the video signal processing unit 13 and subjected to various signal processing by the video signal processing unit 13.
  • an HD-SDI High Definition Serial Digital Interface
  • the video signal output from the imaging device 1 according to the present invention is not limited to the HD-SDI signal, and various video signals can be adopted.
  • the video signal processing unit 13 may incorporate a compression processing circuit, an encryption processing circuit, and the like, perform processing such as compression and encryption, and output a video signal from the imaging device 1.
  • FIG. 2 is a block diagram of a video signal processor according to an embodiment of the present invention.
  • the video signal processing unit 13 includes a gain correction unit 131, a pixel interpolation unit 132, a delay unit 133, a combining unit 134, a gamma correction unit 135, and a video signal output unit 136.
  • the respective units of the video signal processing unit 13 are controlled by the CPU unit 15.
  • the video signal processing unit 13 gain correction is applied to the C signal, R signal, G signal, and B signal in the gain correction unit 131, and pixel interpolation processing in the Bayer array is performed in the pixel interpolation unit 132 for R signal.
  • the combining unit 134 combines the R signal, the G signal, and the B signal.
  • the gamma correction unit 135 performs various video signal processing such as color correction, gamma correction, knee correction and the like, and the video signal output unit 136 generates, for example, an HD-SDI signal from the R video signal, G video signal, and B video signal.
  • the delay unit 133 is a delay process performed to align the R signal, the G signal, and the B signal with the timing of the R ′ signal, the G ′ signal, and the B ′ signal.
  • the delay unit 133 may be an LPF (Low Pass Filter). In addition, the delay unit 133 may be unnecessary when the signal can be delayed for a predetermined time and read according to the driving method of the monochrome imaging elements 12R, 12G, and 12B.
  • LPF Low Pass Filter
  • Example 1 Example 1, Example 2, and Example 3 of the present invention will be described with reference to FIGS.
  • FIG. 3 is a relationship diagram between the amount of light incident on the image sensor according to the first embodiment and the signal output of the image sensor.
  • FIG. 4 is a diagram of the relationship between the amount of light incident on the imaging device according to the first embodiment and the signal output of the imaging device.
  • FIG. 5 is a relationship diagram between the amount of light incident on the image sensor according to the second embodiment and the signal output of the image sensor.
  • FIG. 6 is a diagram of the relationship between the amount of light incident on the imaging device according to the second embodiment and the signal output of the imaging device.
  • FIG. 7 is a diagram showing the relationship between the amount of light incident on the imaging device and the signal output of the imaging device according to the third embodiment.
  • FIG. 8 is a diagram of the relationship between the amount of light incident on the image pickup element according to the third embodiment and the signal output of the image pickup apparatus.
  • the horizontal axis shows the incident light amount LQ to the imaging device (12C, 12R, 12G, 12B), and the vertical axis shows the signal output LO of the imaging device (12C, 12R, 12G, 12B) Is shown.
  • the saturation level SL shown on the vertical axis indicates the saturation amount of the mosaic color filter imaging device 12C that receives the first light beam BE1 and the monochrome imaging devices 12R, 12G, and 12B that receives the second light beam BE2.
  • the first luminous flux saturated light quantity SLBE1 shown on the horizontal axis indicates the saturated luminous quantity of the first luminous flux BE1 when the mosaic color filter imaging device 12C is at the saturation level SL.
  • the second luminous flux saturated light quantity SLBE2 shown on the horizontal axis indicates the saturated luminous quantity of the second luminous flux BE2 when the monochrome imaging elements 12R, 12G, and 12B are at the saturation level SL.
  • the horizontal axis represents the amount of light LQ incident on the imaging device (12 C, 12 R, 12 G, 12 B), and the vertical axis represents the signal output VO of the imaging device 1.
  • the saturation level SLVO shown on the vertical axis indicates the saturation level of the signal output VO of the imaging device 1
  • the saturated light quantity SLLQ indicated on the horizontal axis indicates the saturated light quantity of the incident light quantity LQ at the saturation level SLVO.
  • the second luminous flux use area UARBE2 shown on the horizontal axis is an area where the color components of the second luminous flux BE2 are not saturated, and can be regarded as a low luminance area.
  • a first luminous flux use area UARBE1 shown on the horizontal axis is an area where the color components of the second luminous flux BE2 are saturated, and an area where each color component of the first luminous flux BE1 is not saturated. I can forgive.
  • the color image CVBE1 indicates a color image of a high luminance area
  • the color image CVBE2 indicates a color image of a low luminance area.
  • 4, 6 and 8 also show the reference level RFVO of the signal output VO of the imaging device 1 at the reference light quantity RFLQ of the incident light quantity LG.
  • the color separation optical system 11 separates the incident light so that the ratio of the light amount of the first light beam BE1 to the light amount of the second light beam BE2 (spectral ratio SR) is 1 / N: 1.
  • N is one or more positive numbers (including decimals).
  • the video signal processing unit 13 converts the second light beam BE2 into red light, green light and blue light in a region where each color component of the second light beam BE2 is not saturated (second light beam usage region UARBE2)
  • the color image CVBE2 is generated from the R signal, the G signal, and the B signal photoelectrically converted by the respective monochrome imaging elements 12R, 12G, and 12B.
  • the image signal processing unit 13 also multiplies the C signal obtained by photoelectrically converting the first light beam BE1 by the mosaic color filter imaging device 12C by N times in a region where the color components of the second light beam BE2 are saturated (first light beam usage region UARBE1). Gain correction to generate a color image CVBE1.
  • the color image CVBE2 in the low brightness area and the color image CVBE1 in the high brightness area are combined to generate one color image. Thereafter, various video signal processing is performed on the synthesized color video to generate and output, for example, an HD-SDI signal.
  • the mosaic color filter imaging device 12C and the monochrome imaging devices 12R, 12G, and 12B simultaneously perform exposure, when the exposure of a single imaging device is made different by a time difference and imaging is performed continuously and synthesized. There is no subject blurring that occurs.
  • the configuration in which the second luminous flux BE2 is subjected to color separation and then photoelectrically converted by the three monochrome imaging elements 12R, 12G and 12B into a color image is the same as the three-plate type imaging device. Therefore, the color image generated from the second light beam BE2 can obtain the same image quality as the three-plate type imaging device.
  • the light quantity of the second light beam BE2 is 1-1 / N times of the total incident light, but if N is large, it does not greatly affect the deterioration of the S / N ratio and the gradation.
  • the saturation amount of the first light beam BE1 received by the mosaic color filter imaging device 12C is N times the second light beam BE2, a color image obtained by combining the first light beam BE1 and the second light beam BE2 has a wide dynamic range, Good color reproducibility can be obtained even in a high luminance region.
  • the color video signal of the high luminance area generated from the mosaic color filter imaging element 12C is a mosaic color filter as compared to the color video signal of the low luminance area generated from the monochrome imaging elements 12R, 12G, and 12B. Since the video signal processing unit 13 increases the gain of the subject image of the first light beam BE1 having a low degree of modulation in the high frequency band and having a small amount of light, the image has a poor S / N ratio and gradation. However, the S / N ratio, the gradation of the luminance, and the modulation of the high frequency band are high in the high luminance area where the user feels dazzling on a display device such as a display using OLED or a monitor due to human visual characteristics. This is not a problem because it does not stand out.
  • the wide dynamic range of the color image in the high luminance area and the good color reproducibility are obtained without occurrence of the subject blurring and the image quality of the color image in the low luminance area. It is possible to get.
  • the exposure control unit 14 controls the exposure of the mosaic color filter imaging device 12C that receives the first light beam BE1 to 1 / M.
  • M is one or more positive numbers (including decimals).
  • the saturation amount of the first light beam BE1 is M times that in the first embodiment.
  • the video signal processing unit 13 converts the second light beam BE2 into red light, green light and blue light in a region where each color component of the second light beam BE2 is not saturated (second light beam usage region UARBE2)
  • the color image VCBE2 is generated from the R signal, the G signal, and the B signal which are separated by the respective monochromatic imaging elements 12R, 12G, and 12B.
  • the gain is corrected to M times to generate a color image VCBE1.
  • the color image CVBE2 in the low brightness area and the color image CVBE1 in the high brightness area are combined to generate one color image. Thereafter, various video signal processing is performed on the synthesized color video to generate and output, for example, an HD-SDI signal.
  • the image quality of the color image CVBE2 in the low luminance region There is no loss of Further, since the saturation amount of the first light beam BE1 is M times, the dynamic range of the entire imaging device 1 is M times. The dynamic range of the color image CVBE2 in the high brightness area can be wide.
  • the video signal processing unit of the video signal (color video CVBE1) of the high luminance region generated from the mosaic color filter image pickup device 12C has a reduced amount of light of the first light beam BE1 compared to the case of the first embodiment. Since the gain is raised at 13, the image has an inferior S / N ratio and gradation. However, as described above, the S / N ratio and the gradation of luminance do not stand out in the high luminance region, and thus there is no particular problem.
  • the exposure of the low luminance region also decreases and the gain must be increased accordingly. Image quality is also lost.
  • the image quality can be maintained by increasing the amount of light by M by, for example, opening the lens diaphragm without increasing the gain by 1 / M times the exposure.
  • the output of the imaging element is saturated without changing the light reception amount of the imaging element, the dynamic range is not expanded.
  • the second embodiment it is possible to obtain a wider dynamic range of the color image in the high luminance region without deteriorating the image quality of the color image in the low luminance region.
  • the exposure control unit 14 controls the exposure of the mosaic color filter imaging device 12C that receives the first light beam BE1 to 1 / L times.
  • L is one or more positive numbers (including decimals).
  • the saturation amount of the first light beam BE1 is L times compared to the case of the first embodiment.
  • the video signal processing unit 13 converts the second light beam BE2 into red light, green light and blue light in a region where each color component of the second light beam BE2 is not saturated (second light beam usage region UARBE2)
  • the R, G and B signals photoelectrically converted by each of the monochrome imaging elements 12R, 12G and 12B are subjected to gain correction to 1 / L times to generate a color image CVBE2.
  • the image signal processing unit 13 also multiplies the C signal obtained by photoelectrically converting the first light beam BE1 by the mosaic color filter imaging device 12C by N times in a region where the color components of the second light beam BE2 are saturated (first light beam usage region UARBE1). Gain correction to generate a color image CVBE1.
  • the color image CVBE2 in the low brightness area and the color image CVBE1 in the high brightness area are combined to generate one color image. Thereafter, various video signal processing is performed on the synthesized color video, and for example, an HD-SDI signal is generated and output.
  • the exposure of the first light beam BE1 is 1 / L
  • the gain of the second light beam BE2 is 1 / L. Therefore, although the video signal level of the synthesized color video is 1 / L times, the video signal level can be interpolated by making the light amount L times by opening the lens diaphragm or the like. Even if the light amount is L times, the saturation amount of the first light beam BE1 is L times, so the dynamic range of the imaging device 1 as a whole is not narrowed. Then, by setting the gain of the second light beam BE2 to 1 / L, the S / N ratio and the gradation of the color image in the low luminance region are improved by L times.
  • the saturation amount of the color image in the low luminance region decreases from the second light beam BE2 by the reduction in the gain of the second light beam BE2, the amount of saturation of the color image in the high luminance region generated from the first light beam BE1 It can interpolate with color image.
  • the color image generated from the first luminous flux BE1 is inferior in image quality to the color image generated from the second luminous flux BE2.
  • the gain of the second luminous flux BE2 is extremely lowered, the second luminous flux BE2 is not saturated in the low luminance area, and S / S in the high luminance area to be interpolated with the color image generated from the first luminous flux BE1.
  • the N ratio, the gradation of luminance, and the degree of modulation of the high frequency band do not stand out.
  • the saturation amount of the imaging device itself does not change, so the saturation amount as the whole three-plate type imaging device decreases by the gain
  • the dynamic range is narrowed.
  • imaging device 2 lens 11: color separation optical system 12C: mosaic color filter imaging device 12R, 12G, 12B: monochrome imaging device 13: video signal processing unit 14: exposure control unit 15: CPU unit 131: gain correction unit 132 : Pixel interpolation unit 133: delay unit 134: combining unit 135: gamma correction unit 136: video signal output unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

撮像装置は、レンズから入射した光束を比較的光量の少ない第1光束と、比較的光量の多い第2光束とに分解し、第2光束を赤色光、緑色光および青色光の各色成分に分解する色分解光学系と、第1光束を受光するモザイクカラーフィルタ撮像素子と、赤色光、緑色光および青色光のそれぞれを受光する3つのモノクロ撮像素子と、各撮像素子から得られる電気信号を変換してカラー映像を作り出す信号処理部と、を有する。信号処理部は、モザイクカラーフィルタ撮像素子から得られる電気信号により主に高輝度領域のカラー映像を生成し、3つのモノクロ撮像素子から得られる電気信号により主に低輝度領域のカラー映像を生成し、高輝度領域のカラー映像と低輝度領域のカラー映像を合成して、一つのカラー映像を生成する。

Description

撮像装置
 本発明は、撮像装置に係わり、特に分光または露出制御により受光量を変えた複数の撮像素子で撮像した映像を合成して広ダイナミックレンジの映像を得るカラー撮像装置に関する。
 近年、有機発光ダイオード(OLED:Organic Light Emitting Diode)技術の普及によってコントラスト比をより人間の視覚に近づけたHDR(High Dynamic Range)に対応したディスプレイ等の表示装置が注目されている。
 それに伴い、表示する映像を撮影する撮像装置にもHDRに対応できるようダイナミックレンジの拡大が強く求められている。しかし、撮像素子が光電変換できる光量は限られており、光量が大きい場合には所定レベル以上が飽和してしまう。すなわち、撮像素子のダイナミックレンジには限度があり、実際には人間の視覚よりもかなり狭い。加えて、撮像素子の画素数の増加(高密度化)により個々の画素サイズが小さくなり、ダイナミックレンジはさらに狭くなる傾向にある。
 そこで、ダイナミックレンジを拡大した映像を得るための技術として、単一の撮像素子の露出を異ならせて2つの画像を連続で撮像し、2つの画像を合成することでダイナックレンジを拡大している(例えば、特許文献1参照)。
 また、入射光を分光して2つの撮像素子に同一の被写体像を結像し、2つの撮像素子の露出を異ならせて同時に撮像し、2つの画像を合成することでダイナックレンジを拡大している(例えば、特許文献2参照)。
 また、入射光を色分解して各色成分を各々の撮像素子で受光する構成の撮像装置において、飽和量の小さい色成分の露出を減らして実質的な飽和量を増やし、各色成分の飽和量を最も飽和量が大きい色成分に合わせることでダイナミックレンジを拡大している(例えば、特許文献3参照)。
 なお、ここで述べる撮像装置のダイナミックレンジとは、撮像装置の出力が基準レベルとなる光量を1とした時の撮像装置の出力が飽和する光量の比率を示す。
特開平1-204579号公報 特開平9-149314号公報 特開平7-250332号公報
 しかしながら、単一の撮像素子の露出を時間差で異ならせて連続で撮像した場合には、連続して撮像している間に被写体が移動してしまうと、合成した映像は被写体ぶれが発生してしまう。これは、常に被写体の動きがある映像、すなわち、動画を撮影するには不向きである。
 また、入射光を分光して2つの撮像素子で受光する構成の撮像装置は、主に放送用途に使用される、入射光を色分解して各色成分を3つの撮像素子で受光する構成の3板式撮像装置と比較して、信号対ノイズ比(以下、S/N比)や色再現性および周波数帯域等の画質が劣る。とはいえ、3板式撮像装置で同様の構成を成そうとしても、各色成分それぞれに撮像素子を追加することとなり、物理的配置が困難である。実現できたとしても、撮像素子の数が倍になるため、撮像装置のコストが大幅に上昇してしまう。
 また、飽和量の小さい色成分の撮像素子の露出を減らした場合には、露出を減らした色成分のS/N比が劣化してしまう。さらに、各色成分の飽和量の差は大きくとも3倍程度であるため、ダイナミックレンジを飛躍的に拡大することはできない。
 本発明の目的は、被写体ぶれが発生せず、低輝度領域のカラー映像は良好なS/N比と高階調と広周波数帯域を得ることができ、高輝度領域のカラー映像は広ダイナミックレンジと良好な色再現性を得ることができる撮像装置を提供することにある。
 本発明の他の目的は、分光または露出制御により受光量を変えた複数の撮像素子で撮像した映像を合成して広ダイナミックレンジの映像を得ることができる撮像装置を提供することにある。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 本発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
 すなわち、撮像装置は、レンズから入射した光束を比較的光量の少ない第1光束と比較的光量の多い第2光束に分解し、第2光束を赤色光、緑色光および青色光の各色成分に分解する色分解光学系と、第1光束を受光するモザイクカラーフィルタ撮像素子と、赤色光、緑色光および青色光のそれぞれを受光する3つのモノクロ撮像素子と、各撮像素子から得られる電気信号を変換してカラー映像を作り出す信号処理部と、を有する。信号処理部は、モザイクカラーフィルタ撮像素子から得られる電気信号により主に高輝度領域のカラー映像を生成し、3つのモノクロ撮像素子から得られる電気信号により主に低輝度領域のカラー映像を生成し、高輝度領域のカラー映像と低輝度領域のカラー映像とを合成し、一つのカラー映像を生成する。
 また、上記の撮像装置において、撮像素子の露出を制御する露出制御部を有し、より広ダイナミックレンジの映像を撮像したい場合においては、露出制御部によりモザイクカラーフィルタ撮像素子の露出を下げる。
 また、上記の撮像装置において、映像の利得を制御する利得補正部を有し、低輝度領域カラー映像のS/N比をより良くしたい場合においては、利得補正部により低輝度領域のカラー映像の利得を下げる。
 本発明によれば、被写体ぶれが発生せず、低輝度領域のカラー映像は良好なS/Nと高階調と広周波数帯域を得ることができ、高輝度領域のカラー映像は広ダイナミックレンジと良好な色再現性を得ることができる。
 また、本発明によれば、分光または露出制御により受光量を変えた複数の撮像素子で撮像した映像を合成して広ダイナミックレンジの映像を得ることができる。
実施態様に係る撮像装置の構成例を示すブロック図である。 実施態様に係る映像信号処理部のブロック図である。 実施例1に係る撮像素子への入射光量と撮像素子の信号出力の関係図である。 実施例1に係る撮像素子への入射光量と撮像装置の信号出力の関係図である。 実施例2に係る撮像素子への入射光量と撮像素子の信号出力の関係図である。 実施例2に係る撮像素子への入射光量と撮像装置の信号出力の関係図である。 実施例3に係る撮像素子への入射光量と撮像素子の信号出力の関係図である。 実施例3に係る撮像素子への入射光量と撮像装置の信号出力の関係図である。
 以下、実施形態、および、実施例について、図面を用いて説明する。ただし、以下の説明において、同一構成要素には同一符号を付し繰り返しの説明を省略することがある。なお、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。
(実施形態)
 以下、本発明の実施形態について図面を参照して詳細に説明する。
 図1は本発明の実施形態に係る撮像装置の構成例を示すブロック図である。
 図1において、撮像装置1は、色分解光学系11、モザイクカラーフィルタ(C、Color)撮像素子12C、赤色(R、Red)用モノクロ撮像素子12R、緑色(G、Green)用モノクロ撮像素子12G、青色(B、Blue)用モノクロ撮像素子12B、映像信号処理部13、露出制御部14、中央処理装置(CPU:Central Processing Unit)部15で構成されている。
 モザイクカラーフィルタ撮像素子12Cは、モザイク状に配置された微小なカラーフィルタを撮像素子の上に設けた構成であり、1つの撮像素子でカラー画像やカラー映像を得ることが出来る。なお、モザイクカラーフィルタは、例えば、バイヤー配置のカラーフィルタを採用することが可能である。
 赤色(R、Red)用モノクロ撮像素子12Rは、赤色の単色フィルタを撮像素子の上に設けた構成である。緑色(G、Green)用モノクロ撮像素子12Gは、緑色の単色フィルタを撮像素子の上に設けた構成である。青色(B、Blue)用モノクロ撮像素子12Bは、青色の単色のフィルタを撮像素子の上に設けた構成である。
 また、撮像素子(12C、12R、12G、12B)は、CCD(Charge-Coupled Device)イメージセンサやCMOSイメージセンサ等の固体撮像デバイスを採用することが可能である。
 CPU部15は、撮像装置1の各部を制御する。また、露出制御部14は、CPU部15からの制御に応じてモザイクカラーフィルタ撮像素子12Cとモノクロ撮像素子12R、12G、12Bの露出をそれぞれ制御する。露出を制御する回路ないし手段は、例えば、電子シャッタ等を採用することが可能であるが、これに限定されるわけではない。
 被写体からの入射光はレンズ2で結像され、色分解光学系11で比較的光量の少ない第1光束BE1と比較的光量の多い第2光束BE2に分解される。第2光束BE2は、さらに、赤色光、緑色光および青色光に分解される。分解された第1光束BE1は、モザイクカラーフィルタ撮像素子12Cで、カラー信号(C信号)として第1電気信号に光電変換される。赤色光、緑色光および青色光に色分解された第2光束BE2は各々のモノクロ撮像素子12R、12G、12Bでそれぞれ、R信号、G信号、B信号として第2電気信号、第3電気信号、第4電気信号に光電変換される。C信号、R信号、G信号、および、B信号は、映像信号処理部13に入力され、映像信号処理部13により各種信号処理が施され、例えば、HD-SDI(High Definition Serial Digital Interface)信号として出力される。
 なお、本発明の撮像装置1から出力される映像信号は、HD-SDI信号に限定されるわけではなく、種々の映像信号を採用することが可能である。また、映像信号処理部13に、圧縮処理回路や暗号処理回路等を内蔵させ、圧縮や暗号化等の処理が施され映像信号を撮像装置1から出力させても良い。
 図2は本発明の実施形態に係る映像信号処理部のブロック図である。
 図2において、映像信号処理部13は、利得補正部131、画素補間部132、遅延部133、合成部134、ガンマ補正部135、映像信号出力部136で構成されている。映像信号処理部13の各部はCPU部15により制御される。
 映像信号処理部13では、利得補正部131でC信号、R信号、G信号、B信号に利得補正が掛けられ、C信号は画素補間部132でベイヤ―配列の画素補間処理が施されR’信号、G’信号、B’信号に分離された後、合成部134でR信号、G信号、B信号にそれぞれ合成される。その後、ガンマ補正部135で色補正、ガンマ補正、ニー補正等の各種映像信号処理を施され、映像信号出力部136はR映像信号、G映像信号、B映像信号から、例えば、HD-SDI信号を生成して出力する。
 遅延部133は、R信号、G信号、B信号をR’信号、G’信号、B’信号のタイミングに合わせるために行う遅延処理である。
 なお、遅延部133は、LPF(Low Pass Filter)でもよい。また、遅延部133は、モノクロ撮像素子12R、12G、12Bの駆動方法により信号を所定時間遅延させて読み出せる場合には不要としてもよい。
 次に、図3-図8を用いて、本発明の実施例1、実施例2、および、実施例3を説明する。
 図3は、実施例1に係る撮像素子への入射光量と撮像素子の信号出力の関係図である。図4は、実施例1に係る撮像素子への入射光量と撮像装置の信号出力の関係図である。
 図5は、実施例2に係る撮像素子への入射光量と撮像素子の信号出力の関係図である。図6は、実施例2に係る撮像素子への入射光量と撮像装置の信号出力の関係図である。
 図7は、実施例3に係る撮像素子への入射光量と撮像素子の信号出力の関係図である。図8は、実施例3に係る撮像素子への入射光量と撮像装置の信号出力の関係図である。
 図3、図5および図7において、横軸は撮像素子(12C、12R、12G、12B)への入射光量LQを示し、縦軸は撮像素子(12C、12R、12G、12B)の信号出力LOを示している。縦軸に示される飽和レベルSLは、第1光束BE1を受光するモザイクカラーフィルタ撮像素子12Cと第2光束BE2を受光するモノクロ撮像素子12R、12G、12Bの飽和量を示す。横軸に示される第1光束飽和光量SLBE1は、モザイクカラーフィルタ撮像素子12Cが飽和レベルSLの時の第1光束BE1の飽和光量を示す。横軸に示される第2光束飽和光量SLBE2は、モノクロ撮像素子12R、12G、12Bが飽和レベルSLの時の第2光束BE2の飽和光量を示す。
 図4、図6および図8において、横軸は撮像素子(12C、12R、12G、12B)への入射光量LQを示し、縦軸は撮像装置1の信号出力VOを示している。縦軸に示される飽和レベルSLVOは、撮像装置1の信号出力VOの飽和レベルを示しており、横軸に示される飽和光量SLLQは、飽和レベルSLVOの時の入射光量LQの飽和光量を示している。横軸に示される第2光束使用領域UARBE2は、第2光束BE2の各色成分が飽和していない領域であり、低輝度領域と見做すことが出来る。横軸に示される第1光束使用領域UARBE1は、第2光束BE2の各色成分が飽和した領域であり、また、第1光束BE1の各色成分が飽和していない領域であり、高輝度領域と見做すことが出来る。また、カラー映像CVBE1は高輝度領域のカラー映像を示し、カラー映像CVBE2は低輝度領域のカラー映像を示す。なお、図4、図6および図8には、入射光量LGの基準光量RFLQにおける撮像装置1の信号出力VOの基準レベルRFVO、も示される。
 次に、本発明の実施例1に係る撮像装置の動作について、図3、図4を用いて説明する。
 図3に示すように、色分解光学系11は、第1光束BE1と第2光束BE2の光量の比率(分光比SR)が1/N:1となるように入射光を分解する。Nは、1以上の正の数(小数含む)である。第1光束BE1を受光するモザイクカラーフィルタ撮像素子12Cと第2光束BE2を受光するモノクロ撮像素子12R、12G、12Bの飽和量(飽和レベルSL)が同等であれば、第1光束BE1の飽和光量(第1光束飽和光量SLBE1)は、第2光束BE2の飽和光量(第2光束飽和光量SLBE2)に比べて、N倍になる(SLBE1=N×SLBE2)。
 図4に示すように、映像信号処理部13は、第2光束BE2の各色成分が飽和していない領域(第2光束使用領域UARBE2)において、第2光束BE2を赤色光、緑色光および青色光に分解し、各々のモノクロ撮像素子12R、12G、12Bで光電変換したR信号、G信号、B信号によりカラー映像CVBE2を生成する。
 映像信号処理部13は、また、第2光束BE2の各色成分が飽和した領域(第1光束使用領域UARBE1)において、第1光束BE1をモザイクカラーフィルタ撮像素子12Cで光電変換したC信号をN倍に利得補正してカラー映像CVBE1を生成する。
 低輝度領域のカラー映像CVBE2と高輝度領域のカラー映像CVBE1とを合成して、一つのカラー映像を生成する。その後、合成したカラー映像に各種映像信号処理を施し、例えばHD-SDI信号を生成して出力する。
 本実施例1において、モザイクカラーフィルタ撮像素子12Cとモノクロ撮像素子12R、12G、12Bは同時に露出を行うため、単一の撮像素子の露出を時間差で異ならせて連続で撮像して合成した場合に生じる被写体ぶれは発生することはない。
 また、3板式撮像装置と比較した場合、第2光束BE2が色分解されたのちに3つのモノクロ撮像素子12R、12G、12Bで光電変換されカラー映像に生成される構成は3板式撮像装置と同様であるため、第2光束BE2から生成されるカラー映像は3板式撮像装置と同等の画質を得られる。第2光束BE2の光量は全入射光の1-1/N倍となるが、Nが大きければ、S/N比と階調の劣化に大きく影響しない。
 さらに、モザイクカラーフィルタ撮像素子12Cで受光する第1光束BE1の飽和量は第2光束BE2のN倍であるため、第1光束BE1と第2光束BE2を合成したカラー映像はダイナミックレンジが広く、高輝度領域においても良好な色再現性を得られる。
 なお、モザイクカラーフィルタ撮像素子12Cから生成した高輝度領域のカラー映像信号は、モノクロ撮像素子12R、12G、12Bから生成した低輝度領域のカラー映像信号と比較して、モザイクカラーフィルタであるため、高周波帯域の変調度が劣り、また、光量の少ない第1光束BE1の被写体映像を映像信号処理部13で利得を上げているため、S/N比と階調とが劣った映像になる。しかし、人間の視覚特性により、OLEDを利用したディスプレイ等の表示装置またモニタ上において、眩しいと感じてしまうような高輝度領域では、S/N比や輝度の階調、高周波帯域の変調度が目立つことはないため、特に問題にはならない。
 以上のように、実施例1によれば、被写体ぶれが発生せず、低輝度領域のカラー映像の画質を損なうことなく、高輝度領域のカラー映像の広ダイナミックレンジと良好な色再現性とを得ることが可能である。
 次に、本発明の実施例2に係る撮像装置の動作について、図5、図6を用いて説明する。
 図5に示すように、露出制御部14は、第1光束BE1を受光するモザイクカラーフィルタ撮像素子12Cの露出を1/M倍に制御する。Mは、1以上の正の数(小数含む)である。これにより、第1光束BE1の飽和量は前記実施例1の場合と比べてM倍になる。
 図6に示すように、映像信号処理部13は、第2光束BE2の各色成分が飽和していない領域(第2光束使用領域UARBE2)において、第2光束BE2を赤色光、緑色光および青色光に分解し各々のモノクロ撮像素子12R、12G、12Bで光電変換したR信号、G信号、B信号からカラー映像VCBE2を生成する。
 映像信号処理部13は、また、第2光束BE2の各色成分が飽和した領域(第1光束使用領域UARBE1)において、第1光束BE1をモザイクカラーフィルタ撮像素子12Cで光電変換したC信号をN×M倍に利得補正してカラー映像VCBE1を生成する。
 低輝度領域のカラー映像CVBE2と高輝度領域のカラー映像CVBE1とを合成して、一つのカラー映像を生成する。その後、合成したカラー映像に各種映像信号処理を施し、例えばHD-SDI信号を生成して出力する。
 本実施例2において、第2光束BE2を受光する各々のモノクロ撮像素子12R、12G、12Bの露出と利得とは、前記実施例1の場合と変化ないため、低輝度領域のカラー映像CVBE2の画質が損なわれることはない。また、第1光束BE1の飽和量がM倍となるため、撮像装置1全体のダイナミックレンジはM倍となる。高輝度領域のカラー映像CVBE2のダイナミックレンジは広く出来る。
 なお、モザイクカラーフィルタ撮像素子12Cから生成した高輝度領域の映像信号(カラー映像CVBE1)は、前記実施例1の場合と比較して、第1光束BE1の光量を減らした分を映像信号処理部13で利得を上げているため、S/N比と階調が劣った映像になる。しかし、前述の通り、高輝度領域ではS/N比や輝度の階調が目立つことはないため、特に問題にはならない。
 これに対し、3板式撮像装置において撮像素子の露出を減らしてダイナミックレンジを広げようとした場合、低輝度領域の露出も減り、その分も利得を上げなければならないため、低輝度領域カラー映像の画質も損なわれてしまう。この時、露出を1/M倍した分の利得を上げずに、レンズ絞りを開くなどして光量をM倍にすれば、画質は保たれる。しかしながら、結果として、撮像素子の受光量は変わらずに、撮像素子の出力が飽和してしまうため、ダイナミックレンジは広がらないこととなる。
 以上のように、実施例2によれば、低輝度領域のカラー映像の画質を損なうことなく、高輝度領域のカラー映像はより広いダイナミックレンジを得ることが可能である。
 次に、本発明の実施例3に係る撮像装置の動作について、図7、図8を用いて説明する。
 図7に示すように、露出制御部14は、第1光束BE1を受光するモザイクカラーフィルタ撮像素子12Cの露出を1/L倍に制御する。Lは、1以上の正の数(小数含む)である。これにより、第1光束BE1の飽和量は、前記実施例1の場合と比べて、L倍になる。
 図8に示すように、映像信号処理部13は、第2光束BE2の各色成分が飽和していない領域(第2光束使用領域UARBE2)において、第2光束BE2を赤色光、緑色光および青色光に分解し各々のモノクロ撮像素子12R、12G、12Bで光電変換したR信号、G信号、B信号を1/L倍に利得補正してカラー映像CVBE2を生成する。
 映像信号処理部13は、また、第2光束BE2の各色成分が飽和した領域(第1光束使用領域UARBE1)において、第1光束BE1をモザイクカラーフィルタ撮像素子12Cで光電変換したC信号をN倍に利得補正してカラー映像CVBE1を生成する。
 低輝度領域のカラー映像CVBE2と高輝度領域のカラー映像CVBE1とを合成して、一つのカラー映像を生成する。その後、合成したカラー映像に各種映像信号処理を施し、例えば、HD-SDI信号を生成して出力する。
 実施例3において、第1光束BE1は露出を1/L倍とし、第2光束BE2は利得を1/L倍としている。そのため、合成されたカラー映像の映像信号レベルは1/L倍となるが、レンズ絞りを開くなどして光量をL倍にすることで、映像信号レベルを補間することができる。光量がL倍となっても、第1光束BE1の飽和量がL倍となっているため、撮像装置1全体としてのダイナミックレンジが狭まることはない。そして、第2光束BE2の利得を1/Lとしたことで、低輝度領域のカラー映像のS/N比と階調とはL倍に改善される。
 なお、第2光束BE2は利得を下げた分だけ第2光束BE2から生成した低輝度領域のカラー映像の飽和量が下がることになるが、その分は第1光束BE1から生成した高輝度領域のカラー映像で補間できる。第1光束BE1から生成したカラー映像は、第2光束BE2から生成したカラー映像と比較して、画質が劣る。しかし、第2光束BE2の利得を極端に下げ過ぎなければ、第2光束BE2が低輝度領域において飽和することはなく、第1光束BE1から生成したカラー映像で補間する高輝度領域では、S/N比や輝度の階調、高周波帯域の変調度が目立つことはないため、特に問題にはならない。
 これに対し、3板式撮像装置において利得を下げてS/N比を上げようとした場合、撮像素子そのものの飽和量は変化しないため、3板式撮像装置全体としての飽和量は利得の分だけ下がり、ダイナミックレンジは狭まってしまう。
 以上のように、実施例3によれば、広ダイナミックレンジを維持しつつ、低輝度領域のカラー映像はより良好なS/N比と高階調とを得ることが可能である。
 以上、本発明者によってなされた発明を実施態様、実施例に基づき具体的に説明したが、本発明は、上記実施形態および実施例に限定されるものではなく、種々変更可能であることはいうまでもない。
1:撮像装置
2:レンズ
11:色分解光学系
12C:モザイクカラーフィルタ撮像素子
12R,12G,12B:モノクロ撮像素子
13:映像信号処理部
14:露出制御部
15:CPU部
131:利得補正部
132:画素補間部
133:遅延部
134:合成部
135:ガンマ補正部
136:映像信号出力部

Claims (5)

  1.  レンズから入射した光束を比較的光量の少ない第1光束と比較的光量の多い第2光束とに分解し、前記第2光束を赤色光、緑色光および青色光の各色成分に分解する色分解光学系と、
     前記第1光束を受光するモザイクカラーフィルタ撮像素子と、
     前記赤色光、前記緑色光および前記青色光のそれぞれを受光する3つのモノクロ撮像素子と、
     各撮像素子から得られる電気信号を変換してカラー映像を生成する信号処理部と、
    を有し、
     前記信号処理部は、
      前記モザイクカラーフィルタ撮像素子から得られる電気信号により主に高輝度領域のカラー映像を生成し、
      前記3つのモノクロ撮像素子から得られる電気信号により主に低輝度領域のカラー映像を生成し、
     前記高輝度領域のカラー映像と前記低輝度領域のカラー映像を合成し、一つのカラー映像を生成する、
    ことを特徴とする撮像装置。
  2.  請求項1に記載の撮像装置において、
     各撮像素子の露出を制御する露出制御部を有し、
     より広ダイナミックレンジの映像を撮像したい場合においては、前記露出制御部により、前記モザイクカラーフィルタ撮像素子の露出を下げる、ことを特徴とする撮像装置。
  3.  請求項2に記載の撮像装置において、
     前記カラー映像の利得を制御する利得補正部を有し、
     前記低輝度領域のS/N比をより良くしたい場合においては、前記利得補正部により前記低輝度領域のカラー映像の利得を下げる、こと特徴とする撮像装置。
  4.  レンズから入射した光束を第1光束と第2光束とに分解し、前記第2光束を赤色光、緑色光および青色光に分解する色分解光学系と、
     前記第1光束を受光し、第1電気信号を生成するカラーフィルタを備えた第1撮像素子と、
     前記赤色光を受光し、第2電気信号を生成する赤色用の第2撮像素子と、
     前記緑色光を受光し、第3電気信号を生成する緑色用の第3撮像素子と、
     前記青色光を受光し、第4電気信号を生成する青色用の第4撮像素子と、
     前記第1ないし第4電気信号を変換してカラー映像を生成する信号処理部と、
     前記第1ないし第4撮像素子の露出を制御可能な露出制御部と、
    を有し、
     前記信号処理部は、
      前記第1ないし第4電気信号の利得を制御可能な利得補正部と、
      前記利得補正部の出力に接続され、前記第1電気信号に対応する出力信号と前記第2ないし前記第4電気信号に対応する出力信号と、を合成する合成部と、を有する、
    こと特徴とする撮像装置。
  5.  請求項4に記載の撮像装置において、
     前記色分解光学系は、前記第1光束の光量を、前記第2光束の光量と比べて、少なくし、
     前記合成部は、
      前記第1電気信号により高輝度領域のカラー映像を生成し、
      前記第2ないし前記第4電気信号により低輝度領域のカラー映像を生成し、
      前記高輝度領域のカラー映像と前記低輝度領域のカラー映像を合成し、一つのカラー映像を生成する、こと特徴とする撮像装置。
PCT/JP2017/032794 2017-09-12 2017-09-12 撮像装置 WO2019053764A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/032794 WO2019053764A1 (ja) 2017-09-12 2017-09-12 撮像装置
JP2019541503A JP6886026B2 (ja) 2017-09-12 2017-09-12 撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032794 WO2019053764A1 (ja) 2017-09-12 2017-09-12 撮像装置

Publications (1)

Publication Number Publication Date
WO2019053764A1 true WO2019053764A1 (ja) 2019-03-21

Family

ID=65722570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032794 WO2019053764A1 (ja) 2017-09-12 2017-09-12 撮像装置

Country Status (2)

Country Link
JP (1) JP6886026B2 (ja)
WO (1) WO2019053764A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166236A1 (ja) * 2020-02-21 2021-08-26 株式会社日立国際電気 撮像システム、画像処理プログラム、および画像処理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250332A (ja) * 1994-03-14 1995-09-26 Ikegami Tsushinki Co Ltd 4板式固体撮像装置の飽和出力拡張方法
JP2000078463A (ja) * 1998-08-28 2000-03-14 Nikon Corp 画像取り込み装置
JP2001298749A (ja) * 2000-04-12 2001-10-26 Nippon Hoso Kyokai <Nhk> 撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07250332A (ja) * 1994-03-14 1995-09-26 Ikegami Tsushinki Co Ltd 4板式固体撮像装置の飽和出力拡張方法
JP2000078463A (ja) * 1998-08-28 2000-03-14 Nikon Corp 画像取り込み装置
JP2001298749A (ja) * 2000-04-12 2001-10-26 Nippon Hoso Kyokai <Nhk> 撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166236A1 (ja) * 2020-02-21 2021-08-26 株式会社日立国際電気 撮像システム、画像処理プログラム、および画像処理方法
JPWO2021166236A1 (ja) * 2020-02-21 2021-08-26
JP7295329B2 (ja) 2020-02-21 2023-06-20 株式会社日立国際電気 撮像システム、画像処理プログラム、および画像処理方法
US11683568B2 (en) 2020-02-21 2023-06-20 Hitachi Kokusai Electric Inc. Image capturing system, image processing program, and image processing method

Also Published As

Publication number Publication date
JPWO2019053764A1 (ja) 2020-10-01
JP6886026B2 (ja) 2021-06-16

Similar Documents

Publication Publication Date Title
JP3382359B2 (ja) 撮像装置
EP3429189B1 (en) Dual image capture processing
TWI386049B (zh) A solid-state imaging device, and a device using the solid-state imaging device
JP5816015B2 (ja) 固体撮像装置及びカメラモジュール
KR0153509B1 (ko) 촬상장치
US8508625B2 (en) Image processing apparatus
US7916191B2 (en) Image processing apparatus, method, program, and recording medium
JP2007336561A (ja) 映像生成装置及び方法
US20070153099A1 (en) Image signal processing apparatus, imaging apparatus, image signal processing method and computer program thereof
JP2015053694A (ja) ビデオフレームの画像データを選択的に合成するためのシステムおよび方法
US20060109358A1 (en) System on a chip camera system employing complementary color filter
US7864222B2 (en) Automatic white balance system and automatic white balance control method
US8111298B2 (en) Imaging circuit and image pickup device
JP2003032695A (ja) 画像信号処理装置
KR20120024448A (ko) 촬상 장치, 신호 처리 방법 및 프로그램
JP2003179819A (ja) 撮像装置
US9723283B2 (en) Image processing device, image processing system, and image processing method
JP6886026B2 (ja) 撮像装置
JP2015231052A (ja) 撮像装置および方法、並びにプログラム
JP2008199403A (ja) 撮像装置、撮像方法および集積回路
JP2007318630A (ja) 画像入力装置、撮像モジュール、及び固体撮像装置
JPH07131796A (ja) 画像合成装置
JP2012134745A (ja) 画像信号処理装置
JPH07135599A (ja) 撮像装置とその画像処理方法
US7512266B2 (en) Method and device for luminance correction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924876

Country of ref document: EP

Kind code of ref document: A1