WO2019051816A1 - 一种空气加湿驻波净化器 - Google Patents

一种空气加湿驻波净化器 Download PDF

Info

Publication number
WO2019051816A1
WO2019051816A1 PCT/CN2017/101989 CN2017101989W WO2019051816A1 WO 2019051816 A1 WO2019051816 A1 WO 2019051816A1 CN 2017101989 W CN2017101989 W CN 2017101989W WO 2019051816 A1 WO2019051816 A1 WO 2019051816A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ultrasonic
air
standing wave
channel
Prior art date
Application number
PCT/CN2017/101989
Other languages
English (en)
French (fr)
Inventor
王元秀
Original Assignee
王元秀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王元秀 filed Critical 王元秀
Priority to PCT/CN2017/101989 priority Critical patent/WO2019051816A1/zh
Publication of WO2019051816A1 publication Critical patent/WO2019051816A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention belongs to the technical field of environmental protection and relates to an air humidifying standing wave purifier.
  • Air purifiers currently on the market usually use filtration technology to remove particulate suspended matter from the air for clean air. These air purifiers require regular replacement of the filter and are costly to use.
  • the air humidifier atomizes the water through an atomizing device and then discharges it into the air to achieve the purpose of humidifying the air.
  • the tap water contains a variety of bacteria, microorganisms, and fine dust particles, these substances will inevitably spread to the air as the water mist is discharged, causing illness.
  • the present invention discloses an air humidifying standing wave purifier which can both humidify air and remove particulate suspended matter or haze in the air, and does not require a filter net, and has low noise and use cost. Low advantage.
  • the object of the present invention is to provide an air humidifying standing wave purifier which, in the case of throwing away the conventional use of the filter net, invents an air which can humidify air and remove particulate suspended matter or haze in the air. filter.
  • the utility model relates to an air humidifying standing wave purifier, which comprises: a casing, an ultrasonic water atomizing component, an aerosol mixing humidification channel, an ultrasonic standing wave purification component and a water mist standing wave condensation channel.
  • the casing is a base body for installing all components of the air humidifying standing wave purifier; the ultrasonic water atomizing component and the ultrasonic standing wave purification component are fixed on the casing; the casing is provided with an air suction port and a clean air discharge port; wherein, the air The suction port communicates with the front end of the gas mist mixing and humidifying passage, and is used for sucking dirty air to be cleaned into the gas mist mixing and humidifying passage; the clean air discharge port communicates with the end of the water mist standing wave condensation passage, and is used for standing in the water mist The clean air that is cleaned in the wave condensation channel is discharged.
  • the ultrasonic water atomizing component includes an ultrasonic power source, an ultrasonic generator, a water tank, a water supply passage, and a spray passage.
  • the ultrasonic water atomizing component is used for atomizing water in the water tank; wherein the ultrasonic power source supplies power to the ultrasonic generator; the water tank is a water storage container, and the valve port is provided at the bottom of the water tank, and the opening and closing of the valve port is controlled by a liquid level or a switch.
  • the beginning of the water supply channel communicates with the valve port at the bottom of the water tank for draining the water in the water tank to the ultrasonic generator; the spray channel is located at the beginning of the ultrasonic generator, and the end is connected to the gas mist mixing and humidifying passage through the spray port; Or multiple; the water in the water tank passes through the valve port and the water supply channel at the bottom of the water tank in turn, and is led to the ultrasonic generator, and then is atomized by the ultrasonic generator to form a water mist, and finally the water mist enters the gas mist mixing through the spray channel from the spray port.
  • the humidification channel is mixed with the dirty air to be cleaned.
  • the aerosol mixing and humidifying passage is a passage formed by the casing and the deflector, or a passage formed by the casing, the water tank and the deflector; the deflector is a perforated or non-porous plate;
  • the front end of the mist mixing and humidifying passage communicates with the air suction port, and the end communicates with the front end of the water mist standing wave aggregating passage, and the air enters the water mist standing wave condensation passage after being humidified.
  • the ultrasonic standing wave purification component includes an ultrasonic power source, an ultrasonic generator, an ultrasonic vibration component, and a water receiving tank.
  • the ultrasonic power source supplies power to the ultrasonic generator;
  • the ultrasonic vibration component is mounted on the casing, and includes one or more ultrasonic radiation plates;
  • the ultrasonic vibration component and the casing form a water fog standing wave condensation channel;
  • the ultrasonic generator drives the ultrasonic radiation plate to generate Ultrasonic vibration; when the ultrasonic radiation plate vibrates, a standing wave is formed in the water fog standing wave condensation channel, and the node with zero standing wave vibration velocity forms a node surface or a node line, and the water mist and dust are driven by the standing wave, at the node surface or the node line
  • the water is condensed into water droplets;
  • the water tank is disposed below the ultrasonic vibration component for storing dirty water flowing when the air is cleaned.
  • the water mist standing wave condensation channel is a channel formed by the casing and the ultrasonic vibration component; the water mist standing wave condensation channel, the front end is connected with the gas mist mixing and humidifying channel, and then the channel formed along one or more ultrasonic radiation plates and the casing Extend, the end of the channel communicates with the clean air exhaust port on the cabinet.
  • Said One or more fans are arranged in the aerosol mixing humidification channel and the water mist standing wave condensation channel for generating a gas pressure difference in the air flow channel, controlling the speed of the air flow, and making the dirty air and water mist in the gas mist mixing and humidifying channel sufficient mixing.
  • the ultrasonic radiant panel adopts a single-point or multi-point excitation mode; when the ultrasonic vibration component includes a plurality of ultrasonic radiant panels, the vibration phases thereof are the same or different; the shape of the ultrasonic radiant panel is a plane or a curved surface; and the ultrasonic radiant panel is The structure is an equal thickness plate or a variable thickness plate; the material of the ultrasonic radiation plate is a homogeneous material or a multilayer composite material;
  • the ultrasonic vibration component and the cooling sheet may be simultaneously disposed to accelerate water mist condensation.
  • the deflector plate can be replaced by a fan or a stirring impeller mounted on the casing.
  • the water tank is designed as a container integrated with the casing, or as a separate container installed in the casing; the water tank is provided with a water injection port, the water injection port is designed as a separate opening, or is designed to be shared with the valve port at the bottom of the water tank. Or designed to be shared with the air intake on the cabinet.
  • the dirty air sucked by the air suction port is thoroughly mixed with the water mist formed by the ultrasonic water atomizing component; the gas mist mixing humidification passage and the water mist standing wave condensation passage are connected; the water mist standing wave condenses In the channel, the water mist and dust flowing from the aerosol mixing and humidifying channel are driven by the standing wave formed by the ultrasonic vibration component, and the small water mist is aggregated into a large water mist at the position of the node surface or the node line with zero velocity. Gather into water droplets and drip into the sink. Finally, the cleaned air is cleaned and reaches the clean air exhaust port on the cabinet.
  • the beneficial effects of the invention relates to an air humidifying standing wave purifier, which can not only humidify the air through the ultrasonic water atomizing component, but also remove the particulate suspended matter or haze in the air through the ultrasonic standing wave purifying component, thereby solving the traditional purifier replacement filter.
  • the problem of the network has the advantages of low noise and low cost of use.
  • FIG 1 is an optional structural diagram of an air humidifying standing wave purifier
  • FIG. 2 is an optional structural diagram of an air humidifying standing wave purifier
  • FIG. 3 is an optional structural diagram of an air humidifying standing wave purifier
  • FIG. 4 is an optional structural diagram of an air humidifying standing wave purifier
  • FIG. 5 is an alternative structural diagram of the ultrasonic radiant panel
  • FIG. 6 is an alternative structural diagram of the ultrasonic radiant panel
  • FIG. 7 is an alternative structural diagram of the ultrasonic radiant panel
  • FIG. 8 is an alternative structural diagram of the ultrasonic radiant panel
  • FIG. 9 is an alternative structural diagram of the ultrasonic radiant panel
  • Figure 10 is a two-dimensional waveform diagram of a standing wave formed by an ultrasonic vibration component in a water mist standing wave condensation channel
  • 1 ultrasonic water atomizing component 1 casing; 3 air suction port; 4 diversion plate; 5 aerosol mixing humidification channel; 6 water mist mixed gas discharge port; 7 water mist mixed gas suction port; Mist standing wave condensation channel; 9 ultrasonic vibration component; 10 fan; 11 clean air discharge port; 12 water tank; 13 spray channel; 14 ultrasonic generator; 15 water tank; 16 ultrasonic power supply; 17 base; 18 ultrasonic radiation plate excitation The position of the point; the node with zero velocity on the standing wave;
  • the arrows in the figure indicate the direction of flow of air.
  • the air humidification standing wave purifier mainly includes: a casing 2, an ultrasonic water atomizing component 1, an aerosol mixing humidification channel 5, an ultrasonic standing wave purification component, and a water mist standing wave condensation channel 8 as shown in Fig. 1 10 is shown.
  • a casing 2 an ultrasonic water atomizing component 1
  • an aerosol mixing humidification channel 5 an ultrasonic standing wave purification component
  • a water mist standing wave condensation channel 8 as shown in Fig. 1 10 is shown.
  • the specific structural form of the air humidifying standing wave purifier will Changed.
  • FIGS. 2 and 5 The basic structure of this embodiment is shown in FIGS. 2 and 5.
  • the casing 2 is a base body to which all components of the air humidifying standing wave purifier are installed; the casing 2 has an air suction port 3, a water mist mixed gas discharge port 6, a water mist mixed gas suction port 7, and a clean air discharge port 11.
  • the air suction port 3 communicates with the front end of the gas mist mixing and humidifying passage 5; the water mist mixed gas discharge port 6 is the end of the gas mist mixing and humidifying passage 5.
  • dirty air and water mist are mixed.
  • the water mist mixed gas suction port 7 communicates with the front end of the water mist standing wave aggregating passage 8; the clean air discharge port 11 communicates with the end of the water mist standing wave aggregating passage 8; the water mist mixed gas discharge port 6 and the water mist mixed gas
  • the suction port 7 communicates; in the water mist standing wave aggregating passage 8, the dirty air is cleaned.
  • the ultrasonic water atomizing member includes an ultrasonic power source 16, an ultrasonic generator 14, a water tank 15, a spray passage 13, a water supply passage, and a base 17.
  • the base 17 is at the lower portion; the water tank 15 is mounted on the base 17, and is designed as a container integrated with the casing 2; the air suction port 3 is a water injection port of the water tank 15; the bottom of the water tank 15 has a valve port, and the opening and closing of the valve port is liquid Position control; the ultrasonic power source 16 is located in the base 17 to supply power to the two ultrasonic generators 14; the water supply passage is located on the base 17, which drains water from the valve port at the bottom of the water tank to the two ultrasonic generators 14; Channels 13 start at two ultrasonic generators 14, respectively, with a spray port at the end.
  • the gas mist mixing and humidifying passage 5 is a passage formed by the casing 2 and the flow guiding plate 4; the flow guiding plate 4 is a non-porous plate and is mounted on the casing 2.
  • the gas mist mixing and humidifying passage 5 has a front end communicating with the air suction port 3 on the casing 2, and the end is a water mist mixed gas discharge port 6.
  • the ultrasonic standing wave purification component includes an ultrasonic power source, an ultrasonic generator, an ultrasonic vibration component 9 and a water receiving tank 12.
  • the ultrasonic power supply supplies power to the ultrasonic generator;
  • the ultrasonic vibration assembly 9 includes four ultrasonic radiation plates mounted on the casing 2; four ultrasonic radiation plates are used Homogeneous material The shape is flat, as shown in Figure 5.
  • the ultrasonic generator adopts a single-point excitation method to drive the four ultrasonic radiant panels to generate ultrasonic vibrations, and their vibration phases are the same, wherein the position of the excitation point is shown in FIG.
  • a standing wave is formed in the condensing channel 8, and a two-dimensional waveform diagram of the standing wave is as shown in FIG. 10, and a plurality of nodes 19 having a standing wave vibration velocity of zero form a node surface, and the water mist is driven by the standing wave, and is condensed at the node surface.
  • Water droplets; the water tank 12 is disposed below the ultrasonic vibration unit 9 for storing dirty water flowing when the air is cleaned.
  • the water mist standing wave condensation passage 8 is a passage formed by the casing 2 and the ultrasonic vibration unit 9.
  • the water mist standing wave condensing passage 8 starts from the water mist mixed gas suction port 7, and then extends along the passage formed by the four ultrasonic radiant panels and the casing 2, and the end communicates with the clean air discharge port 11 on the casing.
  • two fans 10 are installed to generate a gas pressure difference in the air flow passage, control the speed of the air flow, and thoroughly mix the dirty air and the water mist in the air mist mixing humidification passage 5.
  • the air humidifying standing wave purifier of this embodiment has a basic structure as shown in Figs. 1 and 6.
  • Example 1 is a main difference: difference component in the layout and shape, comprises:
  • the air intake port 3, the water mist mixed gas discharge port 6, the water mist mixed gas suction port 7 and the clean air discharge port 11 on the casing 2 are different in position;
  • the water tank 15 is designed as a separate container and a water tank The valve port at the bottom of the 15 is the same port as the water inlet of the water tank 15;
  • the ultrasonic vibration assembly 9 includes only two ultrasonic radiant panels mounted on the casing 2, and the structure of the ultrasonic radiant panel is as shown in FIG.
  • the excitation mode of the ultrasonic radiant panel is multi-point excitation, and the position of the excitation point is shown as 18 in Fig. 6; (4) in the water-station standing wave condensation channel 8, the position of the fan 10 is different;
  • the air humidifying standing wave purifier of this embodiment has a shape such as a cylinder, and its basic structure is a schematic plan view as shown in Fig. 3.
  • Example 1 is a main difference: difference component in the layout and shape, comprises:
  • the water mist standing wave condensation channel 8 is external, and looks like a torus, enclosing the aerosol mixing and humidifying channel 5; (2) There is only one ultrasonic generator 14 for the ultrasonic water atomizing component, only one spray channel 13 and the spray channel 13 is at the innermost part of the cylinder; (3) In the aerosol mixing and humidifying passage 5, the deflector plate adopts an orifice plate; (4) the ultrasonic vibration component 9 is generally a ring-shaped body, and is composed of eight ultrasonic radiant panels having a curved surface, and the ultrasonic radiant panel is Layer composite, and The excitation mode of the ultrasonic radiant panel is multi-point excitation.
  • the air humidifying standing wave purifier of this embodiment has a shape such as a rectangular parallelepiped, and its basic structure is a schematic plan view as shown in Fig. 4.
  • Example 1 is a main difference: difference component in the layout and shape, comprises:
  • the water mist standing wave condensation channel 8 is outside the two sides of the rectangular parallelepiped, and the aerosol mixing humidification channel 5 is inside; (2) There are four ultrasonic generators 14 for the ultrasonic water atomizing component, four spray channels 13 and four spray channels 13 disposed around the air suction port 3; (3) There is no baffle in the aerosol mixing and humidifying passage 5, and instead four fans 10 are mounted on the casing 2; (4) Four ultrasonic radiant panels in the ultrasonic vibration assembly 9 are disposed on both sides of the rectangular parallelepiped.
  • Example 1 is a main difference: difference component in the layout and shape, in particular:
  • the ultrasonic vibration unit 9 and the refrigerant sheet are disposed at the same time, and the refrigerant sheet is disposed at a position of a node surface having a standing wave velocity of zero.
  • Example 1 is a main difference: difference component in the layout and shape, comprises:
  • Example 1 and Example of the present embodiment is substantially the same as in Example 1.
  • the main difference is: the difference in the layout and shape of the parts, specifically: four ultrasound radiating plate shape is a curved surface, as shown in FIG 8 As shown, the excitation mode of the ultrasonic radiant panel is multi-point excitation.
  • Example 1 and Example of the present embodiment is substantially the same as in Example 1.
  • the main difference is: the difference in the layout and shape of the parts, specifically: four ultrasound radiating plate shape is a curved surface, as shown in FIG 9 As shown, the excitation mode of the ultrasonic radiant panel is multi-point excitation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Humidification (AREA)
  • Special Spraying Apparatus (AREA)

Abstract

一种空气加湿驻波净化器,结构上包括机壳(2)、超声波水雾化部件(1)、气雾混合加湿通道(5)、超声驻波净化部件和水雾驻波凝聚通道(8)。超声波水雾化部件(1),包括超声波电源(16)、超声波发生器(14)、水箱(15)、供水通道和喷雾通道(13),作用是使水雾化;超声驻波净化部件,包括超声波电源、超声波发生器、超声波振动组件(9)和接水槽(12),作用是清洗空气;气雾混合加湿通道(5)和水雾驻波凝聚通道(8)相通。在气雾混合加湿通道(5),脏空气和水雾混合;然后,水雾混合气体进入水雾驻波凝聚通道(8),被超声波振动组件(9)形成的驻波驱动,在速度为零的节点面或节点线的位置聚集;最后,水雾和灰尘聚成水滴,滴落到接水槽(12)中。本净化器既能湿润空气,也能净化空气,且不需要空气过滤组件。

Description

一种空气加湿驻波净化器
技术领域
本发明属于环保技术领域,涉及一种空气加湿驻波净化器。
背景技术
一方面,随着社会工业的发展,环境污染越来越严重,雾霾天明显增多。为了能呼吸到清洁的空气,科技人员开发了各种类型的空气净化器。现在市面上售卖的空气净化器,通常是采用过滤技术除去空气中的颗粒悬浮物,达到清洁空气的目的。这些空气净化器需要定期更换过滤网,使用成本高。
另一方面,随着环保意识的提高,人们对空气加湿器提出了更高的要求。空气加湿器通过雾化装置,将水进行雾化处理,然后排放到空气中去,以达到湿润空气的目的。但是,由于自来水中含有多种细菌、微生物和微尘颗粒,随着水雾的排出,这些物质也必然会随之传播到空气中,致使人生病。
为了解决上述问题,本发明公开了一种空气加湿驻波净化器,它既能湿润空气,也能清除空气中的颗粒悬浮物或雾霾,而且不需要过滤网,兼具低噪声和使用成本低的优点。
发明内容
本发明目的在于提供一种空气加湿驻波净化器,在抛开传统的利用过滤网的情况下,发明一种既能对空气进行加湿,又能清除空气中的颗粒悬浮物或雾霾的空气净化器。
本发明的技术方案:
一种空气加湿驻波净化器,结构上包括:机壳、超声波水雾化部件、气雾混合加湿通道、超声驻波净化部件和水雾驻波凝聚通道。
所述的 机壳是空气加湿驻波净化器所有零部件安装的基体;超声波水雾化部件和超声驻波净化部件固定在机壳上;机壳上设有空气吸入口和清洁空气排出口;其中,空气吸入口和气雾混合加湿通道的前端相通,用于将待清洗的脏空气吸入到气雾混合加湿通道中;清洁空气排出口和水雾驻波凝聚通道的末端相通,用于将在水雾驻波凝聚通道中被清洗的干净空气排出。
所述的 超声波水雾化部件包括超声波电源、超声波发生器、水箱 、 供水通道 和 喷雾通道 , 超声波水雾化部件用于将水箱中的水雾化;其中,超声波电源为超声波发生器供电;水箱是储水用的容器,水箱底部设置阀口,阀口的开闭由液位或开关控制;供水通道的始端与水箱底部的阀口相通,用于将水箱中的水引流到超声波发生器;喷雾通道始端位于超声波发生器,末端通过喷雾口与气雾混合加湿通道相通;喷雾口设置一个或多个;水箱中的水依次经过水箱底部的阀口、供水通道,被引流至超声波发生器,之后经超声波发生器雾化形成水雾,最终水雾通过喷雾通道从喷雾口进入气雾混合加湿通道,与待清洗的脏空气进行混合。
所述的 气雾混合加湿通道是由机壳和导流型板形成的通道,或者是由机壳、水箱和导流型板形成的通道;导流型板是有孔型板或无孔型板;气雾混合加湿通道的前端与空气吸入口相通,末端和水雾驻波凝聚通道的前端相通,空气经加湿后进入水雾驻波凝聚通道。
所述的 超声驻波净化部件包括超声波电源、超声波发生器、超声波振动组件和接水槽。其中,超声波电源为超声波发生器供电;超声波振动组件安装在机壳上,包括一个或多个超声波辐射板;超声波振动组件与机壳形成水雾驻波凝聚通道;超声波发生器驱使超声波辐射板产生超声振动;超声波辐射板振动时在水雾驻波凝聚通道中形成驻波,驻波振动速度为零的节点形成节点面或节点线,水雾及灰尘被驻波驱动,在节点面或节点线处凝聚成水滴;接水槽设置在超声波振动组件的下方,用于存储清洗空气时流下的脏水。
所述的 水雾驻波凝聚通道,是由机壳和超声波振动组件形成的通道;水雾驻波凝聚通道,前端和气雾混合加湿通道相通,之后沿着一个或多个超声波辐射板和机壳形成的通道延伸,通道末端和机壳上的清洁空气排出口相通。
所述的 气雾混合加湿通道和水雾驻波凝聚通道中设置一个或多个风扇,用于在气流通道中产生气压差,控制气流的速度,并使气雾混合加湿通道中的脏空气和水雾充分混合。
所述的超声波辐射板采用单点或多点激振方式;当超声波振动组件包括多个超声波辐射板时,它们的振动相位相同或不同;超声波辐射板的形状为平面或曲面;超声波辐射板的结构为等厚度板或变厚度板;超声波辐射板的材料采用均质材料或多层复合材料;
所述的 水雾驻波凝聚通道中,可以同时设置超声波振动组件和制冷片,以加速水雾凝聚。
所述的 导流型板可以被安装在机壳上的风扇或搅拌叶轮所取代。
所述的水箱设计成与机壳一体的容器,或者设计成安装在机壳内的独立容器;水箱上设有注水口,注水口设计为独立的开口,或者设计为与水箱底部的阀口共用,或者设计为与机壳上的空气吸入口共用。
在气雾混合加湿通道中,由空气吸入口吸入的脏空气,和超声波水雾化部件形成的水雾充分混合;气雾混合加湿通道和水雾驻波凝聚通道连通;在水雾驻波凝聚通道中,由气雾混合加湿通道流入的水雾和灰尘,被超声波振动组件形成的驻波驱动,在速度为零的节点面或节点线的位置,从小水雾聚成大水雾,随之聚成水滴,滴落到接水槽中。最后,被清洗过的干净空气,到达机壳上的清洁空气排出口。
本发明的有益效果: 本发明为一种空气加湿驻波净化器,它既能通过超声波水雾化部件加湿空气,也能通过超声驻波净化部件清除空气中的颗粒悬浮物或雾霾,解决了传统净化器更换滤网的问题,兼具低噪声和使用成本低的优点。
附图说明
图1是空气加湿驻波净化器的一种可选结构简图
图2是空气加湿驻波净化器的一种可选结构简图
图3是空气加湿驻波净化器的一种可选结构简图
图4是空气加湿驻波净化器的一种可选结构简图
图5是超声波辐射板的一种可选结构简图
图6是超声波辐射板的一种可选结构简图
图7是超声波辐射板的一种可选结构简图
图8是超声波辐射板的一种可选结构简图
图9是超声波辐射板的一种可选结构简图
图10是在水雾驻波凝聚通道中由超声波振动组件形成的驻波的二维波形图
图中:1超声波水雾化部件;2机壳;3空气吸入口;4导流型板;5气雾混合加湿通道;6水雾混合气体排出口;7水雾混合气体吸入口;8水雾驻波凝聚通道;9超声波振动组件;10风扇;11清洁空气排出口;12接水槽;13喷雾通道;14超声波发生器;15水箱;16超声波电源;17底座;18超声波辐射板上激振点的位置;19驻波上速度为零的节点;
图中的箭头表示空气的流动方向。
具体实施方式
空气加湿驻波净化器,主要包括:机壳2、超声波水雾化部件1、气雾混合加湿通道5、超声驻波净化部件、以及水雾驻波凝聚通道8几个部分,如图1-10所示。但是,由于对产品的设计要求不同,如排出空气的净化程度、排出空气的湿度、产品的噪音、能耗和体积重量等要求,在实际应用中,空气加湿驻波净化器的具体结构型式将有所变化。下面结合附图和技术方案,阐述空气加湿驻波净化器的几种可选结构实例。然而,这里需要指出的是:本发明的权利要求并不仅仅局限于实施例中给出的几种结构。
实施例1:
本实施例基本结构,如图2和图5所示。
机壳2,是空气加湿驻波净化器所有零部件安装的基体;机壳2上有空气吸入口3、水雾混合气体排出口6、水雾混合气体吸入口7和清洁空气排出口11。
空气吸入口3,和气雾混合加湿通道5的前端相通;水雾混合气体排出口6,是气雾混合加湿通道5的末端。在气雾混合加湿通道5中,脏空气和水雾混合。水雾混合气体吸入口7,和水雾驻波凝聚通道8的前端相通;清洁空气排出口11,和水雾驻波凝聚通道8的末端相通;水雾混合气体排出口6和水雾混合气体吸入口7相通;在水雾驻波凝聚通道8中,脏空气被清洗。
超声波水雾化部件,包括超声波电源16、超声波发生器14、水箱15、喷雾通道13、供水通道和底座17。
底座17在下部;水箱15安装在底座17上,设计成和机壳2是一体的容器;空气吸入口3是水箱15的注水口;水箱15的底部有阀口,阀口的开闭由液位控制;超声波电源16位于底座17中,为两个超声波发生器14供电;供水通道,位于底座17上,它将水从水箱底部的阀口,引流至两个超声波发生器14;两个喷雾通道13,分别始于两个超声波发生器14,末端是喷雾口。
气雾混合加湿通道5,是由机壳2和导流型板4形成的通道;导流型板4采用无孔板,安装在机壳2上。气雾混合加湿通道5,前端和机壳2上的空气吸入口3相通,末端是水雾混合气体排出口6。
超声驻波净化部件,包括超声波电源、超声波发生器、超声波振动组件9和接水槽12。超声波电源为超声波发生器供电;超声波振动组件9,包括安装在机壳2上的四个超声波辐射板;四个超声波辐射板,皆采用 均质材料 ,形状为平面,如图5所示。超声波发生器采用单点激振的方式,驱使四个超声波辐射板产生超声振动,它们的振动相位相同,其中激振点的位置见图5中18;超声波辐射板的振动,在水雾驻波凝聚通道8中形成驻波,驻波的二维波形图如图10所示,在驻波振动速度为零的多个节点19形成节点面,水雾被驻波驱动,在节点面处凝聚成水滴;接水槽12设置在超声波振动组件9的下方,用于存储清洗空气时流下的脏水。
水雾驻波凝聚通道8,是由机壳2和超声波振动组件9形成的通道。水雾驻波凝聚通道8,始于水雾混合气体吸入口7,之后沿着四个超声波辐射板和机壳2形成的通道延伸,末端和机壳上的清洁空气排出口11相通。
在 水雾驻波凝聚通道8中,安装两个风扇10,以在气流通道中产生气压差,控制气流的速度,并使气雾混合加湿通道5中的脏空气和水雾充分混合。
实施例2:
本实施例 的空气加湿驻波净化器, 基本结构如图1和图6所示。
在结构组成上,本实施例与实施例 1 基本相同,与实施例 1 的主要区别是:零部件在布局和形状上的差异,具体包括:
( 1 ) 机壳2上的空气吸入口3、水雾混合气体排出口6、水雾混合气体吸入口7和清洁空气排出口11的位置不同;(2)水箱15被设计成是独立的容器,且水箱15底部的阀口和水箱15的注水口是同一个口;(3)超声波振动组件9仅包括安装在机壳2上的两个超声波辐射板,超声波辐射板的结构如图6所示, 超声波辐射板的激振方式为多点激振 ,激振点的位置见图6中18;(4) 在 水雾驻波凝聚通道8中,安装风扇10的位置不同;
实施例3:
本实施例的空气加湿驻波净化器,外形如圆柱体,其基本 结构俯视简图如图3所示。
在结构组成上,本实施例与实施例 1 基本相同,与实施例 1 的主要区别是:零部件在布局和形状上的差异,具体包括:
( 1 ) 水雾驻波凝聚通道8在外部,外形似圆环体,将气雾混合加湿通道5围在内部; ( 2 ) 超声波水雾化部件的超声波发生器14仅有一个,喷雾通道13仅有一个,且喷雾通道13在 圆柱体的 最内部 ;( 3 ) 在 气雾混合加湿通道5中,导流型板采用有孔板;(4)超声波振动组件9,整体上似圆环体,它由八个 形状为曲面的 超声波辐射板组成,超声波辐射板为多层复合材料,且 超声波辐射板的激振方式为多点激振 。
实施例4:
本实施例的空气加湿驻波净化器,外形如长方体,其基本 结构俯视简图如图4所示。
在结构组成上,本实施例与实施例 1 基本相同,与实施例 1 的主要区别是:零部件在布局和形状上的差异,具体包括:
( 1 ) 水雾驻波凝聚通道8在 长方体两侧的 外部,气雾混合加湿通道5在内部; ( 2 ) 超声波水雾化部件的的超声波发生器14有四个,喷雾通道13有四个,且四个喷雾通道13围绕空气吸入口3布置 ;( 3 ) 在 气雾混合加湿通道5中没有导流板,取而代之的是安装在机壳2上的四个风扇10;(4)超声波振动组件9中的四个超声波辐射板,分别布置在 长方体的两侧 。
实施例5:
在结构组成上,本实施例与实施例 1 基本相同,与实施例 1 的主要区别是:零部件在布局和形状上的差异,具体是:
在水雾驻波凝聚通道8中,同时布置超声波振动组件9和制冷片,制冷片设置在驻波速度为零的节点面的位置。
实施例6:
在结构组成上,本实施例与实施例 1 基本相同,与实施例 1 的主要区别是:零部件在布局和形状上的差异,具体包括:
( 1 ) 水箱上有独立的注水口,水箱底部阀口的开闭由开关控制;(2) 四个超声波辐射板的 形状为曲面,如图7所示 。
实施例7:
在结构组成上,本实施例与实施例 1 基本相同,与实施例 1 的主要区别是:零部件在布局和形状上的差异,具体是: 四个超声波辐射板的 形状为曲面,如图8所示,且超声波辐射板的激振方式为多点激振 。
实施例8:
在结构组成上,本实施例与实施例 1 基本相同,与实施例 1 的主要区别是:零部件在布局和形状上的差异,具体是: 四个超声波辐射板的 形状为曲面,如图9所示,且超声波辐射板的激振方式为多点激振 。

Claims (8)

  1. 一种空气加湿驻波净化器,其特征在于,包括机壳、超声波水雾化部件、气雾混合加湿通道、超声驻波净化部件和水雾驻波凝聚通道; 所述的机壳是空气加湿驻波净化器所有零部件安装的基体;超声波水雾化部件和超声驻波净化部件固定在机壳上;机壳上设有空气吸入口和清洁空气排出口;其中,空气吸入口和气雾混合加湿通道的前端相通,用于将待清洗的脏空气吸入到气雾混合加湿通道中;清洁空气排出口和水雾驻波凝聚通道的末端相通,用于将在水雾驻波凝聚通道中被清洗的干净空气排出;
    所述的超声波水雾化部件包括超声波电源、超声波发生器、水箱、供水通道和喷雾通道,超声波水雾化部件用于将水箱中的水雾化;其中,超声波电源为超声波发生器供电;水箱是储水用的容器,水箱底部设置阀口,阀口的开闭由液位或开关控制;供水通道的始端与水箱底部的阀口相通,用于将水箱中的水引流到超声波发生器;喷雾通道始端位于超声波发生器,末端通过喷雾口与气雾混合加湿通道相通;喷雾口设置一个或多个;水箱中的水依次经过水箱底部的阀口、供水通道,被引流至超声波发生器,之后经超声波发生器雾化形成水雾,最终水雾通过喷雾通道经喷雾口进入气雾混合加湿通道,与待清洗的脏空气进行混合;
    所述的气雾混合加湿通道是由机壳和导流型板形成的通道,或者是由机壳、水箱和导流型板形成的通道;导流型板是有孔型板或无孔型板;气雾混合加湿通道的前端与空气吸入口相通,末端与水雾驻波凝聚通道的前端相通,空气经加湿后进入水雾驻波凝聚通道;
    所述的超声驻波净化部件包括超声波电源、超声波发生器、超声波振动组件和接水槽;其中,超声波电源为超声波发生器供电;超声波振动组件安装在机壳上,包括一个或多个超声波辐射板;超声波振动组件与机壳形成水雾驻波凝聚通道;超声波发生器驱使超声波辐射板产生超声振动,超声波辐射板振动时在水雾驻波凝聚通道中形成驻波,驻波振动速度为零的节点形成节点面或节点线,水雾及灰尘被驻波驱动,在节点面或节点线处凝聚成水滴;接水槽设置在超声波振动组件的下方,用于存储清洗空气时流下的脏水;
    所述的水雾驻波凝聚通道是由机壳和超声波振动组件形成的通道;水雾驻波凝聚通道的前端和气雾混合加湿通道相通,之后沿着一个或多个超声波辐射板和机壳形成的通道延伸,通道末端和机壳上的清洁空气排出口相通;
    所述的气雾混合加湿通道和水雾驻波凝聚通道中设置风扇,用于在气流通道中产生气压差,控制气流的速度,并使气雾混合加湿通道中的脏空气和水雾充分混合。
  2. 根据权利要求1所述的一种空气加湿驻波净化器,其特征在于,所述的超声波辐射板采用单点或多点激振方式;当超声波振动组件包括多个超声波辐射板时,它们的振动相位相同或不同;超声波辐射板的形状为平面或曲面;超声波辐射板的结构为等厚度板或变厚度板;超声波辐射板的材料采用均质材料或多层复合材料。
  3. 根据权利要求1或2所述的一种空气加湿驻波净化器,其特征在于,所述的水雾驻波凝聚通道中同时设置超声波振动组件和制冷片,用于加速水雾凝聚。
  4. 根据权利要求1或2所述的一种空气加湿驻波净化器,其特征在于,所述的导流型板能被安装在机壳上的风扇或搅拌叶轮所取代。
  5. 根据权利要求3所述的一种空气加湿驻波净化器,其特征在于,所述的导流型板能被安装在机壳上的风扇或搅拌叶轮所取代。
  6. 根据权利要求1、2或5所述的一种空气加湿驻波净化器,其特征在于,所述的水箱设计成与机壳一体的容器,或者设计成安装在机壳内的独立容器;水箱上设有注水口,注水口设计为独立的开口,或者设计为与水箱底部的阀口共用,或者设计为与机壳上的空气吸入口共用。
  7. 根据权利要求3所述的一种空气加湿驻波净化器,其特征在于,所述的水箱设计成与机壳一体的容器,或者设计成安装在机壳内的独立容器;水箱上设有注水口,注水口设计为独立的开口,或者设计为与水箱底部的阀口共用,或者设计为与机壳上的空气吸入口共用。
  8. 根据权利要求4所述的一种空气加湿驻波净化器,其特征在于,所述的水箱设计成与机壳一体的容器,或者设计成安装在机壳内的独立容器;水箱上设有注水口,注水口设计为独立的开口,或者设计为与水箱底部的阀口共用,或者设计为与机壳上的空气吸入口共用。
PCT/CN2017/101989 2017-09-16 2017-09-16 一种空气加湿驻波净化器 WO2019051816A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/101989 WO2019051816A1 (zh) 2017-09-16 2017-09-16 一种空气加湿驻波净化器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/101989 WO2019051816A1 (zh) 2017-09-16 2017-09-16 一种空气加湿驻波净化器

Publications (1)

Publication Number Publication Date
WO2019051816A1 true WO2019051816A1 (zh) 2019-03-21

Family

ID=65723196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101989 WO2019051816A1 (zh) 2017-09-16 2017-09-16 一种空气加湿驻波净化器

Country Status (1)

Country Link
WO (1) WO2019051816A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112013698A (zh) * 2020-09-04 2020-12-01 河北工程大学 一种基于煤矿矿井排风余热的送风加热设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716361B2 (ja) * 2005-05-09 2011-07-06 新晃工業株式会社 空気調和機の低温空気における蒸気噴霧加湿機構。
CN103706219A (zh) * 2013-12-26 2014-04-09 浙江大学 声波团聚结合喷雾联合作用脱除细微颗粒物的装置及其方法
CN103877824A (zh) * 2014-04-10 2014-06-25 中国人民解放军国防科学技术大学 基于声凝聚原理的燃烧能源系统细颗粒物减排装置
CN105413379A (zh) * 2015-12-29 2016-03-23 福建龙净环保股份有限公司 一种湿法除尘装置
CN106039928A (zh) * 2016-07-14 2016-10-26 中南大学 紧凑型高流速滤网声凝聚细微颗粒物减排装置及方法
CN205669422U (zh) * 2016-05-24 2016-11-02 浙江大学 一种基于雾声联合团聚的汽车尾气细颗粒物静电脱除装置
CN106268159A (zh) * 2016-09-06 2017-01-04 上海应用技术大学 一种尾气处理装置和处理方法
CN107621029A (zh) * 2017-09-16 2018-01-23 王元秀 一种空气加湿驻波净化器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716361B2 (ja) * 2005-05-09 2011-07-06 新晃工業株式会社 空気調和機の低温空気における蒸気噴霧加湿機構。
CN103706219A (zh) * 2013-12-26 2014-04-09 浙江大学 声波团聚结合喷雾联合作用脱除细微颗粒物的装置及其方法
CN103877824A (zh) * 2014-04-10 2014-06-25 中国人民解放军国防科学技术大学 基于声凝聚原理的燃烧能源系统细颗粒物减排装置
CN105413379A (zh) * 2015-12-29 2016-03-23 福建龙净环保股份有限公司 一种湿法除尘装置
CN205669422U (zh) * 2016-05-24 2016-11-02 浙江大学 一种基于雾声联合团聚的汽车尾气细颗粒物静电脱除装置
CN106039928A (zh) * 2016-07-14 2016-10-26 中南大学 紧凑型高流速滤网声凝聚细微颗粒物减排装置及方法
CN106268159A (zh) * 2016-09-06 2017-01-04 上海应用技术大学 一种尾气处理装置和处理方法
CN107621029A (zh) * 2017-09-16 2018-01-23 王元秀 一种空气加湿驻波净化器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112013698A (zh) * 2020-09-04 2020-12-01 河北工程大学 一种基于煤矿矿井排风余热的送风加热设备
CN112013698B (zh) * 2020-09-04 2021-09-21 河北工程大学 一种基于煤矿矿井排风余热的送风加热设备

Similar Documents

Publication Publication Date Title
US8070138B2 (en) Sauna apparatus
CN101821554B (zh) 空调机
JP2001055929A (ja) ガスタービン入口空気用の複合型水飽和−過飽和システムおよび方法
CN107621029A (zh) 一种空气加湿驻波净化器
WO2019051816A1 (zh) 一种空气加湿驻波净化器
CN207555862U (zh) 一种空气加湿驻波净化器
WO2019051817A1 (zh) 一种半导体冷凝型空气净化加湿器
CN103062855A (zh) 制冷加湿装置
CN101967893A (zh) 一种净化厂房
CN213089955U (zh) 一种恒温恒湿的智能组合式空调机组
CN107631386A (zh) 半导体冷凝型空气净化加湿器
CN106215579A (zh) 一种空气净化装置
CN206473940U (zh) 一种空气净化装置
CN202835632U (zh) 一种湿膜加湿机
CN210980158U (zh) 一种具有加湿功能的空气净化器
CN210425403U (zh) 具有净化功能的空气加湿器
CN208817645U (zh) 加湿装置
CN104121615B (zh) 空气净化功能箱
CN109916074A (zh) 一种自清洁过滤装置及新风系统
CN207501317U (zh) 一种半导体冷凝型空气净化加湿器
CN104930627A (zh) 一种能与风扇结合使用的分离式水雾降温装置
CN210772492U (zh) 一体式风冷恒温恒湿洁净空调机组
CN207207671U (zh) 车用空调净化器
CN112178901A (zh) 一种中央空调冷却水智能处理方法及其系统
CN203518009U (zh) 一种空气净化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924877

Country of ref document: EP

Kind code of ref document: A1