WO2019052315A1 - Gaine de combustible et assemblage combustible - Google Patents

Gaine de combustible et assemblage combustible Download PDF

Info

Publication number
WO2019052315A1
WO2019052315A1 PCT/CN2018/101374 CN2018101374W WO2019052315A1 WO 2019052315 A1 WO2019052315 A1 WO 2019052315A1 CN 2018101374 W CN2018101374 W CN 2018101374W WO 2019052315 A1 WO2019052315 A1 WO 2019052315A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
intermediate layer
fuel cladding
zirconium alloy
fuel
Prior art date
Application number
PCT/CN2018/101374
Other languages
English (en)
Chinese (zh)
Inventor
薛佳祥
张显生
刘彤
李锐
李思功
严俊
严岩
龚星
黄华伟
任啟森
卢志威
Original Assignee
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核研究院有限公司
Publication of WO2019052315A1 publication Critical patent/WO2019052315A1/fr

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/08Casings; Jackets provided with external means to promote heat-transfer, e.g. fins, baffles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of nuclear reactors, and in particular to a fuel cladding and a fuel assembly.
  • Siemens applied for a patent for fuel cladding surface coatings, including TiC, TiN, ZrN, CrC, TiAlVN, TaN, ZrC and WC.
  • the patent mainly considers wear resistance and normal work.
  • the hydrothermal corrosion performance under the condition does not take into account the high-temperature steam oxidation performance under the conditions of water loss accidents.
  • the high-temperature steam oxidation performance of these coating systems is poor.
  • the research on surface modification of zirconium alloy is still limited to hydrothermal corrosion, hydrogen absorption, wear resistance, etc., and does not comprehensively consider accident conditions (such as 1200 °C high temperature caused by water loss accident), heat exchange.
  • Efficiency, radiation resistance, and compatibility of the coating with the zirconium alloy matrix eg, lattice matching, thermal conductivity matching, thermal expansion matching, etc.
  • the technical problem to be solved by the present invention is to provide a fuel cladding and an fuel assembly having the fuel cladding that improve the anti-accident capability and the safety threshold.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to provide a fuel cladding comprising a zirconium alloy substrate, an intermediate layer having non-stoichiometric ratios and gradient characteristics disposed on the zirconium alloy substrate, and An environmental barrier layer on the intermediate layer; the intermediate layer and the environmental barrier layer form a gradient complex coating having a non-stoichiometric ratio on the zirconium alloy substrate.
  • the gradient multiphase coating has a density of from 90% to 100% and a porosity of from 10% to 0%.
  • the intermediate layer is one or more of a ZrC 1-x coating, a ZrN 1-x coating, a TiC 1-x coating, and a TiN 1-x coating, wherein x is 0-0.5.
  • the intermediate layer has a thickness of from 0.1 ⁇ m to 10 ⁇ m.
  • the environmental shielding layer is one or more of a SiC coating, a MAX phase coating, and a CrN coating.
  • the MAX phase coating is Ti 3 SiC, Ti3AlC 2 , Ti 2 AlC, Cr 2 AlC, Ti 2 AlN, Zr 3 SiC, Zr 3 AlC 2 , Zr 2 AlN and Cr 2 AlN.
  • the MAX phase coating is Ti 3 SiC, Ti3AlC 2 , Ti 2 AlC, Cr 2 AlC, Ti 2 AlN, Zr 3 SiC, Zr 3 AlC 2 , Zr 2 AlN and Cr 2 AlN.
  • the MAX phase coating is Ti 3 SiC, Ti3AlC 2 , Ti 2 AlC, Cr 2 AlC, Ti 2 AlN, Zr 3 SiC, Zr 3 AlC 2 , Zr 2 AlN and Cr 2 AlN.
  • the environmental shielding layer has a thickness of from 0.1 ⁇ m to 100 ⁇ m.
  • the portion of the coating where the intermediate layer and the environmental shield are joined together form a transition layer.
  • the intermediate layer and the environmental barrier layer are respectively formed on the surface of the zirconium alloy substrate by physical vapor deposition.
  • the invention also provides a fuel assembly comprising the fuel cladding of any of the above.
  • the invention has the beneficial effects of overcoming the problems of interfacial stress, interfacial diffusion and high temperature steam oxidation in the single coating of the traditional zirconium alloy cladding.
  • the fuel cladding of the invention has a non-stoichiometric gradient.
  • the multi-phase coating is suitable for accident-tolerant nuclear fuel cladding applications, greatly improving the anti-accident capability and safety threshold of nuclear reactors to maintain the structural and functional integrity of nuclear fuel assemblies under severe accident conditions.
  • FIG. 1 is a cross-sectional structural view showing a fuel cladding according to an embodiment of the present invention
  • Figure 3 is a graph showing the lattice volume swelling of the intermediate layer under different irradiation conditions in Example 1 of the present invention
  • Figure 4 is a cross-sectional scanning electron micrograph of a gradient multiphase coating of the fuel cladding embodiment 2 of the present invention
  • Fig. 5 is a front view and front view of the intermediate layer in the second embodiment of the present invention.
  • the fuel cladding of the present invention comprises a zirconium alloy substrate 10, an intermediate layer 20 having non-stoichiometric ratios and gradient characteristics disposed on the zirconium alloy substrate 10, and an environmental shield disposed on the intermediate layer 20.
  • Layer 30; the zirconium alloy substrate 10 is the body of the fuel cladding, and the intermediate layer 20 and the environmental shielding layer 30 form a gradient complex coating having a non-stoichiometric ratio on the zirconium alloy substrate 10.
  • the zirconium alloy substrate 10 is generally of a tubular structure, and FIG. 1 only shows a laminated structure of a fuel cladding, and the zirconium alloy substrate 10 is also only a partial structure.
  • the gradient composite coating is disposed on the surface (outer surface) of the zirconium alloy substrate 10.
  • the intermediate layer 20 is located between the zirconium alloy substrate 10 and the environmental shielding layer 30, and has non-stoichiometric characteristics and gradient characteristics. First, the difference between the large thermal expansion coefficient of the environmental shielding layer 30 and the zirconium alloy substrate 10 is alleviated.
  • the lattice vacancy of the non-stoichiometric transition layer can play the role of self-healing of the radiation damage defect, avoiding the irradiation environment. Stress cracking caused by interface damage between the undercoat layer and the zirconium alloy substrate 10.
  • the intermediate layer 20 may be one or more of a ZrC 1-x coating, a ZrN 1-x coating, a TiC 1-x coating, and a TiN 1-x coating, where x is 0-0.5.
  • the gradient feature of the intermediate layer 20 is mainly represented by a composition gradient; for the intermediate layer 20 having a plurality of component coatings, each coating layer may be subjected to a gradient distribution of components or a gradient of concentration gradients.
  • the ZrC 1-x coating may vary from less to more or less depending on the C concentration. distributed.
  • the intermediate layer 20 has a thickness of from 0.1 ⁇ m to 10 ⁇ m.
  • the environmental shielding layer 30 is located on the outer side, and the environmental shielding layer 30 has excellent high-temperature oxidation resistance and wear resistance, and protects the high-temperature oxidation of the zirconium alloy fuel cladding under accident conditions and resists the fretting wear of the grid.
  • the environmental shielding layer 30 may be one or more of a SiC coating, a MAX phase coating, and a CrN coating, which has high thermal conductivity, high strength, high radiation tolerance, corrosion resistance, and accident resistance. High temperature steam oxidation, wear resistance and so on.
  • the MAX phase coating layer may be one or more of Ti 3 SiC, Ti 3 AlC 2 , Ti 2 AlC, Cr 2 AlC, Ti 2 AlN, Zr 3 SiC, Zr 3 AlC 2 , Zr 2 AlN and Cr 2 AlN.
  • the MAX phase coating layer may be one or more of Ti 3 SiC, Ti 3 AlC 2 , Ti 2 AlC, Cr 2 AlC, Ti 2 AlN, Zr 3 SiC, Zr 3 AlC 2 , Zr 2 AlN and Cr 2 AlN.
  • the thickness of the environmental shielding layer 30 is from 0.1 ⁇ m to 100 ⁇ m.
  • the composition of the transition layer 40 is a combination of components of the intermediate layer 20 and the environmental shielding layer 30.
  • the intermediate layer 20 is a ZrC 1-x coating
  • the environmental shielding layer 30 is a SiC coating
  • the transition layer 40 formed by the combination of the two is a SiC-ZrC 1-x layer.
  • the intermediate layer 20 and the environmental shielding layer 30 are respectively formed on the surface of the zirconium alloy substrate by physical vapor deposition to form a gradient composite coating.
  • the gradient composite coating has a density of from 90% to 100% and a porosity of from 10% to 0%.
  • the fuel assembly of the present invention includes the fuel cladding described above.
  • a ZrC 0.7 intermediate layer of 0.5 ⁇ m thickness is first deposited on the surface of the zirconium alloy substrate, and a SiC environmental shielding layer is deposited on the ZrC 0.7 intermediate layer.
  • the thickness of the SiC environment shielding layer is 2 ⁇ m.
  • the ZrC 0.7 intermediate layer and the SiC environmental shielding layer have a density of >99%, a porosity of ⁇ 1%, and a bonding strength of the coating to the zirconium alloy matrix of >70 MPa.
  • a high-resolution projection electron micrograph of the ZrC 0.7 / SiC gradient composite coating grain boundary is shown in Fig. 2.
  • the zirconium alloy substrate having the gradient composite coating has an oxidative weight gain of only 0.2 mg/cm 2 by steam oxidation at 1200 ° C for 1 hour, while the uncoated zirconium alloy matrix is the same.
  • the oxidative weight gain under the condition is 37 mg/cm 2 , which indicates that the gradient composite coating effectively reduces the high temperature steam oxidation weight gain of the zirconium alloy nuclear fuel cladding by two orders of magnitude.
  • the ZrC 1-x intermediate layer design, the zirconium alloy substrate and the coating are kept at a high temperature of 1200 ° C for 30 minutes without obvious diffusion reaction at the interface, compared with the conventional uncoated zirconium.
  • the alloy cladding increases the 400 °C withstand temperature.
  • a TiN 0.7 intermediate layer of 1 ⁇ m thickness was first deposited on the surface of the zirconium alloy substrate, and a Cr 2 AlN environmental shielding layer was deposited on the TiN 0.7 intermediate layer.
  • the thickness of the Cr 2 AlN environmental shielding layer was 1 ⁇ m.
  • the TiN 0.7 intermediate layer and the Cr 2 AlN environmental shielding layer have a density of >99%, a porosity of ⁇ 1%, and a bonding strength of the coating to the zirconium alloy matrix of >60 MPa.
  • a cross-sectional scanning electron micrograph of a TiN 0.7 /Cr 2 AlN gradient composite coating is shown in FIG.
  • the zirconium alloy substrate having the gradient composite coating has an oxidative weight gain of only 0.6 mg/cm 2 by steam oxidation at 1200 ° C for 1 hour, while the uncoated zirconium alloy cladding is The oxidative weight gain under the same conditions was 37 mg/cm 2 , indicating that the gradient composite coating effectively reduced the high temperature steam oxidation weight gain of the zirconium alloy nuclear fuel cladding by two orders of magnitude.
  • the zirconium alloy substrate and the coating are incubated at 1200 ° C for 30 minutes without significant diffusion reaction at the interface, compared with the conventional uncoated zirconium.
  • the alloy cladding increases the 400 °C withstand temperature, while the Cr 2 AlN without the intermediate layer undergoes a significant diffusion reaction with the zirconium alloy.
  • the lattice constant did not change significantly by introducing and regulating the nitrogen vacancies in the non-stoichiometric TiN 0.7 intermediate layer at 300 °C Ar ion 800 °C high temperature irradiation 3 ⁇ 10 17 /cm 2 . It can be seen that non-stoichiometric TiN 0.7 achieves self-healing of radiation damage defects.
  • the non-stoichiometric TiN 0.7 intermediate layer and the stoichiometric TiN intermediate layer of the present invention are compared before and after irradiation, and the lattice constant changes of the two are shown in the figure.
  • TiN is a stoichiometric ratio unirradiated sample
  • i -TiN is a stoichiometric post-irradiation sample
  • TiN 0.7 is a non-stoichiometric unirradiated sample
  • i-TiN 0.7 is a non-stoichiometric post-irradiation sample.
  • the lattice constant of the non-stoichiometric TiN 0.7 intermediate layer did not change significantly.

Abstract

La présente invention porte sur une gaine de combustible et sur un assemblage combustible, la gaine de combustible comprenant un substrat en alliage de zirconium, une couche intermédiaire disposée sur le substrat en alliage de zirconium et ayant des caractéristiques de non-stœchiométrie et de gradient, et une couche de protection ambiante disposée sur la couche intermédiaire ; et la couche intermédiaire et la couche de protection ambiante forment un revêtement multiphase à gradient ayant une non-stœchiométrie sur le substrat en alliage de zirconium. La gaine de combustible surmonte les problèmes dans un revêtement unique de gaines en alliage de zirconium classiques, tels que des contraintes interfaciales, une diffusion interfaciale et une tolérance nulle à une oxydation de vapeur à haute température, est applicable à des utilisations de gaine de combustible nucléaire tolérant aux défaillances d'accidents, et améliore considérablement la capacité anti-accident d'un réacteur nucléaire pour conserver la structure d'assemblage de combustible nucléaire et l'intégralité fonctionnelle dans des conditions d'accident grave, et un seuil de sécurité de ce dernier.
PCT/CN2018/101374 2017-09-13 2018-08-20 Gaine de combustible et assemblage combustible WO2019052315A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710824174.3 2017-09-13
CN201710824174.3A CN107799185B (zh) 2017-09-13 2017-09-13 燃料包壳及燃料组件

Publications (1)

Publication Number Publication Date
WO2019052315A1 true WO2019052315A1 (fr) 2019-03-21

Family

ID=61531633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101374 WO2019052315A1 (fr) 2017-09-13 2018-08-20 Gaine de combustible et assemblage combustible

Country Status (2)

Country Link
CN (1) CN107799185B (fr)
WO (1) WO2019052315A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112938A3 (fr) * 2019-09-13 2021-08-12 Westinghouse Electric Company Llc Dépôt physique en phase vapeur de revêtements céramiques sur des barres de combustible nucléaire en alliage de zirconium

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799185B (zh) * 2017-09-13 2019-11-15 中广核研究院有限公司 燃料包壳及燃料组件
CN108588532B (zh) * 2018-05-21 2019-08-30 广东核电合营有限公司 多元合金涂层、锆合金包壳及燃料组件
CN108754452B (zh) * 2018-07-27 2020-04-10 国家电投集团科学技术研究院有限公司 在锆合金表面制备SiC涂层的方法及其应用
CN109868475B (zh) * 2019-01-23 2021-06-22 中国科学院宁波材料技术与工程研究所 锆合金包壳及其制备方法、锆合金组件
CN110527935B (zh) * 2019-09-27 2021-03-16 河北科技大学 一种提高锆基合金表面硬度的方法
CN111826648B (zh) * 2020-07-16 2021-08-06 西安交通大学 一种事故容错核燃料包壳双层涂层结构及其制备方法
CN112063954A (zh) * 2020-09-14 2020-12-11 昆明理工大学 一种提高锆合金表面抗高温氧化性能的方法
CN113235062B (zh) * 2021-07-12 2021-09-24 中国科学院宁波材料技术与工程研究所 一种max相多层复合涂层及其制备方法与应用
CN114267460B (zh) * 2021-12-22 2023-03-24 西安交通大学 一种用于抑制起泡现象的板状燃料元件
CN116396077A (zh) * 2023-03-27 2023-07-07 西南交通大学 一种核电站用含铅陶瓷及其制备方法
CN116217232A (zh) * 2023-03-27 2023-06-06 西南交通大学 一种含铟三元层状碳化物陶瓷及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280504A (en) * 1992-06-30 1994-01-18 Combustion Engineering, Inc. Zirconium alloy tube with a boron-containing layer
US20130344348A1 (en) * 2012-06-25 2013-12-26 Korea Hydro And Nuclear Power Co., Ltd. Zirconium alloy with coating layer containing mixed layer formed on surface, and preparation method thereof
CN104628395A (zh) * 2013-11-07 2015-05-20 中国科学院宁波材料技术与工程研究所 一种核燃料包壳元件的制备方法
CN107799185A (zh) * 2017-09-13 2018-03-13 中广核研究院有限公司 燃料包壳及燃料组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280504A (en) * 1992-06-30 1994-01-18 Combustion Engineering, Inc. Zirconium alloy tube with a boron-containing layer
US20130344348A1 (en) * 2012-06-25 2013-12-26 Korea Hydro And Nuclear Power Co., Ltd. Zirconium alloy with coating layer containing mixed layer formed on surface, and preparation method thereof
CN104628395A (zh) * 2013-11-07 2015-05-20 中国科学院宁波材料技术与工程研究所 一种核燃料包壳元件的制备方法
CN107799185A (zh) * 2017-09-13 2018-03-13 中广核研究院有限公司 燃料包壳及燃料组件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112938A3 (fr) * 2019-09-13 2021-08-12 Westinghouse Electric Company Llc Dépôt physique en phase vapeur de revêtements céramiques sur des barres de combustible nucléaire en alliage de zirconium

Also Published As

Publication number Publication date
CN107799185B (zh) 2019-11-15
CN107799185A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
WO2019052315A1 (fr) Gaine de combustible et assemblage combustible
Kashkarov et al. Recent advances in protective coatings for accident tolerant Zr-based fuel claddings
Tang et al. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings
Terrani Accident tolerant fuel cladding development: Promise, status, and challenges
Qiu et al. A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding
Rebak Accident-tolerant materials for light water reactor fuels
Koo et al. KAERI’s development of LWR accident-tolerant fuel
Liu et al. Systematic investigations on the coating degradation mechanism during the steam oxidation of Cr-coated Zry-4 at 1200° C
Barrett et al. Advanced LWR nuclear fuel cladding system development trade-off study
KR102117411B1 (ko) 원자력 환경에서 내산화성인 다층 물질
CN112164479B (zh) 一种锆合金包壳管耐高温蒸汽腐蚀涂层
US5080861A (en) Corrosion resistant zirconium alloy
Syrtanov et al. High-temperature oxidation of Zr1Nb zirconium alloy with protective Cr/Mo coating
JP6850209B2 (ja) 接合部材、それを用いた接合構造体及び接合部材の製造方法
Ford et al. Recent developments of coatings for GCFR and HTGCR fuel particles and their performance
JP6632931B2 (ja) 構造部材およびその製造方法、燃料棒、燃料チャンネルボックス、ウォーターロッド、燃料集合体
WO2020093246A1 (fr) Tube pour assemblage de combustible nucléaire et gaine de combustible
WO2019223138A1 (fr) Revêtement en alliage à éléments multiples, gaine en alliage de zirconium et ensemble combustible
RU2740701C2 (ru) Тепловыделяющий элемент с композитным защитным покрытием
CN114438493A (zh) 一种核电厂锆合金包壳管表面用抗高温水蒸气腐蚀涂层及其制备方法
Negyesi et al. Oxidation behavior of Zry-4 in steam-air mixtures at high temperature
Meng et al. Oxidation behavior of CrAl-Mo coated Zircaloy-4 in DB and BDB scenarios
US20150063522A1 (en) Fuel Rod Cladding and Methods for Making and Using Same
Khlifa et al. Protective Coatings for Accident Tolerant Fuel Claddings-A Review
KR20160005819A (ko) 지르코늄 합금 피복관의 제조방법 및 이에 따라 제조되는 지르코늄 합금 피복관

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856417

Country of ref document: EP

Kind code of ref document: A1