WO2019052087A1 - 油分结构及压缩机 - Google Patents

油分结构及压缩机 Download PDF

Info

Publication number
WO2019052087A1
WO2019052087A1 PCT/CN2017/119321 CN2017119321W WO2019052087A1 WO 2019052087 A1 WO2019052087 A1 WO 2019052087A1 CN 2017119321 W CN2017119321 W CN 2017119321W WO 2019052087 A1 WO2019052087 A1 WO 2019052087A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
compressor
casing
cavity
airflow
Prior art date
Application number
PCT/CN2017/119321
Other languages
English (en)
French (fr)
Inventor
刘华
曹聪
张天翼
毕雨时
张贺龙
黄孜远
孟强军
Original Assignee
格力电器(武汉)有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格力电器(武汉)有限公司, 珠海格力电器股份有限公司 filed Critical 格力电器(武汉)有限公司
Priority to EP17925466.9A priority Critical patent/EP3633200B1/en
Priority to US16/631,834 priority patent/US11199190B2/en
Publication of WO2019052087A1 publication Critical patent/WO2019052087A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
    • B01D19/0057Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused the centrifugal movement being caused by a vortex, e.g. using a cyclone, or by a tangential inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0092Removing solid or liquid contaminants from the gas under pumping, e.g. by filtering or deposition; Purging; Scrubbing; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present disclosure relates to an oil substructure and a compressor.
  • the filter unit usually includes a perforated plate and an oil filter.
  • the airflow is discharged from the exhaust pipe, and the oil is returned to the perforated plate through the oil drum, and then filtered through the oil filter to achieve the effect of separating the oil and gas.
  • the present disclosure provides an oil component structure and a compressor having high oil separation efficiency.
  • the present disclosure provides an oil component structure including a casing having a core portion disposed therein, and a plurality of guide members for guiding a gas flow in a circumferential direction of the core body; and a sieve mesh disposed on an outer circumference of the casing Forming a cavity between the screen and the core; the casing is provided with an air inlet and an air outlet communicating with the cavity; the air inlet is for introducing a gas flow into the cavity, the guiding The piece is configured to direct a flow of air around the core, the air outlet for discharging airflow within the cavity.
  • the guide member has an involute shape.
  • the air inlet is in communication with the exhaust pipe.
  • the air outlet is disposed downstream of the air inlet, and the air inlet is adjacent to the air outlet and is staggered from each other for The maximum rotational flow within the chamber.
  • the angle between the first line and the second line is greater than 270 degrees and less than 360 degrees, and the first line is the center of the air outlet and the casing
  • the center line is the line connecting the center of the air inlet to the center of the housing.
  • the air inlet and the air outlet are disposed on opposite sides of the housing.
  • the air inlet and the air outlet are disposed on the same side of the housing.
  • the housing is provided with two of the air inlets, and the two air inlets respectively communicate with one exhaust pipe.
  • the outer diameter of the screen is larger than the outer diameter of the housing.
  • the core body is provided with a through hole.
  • the present disclosure provides a compressor comprising the oil component structure of any of the above embodiments.
  • the compressor comprises a multi-stage compressor, a single exhaust pipe compressor, and a dual exhaust pipe compressor.
  • the oil partial structure is disposed between the low pressure stage component and the high pressure stage component of the multistage compressor.
  • the oil sub-structure is disposed in an oil sub-bucket of the single exhaust pipe compressor.
  • the oil sub-structure is disposed on an exhaust bearing housing of the dual exhaust pipe compressor.
  • the oil sub-structure provided in some embodiments includes a housing and a screen, the airflow entering the cavity formed between the filter and the central core of the housing through the air inlet of the housing, and the guide member disposed circumferentially of the core Under the guidance, the airflow can rotate around the core in the cavity, the airflow rotates and flows in a diversified direction, and the airflow will form multiple impacts during the rotating flow, improving the separation effect and separation efficiency, and the airflow in the cavity passes through the filter. Net filtration, further oil and gas separation, improve oil efficiency and oil content, reduce oil content in the airflow, and the airflow in the cavity is finally discharged from the cavity through the air outlet on the casing.
  • FIG. 1 shows a schematic view of an oil substructure of one or more implementations of the present disclosure
  • FIG. 2 illustrates a schematic representation of airflow direction of an oil substructure of one or more implementations of the present disclosure
  • FIG. 3 illustrates a partial schematic view of an oil sub-structure of one or more implementations of the present disclosure applied to a multi-stage compressor
  • FIG. 4 illustrates a partial schematic view of an oil sub-structure of one or more implementations of the present disclosure applied to a single exhaust pipe compressor
  • FIG. 5 is a schematic view showing the distribution of the intake port and the exhaust port after the oil sub-structure of one or more embodiments of the present disclosure is applied to a single exhaust pipe compressor;
  • FIG. 6 shows a partial schematic view of an oil partial structure of one or more implementations of the present disclosure applied to a dual exhaust pipe compressor
  • FIG. 7 is a schematic view showing the distribution of the intake port and the exhaust port after the oil sub-structure of one or more embodiments of the present disclosure is applied to a dual exhaust pipe compressor.
  • 10-oil structure 20-medium pressure body; 30-exhaust bearing seat; 40-oil barrel; 50-cylinder; 60-compressor exhaust port.
  • the oil sub-structure includes an outer casing 1 and a screen 2.
  • the casing 1 is of a hollow structure, and a core 3 is provided in the middle of the casing 1, and a plurality of guides 4 for guiding the airflow are provided along the circumference of the core 3.
  • the filter screen 2 is disposed on the outer circumference of the casing 1, and a cavity 5 is formed between the screen 2 and the core body 3.
  • the casing 1 is provided with an air inlet 6 and an air outlet port 7 communicating with the cavity 5.
  • the air inlet 6 is for introducing a gas flow into the chamber 5
  • the guide member 4 is for guiding the air flow in the chamber 5 to rotate around the core body 3, and the air outlet port 7 is for discharging the airflow in the chamber 5.
  • the airflow enters the cavity 5 through the air inlet 6, and under the guidance of the guide 4, the airflow can rotate in the cavity 5 around the core 3, the airflow rotates, the direction is diversified, and the airflow is rotating.
  • multiple impacts are formed to improve the separation effect and separation efficiency, and the airflow in the cavity 5 is filtered through the filter 2 to further separate the oil and gas, improve the oil efficiency and the oil component effect, and reduce the oil content in the gas flow.
  • the inner air flow is finally discharged from the chamber 5 through the air outlet 7.
  • the air inlet 6 and the air outlet 7 should avoid the area corresponding to the guide 4.
  • the air inlet 6 and the air outlet 7 are both located between two adjacent guides 4.
  • the guiding member 4 can be in an involute shape, and the inner guiding member 4 in the form of an involute can better guide the airflow in the cavity 5 to rotate around the core 3 to form multiple impacts. Oil effect.
  • the guide 4 can be a rib in the form of an involute.
  • the intake port 6 may be in communication with an exhaust pipe, such as an exhaust pipe that communicates with the compressor for oil and gas separation of the gas flow within the compressor.
  • the air inlet 6 and the air outlet 7 may be provided on opposite sides of the housing 1.
  • the oil sub-structure is suitable for a multi-stage compressor, and the oil sub-structure is provided between the low-pressure stage component and the high-pressure stage component of the multi-stage compressor. Since the airflow in the compressor flows from the low-pressure stage component to the high-pressure stage component, the air inlet 6 and the air outlet 7 are provided on different sides of the housing 1, and the air inlet 6 communicates with the exhaust end of the low-pressure stage component, and the air outlet 7 Connect the intake end of the high pressure stage component.
  • the shaft connection between the high pressure stage component and the low pressure stage component is not hindered, and the core 3 A through hole is provided that allows the coupling or shaft to pass through.
  • the multistage compressor described above may include a two-stage compressor or a three-stage or higher compressor.
  • the two-stage compressor also includes a single-stage two-stage screw compressor.
  • the air outlet 7 is provided downstream of the air inlet 6, the air inlet 6 is adjacent to the air outlet 7, and along the axial and/or circumferential direction of the compressor. They are staggered to each other so that the airflow can flow to the maximum extent within the cavity 5.
  • the airflow in Figure 2 rotates around the core 3 for approximately one week.
  • the angle between the first line and the second line is greater than 270 degrees and less than 360 degrees
  • the first line is the line connecting the center of the air outlet 7 and the center of the housing 1
  • the second line is the line connecting the center of the air inlet 6 to the center of the casing 1.
  • the intake port 6 and the air outlet 7 may be provided on the same side of the casing 1.
  • the oil sub-structure may be disposed in the oil sub-bucket of the exhaust end of the compressor at the last stage. Since the exhaust end and the exhaust port of the compressor are located upstream of the oil sub-structure, the air inlet 6 and the air outlet 7 are provided at When the same side of the casing 1 is located, the airflow at the exhaust end of the compressor enters the cavity 5 from the intake port 6, and flows in the cavity 5 to collide with the oil and gas separation multiple times, and is filtered through the filter 2, and then discharged from the air outlet 7. Finally, the compressor is discharged through the compressor exhaust port. That is, the air flow in the chamber 5 enters from one side of the housing 1 and is finally discharged from the side of the housing 1.
  • the air outlet port 7 is disposed downstream of the air inlet port 6, and the air inlet port 6 is adjacent to the position of the air outlet port 7, and is staggered in the circumferential direction of the compressor so that The air flow is capable of maximal rotational flow within the chamber 5.
  • the angle between the first line and the second line is greater than 270 degrees and less than 360 degrees
  • the first line is the line connecting the center of the air outlet 7 and the center of the housing 1
  • the second line is the line connecting the center of the air inlet 6 to the center of the casing 1.
  • the housing 1 can also be provided with two air inlets 6, respectively, for connecting one exhaust pipe.
  • two air inlets 6 respectively correspond to two exhaust pipes connecting the double exhaust pipe compressors for performing oil and gas separation of the airflow in the compressor.
  • the outer diameter of the screen 2 can be greater than the outer diameter of the housing 1.
  • the core 3 thereof may also be a closed cylindrical structure.
  • the oil sub-structure provided by the embodiments of the present disclosure can be applied to various types of compressors and can be used for different parts of the compressor.
  • the present disclosure also provides an embodiment of a compressor, in which the compressor includes the oil component structure of any of the above embodiments.
  • the compressor may include a multi-stage compressor, a single exhaust pipe compressor, a dual exhaust pipe compressor, and the like.
  • the present disclosure can be applied to various types of compressors by adjusting the fixing manner of the oil component structure, as follows.
  • the oil partial structure 10 may be disposed between the low pressure stage component and the high pressure stage component of the multistage compressor, and may be specifically disposed at a medium pressure level between the low pressure stage component and the high pressure stage component. Inside the body 20.
  • the gas stream After the exhaust of the low pressure stage component passes through the oil substructure 10, the gas stream enters the high pressure stage component for compression.
  • the filtered oil of the oil fraction structure 10 is discharged through a drain tank provided on the intermediate pressure stage body 20, and returned to the system through the oil return valve.
  • the screen 2 can be fixed to the casing 1 by bolts and fixing nuts.
  • the outer diameter of the screen 2 is slightly larger than the inner diameter of the medium-pressure stage body 20, and the oil-splitting structure 10 can be fixed in the middle of the medium-pressure stage body 20 by press-fitting to ensure that the oil-part structure 10 does not shake.
  • the air inlet 6 on the housing 1 of the oil substructure 10 is disposed at the bottom of the housing 1, as shown in FIG. 2, the air flow (oil and gas mixture From the inlet 6 at the bottom into the cavity 5 of the housing 1.
  • the flow is rotated in the tangential direction, and the oil and gas separation is performed under the action of the tangential force.
  • the airflow after the impact is again subjected to oil and gas separation through the screen 2, and most of the separated airflow is discharged from the air outlet 7 of the casing 1, and a small amount flows out from the periphery of the screen 2.
  • the refrigeration oil in the oil substructure 10 flows out from the lower portion and is returned to the system through the return valve.
  • the swirling flow of the airflow can be separated and separated multiple times, so that the oil efficiency can be greatly improved. Since the outer diameter of the casing 1 is slightly smaller than the outer diameter of the screen 2, part of the airflow can flow out of the screen 2, since the space formed between the casing 1 and the compressor body outside it is closed, the airflow can only pass through the casing. The internal flow path of the body 1 is rotated to ensure that most of the air flow is discharged from the air outlet 7 of the casing 1.
  • the above oil component 10 is used between the low pressure stage component and the high pressure stage component of the multistage compressor, and the air inlet 6 and the air outlet 7 of the casing 1 are provided on different sides of the casing 1.
  • the housing 1 is The intake port 6 and the air outlet 7 are provided on the same side of the housing 1. Therefore, the oil sub-structure 10 provided by the embodiment of the present disclosure can also be applied to compressors of other structural forms, and only the air inlet 6 and the air outlet 7 of the casing 1 of the oil sub-structure 10 need to be changed.
  • the oil partial structure 10 may be provided in the oil sub-tank 40 of the single exhaust pipe compressor. Fixing the oil component 10 on the oil drum 40 is relatively stable.
  • the screen 2 of the oil component 10 and the housing 1 can be secured to the oil drum 40 by screws without the need to add additional structural features to the oil component 10.
  • the air flow flows out of the exhaust bearing housing 30 through the exhaust pipe. Since the exhaust end of the compressor exhaust bearing housing 30 and the compressor exhaust port 60 are located on the same side of the oil partial structure 10, the oil partial structure 10
  • the air inlet 6 and the air outlet 7 of the casing 1 are located on the same side of the casing 1, and the air inlet 6 is disposed below the casing 1, and communicates with the exhaust pipe of the exhaust end of the exhaust bearing housing 30, and the air outlet 7 It is disposed above the casing 1 and communicates with the compressor discharge port 60 and avoids the guide member 4.
  • the refrigerating oil separated by the oil sub-structure 10 flows into the cylinder 50 from the drain tank, passes through the oil filter, and is then returned to the inside of the compressor to be circulated.
  • the oil partial structure 10 may be provided in the exhaust bearing housing 30 of the dual exhaust pipe compressor. Due to the structural limitation of the dual exhaust pipe compressor, the oil partial structure 10 is disadvantageous for being fixed to the oil sub-barrel 40. Therefore, the filter screen 2 of the oil sub-structure 10 and the housing 1 can be fixed to the exhaust bearing housing 30 by the fixing rod, without The oil structure 10 and the oil drum 40 are further provided with a fixed structure.
  • the air flow (oil and gas mixture) flows out of the exhaust bearing housing 30 through the two exhaust pipes, and since the exhaust end of the compressor exhaust chock 30 is located on the same side of the oil substructure 10 as the compressor exhaust port 60, the oil is divided.
  • the air inlet 6 and the air outlet 7 of the casing 1 of the structure 10 are located on the same side of the casing 1, and the air inlet 6 is disposed below the casing 1 and communicates with two exhaust pipes of the exhaust end of the exhaust bearing housing 30.
  • the air outlet 7 is disposed above the casing 1, communicates with the compressor exhaust port 60, and avoids the guide 4.
  • the refrigerating oil separated by the oil sub-structure 10 flows into the cylinder 50 from the drain tank, passes through the oil filter, and is then returned to the inside of the compressor to be circulated.
  • the oil sub-structure 10 provided by the embodiment of the present disclosure only needs to simply adjust the air inlet and the air outlet, and the adjustment manner with the compressor can be applied to different types of compressors, and It can be applied to different parts of the compressor, so it can be used as a built-in oil structure for various models.
  • the fixing manner of the oil component 10 inside the compressor is not limited to the above manner, and can be adjusted according to actual needs.
  • the oil component structure 10 provided by the embodiment of the present disclosure the oil component efficiency can be greatly improved, and at the same time, due to its variable structure, various structural forms can be applied, and the utility model has good generalization.
  • the gas stream discharged from the exhaust end of the compressor contains the refrigerating oil, which is an oil and gas mixture, and the oil and gas separation is required to improve the compression energy efficiency.

Abstract

一种油分结构(10)及压缩机,其中,油分结构(10)包括壳体(1)和滤网(2),所述壳体(1)的中部设有芯体(3),沿所述芯体(3)周向设有数个用于引导气流的导向件(4),所述滤网(2)设于所述壳体(1)的外周,所述滤网(2)与所述芯体(3)之间形成腔(5),所述壳体(1)设有连通所述腔(5)的进气口(6)和出气口(7);所述进气口(6)用于将气流引入所述腔(5),所述导向件(4)用于引导气流围绕所述芯体(3)旋转流动,所述出气口(7)用于将所述腔(5)内的气流排出。该油分结构(10)能够使腔(5)内的气流在导向件(4)的引导下,围绕芯体(3)旋转流动,气流旋转流动,方向多元化,且气流在旋转流动过程中会形成多次撞击,提高油气分离效果和分离效率,且腔(5)内的气流通过滤网(2)过滤,进一步进行油气分离,提高油分效率和油分效果。

Description

油分结构及压缩机
本公开要求申请日为2017年9月13日,申请号为201710821130.5,发明名称为“油分结构及压缩机”的中国发明专利申请的优先权。
技术领域
本公开涉及一种油分结构及压缩机。
背景技术
常规螺杆压缩机为了保证油分效率,会在油分桶内设置过滤装置,过滤装置通常包括多孔板和油分滤网。气流从排气管排出,经过油分桶回流撞击多孔板,再经过油分滤网过滤,从而达到分离油气的效果。采用这种结构时,需要在油分桶内预留较多空间,且气流只有一次撞击,油分效率不高。
再者,对于单机双级螺杆压缩机,由于一级排气连通二级吸气,压缩机内部结构空间有限,因此,需要开发一种能够通用到各种机型的内置油分结构。
发明内容
本公开提供一种油分效率高的油分结构及压缩机。
本公开提供了一种油分结构,其包括壳体,其中部设有芯体,沿所述芯体周向设有数个用于引导气流的导向件;滤网,其设于所述壳体的外周,所述滤网与所述芯体之间形成腔;所述壳体设有与所述腔连通的进气口和出气口;所述进气口用于将气流引入所述腔,所述导向件用于引导气流围绕所述芯体旋转流动,所述出气口用于将所述腔内的气流排出。
可选地,所述导向件为渐开线形状。
可选地,所述进气口与排气管连通。
可选地,沿所述腔内的气流流向,所述出气口设于所述进气口的下游,所述进气口与所述出气口的位置邻近,且相互错开,用于使气流在所述腔内最大程度的旋转流动。
可选地,沿所述腔内的周向气流流向,第一线与第二线的夹角所大于270度小于360度,所述第一线为所述出气口的中心与所述壳体的中心的连线,所述第二线为所 述进气口的中心与所述壳体的中心的连线。
可选地,所述进气口和所述出气口设于所述壳体的相对的两侧。
可选地,所述进气口和所述出气口设于所述壳体的同一侧。
可选地,所述壳体设有两个所述进气口,两个所述进气口分别连通一个排气管。
可选地,所述滤网的外径大于所述壳体的外径。
可选地,所述芯体设有通孔。
本公开提供了一种压缩机,其包括上述任一实施例中的油分结构。
可选地,所述压缩机包括多级压缩机、单排气管压缩机、双排气管压缩机。
可选地,所述油分结构设于所述多级压缩机的低压级部件与高压级部件之间。
可选地,所述油分结构设于所述单排气管压缩机的油分桶。
可选地,所述油分结构设于所述双排气管压缩机的排气轴承座。
基于上述技术方案,本公开至少具有以下有益效果:
在一些实施例中提供的油分结构包括壳体和滤网,气流经壳体的进气口进入滤网与壳体的中部芯体之间形成的腔,在芯体周向设置的导向件的引导下,气流在腔内能够围绕芯体旋转流动,气流旋转流动,方向多元化,且气流在旋转流动过程中会形成多次撞击,提高油气分离效果和分离效率,且腔内的气流通过滤网过滤,进一步进行油气分离,提高油分效率和油分效果,降低气流中的含油量,腔内的气流最终通过壳体上的出气口从腔内排出。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出本公开一个或多个实施的油分结构的示意图;
图2示出本公开一个或多个实施的油分结构的气流流向示意图;
图3示出本公开一个或多个实施的油分结构应用于多级压缩机的局部示意图;
图4示出本公开一个或多个实施的油分结构应用于单排气管压缩机的局部示意图;
图5示出本公开一个或多个实施的油分结构应用于单排气管压缩机后,其进气口和排气口的分布示意图;
图6示出本公开一个或多个实施的油分结构应用于双排气管压缩机的局部示意图;
图7示出本公开一个或多个实施的油分结构应用于双排气管压缩机后,其进气口和排气口的分布示意图。
附图中标号:
1-壳体;2-滤网;3-芯体;4-导向件;5-腔;6-进气口;7-出气口;
10-油分结构;20-中压级机体;30-排气轴承座;40-油分桶;50-油缸;60-压缩机排气口。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
如图1、图2所示,为一些实施例提供的油分结构,油分结构包括壳体1和滤网2。壳体1为中空结构,壳体1的中部设有芯体3,沿芯体3周向设有数个用于引导气流的导向件4。滤网2设于壳体1的外周,滤网2与芯体3之间形成腔5,壳体1设有连通腔5的进气口6和出气口7。进气口6用于将气流引入腔5内,导向件4用于引导腔5内的气流围绕芯体3旋转流动,出气口7用于将腔5内的气流排出。
在一些实施例中,气流经进气口6进入腔5内,在导向件4的引导下,气流在腔5内能够围绕芯体3旋转流动,气流旋转流动,方向多元化,且气流在旋转流动过程中会形成多次撞击,提高油气分离效果和分离效率,且腔5内的气流通过滤网2过滤,进一步进行油气分离,提高油分效率和油分效果,降低气流中的含油量,腔5内的气流最终通过出气口7从腔5内排出。
在一些实施例中,进气口6和出气口7应该避开导向件4所对应的区域。例如:进气口6和出气口7均位于相邻两个导向件4之间。
在一些实施例中,导向件4可以为渐开线形状,通过渐开线形式的内置导向件4,能够较好的引导腔5内的气流围绕芯体3旋转流动,形成多次撞击,提高油分效果。
在一些实施例中,导向件4可以为渐开线形式的筋条。
在一些实施例中,进气口6可以连通排气管,例如:连通压缩机的排气管,用于对压缩机内的气流进行油气分离。
在一些实施例中,如图2所示,进气口6和出气口7可以设于壳体1的相对的两侧。该油分结构适用于多级压缩机,且该油分结构设于多级压缩机的低压级部件与高压级部件之间。由于压缩机内的气流从低压级部件流向高压级部件,因此,进气口6和出气口7设于壳体1的不同侧,进气口6连通低压级部件的排气端,出气口7连通高压级部件的进气端。
在一些实施例中,油分结构用于多级压缩机的高压级部件与低压级部件之间时,为了避让联轴器,不妨碍高压级部件与低压级部件之间的轴连接,芯体3设有允许联轴器或轴穿过的通孔。
上述的多级压缩机可以包括双级压缩机或者三级以上压缩机。双级压缩机又包括单机双级螺杆压缩机。
如图2所示,沿腔5内的气流流向,出气口7设于进气口6的下游,进气口6与出气口7的位置邻近,且沿压缩机的轴向和/或周向相互错开,以使气流能够在腔5内最大程度的旋转流动。例如:图2中的气流围绕芯体3旋转接近一周。
可选地,沿腔5内的周向气流流向,第一线与第二线的夹角所大于270度小于360度,第一线为出气口7的中心与壳体1的中心的连线,第二线为进气口6的中心与壳体1的中心的连线。
如图5所示,进气口6和出气口7也可以设于壳体1的同一侧。该油分结构可以设于压缩机最末级的排气端的油分桶内,由于压缩机的排气端和排气口均位于该油分结构的上游,因此,进气口6和出气口7设于壳体1的同一侧时,压缩机的排气端的气流从进气口6进入腔5内,在腔5内旋转流动多次撞击油气分离,且通过滤网2过滤后,从出气口7排出,最终通过压缩机排气口排出压缩机。即:腔5内的气流从壳体1的一侧进入,最终也从壳体1的该侧排出。
如图5所示,沿腔5内的气流流向,出气口7设于进气口6的下游,进气口6与出气口7的位置邻近,且沿压缩机的周向相互错开,以使气流能够在腔5内最大程度的旋转流动。
可选地,沿腔5内的周向气流流向,第一线与第二线的夹角所大于270度小于360度,第一线为出气口7的中心与壳体1的中心的连线,第二线为进气口6的中心与壳体1的中心的连线。
如图7所示,壳体1还可以设有两个进气口6,两个进气口6分别用于连通一个排气管。例如:两个进气口6分别对应连通双排气管压缩机的两个排气管,用于对压缩机内的气流进行油气分离。
在一些实施例中,滤网2的外径可以大于壳体1的外径。
在本公开实施例提供的油分结构用于压缩机的最末级的排气端时,其芯体3也可以为封闭的圆柱结构。
通过上述各个实施例的描述,本公开实施例提供的油分结构可以适用于多种形式的压缩机,且能够用于压缩机的不同部位。
本公开还提供了一种压缩机的实施例,在该实施例中,压缩机包括上述任一实施例中的油分结构。
在一些实施例中,压缩机可以包括多级压缩机、单排气管压缩机、双排气管压缩机等。
本公开可以通过调整油分结构的固定方式,使油分结构适用于多种形式的压缩机,具体如下。
如图3所示,在一些实施例中,油分结构10可以设于多级压缩机的低压级部件 与高压级部件之间,具体可以设于低压级部件与高压级部件之间的中压级机体20内部。
低压级部件的排气经过油分结构10后,气流进入高压级部件压缩。油分结构10过滤后的冷冻油通过设置在中压级机体20上的泄油槽排出,并通过回油阀回到系统中。
如图1所示,滤网2可以通过螺栓及固定螺母固定在壳体1上。滤网2的外径略大于中压级机体20的内径,装配时可以采用压入的方式将油分结构10固定在中压级机体20的内部,以保证油分结构10不晃动。
在一具体实施例中,由于低压级部件的排气出口在底部,因此,油分结构10的壳体1上的进气口6设于壳体1底部,如图2所示,气流(油气混合物)从底部的进气口6进入到壳体1的腔5内。在导向件4的引导下,以切向方向旋转流动,在切向力作用下进行油气分离。撞击后的气流通过滤网2再次进行油气分离,分离后的气流大部分从壳体1的出气口7排出,少量从滤网2周边流出。油分结构10中的冷冻油则从下部流出,通过回油阀回流至系统。
由于采用这种渐开线形状的导向件4,气流旋向流动可多次撞击分离,从而可以大大提高油分效率。由于壳体1的外径略小于滤网2的外径,部分气流可以从滤网2中流出,由于壳体1与其外部的压缩机机体之间形成的空间是封闭的,气流只能通过壳体1内部流道旋转流动,则可保证大部分气流从壳体1的出气口7排出。
上述油分结构10用于多级压缩机的低压级部件与高压级部件之间,壳体1的进气口6和出气口7设于壳体1的不同侧。当油分结构10用于多级压缩机的最末级排气端的油分桶内时,或者用于单排气管压缩机的油分桶和双排气管压缩机的油分桶时,壳体1的进气口6和出气口7设于壳体1的同一侧。因此,本公开实施例提供的油分结构10还可以应用于其他结构形式的压缩机,只需对油分结构10的壳体1的进气口6和出气口7进行变动即可。
如图4所示,油分结构10可以设于单排气管压缩机的油分桶40。将油分结构10固定在油分桶40上比较稳定。
在一些实施例中,油分结构10的滤网2与壳体1可以通过螺钉固定在油分桶40上,无需在油分结构10上再增加固定结构。
气流(油气混合物)通过排气管从排气轴承座30中流出,由于压缩机排气轴承座30的排气端与压缩机排气口60位于油分结构10的同一侧,因此,油分结构10的 壳体1的进气口6和出气口7位于壳体1的同一侧,进气口6设于壳体1的下方,与排气轴承座30排气端的排气管连通,出气口7设于壳体1的上方,与压缩机排气口60连通,并避开导向件4。通过油分结构10分离后的冷冻油从泄油槽流入油缸50,经过油过滤器后再压回压缩机内部,进行循环。
如图6所示,油分结构10可以设于双排气管压缩机的排气轴承座30。由于双排气管压缩机的结构限制,油分结构10不利于固定在油分桶40,因此,油分结构10的滤网2与壳体1可以通过固定杆固定在排气轴承座30上,无需在油分结构10及油分桶40内再增加固定结构。
气流(油气混合物)通过两个排气管从排气轴承座30中流出,由于压缩机排气轴承座30的排气端与压缩机排气口60位于油分结构10的同一侧,因此,油分结构10的壳体1的进气口6和出气口7位于壳体1的同一侧,进气口6设于壳体1的下方,与排气轴承座30排气端的两个排气管连通,出气口7设于壳体1的上方,与压缩机排气口60连通,并避开导向件4。通过油分结构10分离后的冷冻油从泄油槽流入油缸50,经过油过滤器后再压回压缩机内部,进行循环。
通过上述各个实施例的描述,本公开实施例提供的油分结构10只需将进气口和出气口进行简单的调整,且调整与压缩机的固定方式即可适用于不同形式的压缩机,且可以适用于压缩机的不同部位,因此,能够做为各种机型的内置油分结构。
应用本公开实施例提供的油分结构10,油分结构10在压缩机内部的固定方式不局限于以上方式,可根据实际需求进行调整。采用本公开实施例提供的油分结构10,可大大提高油分效率,同时由于其结构可变,可适用多种结构形式,具有较好的推广性。
需要说明的是,压缩机排气端排出的气流中含有冷冻油,为油气混合物,需要进行油气分离,以提高压缩能效。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (15)

  1. 一种油分结构,其包括:
    壳体(1),其中部设有芯体(3),沿所述芯体(3)周向设有数个用于引导气流的导向件(4);
    滤网(2),其设于所述壳体(1)的外周,所述滤网(2)与所述芯体(3)之间形成腔(5);
    所述壳体(1)设有与所述腔(5)连通的进气口(6)和出气口(7);
    所述进气口(6)用于将气流引入所述腔(5),所述导向件(4)用于引导气流围绕所述芯体(3)旋转流动,所述出气口(7)用于将所述腔(5)内的气流排出。
  2. 如权利要求1所述的油分结构,其中所述导向件(4)为渐开线形状。
  3. 如权利要求1所述的油分结构,其中所述进气口(6)与排气管连通。
  4. 如权利要求1所述的油分结构,其中沿所述腔(5)内的气流流向,所述出气口(7)设于所述进气口(6)的下游,所述进气口(6)与所述出气口(7)的位置邻近,且相互错开。
  5. 如权利要求4所述的油分结构,其中沿所述腔(5)内的周向气流流向,第一线与第二线的夹角所大于270度小于360度;所述第一线为所述出气口(7)的中心与所述壳体(1)的中心的连线,所述第二线为所述进气口(6)的中心与所述壳体(1)的中心的连线。
  6. 如权利要求1所述的油分结构,其中所述进气口(6)和所述出气口(7)设于所述壳体(1)的相对的两侧。
  7. 如权利要求1所述的油分结构,其中所述进气口(6)和所述出气口(7)设于所述壳体(1)的同一侧。
  8. 如权利要求1所述的油分结构,其中所述壳体(1)设有两个所述进气口(6),两个所述进气口(6)分别连通一排气管。
  9. 如权利要求1所述的油分结构,其中所述滤网(2)的外径大于所述壳体(1)的外径。
  10. 如权利要求1所述的油分结构,其中所述芯体(3)设有通孔。
  11. 一种压缩机,其包括如权利要求1所述的油分结构。
  12. 如权利要求11所述的压缩机,其包括多级压缩机、单排气管压缩机、双排气管压缩机。
  13. 如权利要求12所述的压缩机,其中所述油分结构设于所述多级压缩机的低压级部件与高压级部件之间。
  14. 如权利要求12所述的压缩机,其中所述油分结构设于所述单排气管压缩机的油分桶。
  15. 如权利要求12所述的压缩机,其中所述油分结构设于所述双排气管压缩机的排气轴承座(30)。
PCT/CN2017/119321 2017-09-13 2017-12-28 油分结构及压缩机 WO2019052087A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17925466.9A EP3633200B1 (en) 2017-09-13 2017-12-28 Oil separation structure and compressor
US16/631,834 US11199190B2 (en) 2017-09-13 2017-12-28 Oil separation structure and compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710821130.5 2017-09-13
CN201710821130.5A CN107355384B (zh) 2017-09-13 2017-09-13 油分结构及压缩机

Publications (1)

Publication Number Publication Date
WO2019052087A1 true WO2019052087A1 (zh) 2019-03-21

Family

ID=60290346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119321 WO2019052087A1 (zh) 2017-09-13 2017-12-28 油分结构及压缩机

Country Status (4)

Country Link
US (1) US11199190B2 (zh)
EP (1) EP3633200B1 (zh)
CN (1) CN107355384B (zh)
WO (1) WO2019052087A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180307A (zh) * 2019-06-24 2019-08-30 中国船舶重工集团公司第七0三研究所 一种应用于燃气轮机的静态油气分离器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107355384B (zh) * 2017-09-13 2018-10-19 珠海格力电器股份有限公司 油分结构及压缩机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170581A (ja) * 1995-12-19 1997-06-30 Daikin Ind Ltd 圧縮機
CN201351587Y (zh) * 2009-02-11 2009-11-25 绍兴瑞气压缩机有限公司 空压机用油气分离筒
CN102338059A (zh) * 2011-09-23 2012-02-01 珠海格力电器股份有限公司 一种提高压缩机油分离效果的排气消声器
CN203614283U (zh) * 2013-12-04 2014-05-28 潍柴动力股份有限公司 空气滤清器
CN107355384A (zh) * 2017-09-13 2017-11-17 珠海格力电器股份有限公司 油分结构及压缩机
CN207145244U (zh) * 2017-09-13 2018-03-27 珠海格力电器股份有限公司 油分结构及压缩机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2446882A (en) * 1944-06-12 1948-08-10 Joseph I Morrison Oil separator
US5113671A (en) 1990-11-26 1992-05-19 Ac&R Components Components, Inc. Oil separator
US5271245A (en) * 1992-08-20 1993-12-21 Ac&R Components, Inc. Two-stage helical oil separator
US6131405A (en) * 1997-12-03 2000-10-17 Parker-Hannifin Corporation Discharge separator and muffler for refrigeration, air conditioning and heat pump systems
US6214071B1 (en) * 1999-06-15 2001-04-10 Ming-Chih Wang Oil separator structure for an oil collector blower
JP2006022785A (ja) * 2004-07-09 2006-01-26 Toyota Industries Corp 容量可変型圧縮機
US7810351B2 (en) * 2005-03-02 2010-10-12 Westermeyer Gary W Multiple outlet vertical oil separator
US7771501B2 (en) * 2007-10-22 2010-08-10 Ming-Chih Wang Blower having oil-mist filtering function
EP2676085B1 (en) * 2011-02-14 2018-09-19 Carrier Corporation Liquid vapor phase separation apparatus
CN102967095B (zh) * 2012-10-29 2015-08-12 合肥通用机械研究院 制冷压缩机试验装置用变容积高效立式油分离器
CN203068891U (zh) * 2013-01-15 2013-07-17 珠海格力电器股份有限公司 立式油分离器
CN105090041B (zh) * 2014-04-29 2019-08-06 开利公司 具有油分离器的螺杆压缩机和冷水机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170581A (ja) * 1995-12-19 1997-06-30 Daikin Ind Ltd 圧縮機
CN201351587Y (zh) * 2009-02-11 2009-11-25 绍兴瑞气压缩机有限公司 空压机用油气分离筒
CN102338059A (zh) * 2011-09-23 2012-02-01 珠海格力电器股份有限公司 一种提高压缩机油分离效果的排气消声器
CN203614283U (zh) * 2013-12-04 2014-05-28 潍柴动力股份有限公司 空气滤清器
CN107355384A (zh) * 2017-09-13 2017-11-17 珠海格力电器股份有限公司 油分结构及压缩机
CN207145244U (zh) * 2017-09-13 2018-03-27 珠海格力电器股份有限公司 油分结构及压缩机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180307A (zh) * 2019-06-24 2019-08-30 中国船舶重工集团公司第七0三研究所 一种应用于燃气轮机的静态油气分离器

Also Published As

Publication number Publication date
CN107355384B (zh) 2018-10-19
EP3633200A4 (en) 2020-07-08
US20200158113A1 (en) 2020-05-21
CN107355384A (zh) 2017-11-17
EP3633200B1 (en) 2022-02-02
EP3633200A1 (en) 2020-04-08
US11199190B2 (en) 2021-12-14

Similar Documents

Publication Publication Date Title
CN102985695B (zh) 多级低压降消声器
WO2019052087A1 (zh) 油分结构及压缩机
CN102913451B (zh) 压缩机
CN204285910U (zh) 一种压缩机用储液器
TW201529983A (zh) 具有模組化建構級間旁路及過載保護的液環泵
CN103452853A (zh) 涡旋式空气压缩机喷油装置
EP3168478B1 (en) Compressor
CN106322866A (zh) 一种分液器滤网组件及分液器
US20120201707A1 (en) Scroll compressor with three discharge valves, and discharge pressure tap to back pressure chamber
WO2019047764A1 (zh) 排气组件及压缩机
CN105508246B (zh) 一种滚动转子式双级压缩机
CN104963870A (zh) 排气轴承座、螺杆压缩机及空调机组
CN205561356U (zh) 分液器及空调
CN207145244U (zh) 油分结构及压缩机
CN105588318B (zh) 一种消音器
CN207349101U (zh) 轴承座、螺杆压缩机及空调
CN203796572U (zh) 压缩机及具有其的空调器
CN110805556A (zh) 泵体组件、压缩机以及具有其的空调器
CN104819153A (zh) 具有圆锥排气流道和分歧入口结构的涡旋式制冷压缩机
EP1217215B1 (en) Gas compressor
CN217988850U (zh) 一种使用活性炭吸附的烟气处理设备
CN204877955U (zh) 排气轴承座、螺杆压缩机及空调机组
US20200166035A1 (en) Silencer and compressor
CN107559205B (zh) 轴承座、螺杆压缩机及空调
CN202612043U (zh) 一种新型气镇阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925466

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017925466

Country of ref document: EP

Effective date: 20200103

NENP Non-entry into the national phase

Ref country code: DE