WO2019049885A1 - プラネタリキャリヤおよびその製造方法 - Google Patents

プラネタリキャリヤおよびその製造方法 Download PDF

Info

Publication number
WO2019049885A1
WO2019049885A1 PCT/JP2018/032846 JP2018032846W WO2019049885A1 WO 2019049885 A1 WO2019049885 A1 WO 2019049885A1 JP 2018032846 W JP2018032846 W JP 2018032846W WO 2019049885 A1 WO2019049885 A1 WO 2019049885A1
Authority
WO
WIPO (PCT)
Prior art keywords
planetary carrier
support plate
plate
support
pinion
Prior art date
Application number
PCT/JP2018/032846
Other languages
English (en)
French (fr)
Inventor
崇 岩間
孝明 河島
裕司 江▲崎▼
純也 阿部
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN201880056042.3A priority Critical patent/CN111094801B/zh
Priority to EP18853682.5A priority patent/EP3633241B1/en
Priority to JP2019540976A priority patent/JP6773234B2/ja
Priority to US16/630,265 priority patent/US11092233B2/en
Publication of WO2019049885A1 publication Critical patent/WO2019049885A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/62Gearings having three or more central gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/36Toothed gearings for conveying rotary motion with gears having orbital motion with two central gears coupled by intermeshing orbital gears

Definitions

  • the present disclosure relates to a planetary carrier having a plurality of pinion gears and a plurality of pinion shafts respectively inserted into the corresponding pinion gears and a method of manufacturing the same.
  • a type of planetary carrier one including a carrier plate and a carrier base formed by pressing a plate material having a predetermined thickness is known (see, for example, Patent Document 1).
  • the carrier plate of this planetary carrier has an annular base and a plurality of legs bent from the outer peripheral surface of the base toward the carrier base.
  • the carrier base also has a plurality of arcuate holes formed at positions corresponding to the plurality of legs of the carrier plate. The plurality of legs of the carrier plate are then inserted into the corresponding arcuate holes of the carrier base and welded to the carrier base.
  • the carrier plate of the planetary carrier described in Patent Document 1 has a plurality of legs extending radially from an annular base, and has a complex planar shape. For this reason, the size of the base material required to obtain a fixed number of carrier plates is increased, and the material yield is also deteriorated due to the increase of waste scraps. Similarly, even for a carrier base having an annular planar shape, it is not easy to suppress the size increase of the base material and the deterioration of the material yield. Accordingly, with the planetary carrier described in Patent Document 1, it is difficult to further reduce the material cost. Further, although the planetary carrier described in Patent Document 2 can be manufactured without using welding, the strength of the planetary carrier can be sufficient only by fixing a plurality of stud pins to a pair of carrier members by caulking. Difficult to secure.
  • this indication makes it a main purpose to reduce a manufacturing cost favorably, ensuring the intensity of a planetary carrier favorably.
  • a planetary carrier is a planetary carrier including a plurality of pinion gears and a plurality of pinion shafts respectively inserted into the corresponding pinion gears, wherein the first support plate supports one end of each of the plurality of pinion shafts.
  • a second support plate for supporting the other end of each of the plurality of pinion shafts, and one end is joined to the first support plate via a weld and the other end is welded to the second support plate And a plurality of bridge plates joined together to connect the first and second support plates.
  • each bridge plate is joined to the first support plate via a weld and the other end is joined to the second support plate via a weld, whereby the plurality of bridge plates The support plate and the second support plate are connected.
  • the planar shapes of the first and second support plates and the bridge plate can be simplified. This makes it possible to reduce the size of the base materials of the first and second support plates and the bridge plate, improve the material yield, and reduce the material cost. And, the reduction in material cost is sufficiently larger than the increase in processing cost due to the increase in the number of welds. As a result, with this planetary carrier, it is possible to satisfactorily reduce the manufacturing cost while securing the strength well.
  • FIG. 3A is an explanatory view showing a base material of components of the planetary carrier of the present disclosure
  • FIG. 3B is an explanatory view showing a base material of components of a conventional planetary carrier.
  • FIG. 7 is a perspective view of another planetary carrier of the present disclosure. It is a top view of the planetary carrier shown in FIG. It is an expanded sectional view showing other examples of a junction of a 1st and 2nd support plate and a bridge plate.
  • FIG. 1 is a perspective view showing a planetary carrier 10 of the present disclosure
  • FIG. 2 is a plan view of the planetary carrier 10.
  • the planetary carrier 10 shown in these drawings is included in a single pinion type planetary gear applied to a transmission, and has a plurality of (for example, three in this embodiment) pinion gears PG and corresponding pinion gears PG. And (in this embodiment, for example, three in this embodiment) pinion shafts PS are provided (all are not shown in FIG. 1).
  • the planetary carrier 10 comprises a first support plate 11 supporting one end of each pinion shaft PS, a second support plate 12 supporting the other end of each pinion shaft PS, and a first and a second support plate. And a plurality of (for example, three in the present embodiment) bridge plates 15 connecting the two support plates 11 and 12.
  • the first support plate 11 is formed by stamping (pressing) a metal plate such as a steel plate, and is coaxial with the flat outer and inner surfaces 11i (see FIG. 1) and the axial center of the planetary carrier 10. It has a circular hole (through hole) 11 o extending, a plurality of side portions 11 e linearly extending around the circular hole 11 o, and a plurality of corner portions 11 c connecting adjacent side portions 11 e.
  • the first support plate 11 has the same number as the pinion gear PG and the bridge plate 15, that is, three sides 11e.
  • the side surface of each side portion 11e is formed flat, and the angle formed by the side surfaces of two adjacent side portions 11e via the corner portion 11c is 60 °.
  • the first support plate 11 has a substantially equilateral triangle (multi-sided) planar shape.
  • the first support plate 11 is a polygon (triangle) P1 (a triangular shape) that circumscribes the plurality of pinion gears PG (tooth tip circle) when the side surface of each side 11e views the planetary carrier 10 in plan view.
  • the first support plate 11 is located radially outward of the corresponding side portions of a polygon (triangle) circumscribing the plurality of shaft holes 11 h when the side surfaces of the side portions 11 e planarly view the planetary carrier 10. It is formed to be located.
  • a shaft hole 11h is formed in which one end of the pinion shaft PS inserted into the pinion gear PG is inserted.
  • a caulking groove 11g for caulking one end of the pinion shaft PS inserted into the shaft hole 11h is formed around each shaft hole 11h.
  • a chamfered shape R shape is provided so as to be smoothly continuous with the side surface of the corresponding side portion 11e and to relieve stress concentration.
  • the second support plate 12 is also formed by stamping (pressing) a metal plate such as a steel plate, and is coaxial with the flat outer and inner surfaces 12i (see FIG. 1) and the axial center of the planetary carrier 10. It has a circular hole (through hole) 12 o extending, a plurality of side portions 12 e linearly extending around the circular hole 12 o, and a plurality of corner portions 12 c connecting adjacent side portions 12 e.
  • the second support plate 12 has the same structure as the first support plate 11.
  • the second support plate 12 has a planar shape substantially in the shape of an equilateral triangle (multiple sides) the same as the first support plate 11, and includes the pinion gear PG and the same number as the bridge plates 15, ie, three sides 12e.
  • the second support plate 12 also has a side corresponding to a polygon (triangle) P1 (see FIG. 2) circumscribing the plurality of pinion gears PG when the side surface of each side 12e planarly views the planetary carrier 10. It is also formed so as to be located radially inward (on the side of the circular hole 12 o, that is, on the axial center side of the planetary carrier 10).
  • the second support plate 12 is also radially outward of the corresponding side portions of a polygon (triangle) circumscribing the plurality of shaft holes 12 h when the side surface of each side portion 12 e planarly views the planetary carrier 10. It is formed to be located.
  • shaft holes 12h into which the other end of the pinion shaft PS inserted into the pinion gear PG is inserted are formed in each corner portion 12c of the second support plate 12, and shaft holes are formed around each shaft hole 12h.
  • a caulking groove (not shown) is formed for caulking the other end of the pinion shaft PS inserted into 12h.
  • the side surface of each side 12e is formed flat, and the side surface of each corner 12c is chamfered so as to be smoothly continuous with the side of the corresponding side 12e and to reduce stress concentration. R shape is given.
  • Each bridge plate 15 is formed in a flat plate shape having a rectangular planar shape, that is, a thin rectangular parallelepiped shape by punching (pressing) a metal plate such as a steel plate.
  • One end face of each bridge plate 15 is brought into contact with the inner surface 11i of the corresponding side 11e of the first support plate 11, and from the radially outer side of the first support plate 11 by electron beam welding or laser welding. It is joined to the side 11e.
  • the other end face of each bridge plate 15 is abutted against the inner surface 12i of the corresponding side 12e of the second support plate 12, and electron beam welding or laser welding is performed from the radially outer side of the second support plate 12. It joins to the said side 12e by this. Furthermore, as shown in FIG.
  • each bridge plate 15 is radially inward of the tip circle Ct of the ring gear to be engaged with the plurality of pinion gears PG (on the side of the circular holes 11 o and 12 o, ie, the axial center of the planetary carrier 10 It is joined to the 1st and 2nd support plates 11 and 12 so that it may be located in the side).
  • each bridge plate 15 is joined to the first and second support plates 11 and 12 such that the outer surfaces thereof are flush with the side surfaces of the side portions 11 e and 12 e.
  • each bridge plate 15 may be joined to the first and second support plates 11 and 12 such that the outer surface is positioned radially inward of the side surfaces of the side portions 11 e and 12 e.
  • each bridge plate 15 is joined to the first support plate 11 via the weld portion WP and the other end is joined to the second support plate 12 via the weld portion WP, whereby a plurality of bridge plates
  • the first support plate 11 and the second support plate 12 are firmly connected by 15.
  • the plurality of pinion gears PG are arranged in order.
  • the pinion shaft PS is sequentially inserted through the shaft holes 11h and 12h of the first and second support plates 11 and 12 and the pinion gear PG, and both ends of each pinion shaft PS are caulked.
  • the plurality of pinion gears PG are rotatably supported by the first and second support plates 11 and 12, and the planetary carrier 10 is completed.
  • a sun gear (not shown) engaged with a plurality of pinion gears PG is disposed between the first and second support plates 11 and 12 via the circular holes 11o or 12o, and a shaft (not shown) fixed to the sun gear is , And at least one of the circular holes 11o and 12o.
  • each bridge plate 15 is welded to the first support plate 11 and the other end is welded to the second support plate 12, whereby the first support is performed by the plurality of bridge plates 15.
  • the plate 11 and the second support plate 12 are connected. This makes it possible to secure the strength of the planetary carrier 10 well.
  • each bridge plate 15 is welded to the corresponding side portions 11e and 12e of the first and second support plates 11 and 12, when a shear force in the rotational direction acts on the planetary carrier 10, each weld portion WP
  • the shear force component acts on the shear force, and the shear force acting on each weld WP is smaller than the shear force in the rotational direction. Therefore, in the planetary carrier 10, the strength against the shear force in the rotational direction can be further improved.
  • first and second support plates 11, 12 and the bridge plate 15 can be simplified as described above. More specifically, the first and second support plates 11 and 12 have a simple substantially equilateral triangle (multi-sided) planar shape, and each bridge plate 15 has a very simple rectangular planar shape. . Thereby, as shown in FIG.
  • the plate members 101, 102, 105 which are the base materials of the first support plate 11, the second support plate 12 and the bridge plate 15 necessary for manufacturing the predetermined number of planetary carriers 10
  • the size (surface area) is much smaller than the size of the base material (plate material) required to manufacture a predetermined number of planetary carriers including a carrier plate CP having a plurality of legs and a base plate BP (see FIG. 3B) can do.
  • any one of the side portions 11e and 12e is a plate member 101 by punching out the first or second support plate 11 or 12 one shot earlier.
  • 102 are punched out of the plate 101 or 102 by a punch and die not shown so as to extend in parallel with the inner surface 101 hi and 102 hi corresponding to any one of the side portions 11 e and 12 e of the punched holes 101 h and 102 h formed in .
  • the bridge plate 15 corresponds to any one of the side portions of the hole 105 h formed in the plate member 105 by punching out the bridge plate 15 of which one side is one shot earlier.
  • the plate 105 is punched out by a punch and a die (not shown) so as to extend parallel to the inner surface. As a result, it is possible to significantly narrow the interval (width of feed) of the through holes 101h, 102h, and 105h in the base plates 101, 102, 105 compared to the carrier plate CP and the base plate BP. The amount of material can be significantly reduced.
  • the size of the base materials of the first and second support plates 11 and 12 and the bridge plate 15 can be reduced and the material yield can be improved to significantly reduce the material cost.
  • the three bridge plates 15 are used as the first and second support plates 11 and 12 in contrast to three welding points when welding the carrier plate CP having three legs to the base plate BP.
  • the reduction cost of the material cost in the planetary carrier 10 is sufficiently larger than the increase cost of the processing cost due to the increase in the number of the welding points.
  • first support plate 11, the second support plate 12, and the bridge plate 15 are formed in separate steps, the materials, thicknesses, etc. of the first support plate 11, the second support plate 12, and the bridge plate 15 may be different. It is also possible to The first support plate 11, the second support plate 12, and the bridge plate 15 may be punched out of the plate members 101, 102 or 105 one by one, or a plurality (for example, two) of them may be punched out. .
  • each bridge plate 15 is joined to the inner surface 11i of the corresponding side 11e of the first support plate 11 and the inner surface 12i of the corresponding side 12e of the second support plate 12 through the weld portion WP. Be done. As a result, the height of each bridge plate 15 can be reduced, and the material cost can be further reduced.
  • punching is performed to ensure the accuracy of the height of each bridge plate 15. Cutting is applied to both end surfaces of the bridge plate 15 after processing (press processing).
  • the bridge plate 15 is formed in a thin rectangular parallelepiped shape, one end face of the plurality of bridge plates 15 is collectively cut, and the other end face is collectively cut. It can be processed. Further, the cost required for such cutting is significantly greater than the cutting performed on the end portion of the leg portion of the carrier plate CP or the inner peripheral surface of the arcuate hole of the base plate BP in order to secure assembly accuracy. Low. Therefore, in the planetary carrier 10, it is possible to reduce the cost (machining cost) required for cutting as compared to the planetary carrier including the carrier plate CP and the base plate BP, thereby reducing the manufacturing cost. it can.
  • the number of the side portions 11e and 12e of the first and second support plates 11 and 12 are same as the number of the bridge plates 15, the planes of the first and second support plates 11 and 12 are obtained. It is possible to simplify the shape more. Furthermore, by making the number of side portions 11e and 12e of the first and second support plates 11 and 12 the same as the number of pinion gears PG, the planar shapes of the first and second support plates 11 and 12 can be further simplified. It is possible to However, the number of side portions 11e and 12e of the first and second support plates 11 and 12 may be larger than the number of bridge plates 15 as long as the planar shape is not complicated, and different from the number of pinion gears PG. It may be
  • the first and second support plates 11 and 12 have polygons (triangles) that circumscribe the plurality of pinion gears PG when the side portions 11 e and 12 e (side surfaces) planarly view the planetary carrier 10. ) Formed so as to be located radially inward of the corresponding side of Pl.
  • the first and second support plates 11 and 12 may be formed such that the side surfaces of the side portions 11 e and 12 e overlap the corresponding side portions of the polygon Pl.
  • each of the bridge plates 15 is provided on the first and second support plates 11 and 12 so as to be positioned radially inward of the tip circle Ct of the ring gear meshed with the plurality of pinion gears PG. It is joined. This makes it possible to eliminate the interference between the plurality of bridge plates 15 and the ring gear meshing with the plurality of pinion gears PG.
  • the 1st and 2nd support plates 11 and 12 have the mutually same structure.
  • the members can be easily managed and handled when manufacturing the planetary carrier 10 and the like, so that the manufacturing cost of the planetary carrier 10 can be further reduced.
  • the first and second support plates 11 and 12 need only have the same planar shape, and need not have completely the same structure.
  • the positions and the like of the caulking grooves may be different between the first and second support plates 11 and 12.
  • the side portions 11 e and 12 e of the first and second support plates 11 and 12 of the planetary carrier 10 are provided with recesses 11 r and 12 r into which one end or the other end of the bridge plate 15 is fitted. It may be done.
  • one end of the bridge plate 15 is joined to the inner surface of the recess 11r of the corresponding side 11e via the weld portion WP, and the other end of the bridge plate 15 is welded to the inner surface of the recess 12r of the corresponding side 12e It is joined via part WP.
  • the bridge plate 15 can be positioned easily and accurately with respect to the first and second support plates 11 and 12 to perform the welding operation.
  • FIG. 5 is a perspective view showing another planetary carrier 10X of the present disclosure
  • FIG. 6 is a plan view of the planetary carrier 10X.
  • the same elements as those of the above-described planetary carrier 10 are denoted by the same reference numerals, and redundant description will be omitted.
  • the planetary carrier 10X shown in FIGS. 5 and 6 is also included in a single pinion type planetary gear applied to a transmission, and corresponds to a plurality of (for example, three in this embodiment) pinion gears PG.
  • a plurality of (for example, three in the present embodiment) pinion shafts PS inserted into the pinion gear PG are provided (all are not shown in FIG. 5).
  • the planetary carrier 10X includes a first support plate 11 supporting one end of each pinion shaft PS, a second support plate 12 supporting the other end of each pinion shaft PS, and a first and a second support plate.
  • the bridge plate 15X is formed by the same punching (pressing) as the bridge plate 15 described above.
  • each bridge plate 15X is brought into contact with the side surface 11s (see FIG. 5) of the corresponding side 11e of the first support plate 11, and the axial direction outside of the first support plate 11 is From the side 11e to the side 11e by electron beam welding or laser welding.
  • the other end of each bridge plate 15X is made to abut on the side surface 12s of the corresponding side 12e of the second support plate 12, and from the axial direction outer side of the second support plate 12 by electron beam welding or laser welding. It is joined to the side 12e. Furthermore, as shown in FIG.
  • each bridge plate 15X is radially inward of the tip circle Ct of the ring gear to be meshed with a plurality of pinion gears PG (on the side of the circular holes 11o and 12o, ie, the axial center of the planetary carrier 10X It is joined to the 1st and 2nd support plates 11 and 12 so that it may be located in the side).
  • each bridge plate 15X is welded to the side surface 11s of the corresponding side 11e of the first support plate 11 and the side surface 12s of the corresponding side 12e of the second support plate 12 via welds WP. It is joined. This makes it possible to weld the bridge plate 15X to the corresponding side portions 11e and 12e from the axial direction of the planetary carrier 10X as well as the planetary carrier including the carrier plate CP having a plurality of legs and the base plate BP.
  • the welding operation can be performed by utilizing or modifying existing welding equipment.
  • each bridge plate 15X of the planetary carrier 10X a recess 15ra in which the side 11e of the first support plate 11 is fitted and a recess 15rb in which the side 12e of the second support plate 12 is fitted. And may be formed.
  • one end of the bridge plate 15X is joined to the side surface of the side 11e fitted in the recess 15ra via the weld part WP, and the other end of the bridge plate 15X is the side surface of the side 12e fitted in the recess 15rb Are joined to each other via the weld part WP.
  • the bridge plate 15X can be positioned easily and accurately with respect to the first and second support plates 11 and 12 to perform the welding operation, and the first and second support plates can be welded when the bridge plate 15X is welded.
  • the jig for adjusting the distance between 11 and 12 can be omitted.
  • FIG. 8 shows a planetary carrier 10Y for a single pinion type planetary gear having four pinion gears PG.
  • the planetary carrier 10Y includes a first support plate 11Y for supporting one end of each pinion shaft PS, a second support plate 12Y for supporting the other end of each pinion shaft PS, and And 4 bridge plates 15Y connecting the first and second support plates 11Y and 12Y.
  • the first support plate 11Y is formed by the same stamping (pressing) as the first support plate 11, and the second support plate 12Y is formed by the same stamping as the second support plate 12.
  • the bridge plate 15 Y is formed by the same punching process as the bridge plate 15.
  • the first support plate 11Y of the planetary carrier 10Y has flat outer and inner surfaces, a circular hole (through hole) 11o extending coaxially with the axis of the planetary carrier 10Y, and 4 linearly extending around the circular hole 11o. It has four side parts 11e and four corner parts 11c which connect side parts 11e which adjoin each other.
  • the second support plate 12Y of the planetary carrier 10Y has the same structure (planar shape) as the first support plate 11Y. Accordingly, the second support plate 12Y also has flat outer and inner surfaces, a circular hole (a through hole) coaxially extending with the axis of the planetary carrier 10Y, and four sides extending linearly around the circular hole. And four corner portions connecting adjacent side portions (all are not shown).
  • the first and second support plates 11Y and 12Y have corresponding sides of a polygon (quadrilateral) circumscribing the plurality of pinion gears PG when the side is viewed in plan of the planetary carrier 10Y. It is formed to be positioned radially inward of the inner side. Further, each bridge plate 15Y is joined to the first and second support plates 11Y and 12Y so as to be positioned radially inward of the tip circle of the ring gear meshed with the plurality of pinion gears PG.
  • each bridge plate 15Y is welded to the inner surface of the corresponding side 11e of the first support plate 11Y and the inner surface of the corresponding side of the second support plate 12Y, as shown by the broken line in FIG.
  • the number of side portions of the first and second support plates 11Y and 12Y may be larger than the number of bridge plates 15Y as long as the planar shape is not complicated, even if they are different from the number of pinion gears PG. Good.
  • a recess may be formed in one of the side portions of the first and second support plates 11Y and 12Y and the bridge plate 15Y in which the other is fitted.
  • FIG. 9 shows a planetary carrier 10Z for a double pinion type planetary gear.
  • the planetary carrier 10Z shown in the figure includes three sets of a first pinion gear PGa meshing with a sun gear (not shown) and a second pinion gear PGb meshing with the first pinion gear PGa and meshing with a ring gear (not shown).
  • the planetary carrier 10Z is a first support for supporting one end of the pinion shaft PSa inserted into each first pinion gear PGa and one end of a pinion shaft PSb inserted into each second pinion gear PGb.
  • the first support plate 11Z is formed by the same stamping (pressing) as the first support plate 11, and the second support plate 12Z is formed by the same stamping as the second support plate 12.
  • the bridge plate 15Z is formed by the same punching process as the bridge plate 15 described above.
  • the first support plate 11Z of the planetary carrier 10Z has flat outer and inner surfaces, a circular hole (through hole) 11o extending coaxially with the axial center of the planetary carrier 10Z, and 3 extending linearly around the circular hole 11o. It has three side parts 11e and three corner parts 11c which connect side parts 11e which adjoin each other.
  • the second support plate 12Z of the planetary carrier 10Z has the same structure (planar shape) as the first support plate 11Z. Therefore, the second support plate 12Z also has flat outer and inner surfaces, a circular hole (a through hole) coaxially extending with the axis of the planetary carrier 10Z, and three side portions extending linearly around the circular hole. And three corner portions connecting adjacent side portions (all are not shown). That is, the first and second support plates 11Z, 12Z have the same number of side portions as the sets of the first and second pinion gears PGa, PGb meshing with each other.
  • the first and second support plates 11Z and 12Z have corresponding sides of a polygon (quadrilateral) circumscribing the plurality of pinion gears PG when the side is the planar view of the planetary carrier 10Z. It is formed to be positioned radially inward of the inner side. Further, each bridge plate 15Z is joined to the first and second support plates 11Z and 12Z so as to be positioned radially inward of the tip circle of the ring gear meshed with the plurality of pinion gears PG.
  • each bridge plate 15Z is welded to the inner surface of the corresponding side 11e of the first support plate 11Z and the inner surface of the corresponding side of the second support plate 12Z, as shown by the broken line in FIG.
  • the number of side portions of the first and second support plates 11Z and 12Z may be larger than the number of bridge plates 15Z as long as the planar shape is not complicated, and the first and second pinion gears PGa and PGb It may be different from the number of sets of.
  • a recess may be formed in one of the side portions of the first and second support plates 11Z and 12Z and the bridge plate 15Z in which the other is fitted.
  • the transmission to which the planetary gear including the above-described planetary carrier 10, 10X, 10Y, 10Z is applied may be a stepped transmission or a mechanical continuously variable transmission (forward and reverse switching mechanism) May be a hybrid transmission.
  • a mechanical continuously variable transmission forward and reverse switching mechanism
  • the above-mentioned planetary carriers 10, 10X, 10Y and 10Z may be included in the planetary gear applied to devices other than the transmission.
  • FIG. 10 is an explanatory view for explaining another manufacturing procedure of the planetary carrier 10 or the like, ie, another forming procedure of the first and second support plates 11 and 12.
  • the first support plate 11 and the second support plate 12 are formed from the common plate member 103 in the same process.
  • the number of die sets can be reduced to reduce the cost of manufacturing equipment such as the planetary carrier 10 and the like.
  • any one of the side portions 11e and 12e is a plate material 103 by punching out the first or second support plate 11 or 12 one shot before.
  • the plate member 103 is punched out by a punch and a die (not shown) so as to extend in parallel with the inner surface 103 hi corresponding to any one of the side portions 11 e and 12 e of the punched hole 103 h formed in As a result, it is possible to significantly narrow the interval (width of the feed) of the punched holes 103h in the plate member 103 which is the base material, and the amount of end material can be significantly reduced. Furthermore, in the example of FIG. 10, the first and second support plates 11 and 12 are placed side by side so that the corresponding side portions 11e and 12e extend in parallel with each other, and collectively from the plate material 103 by a punch and die not shown. And each one is punched out.
  • first and second support plates 11 and 12 may be punched one by one from the plate member 103 one by one.
  • the manufacturing procedure as shown in FIG. 10 may be applied to the manufacture of the first and second support plates 11Y and 12Y and the first and second support plates 11Z and 12Z.
  • FIG. 11 is an explanatory view for explaining another manufacturing procedure of the planetary carrier 10 or the like, that is, a further forming procedure of the first and second support plates 11 and 12.
  • the first support plate 11, the second support plate 12, and the bridge plate 15 are punched out of the common plate member 104.
  • the number of die sets can be reduced to reduce the cost of manufacturing equipment such as the planetary carrier 10 and the like.
  • the first and second support plates 11 and 12 have the plate members 104 formed by punching out the first or second support plate 11 or 12 in which any one of the side portions 11 e and 12 e is one shot earlier.
  • the plate member 104 is punched out by a punch and a die (not shown) so as to extend in parallel with the inner surface 104 hi corresponding to any one of the side portions 11 e and 12 e of the punched hole 104 h formed in.
  • the bridge plate 15 corresponds to the portion corresponding to the circular hole (first through hole) 11 o and the circular hole (second through hole) 12 o of the plate member 104 and the first support plate 11 and the second support plate 12 of the plate member 104.
  • the bridge plate 15 may be punched from the plate 104 prior to punching of the first and second support plates 11 and 12, and at least one of the first and second support plates 11 and 12 and the periphery thereof. A predetermined number of bridge plates 15 may be punched out of the plate 104 at one time.
  • the manufacturing procedure as shown in FIG. 11 may be applied to the manufacture of the first and second support plates 11Y and 12Y and the first and second support plates 11Z and 12Z.
  • the planetary carrier of the present disclosure includes a plurality of pinion gears (PG, PGa, PGb) and a plurality of pinion shafts (PS, PSa, A first support plate (11, 11Y, 11Z) for supporting one end of each of the plurality of pinion shafts (PS, PSa, PSb) in a planetary carrier (10, 10X, 10Y, 10Z) including PSb); A second support plate (12, 12Y, 12Z) for supporting the other end of each of the plurality of pinion shafts (PS, PSa, PSb) and one end is welded to the first support plate (11, 11Y, 11Z) And the other end is welded to the second support plate (12, 12Y, 12Z) Is bonded via a (WP), said first and second supporting plate is intended to include (11,11Y, 11Z, 12,12Y, 12Z) a plurality of bridge plate connecting (15,15X, 15Y, 15Z) and.
  • each bridge plate is joined to the first support plate via a weld and the other end is joined to the second support plate via the weld, whereby a plurality of bridge plates are used.
  • the first support plate and the second support plate are connected.
  • the planar shapes of the first and second support plates and the bridge plate can be simplified. This makes it possible to reduce the size of the base materials of the first and second support plates and the bridge plate, improve the material yield, and reduce the material cost. And, the reduction in material cost is sufficiently larger than the increase in processing cost due to the increase in the number of welds. As a result, with the planetary carrier of the present disclosure, it is possible to favorably reduce the manufacturing cost while securing good strength.
  • first and second support plates (11, 11Y, 11Z, 12, 12Y, 12Z) have a plurality of linearly extending side portions (11e, 12e) and adjacent side portions (11e, 12e).
  • each of the plurality of bridge plates (15, 15X, 15Y, 15Z) has a rectangular planar shape, and the first and second bridge plates (15, 15X, 15Y, 15Z) It may be joined to the corresponding side (11e, 12e) of the two support plates (11, 11Y, 11Z, 12, 12Y, 12Z) via the weld (WP).
  • the size of the base material of the first and second support plate and the bridge plate can be further reduced and the material yield can be increased. It can be further improved. As a result, it is possible to significantly reduce the manufacturing cost of the planetary carrier.
  • the strength of the planetary carrier against the shear force in the rotational direction of the planetary carrier can be further improved.
  • first and second support plates (11, 11Y, 11Z, 12, 12Y, 12Z) include the same number of sides (11e, 12e) as the bridge plates (15, 15X, 15Y, 15Z). May be. This makes it possible to further simplify the planar shape of the first and second support plates.
  • first support plate and the second support plate may have the same planar shape.
  • the management and handling of the members can be facilitated, and the manufacturing cost of the planetary carrier can be further reduced.
  • first and second support plates are polygons in which each of the side portions (11e, 12e) circumscribes the plurality of pinion gears (PG) It may be formed so as to overlap with the corresponding side of (Pl) or to be located radially inward of the side.
  • each of the plurality of bridge plates (15, 15Y, 15Z) is an inner surface (11i) of the corresponding side portion (11e) of the first support plate (11, 11Y, 11Z) and the second support plate It may be joined to the inner surface (12i) of the corresponding side (12e) of (12, 12Y, 12Z) via the weld (WP).
  • WP weld
  • each of the plurality of bridge plates (15X, 15Y, 15Z) is a side surface (11s) of the corresponding side portion (11e) of the first support plate (11, 11Y, 11Z) and the second support plate It may be joined to the side (12s) of the corresponding side (12e) of (12, 12Y, 12Z) via the weld (WP).
  • WP weld
  • concave portions (11r, 12r, 15ra, 15rb) into which the other is fitted may be formed. This makes it possible to position the bridge plate with respect to the first and second support plates easily and accurately and perform the welding operation.
  • each of the plurality of bridge plates (15, 15X, 15Y, 15Z) is positioned radially inward of a tip circle (Ct) of a ring gear that meshes with the plurality of pinion gears (PG, PGa, PGb)
  • it may be joined to the first and second support plates (11, 11Y, 11Z, 12, 12Y, 12Z). This makes it possible to eliminate the interference between the plurality of bridge plates and the ring gear that meshes with the plurality of pinion gears.
  • the planetary carrier (10, 10X, 10Y) may be included in a single pinion type planetary gear, and the first and second support plates (11, 11Y, 12, 12Y) may be included in the pinion gear (PG). The same number of sides (11e, 12e) may be included.
  • the planetary carrier (10Z) may be included in a double pinion type planetary gear, and the first and second support plates (11Z, 12Z) are in mesh with each other of the two pinion gears (PGa, PGb). It may include the same number of sides (11e, 12e) as the set.
  • the planetary carrier (10, 10X, 10Y, 10Z) may be included in a planetary gear of a transmission. As a result, it is possible to favorably reduce the manufacturing cost of the planetary gear including the planetary carrier and thus the transmission.
  • a method of manufacturing a planetary carrier according to the present disclosure includes a plurality of pinion gears (PG, PGa, PGb), and a plurality of pinion shafts (PS, PSa, PSb) inserted into the corresponding pinion gears (PG, PGa, PGb).
  • the support plate (11, 11Y, 11Z, 12, 12Y, 12Z) extends in a straight line.
  • the punching step comprising the supporting plate (11, 11Y, 11Z, 12, 12Y, 12Z) In the plate material (101, 102, 103, 104) by punching out the support plate (11, 11Y, 11Z, 12, 12Y, 12Z) any one of the side portions (11e, 12e) is one shot before
  • the plate members (101, 102) extend parallel to the inner surface (101 hi, 102 hi, 103 hi, 104 hi) corresponding to any one of the side portions of the formed hole (101 h, 102 h, 103 h, 104 h). , 103, 104).
  • the two support plates include a first support plate (11, 11Y, 11Z) supporting one end of each of the plurality of pinion shafts (PS, PSa, PSb), and the plurality of pinion shafts (PS, And a second support plate (12, 12Y, 12Z) for supporting the other end of each of PSa, PSb), the first support plate (11, 11Y, 11Z), the second support plate (12, 12Y, 12Z) and the bridge plates (15, 15X, 15Y, 15Z) may be formed in separate steps. This makes it possible to make the materials, thicknesses, and the like of the first support plate, the second support plate, and the bridge plate different from one another.
  • the two support plates include a first support plate (11, 11Y, 11Z) supporting one end of each of the plurality of pinion shafts (PS, PSa, PSb), and the plurality of pinion shafts (PS, PS, And a second support plate (12, 12Y, 12Z) for supporting the other end of each of PSa, PSb), and the first support plate (11, 11Y, 11Z) and the second support plate (12, 12Y and 12Z) may be formed in the same step. This makes it possible to reduce the cost of the planetary carrier manufacturing facility by reducing the number of die sets and the like.
  • the side portions (11e, 12e) corresponding to each other are parallel to each other from the plate material (103) to the first and second support plates (11, 11Y, 11Z, 12, 12Y, 12Z). It may be punched together from the plate material (103) side by side so as to extend.
  • the two support plates have a first through hole (11o), and support one end of each of the plurality of pinion shafts (PS, PSa, PSb), the first support plate (11, 11Y, 11Z) And a second support plate (12, 12Y, 12Z) having a second through hole (12o) and supporting the other end of each of the plurality of pinion shafts (PS, PSa, PSb),
  • the first and second support plates (11, 11Y, 11Z, 12, 12Y, 12Z) are punched out of the plate member (104), and at least the first through hole (11o) of the plate member (104).
  • the bridge plate (15, 15X, 15Y, 15Z) may be punched from a portion corresponding to the second through hole (12o).As a result, it is possible to further narrow the gap between the punched holes in the plate material to further reduce the amount of offcuts, and reduce the number of die sets and the like to further reduce the cost of the planetary carrier manufacturing facility.
  • the invention of the present disclosure can be used in the manufacturing industry of planetary carriers and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Retarders (AREA)

Abstract

プラネタリキャリヤは、複数のピニオンギヤと、それぞれ対応するピニオンギヤに挿通される複数のピニオンシャフトと、複数のピニオンシャフトの各々の一端を支持する第1支持プレートと、複数のピニオンシャフトの各々の他端を支持する第2支持プレートと、それぞれ一端が第1支持プレートに溶接部を介して接合されると共に他端が第2支持プレートに溶接部を介して接合され、第1および第2支持プレートを繋ぐ複数のブリッジプレートとを含む。

Description

プラネタリキャリヤおよびその製造方法
 本開示は、複数のピニオンギヤと、それぞれ対応するピニオンギヤに挿通される複数のピニオンシャフトとを有するプラネタリキャリヤおよびその製造方法に関する。
 従来、この種のプラネタリキャリヤとして、所定の肉厚の板材をプレス加工することにより形成されたキャリヤプレートおよびキャリヤベースを含むものが知られている(例えば、特許文献1参照)。このプラネタリキャリヤのキャリヤプレートは、環状の基部と、当該基部の外周面からキャリヤベースに向けて曲折された複数の脚部とを有する。また、キャリヤベースは、キャリヤプレートの複数の脚部に対応した位置に形成された複数の弓状孔を有する。そして、キャリヤプレートの複数の脚部は、キャリヤベースの対応する弓状孔に挿入されて当該キャリヤベースに溶接される。
 また、従来、複数のピニオンギヤと、当該複数のピニオンギヤの軸方向両側に配置されて各ピニオンギヤを軸支する1対のキャリヤ部材と、複数のスタッドピンとを含むものも知られている(例えば、特許文献2参照)。このプラネタリキャリヤでは、その製造に際して溶接による不具合を解消するために、複数のスタッドピンが遊星歯車装置の回転方向における複数のピニオンギヤの間に配置され、各スタッドピンの両端は、1対のキャリヤ部材にカシメにより固定される。
特開2014-77487号公報 特開2002-243025号公報
 上記特許文献1に記載されたプラネタリキャリヤのキャリヤプレートは、環状の基部から放射状に延出される複数の脚部を有するものであり、複雑な平面形状を有する。このため、一定数のキャリヤプレートを得るために必要な母材のサイズが大きくなり、無駄になる端材が増加することで材料歩留まりも悪化してしまう。同様に、環状の平面形状を有するキャリヤベースについても、母材のサイズアップや材料歩留まりの悪化を抑えることは容易ではない。従って、特許文献1に記載のプラネタリキャリヤでは、材料コストの更なる低減化をはかることが困難である。また、特許文献2に記載されたプラネタリキャリヤは、溶接を用いることなく製造可能なものではあるが、複数のスタッドピンを1対のキャリヤ部材にカシメにより固定しただけでは、プラネタリキャリヤの強度を充分に確保することが困難である。
 そこで、本開示は、プラネタリキャリヤの強度を良好に確保しつつ、製造コストを良好に低減化することを主目的とする。
 本開示のプラネタリキャリヤは、複数のピニオンギヤと、それぞれ対応する前記ピニオンギヤに挿通される複数のピニオンシャフトとを含むプラネタリキャリヤにおいて、前記複数のピニオンシャフトの各々の一端を支持する第1支持プレートと、前記複数のピニオンシャフトの各々の他端を支持する第2支持プレートと、それぞれ一端が前記第1支持プレートに溶接部を介して接合されると共に他端が前記第2支持プレートに溶接部を介して接合され、前記第1および第2支持プレートを繋ぐ複数のブリッジプレートとを含むものである。
 このプラネタリキャリヤでは、各ブリッジプレートの一端が第1支持プレートに溶接部を介して接合されると共に他端が第2支持プレートに溶接部を介して接合され、それにより複数のブリッジプレートによって第1支持プレートと第2支持プレートとが繋がれる。これにより、プラネタリキャリヤの強度を良好に確保することが可能となる。更に、かかるプラネタリキャリヤでは、第1および第2支持プレート並びにブリッジプレートの平面形状を単純化することができる。これにより、第1および第2支持プレート並びにブリッジプレートの母材のサイズを小さくすると共に材料歩留まりを向上させて、材料コストを低減化することが可能となる。そして、材料コストの低減代は、溶接箇所の数が増加することによる加工コストの増加代よりも充分に大きい。この結果、このプラネタリキャリヤでは、強度を良好に確保しつつ、製造コストを良好に低減化することが可能となる。
本開示のプラネタリキャリヤを示す斜視図である。 図1に示すプラネタリキャリヤの平面図である。 図3Aは、本開示のプラネタリキャリヤの構成部材の母材を示す説明図であり、図3Bは、従来のプラネタリキャリヤの構成部材の母材を示す説明図である。 第1および第2支持プレートとブリッジプレートとの接合部の一例を示す拡大断面図である。 本開示の他のプラネタリキャリヤを示す斜視図である。 図5に示すプラネタリキャリヤの平面図である。 第1および第2支持プレートとブリッジプレートとの接合部の他の例を示す拡大断面図である。 本開示の更に他のプラネタリキャリヤを示す平面図である。 本開示の他のプラネタリキャリヤを示す平面図である。 本開示のプラネタリキャリヤの他の製造手順を説明するための説明図である。 本開示のプラネタリキャリヤの更に他の製造手順を説明するための説明図である。
 次に、図面を参照しながら、本開示の発明を実施するための形態について説明する。
 図1は、本開示のプラネタリキャリヤ10を示す斜視図であり、図2は、プラネタリキャリヤ10の平面図である。これらの図面に示すプラネタリキャリヤ10は、変速機に適用されるシングルピニオン式の遊星歯車に含まれるものであり、複数(本実施形態では、例えば3つ)のピニオンギヤPGと、それぞれ対応するピニオンギヤPGに挿通される複数(本実施形態では、例えば3本)のピニオンシャフトPSとを有する(図1では、何れも図示省略)。更に、プラネタリキャリヤ10は、各ピニオンシャフトPSの一端を支持する1枚の第1支持プレート11と、各ピニオンシャフトPSの他端を支持する1枚の第2支持プレート12と、第1および第2支持プレート11,12を繋ぐ複数(本実施形態では、例えば3枚)のブリッジプレート15とを含む。
 第1支持プレート11は、鋼板等の金属板を打ち抜き加工(プレス加工)して形成されるものであり、平坦な外面および内面11i(図1参照)と、プラネタリキャリヤ10の軸心と同軸に延びる円孔(貫通孔)11oと、当該円孔11oの周囲でそれぞれ直線状に延びる複数の辺部11eと、隣り合う辺部11e同士を繋ぐ複数のコーナー部11cとを有する。
 本実施形態において、第1支持プレート11は、ピニオンギヤPGおよびブリッジプレート15と同数すなわち3つの辺部11eを有する。各辺部11eの側面は、平坦に形成されており、コーナー部11cを介して隣り合う2つの辺部11eの側面同士のなす角度は、60°である。これにより、第1支持プレート11は、図2に示すように、略正三角形状(多辺形状)の平面形状を有することになる。また、本実施形態において、第1支持プレート11は、各辺部11eの側面がプラネタリキャリヤ10を平面視した際に複数のピニオンギヤPG(歯先円)に外接する多辺形(三角形)Pl(図2参照)の対応する辺部よりも径方向内側(円孔11o側すなわちプラネタリキャリヤ10の軸心側)に位置するように形成されている。更に、第1支持プレート11は、各辺部11eの側面がプラネタリキャリヤ10を平面視した際に複数のシャフト孔11hに外接する多辺形(三角形)の対応する辺部よりも径方向外側に位置するように形成されている。
 また、第1支持プレート11の各コーナー部11cには、ピニオンギヤPGに挿通されたピニオンシャフトPSの一端が差し込まれるシャフト孔11hが形成されている。更に、各シャフト孔11hの周囲には、シャフト孔11hに差し込まれたピニオンシャフトPSの一端をカシメるためのカシメ溝11gが形成されている。また、各コーナー部11cの側面には、対応する辺部11eの側面と滑らかに連続すると共に応力集中が緩和されるように面取り形状(R形状)が付与されている。
 第2支持プレート12も、鋼板等の金属板を打ち抜き加工(プレス加工)して形成されるものであり、平坦な外面および内面12i(図1参照)と、プラネタリキャリヤ10の軸心と同軸に延びる円孔(貫通孔)12oと、当該円孔12oの周囲でそれぞれ直線状に延びる複数の辺部12eと、隣り合う辺部12e同士を繋ぐ複数のコーナー部12cとを有する。本実施形態において、第2支持プレート12は、上記第1支持プレート11と同一の構造を有する。すなわち、第2支持プレート12は、第1支持プレート11と同一の略正三角形状(多辺形状)の平面形状を有し、ピニオンギヤPGおよびブリッジプレート15と同数すなわち3つの辺部12eを含む。そして、第2支持プレート12も、各辺部12eの側面がプラネタリキャリヤ10を平面視した際に複数のピニオンギヤPGに外接する多辺形(三角形)Pl(図2参照)の対応する辺部よりも径方向内側(円孔12o側すなわちプラネタリキャリヤ10の軸心側)に位置するように形成されている。また、第2支持プレート12も、各辺部12eの側面がプラネタリキャリヤ10を平面視した際に複数のシャフト孔12hに外接する多辺形(三角形)の対応する辺部よりも径方向外側に位置するように形成されている。
 更に、第2支持プレート12の各コーナー部12cには、ピニオンギヤPGに挿通されたピニオンシャフトPSの他端が差し込まれるシャフト孔12hが形成されており、各シャフト孔12hの周囲には、シャフト孔12hに差し込まれたピニオンシャフトPSの他端をカシメるためのカシメ溝(図示省略)が形成されている。また、各辺部12eの側面は、平坦に形成されており、各コーナー部12cの側面には、対応する辺部12eの側面と滑らかに連続すると共に応力集中が緩和されるように面取り形状(R形状)が付与されている。
 各ブリッジプレート15は、鋼板等の金属板の打ち抜き加工(プレス加工)により長方形状の平面形状を有する平板状すなわち薄肉の直方体状に形成されたものである。各ブリッジプレート15の一方の端面は、第1支持プレート11の対応する辺部11eの内面11iに当接させられると共に、当該第1支持プレート11の径方向外側から電子ビーム溶接あるいはレーザー溶接により当該辺部11eに接合される。また、各ブリッジプレート15の他方の端面は、第2支持プレート12の対応する辺部12eの内面12iに当接させられると共に、当該第2支持プレート12の径方向外側から電子ビーム溶接あるいはレーザー溶接により当該辺部12eに接合される。更に、各ブリッジプレート15は、図2に示すように、複数のピニオンギヤPGに噛合することになるリングギヤの歯先円Ctよりも径方向内側(円孔11o,12o側すなわちプラネタリキャリヤ10の軸心側)に位置するように第1および第2支持プレート11,12に接合される。本実施形態において、各ブリッジプレート15は、外面が辺部11e,12eの側面と面一になるように第1および第2支持プレート11,12に接合される。ただし、各ブリッジプレート15は、外面が辺部11e,12eの側面よりも径方向内側に位置するように第1および第2支持プレート11,12に接合されてもよい。
 これにより、各ブリッジプレート15の一端が第1支持プレート11に溶接部WPを介して接合されると共に他端が第2支持プレート12に溶接部WPを介して接合され、それにより複数のブリッジプレート15によって第1支持プレート11と第2支持プレート12とが強固に繋がれる。このようにして第1および第2支持プレート11,12並びに複数のブリッジプレート15が組み立てられた後、第1および第2支持プレート11,12の間には、隣り合うブリッジプレート15の側面の間から複数のピニオンギヤPGが順番に配置される。更に、第1および第2支持プレート11,12のシャフト孔11h,12hおよびピニオンギヤPGにピニオンシャフトPSが順番に挿通され、各ピニオンシャフトPSの両端部がカシメられる。これにより、複数のピニオンギヤPGが第1および第2支持プレート11,12により回転自在に支持され、プラネタリキャリヤ10が完成する。なお、複数のピニオンギヤPGに噛合する図示しないサンギヤは、円孔11oまたは12oを介して第1および第2支持プレート11,12の間に配置され、当該サンギヤに固定されたシャフト(図示省略)は、円孔11oおよび12oの少なくとも何れか一方を貫通する。
 上述のように、プラネタリキャリヤ10では、各ブリッジプレート15の一端が第1支持プレート11に溶接されると共に他端が第2支持プレート12に溶接され、それにより複数のブリッジプレート15によって第1支持プレート11と第2支持プレート12とが繋がれる。これにより、プラネタリキャリヤ10の強度を良好に確保することが可能となる。また、各ブリッジプレート15は、第1および第2支持プレート11,12の対応する辺部11e,12eに溶接されるので、プラネタリキャリヤ10に回転方向の剪断力が作用した際、各溶接部WPには当該剪断力の分力が作用し、各溶接部WPに作用する剪断力は当該回転方向の剪断力よりも小さくなる。従って、プラネタリキャリヤ10では、回転方向の剪断力に対する強度をより向上させることができる。
 そして、かかるプラネタリキャリヤ10では、第1および第2支持プレート11,12並びにブリッジプレート15の平面形状を上述のように単純化することができる。より詳細には、第1および第2支持プレート11,12は、シンプルな略正三角形状(多辺形状)の平面形状を有し、各ブリッジプレート15、極めてシンプルな長方形状の平面形状を有する。これにより、図3Aに示すように、所定数のプラネタリキャリヤ10を製造するために必要な第1支持プレート11、第2支持プレート12およびブリッジプレート15の母材である板材101,102,105のサイズ(表面積)を、複数の脚部を有するキャリヤプレートCPおよびベースプレートBPを含むプラネタリキャリヤを所定数だけ製造するのに必要な母材(板材)のサイズ(図3B参照)に比べて大幅に小さくすることができる。
 すなわち、第1および第2支持プレート11,12は、図3Aからわかるように、何れか1つの辺部11e,12eが1ショット前の第1または第2支持プレート11,12の打ち抜きにより板材101,102に形成された抜き穴101h,102hの辺部11e,12eの何れか1つに対応した内面101hi,102hiと平行に延在するように図示しないパンチおよびダイスによって板材101または102から打ち抜かれる。また、ブリッジプレート15は、図3Aからわかるように、何れか1つの辺部が1ショット前のブリッジプレート15の打ち抜きにより板材105に形成された抜き穴105hの辺部の何れか1つに対応した内面と平行に延在するように図示しないパンチおよびダイスによって板材105から打ち抜かれる。これにより、キャリヤプレートCPおよびベースプレートBPに比べて、母材である板材101,102,105における抜き穴101h,102h,105h同士の間隔(送りさんの幅)を大幅に狭めることが可能となり、端材の量を大幅に削減することができる。
 この結果、プラネタリキャリヤ10では、第1および第2支持プレート11,12並びにブリッジプレート15の母材のサイズを小さくすると共に材料歩留まりを向上させて、材料コストを大幅に低減化することが可能となる。ここで、3つの脚部を有するキャリヤプレートCPをベースプレートBPに溶接する際の溶接箇所が3箇所となるのに対して、3枚のブリッジプレート15を第1および第2支持プレート11,12に溶接する際の溶接箇所は6箇所となるが、プラネタリキャリヤ10における材料コストの低減代は、溶接箇所の数が増加することによる加工コストの増加代よりも充分に大きい。この結果、プラネタリキャリヤ10では、強度を良好に確保しつつ、製造コストを極めて良好に低減化することが可能となる。
 更に、第1支持プレート11、第2支持プレート12およびブリッジプレート15をそれぞれ別工程で形成することで、第1支持プレート11、第2支持プレート12およびブリッジプレート15の素材や厚み等を互いに異ならせることも可能となる。なお、第1支持プレート11、第2支持プレート12およびブリッジプレート15は、それぞれ板材101,102または105から1枚ずつ打ち抜かれてもよく、複数枚(例えば、2枚)ずつ打ち抜かれてもよい。
 また、上記実施形態において、各ブリッジプレート15は、第1支持プレート11の対応する辺部11eの内面11iおよび第2支持プレート12の対応する辺部12eの内面12iに溶接部WPを介して接合される。これにより、各ブリッジプレート15を低背化することが可能となり、材料コストをより一層低減化することができる。このように各ブリッジプレート15が第1支持プレート11の内面11iと第2支持プレート12の内面12iとの間に配置される場合、各ブリッジプレート15の高さの精度を確保するために、打ち抜き加工(プレス加工)後のブリッジプレート15の両端面に切削加工が施される。この際、ブリッジプレート15は、薄肉の直方体状に形成されることから、複数のブリッジプレート15の一方の端面に対して一括して切削加工を施すと共に、他方の端面に対して一括して切削加工を施すことができる。そして、かかる切削加工に要するコストは、組付精度を確保するために上述のキャリヤプレートCPの脚部の端部やベースプレートBPの弓状孔の内周面に施される切削加工に比べて大幅に低い。従って、プラネタリキャリヤ10では、上記キャリヤプレートCPやベースプレートBPを含むプラネタリキャリヤに比べて、切削に要するコスト(加工コスト)をも低減化することが可能となり、それにより製造コストを低減化することができる。
 更に、上記実施形態のように、第1および第2支持プレート11,12の辺部11e,12eの数をブリッジプレート15と同数にすることで、第1および第2支持プレート11,12の平面形状をより単純化することが可能となる。更に、第1および第2支持プレート11,12の辺部11e,12eの数をピニオンギヤPGの数と同数にすることで、第1および第2支持プレート11,12の平面形状をより一層単純化することが可能となる。ただし、第1および第2支持プレート11,12の辺部11e,12eの数は、平面形状が複雑化しないのであれば、ブリッジプレート15の数よりも多くてもよく、ピニオンギヤPGの数と異なっていてもよい。
 また、上記実施形態において、第1および第2支持プレート11,12は、各辺部11e,12e(側面)がプラネタリキャリヤ10を平面視した際に複数のピニオンギヤPGに外接する多辺形(三角形)Plの対応する辺部よりも径方向内側に位置するように形成される。これにより、プラネタリキャリヤ10の強度を確保しつつ、第1および第2支持プレート11,12をコンパクト化して材料コストを低減化すると共に、プラネタリキャリヤ10を軽量化することが可能となる。ただし、第1および第2支持プレート11,12は、各辺部11e,12eの側面が上記多辺形Plの対応する辺部と重なり合うように形成されてもよい。
 更に、上記実施形態において、各ブリッジプレート15は、複数のピニオンギヤPGに噛合することになるリングギヤの歯先円Ctよりも径方向内側に位置するように第1および第2支持プレート11,12に接合される。これにより、複数のブリッジプレート15と複数のピニオンギヤPGに噛合するリングギヤとの干渉を無くすことが可能となる。
 また、上記実施形態において、第1および第2支持プレート11,12は、互いに同一の構造を有している。これにより、プラネタリキャリヤ10の製造等に際して部材の管理や取り扱いを容易にすることができるので、当該プラネタリキャリヤ10の製造コストをより一層低減化することが可能となる。ただし、第1および第2支持プレート11,12は、同一の平面形状を有していればよく、完全に同一の構造を有している必要はない。例えば、カシメ溝の位置等は、第1および第2支持プレート11,12とで異なっていてもよい。
 更に、プラネタリキャリヤ10の第1および第2支持プレート11,12の各辺部11e,12eには、図4に示すように、ブリッジプレート15の一端または他端が嵌め込まれる凹部11r,12rが形成されてもよい。この場合、ブリッジプレート15の一端は、対応する辺部11eの凹部11rの内面に溶接部WPを介して接合され、ブリッジプレート15の他端は、対応する辺部12eの凹部12rの内面に溶接部WPを介して接合される。これにより、ブリッジプレート15を第1および第2支持プレート11,12に対して容易かつ精度よく位置決めして溶接作業を行うことが可能となる。
 図5は、本開示の他のプラネタリキャリヤ10Xを示す斜視図であり、図6は、プラネタリキャリヤ10Xの平面図である。なお、プラネタリキャリヤ10Xの構成要素のうち、上述のプラネタリキャリヤ10と同一の要素については同一の符号を付し、重複する説明を省略する。
 図5および図6に示すプラネタリキャリヤ10Xも、変速機に適用されるシングルピニオン式の遊星歯車に含まれるものであり、複数(本実施形態では、例えば3つ)のピニオンギヤPGと、それぞれ対応するピニオンギヤPGに挿通される複数(本実施形態では、例えば3本)のピニオンシャフトPSとを有する(図5では、何れも図示省略)。更に、プラネタリキャリヤ10Xは、各ピニオンシャフトPSの一端を支持する1枚の第1支持プレート11と、各ピニオンシャフトPSの他端を支持する1枚の第2支持プレート12と、第1および第2支持プレート11,12を繋ぐ複数(本実施形態では、例えば3枚)のブリッジプレート15Xとを含む。ブリッジプレート15Xは、上記ブリッジプレート15と同様の打ち抜き加工(プレス加工)により形成されるものである。
 かかるプラネタリキャリヤ10Xにおいて、各ブリッジプレート15Xの一端は、第1支持プレート11の対応する辺部11eの側面11s(図5参照)に当接させられると共に、当該第1支持プレート11の軸方向外側から電子ビーム溶接あるいはレーザー溶接により当該辺部11eに接合される。また、各ブリッジプレート15Xの他端は、第2支持プレート12の対応する辺部12eの側面12sに当接させられると共に、当該第2支持プレート12の軸方向外側から電子ビーム溶接あるいはレーザー溶接により当該辺部12eに接合される。更に、各ブリッジプレート15Xは、図6に示すように、複数のピニオンギヤPGに噛合することになるリングギヤの歯先円Ctよりも径方向内側(円孔11o,12o側すなわちプラネタリキャリヤ10Xの軸心側)に位置するように第1および第2支持プレート11,12に接合される。
 このように、プラネタリキャリヤ10Xでは、各ブリッジプレート15Xが第1支持プレート11の対応する辺部11eの側面11sおよび第2支持プレート12の対応する辺部12eの側面12sに溶接部WPを介して接合される。これにより、複数の脚部を有するキャリヤプレートCPおよびベースプレートBPを含むプラネタリキャリヤと同様に、プラネタリキャリヤ10Xの軸方向からブリッジプレート15Xを対応する辺部11e,12eに溶接することが可能となるので、既存の溶接設備を利用または改変して溶接作業を行うことができる。
 また、プラネタリキャリヤ10Xの各ブリッジプレート15Xには、図7に示すように、第1支持プレート11の辺部11eが嵌め込まれる凹部15raと、第2支持プレート12の辺部12eが嵌め込まれる凹部15rbとが形成されてもよい。この場合、ブリッジプレート15Xの一端は、凹部15raに嵌め込まれた辺部11eの側面に溶接部WPを介して接合され、ブリッジプレート15Xの他端は、凹部15rbに嵌め込まれた辺部12eの側面に溶接部WPを介して接合される。これにより、ブリッジプレート15Xを第1および第2支持プレート11,12に対して容易かつ精度よく位置決めして溶接作業を行うことが可能となり、ブリッジプレート15Xの溶接に際して、第1および第2支持プレート11,12の間隔調整用の治具を省略することができる。
 なお、上述のプラネタリキャリヤ10,10Xは、シングルピニオン式の遊星歯車に含まれるものであって、何れも3つのピニオンギヤPGを有するものであるが、プラネタリキャリヤ10,10XにおけるピニオンギヤPGの数は、2つであってもよく、4つ以上であってもよい。図8に、4つのピニオンギヤPGを有するシングルピニオン式の遊星歯車用のプラネタリキャリヤ10Yを示す。図示するように、プラネタリキャリヤ10Yは、各ピニオンシャフトPSの一端を支持する1枚の第1支持プレート11Yと、各ピニオンシャフトPSの他端を支持する1枚の第2支持プレート12Yと、第1および第2支持プレート11Y,12Yを繋ぐ4枚のブリッジプレート15Yとを含む。第1支持プレート11Yは、上記第1支持プレート11と同様の打ち抜き加工(プレス加工)により形成されるものであり、第2支持プレート12Yは、上記第2支持プレート12と同様の打ち抜き加工により形成されるものであり、ブリッジプレート15Yは、上記ブリッジプレート15と同様の打ち抜き加工により形成されるものである。
 プラネタリキャリヤ10Yの第1支持プレート11Yは、平坦な外面および内面と、プラネタリキャリヤ10Yの軸心と同軸に延びる円孔(貫通孔)11oと、当該円孔11oの周囲でそれぞれ直線状に延びる4つの辺部11eと、隣り合う辺部11e同士を繋ぐ4つのコーナー部11cとを有するものである。また、プラネタリキャリヤ10Yの第2支持プレート12Yは、第1支持プレート11Yと同一の構造(平面形状)を有する。従って、第2支持プレート12Yも、平坦な外面および内面と、プラネタリキャリヤ10Yの軸心と同軸に延びる円孔(貫通孔)と、当該円孔の周囲でそれぞれ直線状に延びる4つの辺部と、隣り合う辺部同士を繋ぐ4つのコーナー部とを有する(何れも図示省略)。
 かかるプラネタリキャリヤ10Yにおいても、第1および第2支持プレート11Y,12Yは、各辺部がプラネタリキャリヤ10Yを平面視した際に複数のピニオンギヤPGに外接する多辺形(四角形)の対応する辺部よりも径方向内側に位置するように形成される。また、各ブリッジプレート15Yは、複数のピニオンギヤPGに噛合することになるリングギヤの歯先円よりも径方向内側に位置するように第1および第2支持プレート11Y,12Yに接合される。
 更に、各ブリッジプレート15Yは、図8において破線で示すように、第1支持プレート11Yの対応する辺部11eの内面および第2支持プレート12Yの対応する辺部の内面に溶接される。ただし、各ブリッジプレート15Yは、図8において二点鎖線で示すように、第1支持プレート11Yの対応する辺部11eの側面および第2支持プレート12Yの対応する辺部の側面に溶接されてもよい。また、第1および第2支持プレート11Y,12Yの辺部の数は、平面形状が複雑化しないのであれば、ブリッジプレート15Yの数よりも多くてもよく、ピニオンギヤPGの数と異なっていてもよい。更に、第1および第2支持プレート11Y,12Yの辺部およびブリッジプレート15Yの一方には、他方が嵌め込まれる凹部が形成されてもよい。
 また、上述のプラネタリキャリヤ10,10Xおよび10Yは、何れもシングルピニオン式の遊星歯車に含まれるものであるが、本開示のプラネタリキャリヤは、ダブルピニオン式の遊星歯車に含まれるものであってもよい。図9に、ダブルピニオン式の遊星歯車用のプラネタリキャリヤ10Zを示す。同図に示すプラネタリキャリヤ10Zは、図示しないサンギヤに噛合する第1ピニオンギヤPGaと当該第1ピニオンギヤPGaに噛合すると共に図示しないリングギヤに噛合する第2ピニオンギヤPGbとの組を3組有するものである。
 図9に示すように、プラネタリキャリヤ10Zは、各第1ピニオンギヤPGaに挿通されるピニオンシャフトPSaの一端および各第2ピニオンギヤPGbに挿通されるピニオンシャフトPSbの一端を支持する1枚の第1支持プレート11Zと、各第1ピニオンギヤPGaに挿通されるピニオンシャフトPSaの他端および各第2ピニオンギヤPGbに挿通されるピニオンシャフトPSbの他端を支持する1枚の第2支持プレート12Zと、第1および第2支持プレート11Z,12Zを繋ぐ3枚のブリッジプレート15Zとを含む。第1支持プレート11Zは、上記第1支持プレート11と同様の打ち抜き加工(プレス加工)により形成されるものであり、第2支持プレート12Zは、上記第2支持プレート12と同様の打ち抜き加工により形成されるものであり、ブリッジプレート15Zは、上記ブリッジプレート15と同様の打ち抜き加工により形成されるものである。
 プラネタリキャリヤ10Zの第1支持プレート11Zは、平坦な外面および内面と、プラネタリキャリヤ10Zの軸心と同軸に延びる円孔(貫通孔)11oと、当該円孔11oの周囲でそれぞれ直線状に延びる3つの辺部11eと、隣り合う辺部11e同士を繋ぐ3つのコーナー部11cとを有するものである。また、プラネタリキャリヤ10Zの第2支持プレート12Zは、第1支持プレート11Zと同一の構造(平面形状)を有する。従って、第2支持プレート12Zも、平坦な外面および内面と、プラネタリキャリヤ10Zの軸心と同軸に延びる円孔(貫通孔)と、当該円孔の周囲でそれぞれ直線状に延びる3つの辺部と、隣り合う辺部同士を繋ぐ3つのコーナー部とを有する(何れも図示省略)。すなわち、第1および第2支持プレート11Z,12Zは、互いに噛合する第1および第2ピニオンギヤPGa,PGbの組と同数の辺部を有する。
 かかるプラネタリキャリヤ10Zにおいても、第1および第2支持プレート11Z,12Zは、各辺部がプラネタリキャリヤ10Zを平面視した際に複数のピニオンギヤPGに外接する多辺形(四角形)の対応する辺部よりも径方向内側に位置するように形成される。また、各ブリッジプレート15Zは、複数のピニオンギヤPGに噛合することになるリングギヤの歯先円よりも径方向内側に位置するように第1および第2支持プレート11Z,12Zに接合される。更に、各ブリッジプレート15Zは、図9において破線で示すように、第1支持プレート11Zの対応する辺部11eの内面および第2支持プレート12Zの対応する辺部の内面に溶接される。ただし、各ブリッジプレート15Zは、図9において二点鎖線で示すように、第1支持プレート11Zの対応する辺部11eの側面および第2支持プレート12Zの対応する辺部の側面に溶接されてもよい。また、第1および第2支持プレート11Z,12Zの辺部の数は、平面形状が複雑化しないのであれば、ブリッジプレート15Zの数よりも多くてもよく、第1および第2ピニオンギヤPGa,PGbの組の数と異なっていてもよい。更に、第1および第2支持プレート11Z,12Zの辺部およびブリッジプレート15Zの一方には、他方が嵌め込まれる凹部が形成されてもよい。
 そして、上述のプラネタリキャリヤ10,10X,10Y,10Zを含む遊星歯車が適用される変速機は、有段変速機であってもよく、機械式無段変速機(前後進切換機構)であってもよく、ハイブリッドトランスミッションであってもよい。何れしても、上記プラネタリキャリヤ10,10X,10Y,10Zによれば、それを含む遊星歯車ひいては当該遊星歯車を含む変速機の製造コストを良好に低減化することが可能となる。ただし、上述のプラネタリキャリヤ10,10X,10Y,10Zは、変速機以外の装置に適用される遊星歯車に含まれてもよい。
 図10は、上記プラネタリキャリヤ10等の他の製造手順すなわち上記第1および第2支持プレート11,12の他の形成手順を説明するための説明図である。図10に示す例では、第1支持プレート11と第2支持プレート12とが共通の板材103から同一工程で形成される。これにより、ダイセット等の数を減らしてプラネタリキャリヤ10等の製造設備を低コスト化することが可能となる。また、図10の例においても、第1および第2支持プレート11,12は、何れか1つの辺部11e,12eが1ショット前の第1または第2支持プレート11,12の打ち抜きにより板材103に形成された抜き穴103hの辺部11e,12eの何れか1つに対応した内面103hiと平行に延在するように図示しないパンチおよびダイスによって板材103から打ち抜かれる。これにより、母材である板材103における抜き穴103h同士の間隔(送りさんの幅)を大幅に狭めることが可能となり、端材の量を大幅に削減することができる。更に、図10の例において、第1および第2支持プレート11,12は、互いに対応する辺部11e,12e同士が平行に延在するように隣り合わせにして図示しないパンチおよびダイスによって板材103から一括して(各1枚ずつ)打ち抜かれる。これにより、第1および第2支持プレート11,12を効率よく製造することが可能となる。ただし、第1支持プレート11と第2支持プレート12とは、板材103から1枚ずつ順番に打ち抜かれてもよい。なお、図10に示すような製造手順は、第1および第2支持プレート11Y,12Yや、第1および第2支持プレート11Z,12Zの製造に適用されてもよい。
 図11は、上記プラネタリキャリヤ10等の他の製造手順すなわち上記第1および第2支持プレート11,12の更に他の形成手順を説明するための説明図である。図11の例では、第1支持プレート11と第2支持プレート12とブリッジプレート15とが共通の板材104から打ち抜かれる。これにより、ダイセット等の数を減らしてプラネタリキャリヤ10等の製造設備を低コスト化することが可能となる。また、図11の例においても、第1および第2支持プレート11,12は、何れか1つの辺部11e,12eが1ショット前の第1または第2支持プレート11,12の打ち抜きにより板材104に形成された抜き穴104hの辺部11e,12eの何れか1つに対応した内面104hiと平行に延在するように図示しないパンチおよびダイスによって板材104から打ち抜かれる。これにより、母材である板材104における抜き穴104h同士の間隔(さんの幅)を大幅に狭めることが可能となり、端材の量を大幅に削減することができる。更に、ブリッジプレート15は、板材104の円孔(第1貫通孔)11oおよび円孔(第2貫通孔)12oに対応する部分や板材104の第1支持プレート11および第2支持プレート12に対応する部分の周辺から打ち抜かれる。これにより、板材104における抜き穴104hやブリッジプレート15の打ち抜きにより板材104に形成される抜き穴105h同士の間隔より一層狭めて端材の量をより一層削減すると共に、ダイセット等の数を減らしてプラネタリキャリヤ10等の製造設備をより低コスト化することが可能となる。なお、ブリッジプレート15は、第1および第2支持プレート11,12の打ち抜きに先立って板材104から打ち抜かれてもよく、第1および第2支持プレート11,12の少なくとも何れか一方とその周辺の所定数のブリッジプレート15とが板材104から一括して打ち抜かれてもよい。また、図11に示すような製造手順は、第1および第2支持プレート11Y,12Yや、第1および第2支持プレート11Z,12Zの製造に適用されてもよい。
 以上説明したように、本開示のプラネタリキャリヤは、複数のピニオンギヤ(PG,PGa,PGb)と、それぞれ対応する前記ピニオンギヤ(PG,PGa,PGb)に挿通される複数のピニオンシャフト(PS,PSa,PSb)とを含むプラネタリキャリヤ(10,10X,10Y,10Z)において、前記複数のピニオンシャフト(PS,PSa,PSb)の各々の一端を支持する第1支持プレート(11,11Y,11Z)と、前記複数のピニオンシャフト(PS,PSa,PSb)の各々の他端を支持する第2支持プレート(12,12Y,12Z)と、それぞれ一端が前記第1支持プレート(11,11Y,11Z)に溶接部(WP)を介して接合されると共に他端が前記第2支持プレート(12,12Y,12Z)に溶接部(WP)を介して接合され、前記第1および第2支持プレート(11,11Y,11Z,12,12Y,12Z)を繋ぐ複数のブリッジプレート(15,15X,15Y,15Z)とを含むものである。
 本開示のプラネタリキャリヤでは、各ブリッジプレートの一端が第1支持プレートに溶接部を介して接合されると共に他端が第2支持プレートに溶接部を介して接合され、それにより複数のブリッジプレートによって第1支持プレートと第2支持プレートとが繋がれる。これにより、プラネタリキャリヤの強度を良好に確保することが可能となる。更に、かかるプラネタリキャリヤでは、第1および第2支持プレート並びにブリッジプレートの平面形状を単純化することができる。これにより、第1および第2支持プレート並びにブリッジプレートの母材のサイズを小さくすると共に材料歩留まりを向上させて、材料コストを低減化することが可能となる。そして、材料コストの低減代は、溶接箇所の数が増加することによる加工コストの増加代よりも充分に大きい。この結果、本開示のプラネタリキャリヤでは、強度を良好に確保しつつ、製造コストを良好に低減化することが可能となる。
 また、前記第1および第2支持プレート(11,11Y,11Z,12,12Y,12Z)は、直線状に延びる複数の辺部(11e,12e)と、隣り合う辺部(11e,12e)同士を繋ぐ複数のコーナー部(11c,12c)とをそれぞれ含んでもよく、前記複数のブリッジプレート(15,15X,15Y,15Z)の各々は、長方形状の平面形状を有すると共に、前記第1および第2支持プレート(11,11Y,11Z,12,12Y,12Z)の対応する前記辺部(11e,12e)に前記溶接部(WP)を介して接合されてもよい。このような多辺形状の第1および第2支持プレート並びに平板状のブリッジプレートを採用することで、第1および第2支持プレート並びにブリッジプレートの母材のサイズをより一層小さくすると共に材料歩留まりをより一層向上させることができる。この結果、プラネタリキャリヤの製造コストを大幅に低減化することが可能となる。加えて、第1および第2支持プレートの各辺部にブリッジプレートを溶接することで、プラネタリキャリヤの回転方向の剪断力に対するプラネタリキャリヤの強度をより向上させることができる。
 更に、前記第1および第2支持プレート(11,11Y,11Z,12,12Y,12Z)は、前記ブリッジプレート(15,15X,15Y,15Z)と同数の前記辺部(11e,12e)を含んでもよい。これにより、第1および第2支持プレートの平面形状をより単純化することが可能となる。
 また、前記第1支持プレートおよび前記第2支持プレート(11,11Y,11Z,12,12Y,12Z)は、互いに同一の平面形状を有してもよい。これにより、部材の管理や取り扱いを容易にすることができるので、プラネタリキャリヤの製造コストをより一層低減化することが可能となる。
 更に、前記第1および前記第2支持プレート(11,11Y,11Z,12,12Y,12Z)は、前記辺部(11e,12e)の各々が前記複数のピニオンギヤ(PG)に外接する多辺形(Pl)の対応する辺部と重なるか、あるいは該辺部よりも径方向内側に位置するように形成されてもよい。これにより、プラネタリキャリヤの強度を確保しつつ、第1および第2支持プレートをコンパクト化して材料コストを低減化すると共に、プラネタリキャリヤを軽量化することが可能となる。
 また、前記複数のブリッジプレート(15,15Y,15Z)の各々は、前記第1支持プレート(11,11Y,11Z)の対応する前記辺部(11e)の内面(11i)および前記第2支持プレート(12,12Y,12Z)の対応する前記辺部(12e)の内面(12i)に前記溶接部(WP)を介して接合されてもよい。これにより、ブリッジプレートを低背化することが可能となり、材料コストをより一層低減化することができる。
 更に、前記複数のブリッジプレート(15X,15Y,15Z)の各々は、前記第1支持プレート(11,11Y,11Z)の対応する前記辺部(11e)の側面(11s)および前記第2支持プレート(12,12Y,12Z)の対応する前記辺部(12e)の側面(12s)に前記溶接部(WP)を介して接合されてもよい。これにより、プラネタリキャリヤの軸方向からブリッジプレートを対応する辺部に溶接することが可能となるので、既存の溶接設備を利用または改変して溶接作業を行うことができる。
 また、前記辺部(11e,12e)および前記ブリッジプレート(15,15X,15Y,15Z)の一方には、他方が嵌め込まれる凹部(11r,12r,15ra,15rb)が形成されてもよい。これにより、ブリッジプレートを第1および第2支持プレートに対して容易かつ精度よく位置決めして溶接作業を行うことが可能となる。
 更に、前記複数のブリッジプレート(15,15X,15Y,15Z)の各々は、前記複数のピニオンギヤ(PG,PGa,PGb)に噛合するリングギヤの歯先円(Ct)よりも径方向内側に位置するように前記第1および第2支持プレート(11,11Y,11Z,12,12Y,12Z)に接合されてもよい。これにより、複数のブリッジプレートと複数のピニオンギヤに噛合するリングギヤとの干渉を無くすことが可能となる。
 また、前記プラネタリキャリヤ(10,10X,10Y)は、シングルピニオン式遊星歯車に含まれてもよく、前記第1および第2支持プレート(11,11Y,12,12Y)は、前記ピニオンギヤ(PG)と同数の辺部(11e,12e)を含んでもよい。
 更に、前記プラネタリキャリヤ(10Z)は、ダブルピニオン式遊星歯車に含まれてもよく、前記第1および第2支持プレート(11Z,12Z)は、互いに噛合する2つの前記ピニオンギヤ(PGa,PGb)の組と同数の辺部(11e,12e)を含んでもよい。
 また、前記プラネタリキャリヤ(10,10X,10Y,10Z)は、変速機の遊星歯車に含まれてもよい。これにより、上記プラネタリキャリヤを含む遊星歯車ひいては変速機の製造コストを良好に低減化することが可能となる。
 本開示のプラネタリキャリヤの製造方法は、複数のピニオンギヤ(PG,PGa,PGb)と、それぞれ対応する前記ピニオンギヤ(PG,PGa,PGb)に挿通される複数のピニオンシャフト(PS,PSa,PSb)と、それぞれ前記複数のピニオンシャフト(PS,PSa,PSb)の対応する端部を支持する2枚の支持プレート(11,11Y,11Z,12,12Y,12Z)と、それぞれ前記2枚の支持プレート(11,11Y,11Z,12,12Y,12Z)に溶接されて両者を繋ぐ複数のブリッジプレート(15,15X,15Y,15Z)とを含むプラネタリキャリヤ(10,10X,10Y,10Z)の製造方法であって、前記支持プレート(11,11Y,11Z,12,12Y,12Z)を直線状に延びる複数の辺部(11e,12e)を含むように板材(101,102,103,104)から打ち抜く打ち抜き工程を含み、前記打ち抜き工程は、前記支持プレート(11,11Y,11Z,12,12Y,12Z)を、何れか1つの前記辺部(11e,12e)が1ショット前の前記支持プレート(11,11Y,11Z,12,12Y,12Z)の打ち抜きにより前記板材(101,102,103,104)に形成された抜き穴(101h,102h,103h,104h)の前記辺部の何れか1つに対応した内面(101hi,102hi,103hi,104hi)と平行に延在するように前記板材(101,102,103,104)から打ち抜くものである。
 かかる方法によれば、板材における抜き穴同士の間隔を大幅に狭めることが可能となり、端材の量を大幅に削減することができる。この結果、材料歩留まりを向上させて材料コストを大幅に低減化しつつ、高い強度を有するプラネタリキャリヤを製造することが可能となる。
 また、前記2枚の支持プレートは、前記複数のピニオンシャフト(PS,PSa,PSb)の各々の一端を支持する第1支持プレート(11,11Y,11Z)と、前記複数のピニオンシャフト(PS,PSa,PSb)の各々の他端を支持する第2支持プレート(12,12Y,12Z)とを含んでもよく、前記第1支持プレート(11,11Y,11Z)、前記第2支持プレート(12,12Y,12Z)および前記ブリッジプレート(15,15X,15Y,15Z)をそれぞれ別工程で形成してもよい。これにより、第1支持プレート、第2支持プレートおよびブリッジプレートの素材や厚み等を互いに異ならせることが可能となる。
 更に、前記2枚の支持プレートは、前記複数のピニオンシャフト(PS,PSa,PSb)の各々の一端を支持する第1支持プレート(11,11Y,11Z)と、前記複数のピニオンシャフト(PS,PSa,PSb)の各々の他端を支持する第2支持プレート(12,12Y,12Z)とを含んでもよく、前記第1支持プレート(11,11Y,11Z)と前記第2支持プレート(12,12Y,12Z)とを同一工程で形成してもよい。これにより、ダイセット等の数を減らしてプラネタリキャリヤの製造設備を低コスト化することが可能となる。
 また、前記打ち抜き工程は、前記板材(103)から前記第1および第2支持プレート(11,11Y,11Z,12,12Y,12Z)を互いに対応する前記辺部(11e,12e)同士が平行に延在するように隣り合わせにして前記板材(103)から一括して打ち抜くものであってもよい。
 更に、前記2枚の支持プレートは、第1貫通孔(11o)を有すると共に前記複数のピニオンシャフト(PS,PSa,PSb)の各々の一端を支持する第1支持プレート(11,11Y,11Z)と、第2貫通孔(12o)を有すると共に前記複数のピニオンシャフト(PS,PSa,PSb)の各々の他端を支持する第2支持プレート(12,12Y,12Z)とを含んでもよく、前記打ち抜き工程は、前記板材(104)から前記第1および第2支持プレート(11,11Y,11Z,12,12Y,12Z)を打ち抜くと共に、前記板材(104)の少なくとも前記第1貫通孔(11o)および前記第2貫通孔(12o)に対応する部分から前記ブリッジプレート(15,15X,15Y,15Z)を打ち抜くものであってもよい。これにより、板材における抜き穴同士の間隔より一層狭めて端材の量をより一層削減すると共に、ダイセット等の数を減らしてプラネタリキャリヤの製造設備をより低コスト化することが可能となる。
 そして、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記発明を実施するための形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。
 本開示の発明は、プラネタリキャリヤの製造産業等において利用可能である。

Claims (17)

  1.  複数のピニオンギヤと、それぞれ対応する前記ピニオンギヤに挿通される複数のピニオンシャフトとを含むプラネタリキャリヤにおいて、
     前記複数のピニオンシャフトの各々の一端を支持する第1支持プレートと、
     前記複数のピニオンシャフトの各々の他端を支持する第2支持プレートと、
     それぞれ一端が前記第1支持プレートに溶接部を介して接合されると共に他端が前記第2支持プレートに溶接部を介して接合され、前記第1および第2支持プレートを繋ぐ複数のブリッジプレートと、
     を備えるプラネタリキャリヤ。
  2.  請求項1に記載のプラネタリキャリヤにおいて、
     前記第1および第2支持プレートは、直線状に延びる複数の辺部と、隣り合う辺部同士を繋ぐ複数のコーナー部とをそれぞれ含み、
     前記複数のブリッジプレートの各々は、長方形状の平面形状を有すると共に、前記第1および第2支持プレートの対応する前記辺部に前記溶接部を介して接合されるプラネタリキャリヤ。
  3.  請求項2に記載のプラネタリキャリヤにおいて、
     前記第1および第2支持プレートは、前記ブリッジプレートと同数の前記辺部を含むプラネタリキャリヤ。
  4.  請求項2または3に記載のプラネタリキャリヤにおいて、
     前記第1支持プレートおよび前記第2支持プレートは、互いに同一の平面形状を有するプラネタリキャリヤ。
  5.  請求項4に記載のプラネタリキャリヤにおいて、
     前記第1および前記第2支持プレートは、前記辺部の各々が前記複数のピニオンギヤに外接する多辺形の対応する辺部と重なるか、あるいは該辺部よりも径方向内側に位置するように形成されるプラネタリキャリヤ。
  6.  請求項2から5の何れか一項に記載のプラネタリキャリヤにおいて、
     前記複数のブリッジプレートの各々は、前記第1支持プレートの対応する前記辺部の内面および前記第2支持プレートの対応する前記辺部の内面に前記溶接部を介して接合されるプラネタリキャリヤ。
  7.  請求項2から5の何れか一項に記載のプラネタリキャリヤにおいて、
     前記複数のブリッジプレートの各々は、前記第1支持プレートの対応する前記辺部の側面および前記第2支持プレートの対応する前記辺部の側面に前記溶接部を介して接合されるプラネタリキャリヤ。
  8.  請求項6または7に記載のプラネタリキャリヤにおいて、
     前記辺部および前記ブリッジプレートの一方には、他方が嵌め込まれる凹部が形成されているプラネタリキャリヤ。
  9.  請求項1から8の何れか一項に記載のプラネタリキャリヤにおいて、
     前記複数のブリッジプレートの各々は、前記複数のピニオンギヤに噛合するリングギヤの歯先円よりも径方向内側に位置するように前記第1および第2支持プレートに接合されるプラネタリキャリヤ。
  10.  請求項1から9の何れか一項に記載のプラネタリキャリヤにおいて、
     前記プラネタリキャリヤは、シングルピニオン式遊星歯車に含まれ、
     前記第1および第2支持プレートは、前記ピニオンギヤと同数の辺部を含むプラネタリキャリヤ。
  11.  請求項1から9の何れか一項に記載のプラネタリキャリヤにおいて、
     前記プラネタリキャリヤは、ダブルピニオン式遊星歯車に含まれ、
     前記第1および第2支持プレートは、互いに噛合する2つの前記ピニオンギヤの組と同数の辺部を含むプラネタリキャリヤ。
  12.  請求項1から11の何れか一項に記載のプラネタリキャリヤにおいて、変速機の遊星歯車に含まれるプラネタリキャリヤ。
  13.  複数のピニオンギヤと、それぞれ対応する前記ピニオンギヤに挿通される複数のピニオンシャフトと、それぞれ前記複数のピニオンシャフトの対応する端部を支持する2枚の支持プレートと、それぞれ前記2枚の支持プレートに溶接されて両者を繋ぐ複数のブリッジプレートとを含むプラネタリキャリヤの製造方法であって、
     前記支持プレートを直線状に延びる複数の辺部を含むように板材から打ち抜く打ち抜き工程を含み、前記打ち抜き工程は、前記支持プレートを、何れか1つの前記辺部が1ショット前の前記支持プレートの打ち抜きにより前記板材に形成された抜き穴の前記辺部の何れか1つに対応した内面と平行に延在するように前記板材から打ち抜くプラネタリキャリヤの製造方法。
  14.  請求項13に記載のプラネタリキャリヤの製造方法において、
     前記2枚の支持プレートは、前記複数のピニオンシャフトの各々の一端を支持する第1支持プレートと、前記複数のピニオンシャフトの各々の他端を支持する第2支持プレートとを含み、
     前記第1支持プレート、前記第2支持プレートおよび前記ブリッジプレートをそれぞれ別工程で形成するプラネタリキャリヤの製造方法。
  15.  請求項13に記載のプラネタリキャリヤの製造方法において、
     前記2枚の支持プレートは、前記複数のピニオンシャフトの各々の一端を支持する第1支持プレートと、前記複数のピニオンシャフトの各々の他端を支持する第2支持プレートとを含み、
     前記第1支持プレートと前記第2支持プレートとを同一工程で形成するプラネタリキャリヤの製造方法。
  16.  請求項15に記載のプラネタリキャリヤの製造方法において、
     前記打ち抜き工程は、前記第1および第2支持プレートを互いに対応する前記辺部同士が平行に延在するように隣り合わせにして一括して前記板材から打ち抜くプラネタリキャリヤの製造方法。
  17.  請求項13に記載のプラネタリキャリヤの製造方法において、
     前記2枚の支持プレートは、第1貫通孔を有すると共に前記複数のピニオンシャフトの各々の一端を支持する第1支持プレートと、第2貫通孔を有すると共に前記複数のピニオンシャフトの各々の他端を支持する第2支持プレートとを含み、
     前記打ち抜き工程は、前記板材から前記第1および第2支持プレートを打ち抜くと共に、前記板材の少なくとも前記第1貫通孔および前記第2貫通孔に対応する部分から前記ブリッジプレートを打ち抜くプラネタリキャリヤの製造方法。
PCT/JP2018/032846 2017-09-05 2018-09-05 プラネタリキャリヤおよびその製造方法 WO2019049885A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880056042.3A CN111094801B (zh) 2017-09-05 2018-09-05 行星架及其制造方法
EP18853682.5A EP3633241B1 (en) 2017-09-05 2018-09-05 Planetrary carrier and method for producing same
JP2019540976A JP6773234B2 (ja) 2017-09-05 2018-09-05 プラネタリキャリヤおよびその製造方法
US16/630,265 US11092233B2 (en) 2017-09-05 2018-09-05 Planetary carrier and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-170616 2017-09-05
JP2017170616 2017-09-05

Publications (1)

Publication Number Publication Date
WO2019049885A1 true WO2019049885A1 (ja) 2019-03-14

Family

ID=65634182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032846 WO2019049885A1 (ja) 2017-09-05 2018-09-05 プラネタリキャリヤおよびその製造方法

Country Status (5)

Country Link
US (1) US11092233B2 (ja)
EP (1) EP3633241B1 (ja)
JP (1) JP6773234B2 (ja)
CN (1) CN111094801B (ja)
WO (1) WO2019049885A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113153987B (zh) * 2021-04-08 2022-07-05 清华大学 一种双离合变速制动辅助装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919740Y1 (ja) * 1969-08-20 1974-05-27
JPS563351A (en) * 1979-06-21 1981-01-14 Mitsubishi Electric Corp Manufacture of planet gear mount
JP2002243025A (ja) 2001-02-19 2002-08-28 Exedy Corp 遊星歯車装置の遊星キャリア機構
JP2005299891A (ja) * 2004-04-15 2005-10-27 Toyota Motor Corp キャリアプレート及びその製造方法
JP2006226375A (ja) * 2005-02-16 2006-08-31 Jtekt Corp 回転伝動装置
JP2010169226A (ja) * 2009-01-26 2010-08-05 Toyota Motor Corp キャリア
WO2013088860A1 (ja) * 2011-12-16 2013-06-20 アイシン・エィ・ダブリュ株式会社 プラネタリキャリヤ
JP2014077487A (ja) 2012-10-10 2014-05-01 Unipres Corp 遊星歯車機構用キャリアにおけるキャリアプレート

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE117271C (ja)
DD117271A1 (ja) * 1975-01-24 1976-01-05
US5470286A (en) * 1994-07-29 1995-11-28 General Motors Corporation Reaction carrier assembly having zero relative pin deflection
DE19945242A1 (de) * 1999-09-21 2001-03-22 Zahnradfabrik Friedrichshafen Verfahren zur Herstellung eines Planetenträgers
JP3826995B2 (ja) * 2000-02-16 2006-09-27 トヨタ自動車株式会社 キャリヤの製造方法
JP4103840B2 (ja) * 2004-04-15 2008-06-18 トヨタ自動車株式会社 キャリアプレート及びその製造方法
EP1693599B1 (en) 2005-02-16 2011-06-22 Jtekt Corporation Vehicle steering apparatus
DE102010050604A1 (de) 2010-11-05 2012-05-10 Schaeffler Technologies Gmbh & Co. Kg Planetengetriebe für ein Fahrzeug
CN102829171A (zh) * 2012-09-13 2012-12-19 上海方鼎机电制造有限公司 整体式行星架
DE102014208003A1 (de) 2014-04-29 2015-10-29 Schaeffler Technologies AG & Co. KG Planetenträger für ein Planetengetriebe aus verschweißten Teilen
CN205013666U (zh) 2015-09-10 2016-02-03 无锡市聚英机械制造有限公司 一种焊接式牵引部减速机行星架
CN205331327U (zh) 2016-02-03 2016-06-22 盛瑞传动股份有限公司 一种行星排焊合结构
DE102017120280A1 (de) * 2017-09-04 2018-09-13 Schaeffler Technologies AG & Co. KG Planetenträger aus einem einteiligen Blechumformteil

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4919740Y1 (ja) * 1969-08-20 1974-05-27
JPS563351A (en) * 1979-06-21 1981-01-14 Mitsubishi Electric Corp Manufacture of planet gear mount
JP2002243025A (ja) 2001-02-19 2002-08-28 Exedy Corp 遊星歯車装置の遊星キャリア機構
JP2005299891A (ja) * 2004-04-15 2005-10-27 Toyota Motor Corp キャリアプレート及びその製造方法
JP2006226375A (ja) * 2005-02-16 2006-08-31 Jtekt Corp 回転伝動装置
JP2010169226A (ja) * 2009-01-26 2010-08-05 Toyota Motor Corp キャリア
WO2013088860A1 (ja) * 2011-12-16 2013-06-20 アイシン・エィ・ダブリュ株式会社 プラネタリキャリヤ
JP2014077487A (ja) 2012-10-10 2014-05-01 Unipres Corp 遊星歯車機構用キャリアにおけるキャリアプレート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633241A4

Also Published As

Publication number Publication date
JPWO2019049885A1 (ja) 2020-03-26
EP3633241A4 (en) 2020-07-15
CN111094801B (zh) 2023-02-28
CN111094801A (zh) 2020-05-01
EP3633241B1 (en) 2022-10-26
US20210088125A1 (en) 2021-03-25
JP6773234B2 (ja) 2020-10-21
EP3633241A1 (en) 2020-04-08
US11092233B2 (en) 2021-08-17

Similar Documents

Publication Publication Date Title
US9525228B2 (en) Battery terminal, method for manufacturing battery terminal, and battery
US9951856B2 (en) Bi-metallic sprocket, and method of making same
US9476493B2 (en) Differential device and method of manufacturing the same
WO2019049885A1 (ja) プラネタリキャリヤおよびその製造方法
CN113994125B (zh) 传动装置
JP6482328B2 (ja) ワッシャの製造方法及びワッシャ
JP2009166108A (ja) リング部材の製造方法
US11339828B2 (en) Method of manufacturing washer and washer
US10151383B2 (en) Braze retention feature for a carrier assembly
JP2023098255A (ja) 回転電機
US11141776B2 (en) Method of manufacturing washers
JP6448433B2 (ja) キャリア
WO2016203852A1 (ja) ワッシャの製造方法及びワッシャ
JP5446336B2 (ja) 金属板の接合方法および接合装置ならびに接合製品
JP3960116B2 (ja) 天板又は底板の製造方法及びそれらを用いた箱体の製造方法
JP2023145245A (ja) 接合構造体の製造方法
JP7331689B2 (ja) プラネタリキャリヤ用支持プレートの製造方法
JP6086237B2 (ja) ギヤ付部材の製造方法及びギヤ付部材
CN104088922A (zh) 离合器齿毂及其加工方法
RU2397391C1 (ru) Способ изготовления и устройство уплотнения с упругим элементом
JP2003199269A (ja) 分割式モータコア及びその製造方法
JP6514965B2 (ja) ワッシャ及びワッシャの製造方法
JP2011226563A (ja) キャリア及びその製造方法
JP2017177128A (ja) 摩擦攪拌接合方法
WO2019163953A1 (ja) ウェーブスプリング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540976

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018853682

Country of ref document: EP

Effective date: 20200102

NENP Non-entry into the national phase

Ref country code: DE