WO2019051981A1 - 异形金属构筑成形方法 - Google Patents

异形金属构筑成形方法 Download PDF

Info

Publication number
WO2019051981A1
WO2019051981A1 PCT/CN2017/110492 CN2017110492W WO2019051981A1 WO 2019051981 A1 WO2019051981 A1 WO 2019051981A1 CN 2017110492 W CN2017110492 W CN 2017110492W WO 2019051981 A1 WO2019051981 A1 WO 2019051981A1
Authority
WO
WIPO (PCT)
Prior art keywords
blank
metal construction
hourglass
profiled metal
molding method
Prior art date
Application number
PCT/CN2017/110492
Other languages
English (en)
French (fr)
Inventor
李雅平
徐海涛
刘兆阳
孙刚
燕春光
刘强
王明政
杨红义
高付海
Original Assignee
中国原子能科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国原子能科学研究院 filed Critical 中国原子能科学研究院
Priority to JP2020515219A priority Critical patent/JP6993499B2/ja
Priority to EP17925407.3A priority patent/EP3683007A4/en
Priority to KR1020207010284A priority patent/KR102372970B1/ko
Publication of WO2019051981A1 publication Critical patent/WO2019051981A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/12Forming profiles on internal or external surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0053Seam welding
    • B23K15/006Seam welding of rectilinear seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/06Making articles shaped as bodies of revolution rings of restricted axial length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/04Shaping in the rough solely by forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/06Electron-beam welding or cutting within a vacuum chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P13/00Making metal objects by operations essentially involving machining but not covered by a single other subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/12Laminated parts

Definitions

  • the invention relates to a method for manufacturing a metal material, in particular to a method for forming a profiled metal.
  • the existing method proposes to use a slab, a forging slab, and a rolled blank as a basis, and after surface processing and cleaning, a plurality of primitives are packaged together, and the interior of the interface is kept high.
  • a forging process characterized by upsetting deformation, forging insulation, and multi-directional forging is then applied to finally prepare a large metal device.
  • Chinese patent application 201511026272.X “homogeneous metal construction molding method”, 201511027492.4 “metal construction molding method”, 201511027686.4 “cylinder metal construction molding method”, all of which are manufactured by a one-time construction molding method.
  • the shape of the preform is a rectangular parallelepiped shape or a cylindrical shape.
  • the blank of the rectangular parallelepiped shape or the cylindrical shape is easily cracked at the maximum bulging position (the center position of the side surface of the blank). This is because the stress at the maximum bulging position (the center of the side of the blank) increases with the amount of deformation, and the compressive stress decreases continuously, eventually becoming zero. If the deformation continues, the stress at this position will be converted into tensile stress.
  • the stress state of the surface is controlled by the degree of the belly. The more severe the belly, the greater the surface tensile stress. When the surface tensile stress is greater than the weld strength, the weld will crack.
  • the object of the present invention is to provide a method for forming a profiled metal structure in accordance with the defects of the prior art, which improves the tensile stress state of the surface of the blank during the forging process and improves the finished product rate of the metal construction.
  • the technical solution of the present invention is as follows: a method for forming a profiled metal structure, comprising the following steps:
  • the preform described in the step (S1) is constructed by a cast slab, a forging blank or a rolled blank element, and is sealed and forged; or a forging blank is machined. Made directly.
  • the preform is formed into a frustum shape unit, and then the facets of the two frustum shape units are stacked together to perform vacuum electron beam Soldering to make an hourglass shaped module.
  • the frustum shape unit may have a truncated cone shape or a quadrangular frustum shape, and the intermediate interface of the two frustum shape units smoothly transitions.
  • the angle between the lower base of the longitudinal trapezoidal section of the frustum-shaped unit and the waist is 60-85°.
  • the vacuum electron beam welding has a welding depth of 25 to 40 mm.
  • the aspect ratio of the hourglass-shaped module described in the step (S2) is between 1-3.
  • the hourglass die in the step (S3) The reduction of the block to the upset deformation is 30%-55% of the total height of the blank.
  • step (S3) the upset billet is subjected to high temperature diffusion bonding, the heating temperature is not lower than 1200 ° C, and the heat retention time after the uniform temperature is not less than 8 hours.
  • the profiled metal structure forming method provided by the invention forms the preform into an hourglass-shaped module
  • the hourglass-shaped structure blank can concentrate the deformation of the upsetting process at the interface position and avoid the surface tensile stress.
  • the occurrence of the billet is uniformly subjected to a large compressive stress, which significantly improves the tensile stress state of the billet surface.
  • the hourglass shaped blank has a small minimum cross-sectional area, which can effectively reduce the pressure required for forging.
  • the requirement for equipment is low, the weld seam can be explored, the weld quality can be ensured, and the finished product rate of the metal construction molding can be improved, and the production can be greatly improved under the condition of using the same specification press. effectiveness.
  • Figure 1 is a flow chart of the method of the present invention
  • FIG. 2 is a schematic longitudinal cross-sectional view of an hourglass-shaped structural blank of the present invention
  • FIG. 3 is a schematic view showing an hourglass-shaped structural blank made of a truncated cone-shaped unit according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a quadrangular frustum unit according to an embodiment of the present invention.
  • the method for forming a profiled metal structure includes: step (1) preparing a preform; and step (2) forming the preform into a profiled module (hourglass-shaped module); Step (3) performing an upset deformation in a height direction by heating the profiled module and Forging insulation, forging the preform into a blank. Further, step (4) may be included to process the blank into parts or parts.
  • the preform described in the step (1) may be constructed, sealed, and forged from a slab, a forging slab, or a rolled blank. (For a specific method, see 201511026272.X "Homogeneous Metal Construction Method” Description); or directly from the forging blank by mechanical processing.
  • step (2) forms the preform into an hourglass-shaped module, and the hourglass-shaped structuring blank can concentrate the deformation of the upsetting process at the interface position and avoid the generation of surface tensile stress.
  • the billet is uniformly subjected to a large compressive stress, which significantly improves the tensile stress state of the billet surface.
  • the invention firstly forms the preform into a frustum shape unit, which can be made by forging and/or machining. Then, the facets of the two frustum-shaped unit units are stacked together and subjected to vacuum electron beam welding to form an hourglass-shaped module.
  • the frustum shape unit may have a truncated cone shape or a quadrangular frustum shape (other frustum shapes such as a hexagonal frustum, an octagonal frustum, etc.) may also be used.
  • 3 is a schematic view of an hourglass-shaped framing blank made of a truncated cone-shaped unit
  • FIG. 4 is a schematic view of a quadrangular frustum-shaped unit.
  • the hourglass shaped blank Since the hourglass shaped blank has a small minimum cross-sectional area, the pressure required for forging can be effectively reduced. However, when the middle depression is narrow, wrinkle defects are generated during the forging process; when the middle depression is wider, the effect of lowering the forging pressure is weakened. Therefore, in the design of the hourglass-shaped blank, the angle between the lower bottom edge of the longitudinal trapezoidal section of the frustum-shaped unit and the waist side should be considered, so that the cone is in a more desirable range, and the cone of the design of the present invention The angle between the bottom edge and the waist side of the trapezoidal section of the table shape unit is 60-85° (for example, 80°), as shown in FIG. 2 .
  • the intersection of the two truncated cone-shaped units is designed to be arcuately joined, thereby forming a smooth transition surface A, avoiding the generation of sharp corners at the junction.
  • the position where the bottom surface of the frustum-shaped unit is in contact with the side surface is designed as a columnar structure (as shown by B in FIG. 3) to avoid the generation of sharp corners of the bottom surface.
  • the joining of the two frustum-shaped units is achieved by vacuum electron beam welding.
  • the welded surface is processed and cleaned first, and then vacuum electron beam sealing is performed around the blank to be welded in the vacuum chamber, and vacuum electron beam welding is performed.
  • the depth is 25-40mm.
  • the hourglass-shaped module formed after welding has an aspect ratio of between 1-3.
  • the aspect ratio referred to herein refers to the ratio of the total height of the hourglass-shaped module to the diameter of the bottom surface of the truncated cone (or the length of the bottom side of the quadrangular frustum).
  • the billet is first heated, the maximum heating temperature is not lower than 1250 ° C, and then the hourglass-shaped billet is subjected to upsetting deformation in the height direction, and the heated billet is placed on the press table.
  • the upsetting is carried out in the height direction, and the reduction of the upset deformation is 30%-55% of the total height of the blank.
  • the roughened billet is subjected to high-temperature diffusion bonding, and the roughed billet is sent back to the heating furnace for heating, the heating temperature is not lower than 1200 ° C, and the holding time after the uniform temperature is not less than 8 hours.
  • the blank can then be further forged or machined to effect the processing of the blank into parts or parts in step (4).
  • the invention is suitable for the formation of steel or other metal materials such as stainless steel, die steel, carbon steel and alloy steel.
  • the preform was made of a carbon steel bar having a diameter of 800 mm and cut into a cylindrical billet having a length of 2400 mm.
  • the cylindrical blank is forged by a pier and machined to a specified size to form a quadrangular frustum shaped unit as shown in FIG.
  • the facets of the two quadrangular pyramid-shaped unit are superposed to form an hourglass-shaped module blank having a width of 1086 mm, a length of 1086 mm, and a thickness of 1450 mm.
  • vacuum electron beam sealing is performed around the blank to be welded in the vacuum chamber, wherein the welding depth is 25-40 mm.
  • the blank after sealing and welding is heated in a heating furnace, and the maximum heating temperature is not lower than 1250 °C.
  • the blank is subjected to upsetting deformation and forging insulation in the height direction.
  • the billet is heated and placed on the press table to make the billet height direction in the vertical direction, and the upsetting operation is performed. 30%-55% of the total height.
  • the billet is subjected to a high temperature diffusion connection.
  • the roughened billet is sent back to the heating furnace for heating, the heating temperature is not lower than 1200 ° C, and the holding time after the uniform temperature is not less than 8 hours.
  • the blank is forged in three directions, and the module is formed by chamfering, drawing, and rolling.
  • the final product is a cylindrical bar module with a diameter of 1000 mm.
  • the first step 7 pieces of blanks of 1000mm ⁇ 1000mm ⁇ 200mm are cut into continuous casting slabs, and 7 pieces of blanks are superposed to form a module with a width of 1000mm, a length of 1000mm and a thickness of 1400mm, and 7 blanks in the vacuum chamber.
  • Vacuum electron beam sealing is performed, then heated forging, and machined to a specified size to form a quadrangular frustum shaped unit as shown in FIG.
  • the facets of the two quadrangular frustum shaped units are superposed to form an hourglass shaped module blank.
  • vacuum electron beam sealing is performed around the blank to be welded in the vacuum chamber, wherein the welding depth is 25-40 mm.
  • the blank after sealing and welding is heated in a heating furnace, and the maximum heating temperature is not lower than 1250 °C.
  • the blank is subjected to upsetting deformation and forging insulation in the height direction.
  • the billet is heated and placed on a press table to carry out the upsetting operation in the vertical direction of the billet height direction, and the amount of pressing is 30%-55% of the total height of the billet.
  • the billet is subjected to a high temperature diffusion connection.
  • the roughened billet is sent back to the heating furnace for heating, the heating temperature is not lower than 1200 ° C, and the holding time after the uniform temperature is not less than 8 hours.
  • the blank is forged in three directions to form the desired forging module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Forging (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

一种异形金属构筑成形方法,该方法首先制备预制坯;然后将预制坯制成沙漏形模块;通过对沙漏形模块加热后实施沿高度方向的镦粗变形和锻间保温,将预制坯锻焊成毛坯。该方法可以使镦粗过程的变形集中于沙漏形模块坯料的界面位置,避免了表面拉应力的产生,使坯料均匀地受到较大压应力,改善坯料表面的拉应力状态,还可以提高金属构筑成形的成材率,在使用同规格压机的条件下可以大幅提高生产效率。

Description

异形金属构筑成形方法 技术领域
本发明涉及金属材料的制造方法,具体涉及一种异形金属构筑成形方法。
背景技术
在制备大型金属材料或复合金属材料时,现有方法提出以铸坯、锻坯、轧坯为基元,通过表面加工和清洁后,将多个基元封装在一起,并使界面内部保持高真空状态,然后施加以镦粗变形、锻间保温、多向锻造为特点的锻焊工艺,最终制备大型金属器件。如中国专利申请201511026272.X“同质金属构筑成形方法”、201511027492.4“金属构筑成形方法”、201511027686.4“圆柱体金属构筑成形方法”,均是采用一次构筑成形方法对金属材料进行制造。在这些方法中,预制坯的形状为长方体形状或圆柱体形状,在构筑过程中,长方体形状或圆柱体形状的坯料在最大鼓肚位置(坯料侧面中心位置)焊缝容易开裂。这是因为最大鼓肚位置(坯料侧面中心位置)的应力会随变形量的增加,压应力不断减小,最终变为0,如果继续变形该位置的应力将转化为拉应力。表面的应力状态是受鼓肚程度控制的。鼓肚越严重,表面拉应力越大。表面拉应力大于焊缝强度时,就会造成焊缝开裂。
另外,对于百吨级以上金属,一次构筑成形难度极大,对设备的要求高。构筑过程中焊缝一旦失效,将造成整体坯料的全部报废,损失较大。
发明内容
本发明的目的在于针对现有技术的缺陷,提供一种异形金属构筑成形方法,改善锻造过程中坯料表面的拉应力状态,提高金属构筑成形的成材率。
本发明的技术方案如下:一种异形金属构筑成形方法,包括如下步骤:
(S1)制备预制坯;
(S2)将预制坯制成沙漏形模块;
(S3)通过对沙漏形模块加热后实施沿高度方向的镦粗变形和锻间保温,将预制坯锻焊成毛坯;
(S4)将毛坯加工成部件或零件。
进一步,如上所述的异形金属构筑成形方法,步骤(S1)中所述的预制坯由铸坯、锻坯或轧坯基元构筑并封焊、锻造而成;或者由锻坯通过机械加工方式直接制成。
进一步,如上所述的异形金属构筑成形方法,步骤(S2)中,将所述预制坯制成锥台形状单元,然后将两个锥台形状单元的小面叠放在一起,进行真空电子束焊接,制成沙漏形模块。所述锥台形状单元可以为圆锥台形状或四棱锥台形状,两个锥台形状单元的中间界面处平滑过渡。
更进一步,所述锥台形状单元的纵向梯形截面的下底边与腰边的夹角为60-85°。
进一步,如上所述的异形金属构筑成形方法,所述真空电子束焊接的焊接深度为25-40mm。
进一步,如上所述的异形金属构筑成形方法,步骤(S2)中所述的沙漏形模块的高径比在1-3之间。
进一步,如上所述的异形金属构筑成形方法,步骤(S3)中对沙漏形模 块实施镦粗变形的压下量为坯料总高度的30%-55%。
进一步,如上所述的异形金属构筑成形方法,步骤(S3)中将镦粗后的坯料实施高温扩散连接,加热温度不低于1200℃,均温后的保温时间不低于8小时。
本发明的有益效果如下:本发明所提供的异形金属构筑成形方法,将预制坯制成沙漏形模块,沙漏形的构筑坯料可以使镦粗过程的变形集中于界面位置,且避免了表面拉应力的产生,使坯料均匀地受到较大压应力,明显改善坯料表面的拉应力状态。同时,沙漏形坯料最小截面积较小,可以有效降低锻造所需压力。采用本发明提供的异形金属构筑成形方法,对设备要求低,焊缝可探,能够保证焊缝质量,进而可以提高金属构筑成形的成材率,在使用同规格压机的条件下可以大幅提高生产效率。
附图说明
图1为本发明的方法流程图;
图2为本发明的沙漏形构筑坯料的纵向梯形截面示意图;
图3为本发明具体实施例中圆锥台形单元制成沙漏形构筑坯料的示意图;
图4为本发明具体实施例中四棱锥台单元的结构示意图。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
如图1所示,从总体工艺过程来描述,本发明提供的异形金属构筑成形方法,包括:步骤(1)制备预制坯;步骤(2)将预制坯制成异形模块(沙漏形模块);步骤(3)通过对异形模块加热后实施沿高度方向的镦粗变形和 锻间保温,将预制坯锻焊成毛坯。进而,还可以包括步骤(4)将毛坯加工成部件或零件。
在步骤(1)中所述的预制坯可以由铸坯、锻坯或轧坯基元构筑并封焊、锻造而成(具体的方法可以参见201511026272.X“同质金属构筑成形方法”中的描述);或者由锻坯通过机械加工方式直接制成。
本发明区别于现有技术的关键点在于,步骤(2)将预制坯制成沙漏形模块,沙漏形的构筑坯料可以使镦粗过程的变形集中于界面位置,并且避免表面拉应力的产生,使坯料均匀地受到较大压应力,明显改善坯料表面的拉应力状态。
为此,本发明首先要将所述预制坯制成锥台形状单元,锥台形状单元可以通过锻造和/或机械加工的方式制成。然后将两个锥台形状单元的小面叠放在一起,进行真空电子束焊接,制成沙漏形模块。在具体的实施方式中,所述锥台形状单元可以为圆锥台形状或四棱锥台形状(也可以采用其他锥台形状,如六棱锥台、八棱锥台等)。图3为由圆锥台形单元制成沙漏形构筑坯料的示意图,图4为四棱锥台形状单元的示意图。
由于沙漏形坯料最小截面积较小,可以有效降低锻造所需压力。但当中间凹陷处较窄时,在锻造过程中会产生褶皱缺陷;中间凹陷处较宽时,降低锻造压力的作用又会被削弱。为此,在对沙漏形坯料进行设计时,应考虑锥台形状单元的纵向梯形截面的下底边与腰边的夹角大小,使之处在一个较为理想的范围,本发明的设计中锥台形状单元的梯形截面下底边与腰边的夹角为60-85°(例如80°),如图2所示。同时,为避免梯形坯料在中间界面处产生折叠,要使其平滑过渡,避免两梯形交界处的尖角产生。如图3所示,两个圆锥台形单元的交界处设计成弧面相接,从而形成了平滑的过渡面A,避免交界处尖角的产生。并且,锥台形单元的底面与侧面相接的位置设计成一段柱状结构(如图3中B所示),避免底面尖角的产生。
两个锥台形状单元的接合是通过真空电子束焊接的方式实现,先对待焊接表面进行加工、清洗,然后在真空室内对待焊合的坯料四周进行真空电子束封焊,真空电子束焊接的焊接深度为25-40mm。焊接后形成的沙漏形模块的高径比在1-3之间。此处所述的高径比是指沙漏形模块的总高度与圆锥台底面直径(或四棱锥台底面边长)的比值。
在步骤(3)中,首先要对坯料进行加热,最高加热温度不低于1250℃,然后对沙漏形坯料实施沿高度方向的镦粗变形,将加热后的坯料放在压机操作台上,沿高度方向实施镦粗,镦粗变形的压下量为坯料总高度的30%-55%。接下来,将镦粗后的坯料实施高温扩散连接,将墩粗后的坯料送回加热炉加热,加热温度不低于1200℃,均温后的保温时间不低于8小时。
然后可以对坯料进行进一步的锻造或加工,实现步骤(4)的将毛坯加工成部件或零件。
本发明适用于不锈钢、模具钢、碳钢、合金钢等钢材或其它金属材料的构筑成形。
实施例1
第一步,预制坯使用直径800mm的碳钢钢棒,切取长度为2400mm的圆柱形坯料制造。圆柱形坯料经过墩粗锻造,机械加工为指定尺寸,形成如图4所示的四棱锥台形状单元。清洗待焊接表面后,将两个四棱锥台形状单元的小面进行叠加,形成宽度为1086mm,长度为1086mm,厚度为1450mm的沙漏形模块坯料。
第二步,在真空室内,对待焊合的坯料四周进行真空电子束封焊,其中焊接深度为25-40mm。
第三步,在加热炉中对封焊后坯料进行加热,最高加热温度不低于1250℃。
第四步,对坯料实施沿高度方向的镦粗变形和锻间保温。将坯料加热后放在压机操作台上,使坯料高度方向沿竖直方向,进行镦粗操作,压下量为坯料 总高度的30%-55%。
第五步,对坯料实施高温扩散连接。将镦粗后的坯料送回加热炉加热,加热温度不低于1200℃,均温后的保温时间不低于8小时。
第六步,对坯料实施三个方向的镦粗锻造,并通过倒棱、拔长、滚圆锻造成模块。最终产品为直径1000mm的圆柱形棒料模块。
实施例2
第一步,采用连铸板坯切取成规格为1000mm×1000mm×200mm坯料7块,7块坯料叠加后形成宽度为1000mm、长度为1000mm、厚度为1400mm的模块,在真空室内对7块坯料四周进行真空电子束封焊,然后加热锻造,机械加工为指定尺寸,形成如图4所示的四棱锥台形状单元。将两个四棱锥台形状单元的小面进行叠加,形成沙漏形模块坯料。
第二步,在真空室内,对待焊合的坯料四周进行真空电子束封焊,其中焊接深度为25-40mm。
第三步,在加热炉中对封焊后坯料进行加热,最高加热温度不低于1250℃。
第四步,对坯料实施沿高度方向的镦粗变形和锻间保温。将坯料加热后放在压机操作台上,使坯料高度方向沿竖直方向,进行镦粗操作,压下量为坯料总高度的30%-55%。
第五步,对坯料实施高温扩散连接。将镦粗后的坯料送回加热炉加热,加热温度不低于1200℃,均温后的保温时间不低于8小时。
第六步,对坯料实施三个方向的镦粗锻造,形成所需的锻件模块。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种异形金属构筑成形方法,包括如下步骤:
    (S1)制备预制坯;
    (S2)将预制坯制成沙漏形模块;
    (S3)通过对沙漏形模块加热后实施沿高度方向的镦粗变形和锻间保温,将预制坯锻焊成毛坯。
  2. 如权利要求1所述的异形金属构筑成形方法,其特征在于:还包括(S4)将毛坯加工成部件或零件。
  3. 如权利要求1或2所述的异形金属构筑成形方法,其特征在于:步骤(S1)中所述的预制坯由铸坯、锻坯或轧坯基元构筑并封焊、锻造而成,或者由锻坯通过机械加工方式直接制成。
  4. 如权利要求3所述的异形金属构筑成形方法,其特征在于:步骤(S2)中,将所述预制坯制成锥台形状单元,然后将两个锥台形状单元的小面叠放在一起,进行真空电子束焊接,制成沙漏形模块。
  5. 如权利要求4所述的异形金属构筑成形方法,其特征在于:所述锥台形状单元为圆锥台形状或四棱锥台形状,两个锥台形状单元的中间界面处平滑过渡。
  6. 如权利要求5所述的异形金属构筑成形方法,其特征在于:所述锥台形状单元的纵向梯形截面的下底边与腰边的夹角为60-85°。
  7. 如权利要求4所述的异形金属构筑成形方法,其特征在于:所述真空电子束焊接的焊接深度为25-40mm。
  8. 如权利要求1或2所述的异形金属构筑成形方法,其特征在于:步骤(S2)中所述沙漏形模块的高径比在1-3之间。
  9. 如权利要求1或2所述的异形金属构筑成形方法,其特征在于:步骤(S3)中对沙漏形模块实施镦粗变形的压下量为坯料总高度的30%-55%。
  10. 如权利要求1或2所述的异形金属构筑成形方法,其特征在于:步骤(S3)中将镦粗后的坯料实施高温扩散连接,加热温度不低于1200℃,均温后的保温时间不低于8小时。
PCT/CN2017/110492 2017-09-15 2017-11-10 异形金属构筑成形方法 WO2019051981A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020515219A JP6993499B2 (ja) 2017-09-15 2017-11-10 異形金属の構築成形方法
EP17925407.3A EP3683007A4 (en) 2017-09-15 2017-11-10 METHOD OF FORMING PROFILED METAL CONSTRUCTION
KR1020207010284A KR102372970B1 (ko) 2017-09-15 2017-11-10 이형 금속 구축 성형 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710837992.7 2017-09-15
CN201710837992.7A CN107520584B (zh) 2017-09-15 2017-09-15 异形金属构筑成形方法

Publications (1)

Publication Number Publication Date
WO2019051981A1 true WO2019051981A1 (zh) 2019-03-21

Family

ID=60735938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110492 WO2019051981A1 (zh) 2017-09-15 2017-11-10 异形金属构筑成形方法

Country Status (5)

Country Link
EP (1) EP3683007A4 (zh)
JP (1) JP6993499B2 (zh)
KR (1) KR102372970B1 (zh)
CN (1) CN107520584B (zh)
WO (1) WO2019051981A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110805732A (zh) * 2019-11-21 2020-02-18 替科斯科技集团(天津)通用阀门有限公司 全焊接球阀的生产工艺
CN112872285A (zh) * 2020-12-24 2021-06-01 宝鸡拓普达钛业有限公司 一种钛合金方管的制备方法
CN113478184A (zh) * 2021-07-27 2021-10-08 永康市超朗工贸有限公司 一种生产异形双层金属真空保温杯的工艺
CN113510187A (zh) * 2021-04-29 2021-10-19 中国航发北京航空材料研究院 一种提高金属薄壁型材下陷成形质量的方法及其装置
CN113997022A (zh) * 2021-11-22 2022-02-01 沪东中华造船(集团)有限公司 一种重吊船克令吊基座制作方法及克令吊基座
CN114346610A (zh) * 2022-01-06 2022-04-15 武汉理工大学 一种大型异质金属环件构筑热轧成形方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113523707B (zh) * 2018-11-14 2022-05-13 中国原子能科学研究院 构筑界面的变形愈合方法
CN109807269B (zh) * 2019-01-02 2020-06-23 中国原子能科学研究院 一种异形构筑坯料的设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286640A (ja) * 1986-06-03 1987-12-12 Nippon Steel Corp チタン合金の鍛造法
CN102944513A (zh) * 2012-11-23 2013-02-27 浙江大学 一种金属塑性成形中的摩擦因子测算方法
CN105522349A (zh) * 2015-03-26 2016-04-27 中国科学院金属研究所 同质金属构筑成形方法
CN107626880A (zh) * 2017-09-15 2018-01-26 中国原子能科学研究院 一种大型环形锻件的制造工艺
CN107626868A (zh) * 2017-11-02 2018-01-26 中国科学院金属研究所 沙漏形金属分级构筑成形方法
CN107671216A (zh) * 2017-09-08 2018-02-09 中国科学院金属研究所 沙漏形金属构筑成形方法
CN107717341A (zh) * 2017-09-15 2018-02-23 中国原子能科学研究院 模块式金属构筑成形方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790323B2 (ja) * 1992-07-14 1995-10-04 大阪精工株式会社 鼓形筒状部品の圧造成形方法
KR101183536B1 (ko) * 2009-04-16 2012-09-20 삼웅단조 (주) 장구형 중공 단조품 및 그 제조 방법
CN103484605B (zh) * 2013-09-03 2015-08-26 上海交通大学 防止轴类合金钢件水淬端面开裂的方法
WO2016103316A1 (ja) 2014-12-22 2016-06-30 株式会社日立製作所 熱間据込み鍛造用の素材形状
CN106607668B (zh) * 2016-02-04 2019-04-16 太原科技大学 易焊接敷边不锈钢复合板的制造方法
CN106312454B (zh) * 2016-08-29 2018-11-13 辽宁北祥重工机械制造有限公司 多单元同质金属叠锻生产主轴锻件的方法
CN106975719B (zh) * 2017-06-01 2019-03-12 东南大学 一种开坯的锻造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62286640A (ja) * 1986-06-03 1987-12-12 Nippon Steel Corp チタン合金の鍛造法
CN102944513A (zh) * 2012-11-23 2013-02-27 浙江大学 一种金属塑性成形中的摩擦因子测算方法
CN105522349A (zh) * 2015-03-26 2016-04-27 中国科学院金属研究所 同质金属构筑成形方法
CN107671216A (zh) * 2017-09-08 2018-02-09 中国科学院金属研究所 沙漏形金属构筑成形方法
CN107626880A (zh) * 2017-09-15 2018-01-26 中国原子能科学研究院 一种大型环形锻件的制造工艺
CN107717341A (zh) * 2017-09-15 2018-02-23 中国原子能科学研究院 模块式金属构筑成形方法
CN107626868A (zh) * 2017-11-02 2018-01-26 中国科学院金属研究所 沙漏形金属分级构筑成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683007A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110805732A (zh) * 2019-11-21 2020-02-18 替科斯科技集团(天津)通用阀门有限公司 全焊接球阀的生产工艺
CN112872285A (zh) * 2020-12-24 2021-06-01 宝鸡拓普达钛业有限公司 一种钛合金方管的制备方法
CN113510187A (zh) * 2021-04-29 2021-10-19 中国航发北京航空材料研究院 一种提高金属薄壁型材下陷成形质量的方法及其装置
CN113510187B (zh) * 2021-04-29 2023-06-23 中国航发北京航空材料研究院 一种提高金属薄壁型材下陷成形质量的方法及其装置
CN113478184A (zh) * 2021-07-27 2021-10-08 永康市超朗工贸有限公司 一种生产异形双层金属真空保温杯的工艺
CN113997022A (zh) * 2021-11-22 2022-02-01 沪东中华造船(集团)有限公司 一种重吊船克令吊基座制作方法及克令吊基座
CN114346610A (zh) * 2022-01-06 2022-04-15 武汉理工大学 一种大型异质金属环件构筑热轧成形方法
CN114346610B (zh) * 2022-01-06 2024-02-23 武汉理工大学 一种大型异质金属环件构筑热轧成形方法

Also Published As

Publication number Publication date
JP6993499B2 (ja) 2022-01-13
CN107520584B (zh) 2020-03-24
EP3683007A4 (en) 2021-06-16
KR20200052919A (ko) 2020-05-15
CN107520584A (zh) 2017-12-29
EP3683007A1 (en) 2020-07-22
KR102372970B1 (ko) 2022-03-10
JP2020533192A (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2019051981A1 (zh) 异形金属构筑成形方法
KR102325492B1 (ko) 대형 고리형 단조물의 제조 공정
WO2019051979A1 (zh) 模块式金属构筑成形方法
JP6515376B2 (ja) 均質化鍛造品を製造する構築成形方法
CN108188659A (zh) 一种钢坯的制造工艺
CN107671216B (zh) 沙漏形金属构筑成形方法
CN106475500A (zh) 一种大型饼类锻件锻造工艺
JPS62286640A (ja) チタン合金の鍛造法
CN102941435B (zh) 一种不规则形状钢部件的成形方法
CN109822026B (zh) 一种异形坯料的制造方法及所用模具
CN105945108B (zh) 钛合金板材锥形孔的翻边方法及装置
CN112692514B (zh) 利用圆形锭坯生产合金/金属基复合材料板材的方法
CN114247839B (zh) 一种大型筒体的复合生产方法
CN113787161B (zh) 自由锻半仿形锻造成形方法
RU2362648C2 (ru) Способ изготовления полых поковок прямоугольного поперечного сечения
RU2402397C1 (ru) Способ изготовления биметаллических переходников
CN204584176U (zh) 电动车桥半浮半轴预墩摆辗联合生产设备
Hongjin et al. Compound Drawing, Types and Characteristics of
CN116117449A (zh) 一种带高边法兰的曲面窗口领圈整体成形方法
RU2556172C1 (ru) Способ изготовления полых цилиндрических изделий
CN113798420A (zh) 一种汽轮发电机1Mn18Cr18N无磁性护环锻造方法
CN112658190A (zh) 一种钢锭cwhf锻造方法及凸面宽砧
CN114210893A (zh) 一种大直径不锈钢圆管坯的制作方法
SU1196087A1 (ru) Способ изготовлени сварно-кованых изделий
CN105344903A (zh) 一种生产块类大型锻件的锻造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010284

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017925407

Country of ref document: EP

Effective date: 20200415