WO2019049750A1 - Wrap film and body wound with wrapped film - Google Patents

Wrap film and body wound with wrapped film Download PDF

Info

Publication number
WO2019049750A1
WO2019049750A1 PCT/JP2018/031969 JP2018031969W WO2019049750A1 WO 2019049750 A1 WO2019049750 A1 WO 2019049750A1 JP 2018031969 W JP2018031969 W JP 2018031969W WO 2019049750 A1 WO2019049750 A1 WO 2019049750A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
wrap film
wrap
less
flow direction
Prior art date
Application number
PCT/JP2018/031969
Other languages
French (fr)
Japanese (ja)
Inventor
真司 広崎
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to SG11202001968XA priority Critical patent/SG11202001968XA/en
Priority to CN201880053820.3A priority patent/CN111032753A/en
Publication of WO2019049750A1 publication Critical patent/WO2019049750A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/02Monomers containing chlorine
    • C08F214/04Monomers containing two carbon atoms
    • C08F214/08Vinylidene chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a wrap film and a wrap film winding body using the same.
  • wrap films are excellent in properties such as adhesion to films and adhesion to films, gas barrier properties to gases such as water vapor and oxygen, and cut properties when used in a cosmetic box, and so on. It is used in many general homes as a wrap film. Household wrap films are mainly used as an overlap in heating food stored in containers in a refrigerator or freezer or in a microwave oven.
  • films based on polyvinylidene chloride resins are also commercially available, but all are polyvinylidene chloride It is inferior to the adhesion of a resin wrap film and inferior in wrap suitability, and vinylidene chloride wraps are widely used.
  • Patent Literatures 1 and 2 disclose techniques relating to the characteristic of being easy to cut in the width direction, in addition to the characteristic of being hard to tear longitudinally in the film flowing direction.
  • Patent Document 3 discloses a technique for improving the adhesiveness and the oxygen / water vapor barrier property when depositing a metal or metal oxide by the fibril structure on the surface.
  • Patent No. 5501791 International Publication No. 2016/189987 Pamphlet Japanese Patent Application Laid-Open No. 11-077824
  • the wrap suitability of household wrap films is required to have a sense of stiffness and stiffness as well as transparency and cuttability. In addition, it has stability with little melting perforation and large deformation or fusion to a container or deterioration of itself during cooking with a microwave oven etc., and when trying to peel the wrap after cooking, the wrap film
  • the wrap film strength after heating is also required so that tears do not occur and the wrap film fragments do not enter the food.
  • adhesion between the wraps and the container at the time of wrapping is required, and at the same time the adhesion, the goodness of drawing out when winding the wound wrap film in the decorative box, which is the opposite characteristic, is also out of the box is also It is strongly sought by consumers.
  • household wrap films are wound on paper tubes or the like to a winding length of about several tens of meters from the state of a raw fabric wound for 1000 m or more, on the assumption that they will be used by consumers. If the film strength is insufficient in the rewinding (rewinding) process to a paper tube or the like, the film may be torn, the film can not be transported, and the production efficiency may be reduced.
  • Patent Documents 1 to 3 all have a sufficient effect of suppressing longitudinal tearing at the time of cutting, an effect of suppressing unwinding, oxygen / water barrier properties, an effect of suppressing tearing after heating to a high temperature, and suppressing tearing at the time of recoil
  • a wrap film that combines effects, adhesion, stiffness, and transparency at the same time.
  • the present invention is a novel wrap film having good wrap suitability, which has good adhesion at the time of use, stiffness, transparency, longitudinal tear preventing effect and unwinding preventing effect, and has a high temperature (for example, a microwave oven)
  • the object of the present invention is to provide a wrap film which is less likely to tear after heating in (ii), has a low incidence of tearing during rewinding, and is excellent in oxygen and water barrier properties.
  • the present inventors have adhesion during use, a sense of stiffness, stiffness, transparency, an effect of preventing longitudinal tearing and an effect of preventing recoiling, hardly tearing even after heating in high temperature (for example, a microwave oven), and rewinding time
  • high temperature for example, a microwave oven
  • the above problems can be solved by having a specific range of tensile strength, tensile elongation and tensile elastic modulus. In particular, they were found to have sufficient breaking strength when pulled in the TD direction, and have an effect of suppressing tearing during rewinding, resulting in the present invention.
  • the present invention relates to the following.
  • the tensile strength in the direction (TD) perpendicular to the flow direction is 100 MPa or more, the tensile elongation is 100% or less, and the tensile elastic modulus is 280 MPa or more,
  • the wrap film whose tensile elasticity modulus of flow direction (MD) is 380 Mpa or more.
  • the wrap film as described in said (1) whose crystal
  • the thermal shrinkage at 120 ° C. measured according to ASTM D-2732, has a thermal shrinkage in the machine direction (MD) of 4 to 30% and is perpendicular to the thermal shrinkage in the machine direction (MD)
  • the wrap film as described in said (1) or (2) whose ratio (MD / TD) with the thermal contraction rate of the said direction (TD) is 2 or less.
  • At least one surface of the layer has a network structure observed by the phase image of an atomic force microscope, the network of the network structure is constituted by fibrils, and in the network structure, the average width of the fibrils observed is 145 nm or less
  • Wrap film described in. (6)
  • the film is a novel wrap film having good wrap suitability, good adhesion at the time of use, a sense of stiffness and stiffness, transparency, an effect of preventing longitudinal tearing, an effect of preventing unwinding, tearing even after heating in a microwave oven It is difficult to provide a wrap film with a low incidence of tearing during rewind and excellent oxygen and water barrier properties.
  • the present embodiment modes for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail below.
  • this invention is not limited to the following embodiment, It can variously deform and implement within the range of the summary.
  • the tensile strength X 1 (MPa) in the direction perpendicular to the flow direction (hereinafter also referred to as “TD direction”) is 100 or more, and 100 ⁇ X 1 ⁇ 300. preferable.
  • the tensile strength in the TD direction is in the range of 100 MPa or more, the strength to break along the direction perpendicular to the TD direction when cut is sufficient, and in the case of a wound wrap for food packaging, the length when cut is longitudinal Ripping trouble is suppressed.
  • the strength to break along the direction perpendicular to the TD direction when cut is not too high, and in the case of a wound wrap for food packaging, vertical tearing trouble when cut Tend to be suppressed. From the practical sense of use, more preferably 170 ⁇ X 1 ⁇ 300, and more preferably 190 ⁇ X 1 ⁇ 300.
  • the tensile elongation X 2 (%) in the TD direction is 100 or less, and preferably 15 ⁇ X 2 ⁇ 100.
  • the tensile elongation in the TD direction is in the range of 100% or less, the film is easily cut when cut, and in the case of a wound wrap for food packaging, the longitudinal tearing trouble is suppressed when cut.
  • the tensile elongation in the TD direction is 15% or less, the film is appropriately stretched when cut, making it easy to cut, and in the case of a wound wrap for food packaging, longitudinal tearing problems are suppressed when cut.
  • the wrap film of the present embodiment has 380 ⁇ X 3 for the tensile elastic modulus X 3 (MPa) in the flow direction (hereinafter also referred to as “MD direction”) and the tensile elastic modulus Y (MPa) in the TD direction.
  • MD direction tensile elastic modulus X 3
  • MPa tensile elastic modulus Y
  • 380 ⁇ X 3 ⁇ 900, 280 ⁇ Y, and 280 ⁇ Y ⁇ 880.
  • the tensile modulus in the MD direction is in the range of 380 MPa or more, the firmness and stiffness of the film are improved, and the film becomes easy to handle.
  • the tensile elastic modulus in the TD direction when the tensile elastic modulus in the TD direction is in the range of 280 MPa or more, the stiffness and stiffness of the film are improved, and the film becomes easy to handle.
  • the tensile elastic modulus in the MD direction is in the range of 900 MPa or less, the film has an appropriate hardness and tends to be easy to handle.
  • the tensile modulus in the TD direction is in the range of 880 MPa or less, the film has an appropriate hardness and tends to be easy to handle. From the practical sense of use, more preferably 540 ⁇ X 3 ⁇ 900, and still more preferably 620 ⁇ X 3 ⁇ 900.
  • the method for controlling the tensile strength in the TD direction, the tensile elongation and the tensile elastic modulus, and the tensile elastic modulus in the MD direction to the above ranges is not particularly limited, but for example, the draw ratio is: flow direction: 4.0 or less (preferably And a direction perpendicular to the flow direction: 5.8 or more, or a method of using a polymer having a low glass transition temperature or adding a nucleating agent as appropriate.
  • the tensile strength in the TD direction, the tensile elongation and the tensile elastic modulus, and the tensile elastic modulus in the MD direction can be measured by the methods described in the examples described later.
  • the heat shrinkage rate in the machine direction (MD) is 4 to 30%, and the heat shrinkage rate at 120 ° C. measured in accordance with ASTM D-2732 is The ratio (MD / TD) of the thermal contraction rate to the thermal contraction rate in the direction (TD) perpendicular to the flow direction is 2 or less.
  • the wrap film of the present embodiment maintains a sufficient strength even after heating at a high temperature, in particular, by controlling the thermal contraction rate within a specific range, and suppresses the tearing trouble after heating to a high temperature. can do.
  • the wrap film of the present embodiment has a flow direction (MD) heat shrinkage at 120 ° C., more preferably 4% to 25%, and more preferably 4% to 20%, from the practical sense of use.
  • MD flow direction
  • the thermal shrinkage rates of MD and TD at 120 ° C. can be measured by the method described in the examples described later.
  • the wrap film of the present embodiment is preferably formed of a component containing a polymer.
  • the polymer is a film-forming polymer.
  • This polymer means a polymer that accounts for 50% by weight or more of the whole film.
  • Amorphous polymers which will be described later, can not form a surface network structure effective for imparting adhesion, and therefore, in the present embodiment, it is preferable not to use as a polymer that is the main component of the film.
  • the crystalline polymer may be a crystalline polymer or a hydrogen bonding polymer such as cellulose or aromatic polyamide which does not have a clear crystalline melting point, but if the crystalline melting point is higher than the decomposition temperature, a wet film formation is attempted.
  • a process such as recovery of the solvent is required, which is disadvantageous in terms of operation, and from the viewpoint of operability, a polymer having a crystalline melting point of 350 ° C. or less which can be melt-formed in the production process is preferably used.
  • polyvinylidene chloride resins polyolefin resins, polyester resins, and polyamide resins are preferably used.
  • polyethylene resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1 and copolymers consisting mainly of these as polyolefin resins, and polyethylene terephthalate, polypropylene terephthalate, poly-1,4-polyester resins as polyester resins Cyclohexane dimethylene terephthalate, polyethylene-2,6-naphthalate, polylactic acid, polyhydroxyglycolic acid, etc.
  • polyamide resins include nylon 6, nylon 7, nylon 66, nylon 610, nylon 612, nylon 46, nylon 6 T, etc. I can do it.
  • a polyvinylidene chloride-based resin composition is included as the polymer forming the wrap film of the present embodiment.
  • the polyvinylidene chloride resin composition may be a homopolymer of a vinylidene chloride monomer, or a copolymer of a vinylidene chloride monomer and a monomer copolymerizable therewith.
  • a polyvinylidene chloride resin wrap film refers to a wrap film containing a polyvinylidene chloride resin composition.
  • the polyvinylidene chloride resin composition may contain one polyvinylidene chloride resin, or may contain two or more polyvinylidene chloride resins.
  • the monomer copolymerizable with the vinylidene chloride monomer is not particularly limited.
  • acrylic acid esters such as vinyl chloride, methyl acrylate and butyl acrylate
  • methacrylic acid esters such as methyl methacrylate and butyl methacrylate , Acrylonitrile, vinyl acetate and the like.
  • vinyl chloride is preferable from the viewpoint that the balance between the oxygen / water barrier property and the extrusion processability is easily obtained and the film adhesion is also excellent. These may be used singly or in combination of two or more.
  • the copolymer comprises 15 to 3% by mass of a copolymerizable monomer.
  • the monomer ratio is a value calculated from the integral ratio of the peaks derived from each monomer component in the 1 H-NMR spectrum measured by FX-270 (manufactured by Nippon Denshi Co., Ltd.) using d-THF as a solvent.
  • the weight average molecular weight of the polyvinylidene chloride resin composition is not particularly limited, but preferably 70,000 to 110,000, and more preferably 80,000 to 100,000. Better film strength can be obtained by setting the weight average molecular weight of the polyvinylidene chloride resin composition to the above lower limit or more, and processability can be further improved by setting the above upper limit or less.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC) using tetrahydrofuran as a mobile phase, and calibrated and converted with polystyrene of known molecular weight.
  • Additives such as known plasticizers and stabilizers can be blended into the polyvinylidene chloride resin composition.
  • the plasticizer is not particularly limited, and known ones may be used.
  • acetyl tributyl citrate, acetylated monoglyceride, dibutyl sebacate and the like can be mentioned.
  • the stabilizer is not particularly limited, and known ones may be used.
  • epoxidized vegetable oil such as epoxidized soybean oil, epoxidized linseed oil and the like can be mentioned.
  • weathering improvers such as polyesters, and MBS (methyl methacrylate butadiene styrene) used for food packaging materials, as long as the effects of the present embodiment are not impaired. And the like may be added.
  • the weather resistance improver is not particularly limited, and known ones can also be used.
  • ultraviolet absorbers such as 2- (2'-hydroxy-3'5'-di-tert-butylphenyl) -5-chlorobenzotriazole and the like can be mentioned.
  • the antifogging agent is not particularly limited, and any known one may be used.
  • surfactants such as glycerin fatty acid ester, diglycerin fatty acid ester, sorbitan fatty acid ester and the like can be mentioned.
  • the antibacterial agent is not particularly limited, and known ones may be used.
  • natural product-based antibacterial agents such as grapefruit seed extract and moso bamboo extract can be mentioned.
  • the wrap film of the present embodiment does not necessarily have a single composition of one layer, and in the case of a multilayer structure, the layer in contact with the container is mainly a crystalline polymer and has a network structure observed in the phase image of AFM. As long as the liquid component is contained, the adhesion in practical use does not change, and it may be composed of a multilayer structure of two or more layers.
  • the wrap film of the present embodiment may contain a liquid component.
  • the liquid component used differs depending on the type of polymer. And, from the viewpoint of imparting flexibility to the film, at least one kind of polymer of aliphatic hydrocarbon type, for example, one having an alkyl group or a methylene chain moiety in the liquid component is preferably used.
  • polymer of aliphatic hydrocarbon type for example, one having an alkyl group or a methylene chain moiety in the liquid component is preferably used.
  • ester polymers and amide polymers those containing a functional group having a hydrogen bonding ability such as a carbonyl group, an ether group or a hydroxyl group are suitably used.
  • Aliphatic alcohols, alicyclic alcohols, polyhydric alcohols thereof, and the above-mentioned alcohol components and aliphatic or aromatic compounds including aliphatic alcohol, alicyclic alcohol, polyhydric alcohol thereof, and aliphatic or And esters of aliphatic hydroxycarboxylic acids with alcohols and / or fatty acids, modified products of these esters, and polyoxyethylene alkyl ethers and / or esters thereof.
  • polyglycerins such as glycerin, diglycerin, triglycerin, tetraglycerin and the like, and these as raw materials of alcohol components, fatty acids as acid components, such as lauric acid, palmitic acid, stearic acid, olein Or mono-, di-, tri-ester, polyester, etc.
  • a liquid component which is a food additive defined by the Food Sanitation Law is preferably used. From the viewpoint of heat resistance, the boiling point of the liquid component is preferably 200 ° C. or higher.
  • the wrap film of the present embodiment preferably has a network structure observed on a phase image of an atomic force microscope (hereinafter also referred to as “AFM”) on at least one surface of the film.
  • AFM atomic force microscope
  • the average width of fibrils constituting the network observed in the phase image of AFM is 145 nm or less.
  • the film strength becomes appropriate and the cuttability is improved.
  • the occurrence rate of rewinding also decreases, and the tear occurrence rate at the time of rewinding also decreases.
  • the thermal contraction rate in the machine direction (MD) is reduced, the thermal contraction rate in the machine direction (MD) and the thermal contraction in the direction perpendicular to the machine direction (TD) The ratio of rates (MD / TD) is also reduced.
  • the average width of the fibrils is 1 nm or more, the network structure is sufficient to hold the surface additive, the adhesion is appropriate, and the extraction property is also improved, which is preferable.
  • the average width of fibrils is more preferably 10 nm to 145 nm. Even more preferably, it is 45 nm to 145 nm.
  • the phase image of the AFM is obtained by imaging information of the phase to the stimulation of the cantilever of the AFM.
  • the network structure is, for example, a portion where the fibrils have a small phase delay with respect to the stimulation of the cantilever and the holes are a portion with a large phase delay, as illustrated in FIG. Is a hole, the bright part is a fibril. That is, when comparing fibrils with pores, the pores are more amorphous.
  • the average width of fibrils can be measured by the method described in the examples described later.
  • the network structure can be formed by oriented crystallization in the process of biaxial stretching.
  • the film is substantially stretched by the shrinkage stress, so free shrinkage must be caused.
  • positive biaxial stretching may not be performed.
  • the crystallization rate of the polymer is high, the polymer may be melted, extruded, air-cooled, and drawn while being crystallized, but if crystallization takes time, the molten state In the stretching in the above, crystallization may not follow, orientation crystallization may not occur effectively, and a network structure may not be developed. Therefore, it is preferable to stretch once at a glass transition temperature after being in a solid state. Also, a nucleating agent may be added as appropriate to accelerate the crystallization rate.
  • the wrap film of the present embodiment preferably has a crystal long period of 12.5 nm or less, and more preferably 8.2 nm to 12.5 nm.
  • the crystal long period is 8.2 nm or more
  • the film has sufficient strength when cut, and in the case of a wound wrap for food packaging, the problem of longitudinal tearing is reduced when cut.
  • the tearing rate during rewinding also decreases.
  • the thermal contraction rate in the machine direction (MD) is reduced, the thermal contraction rate in the machine direction (MD) and the thermal contraction in the direction perpendicular to the machine direction (TD)
  • the ratio to the rate (MD / TD) is also reduced.
  • the crystal long period is 12.5 nm or less, the film tends to be cut, and in the case of a wound wrap for food packaging, the trouble of longitudinal tearing is reduced when cut. In addition, since the film is easily cut, the tearing rate during rewinding is also reduced. Furthermore, in order to form a developed crystal structure after drawing, the thermal contraction rate in the machine direction (MD) is reduced, the thermal contraction rate in the machine direction (MD) and the thermal contraction in the direction perpendicular to the machine direction (TD) The ratio to the rate (MD / TD) is also reduced.
  • the crystal long period is more preferably 9.0 nm to 12.5 nm from the practical sense of use.
  • the crystal long period can be measured by the method described in the examples described later.
  • the wrap film of the present embodiment preferably has an oxygen permeability of 110 cm 3 / m 2 ⁇ day ⁇ atm at 23 ° C. or less, and a water vapor permeability of 20 g / m 2 ⁇ day at 38 ° C., 90% RH or less Is preferred.
  • the oxygen permeability X (cm 3 / m 2 ⁇ day ⁇ atm at 23 ° C) is more preferably in the range of 1 X X 110 110.
  • the oxygen permeability is in the range of 1 ⁇ X ⁇ 110, the oxygen barrier property is sufficient, and the freshness of the food is sufficiently maintained.
  • X ⁇ 1 it may be difficult to exhibit sufficient freshness retention performance, and when X> 110, it tends to be difficult to exhibit sufficient barrier properties.
  • 1 ⁇ X ⁇ 77, and even more preferably 1 ⁇ X ⁇ 50 from the practical sense of use.
  • the water vapor transmission rate Y (g / m 2 ⁇ day at 38 ° C., 90% RH) is more preferably in the range of 1 ⁇ Y ⁇ 20.
  • the water vapor transmission rate is in the range of 1 ⁇ Y ⁇ 20.
  • the water vapor barrier property is sufficient, and the freshness of the food is sufficiently maintained.
  • Y ⁇ 1 it may be difficult to exhibit sufficient freshness retention performance, and when Y> 20, it tends to be difficult to exhibit sufficient barrier properties.
  • 1 ⁇ Y ⁇ 18, and still more preferably 1 ⁇ Y ⁇ 10 from the practical sense of use.
  • the oxygen permeability and the method of controlling the water vapor permeability to the above ranges are not particularly limited.
  • the stretching ratio is a flow direction: 4.0 or less (preferably 3.8 or less), a direction perpendicular to the flow direction
  • the method includes: controlling to 5.8 or more, using a polymer having a low glass transition temperature, or adding an appropriate nucleating agent.
  • the oxygen permeability and the water vapor permeability can be measured by the methods described in the following examples.
  • the wrap film of the present embodiment is a polyvinylidene chloride-based resin wrap film obtained by stretching the above-described polyvinylidene chloride-based resin composition at least in the MD direction and performing inflation molding.
  • a polyvinylidene chloride resin composition is melt extruded in a tubular form from a circular die, and then the outside of the tubular resin is brought into contact with a coolant such as cold water filled in a storage tank called a cold water tank.
  • a coolant such as cold water filled in a storage tank called a cold water tank.
  • the inside is made to contact with a refrigerant such as mineral oil to solidify it into a film.
  • a portion (extrudate) of a tubular resin sandwiched between the die opening and the pinch roll is referred to as "sock”.
  • the refrigerant (liquid) injected into the interior of this sock is called “sock liquid”.
  • the sock is folded by the pinch roll or the like to form a tubular double-ply film, which is referred to as "parison".
  • FIG. 4 is a conceptual view of an example of a method for producing a wrap film of the present embodiment.
  • the molten polyvinylidene chloride resin composition is extruded into a tubular form from the die port (3) of the circular die (2) by the extruder (1), sock (tubular polyvinylidene chloride resin composition) Object (4) is formed.
  • the outer side of the extruded sock (4) is brought into contact with cold water in a cold water tank (6), and the sock liquid (5) is injected into the inside of the sock (4) by a conventional method.
  • the sock (4) is cooled and solidified from the inside and outside by storing it.
  • the sock (4) is in a state where the sock liquid (5) is applied to the inside thereof.
  • the solidified sock (4) is folded by the first pinch roll (7) to form a double ply sheet parison (8).
  • the application amount of the sock liquid is controlled by the pinch pressure of the first pinch roll (7).
  • the sock liquid water, mineral oil, alcohols, polyhydric alcohols such as propylene glycol and glycerin, and aqueous solutions of cellulose and polyvinyl alcohol can be used. These may be used alone or in combination of two or more.
  • the above-mentioned weather resistance improver, antifogging agent, antibacterial agent and the like used in food packaging materials may be added to the sock liquid, as long as the effects of the present embodiment are not impaired.
  • the application amount of the sock liquid is not particularly limited, but is preferably 50 to 20000 ppm, more preferably 100 to 15000 ppm, still more preferably 150 to 10000 ppm from the viewpoint of the openness of the parison and the adhesion of the film.
  • the application amount (ppm) is the mass of the sock liquid applied to the sock in mass ppm relative to the total mass of the sock.
  • the parison (8) is opened again and becomes tubular.
  • the parison (8) is reheated to a temperature suitable for drawing by hot water (not shown).
  • the warm water adhering to the outside of the parison (8) is squeezed off by the second pinch roll (9).
  • air is injected into a tubular parison (8) heated to an appropriate temperature to form bubbles (10) by inflation stretching, and a stretched film is obtained.
  • the crystal length period of the wrap film can be controlled by the draw ratio and the crystallinity of the polymer constituting the wrap film, and the crystal length period increases as the draw ratio in the TD direction increases compared to the draw ratio in the MD direction There is a tendency, and as the crystallinity of the polymer increases, the crystal long period tends to increase.
  • the draw ratio in the TD direction is 5.8 or more
  • the stretch ratio in the MD direction is preferably 4.0 times or less, and from the viewpoint of film formability, the stretch ratio in the MD direction is more than 3.4 times, more preferably 3.8 times or less.
  • the upper limit of the draw ratio in the TD direction is not particularly limited, it is, for example, 8.5 or less.
  • the stretching temperature is preferably higher than the stretching room temperature from the viewpoint of the stability of the inflation bubble.
  • the stretching temperature is more preferably 34 ° C. or less, still more preferably 25 ° C. to 34 ° C.
  • the stretching temperature is measured at a temperature at an intermediate point of the distance in the MD direction between the completion of the stretching in the MD direction and the TD direction and the point at which the winding starts.
  • the stretched film is folded by the third pinch roll (11) to form a double ply film (12).
  • the double ply film (12) is taken up by a take-up roll (13).
  • the film is slit and peeled off into a single film (single peel).
  • the film is wound on a core of a paper tube or the like to obtain a wrap film wound body of paper tube winding.
  • the crystal long period is influenced not only by the draw ratio but also by the heat history.
  • the wrap film When the wrap film is subjected to a heat history, the crystal long period tends to decrease and the tear strength tends to decrease. Therefore, it is preferable to prevent the wrap film from receiving an excessive heat history.
  • the film is high not only in the case of aging treatment, but also in various environments such as when transporting a wrap film in summer, or placing the wrap film near a heat source such as a stove at home use. It is preferable not to receive a heat history, which can prevent the crystal long period from being too low and can prevent the film from being easily torn.
  • the wrap film of the present embodiment can be used in various forms, and can be, for example, a roll-like polyvinylidene chloride resin wrap film. In the case of a roll-shaped wrap film, there may be a core or no core.
  • a wrap film winding body including a cylindrical winding core and the polyvinylidene chloride resin wrap film of the present embodiment wound around the winding core is used. be able to.
  • the wound body refers to a wound film obtained by winding a wrap film around a core or the like.
  • the material, size, and the like of the winding core are not particularly limited, and a known winding core such as a paper tube can be used. Furthermore, if the wrap film is in the form of a roll, the core may or may not be present.
  • the wrap film roll of the present embodiment can be stored and used in a decorative box having a cutting blade for cutting the wrap film.
  • the thickness of the wrap film of the present embodiment is not particularly limited, but is preferably 5 to 30 ⁇ m and more preferably 5 to 15 ⁇ m from the viewpoint of feeling in use and optical characteristics.
  • the work amount of adhesion X (mJ / 25 cm 2 ) is in the range of 1 ⁇ X ⁇ 2.5.
  • 1 ⁇ X the wrap film tends to exhibit sufficient adhesion.
  • the stretching in the direction (TD) perpendicular to the flow direction is stretched at a higher magnification than the flow direction (MD), and the film formation stability is Since the film is stretched in the direction (TD) perpendicular to the flow direction and in the flow direction (MD) within the range that can be secured, the heat shrinkage rate in the flow direction (MD) is 4% to 30% at 120 ° C.
  • the ratio (MD / TD) of the thermal contraction rate in the flow direction (MD) to the thermal contraction rate in the direction perpendicular to the flow direction (TD) can be controlled to 2 or less.
  • the wrap film has such heat-shrinkable properties, the contents such as greasy food are put in a container, the wrap film is put on the container and brought into close contact, and then the wrap film is heated by a microwave oven or the like. After being exposed to high temperature, when peeling off the wrap film, the wrap film can be broken, and the inclusion of fragments in the food can be suppressed.
  • the wrap film of the present embodiment has a flow direction (MD) heat shrinkage at 120 ° C., more preferably 4% to 25%, and more preferably 4% to 20%, from the practical sense of use.
  • AFM Measurement A film was attached and fixed to a Si wafer, and the surface was observed with a Bruker Dimension Icon in a tapping mode using a phase image. The measurement was performed using a single crystal Si cantilever (spring constant catalog value: 40 N / m) under conditions of a scan rate of 0.5-2 Hz, a scan size of 1 ⁇ m ⁇ 1 ⁇ m, and a sampling number of 512 ⁇ 256 or 512 ⁇ 512. . The film controlled the contact pressure of the cantilever, but when the target amplitude was 400 mV, the Set Point was 240-320 mV, and when the target amplitude was 800 mV, the Set Point was 450-500 mV.
  • one image is divided into four for each phase image, and five fibrils that are considered to be typical are selected in each region, and the average value of a total of 5 locations especially when the fibril diameter is large. Was adopted as the average width of fibrils.
  • Adhesion Assuming that the wrap film is used at home, the adhesion between the wrap films was evaluated. The measurement was performed in an atmosphere of 23 ° C. and 50% RH. First, two aluminum jigs having a bottom area of 25 cm 2 , a height of 55 mm and a weight of 400 g were prepared, and filter papers having the same area as the bottom areas were attached to the bottoms of both jigs. A wrap film was placed on the bottom of the filter paper of both jigs so as not to get wrinkles on it, and was held down with a rubber band and fixed.
  • the two jigs were combined so that the bottom surface of the side on which the wrap film was put would overlap, and was crimped for 1 minute with a load of 500 g.
  • the work required was measured when both wrap film surfaces were peeled off perpendicularly to each other at a speed of 5 mm / min using a tensile compression tester (manufactured by Shimadzu Corporation) (unit: mJ / 25 cm 2 ).
  • Double-ply film is slit and peeled off into one film, and then a paper tube of a commercially available wrap film (paper made by Asahi Kasei Home Products Co., Ltd., trade name Saran wrap)
  • the film was wound on a paper tube using a tube, 30 cm ⁇ 20 m).
  • the film transport speed during winding was 300 m / min, and the winding length was 20 m.
  • the probability (%) of the film being torn and the film being unconveyable was calculated.
  • the N number was 3000 times (unit:%). Evaluation was conducted as follows.
  • Evaluation symbol contents A: Rip incidence rate at rewinding 0.03% or less (Rip incidence number 1 or less / 3000).
  • B Rip incidence rate during rewinding is higher than 0.03% and lower than or equal to 0.07% (more than 1 and less than 2/3000).
  • C The incidence of tearing during rewinding is higher than 0.07% and not more than 0.10% (more than 2 occurrences of tearing and 3 or less).
  • D The occurrence rate of tearing during rewinding is higher than 0.10% (more than 3 occurrences of tearing / 3000).
  • the inclining places the wound body so that the end face on the unwinding side is unwound from the top, and at that time, from the evaluator From the position moved 1 / ⁇ 2 cm from the center in the direction to become the left side, the angle formed by the end face parallel to the TD direction was 45 °, and a cut was made with a length of 1 cm.
  • the lapping film sample cut in the above-described procedure was allowed to stand for 1 minute in a thermostatic bath adjusted to a set temperature (120 ° C.). After one minute, the wrap film was taken out of the thermostatic chamber and evaluated for tearing resistance in an atmosphere of 23 ° C. and 50% RH.
  • the evaluation of the tear resistance was carried out by measuring the load resistance by suspending a weight at the center of the end face of the incision into which the end of the lap film was cut according to the above-mentioned procedure.
  • the weight was suspended in order from the lighter side of 20 g, 30 g, 40 g, 50 g, 60 g, 70 g from a 10 g weight, and the maximum load when the wrap film was torn was measured.
  • the heavier the maximum load when the wrap film is torn the harder it is to tear after heating the wrap film at high temperature.
  • the N number was 500 times, the average value of 500 times was calculated, and the degree of tearing after the wrap film was heated at a high temperature was judged in the following manner.
  • Evaluation Symbol Content A The maximum load average value when a tear occurs is heavier than 60 g.
  • B The maximum load average value when cracking occurred was heavier than 50 g and not more than 60 g.
  • C The maximum load average value when cracking occurred was heavier than 40 g and not more than 50 g.
  • D The maximum load average value at the time of tearing is 40 g or less.
  • Oxygen Permeability The oxygen permeability was measured according to ASTM D 3985 using OX TRAN 2/21 MH (trade name) manufactured by MOCON. The sample was set in the apparatus and the value after 4 hours was adopted. The measurement was performed under the condition of 23 ° C. The lower the oxygen permeability, the higher the oxygen barrier property.
  • Rewinding rate A cut test was performed using a commercially available wrap film vanity box (Asahi Kasei Home Products Co., Ltd., brand name Saran lap box, 30 cm ⁇ 20 m). The test was performed in an atmosphere of 23 ° C. and 50% RH. The film was cut with the degree of opening of the decorative box fixed at 30 °, and the probability (%) of film rewinding occurring when the film after cut was pulled out was calculated. N was performed 500 times (unit:%).
  • GPC gel permeation chromatography
  • the stretching temperature was 26 ° C.
  • This tubular film is folded and wound, slit into a width of 300 mm, and peeled off to form a single film, and wound 20 m on a paper tube with an outer diameter of 36.6 mm and a length of 305 mm, and a thickness of about 10 ⁇ m
  • a paper tube wrap film was produced.
  • the obtained film was subjected to AFM measurement, SAXS measurement, tear strength, tensile elongation, tensile modulus, thermal contraction rate, tearing after heating at 120 ° C., tearing rate during rewinding, recoiling rate, oxygen permeability, permeability
  • Table 1 The results of evaluation of the humidity, adhesion and transparency are shown in Table 1.
  • the stretching ratio in the MD direction was 3.6 times, and the stretching ratio in the TD direction was 6.0 times.
  • the stretching temperature was 25 ° C.
  • a paper tube-wrapping wrap film having a thickness of about 10 ⁇ m was produced by the same operation as in Example 1 except for the above. The evaluation results of the obtained film are shown in Table 1.
  • the draw ratio in the MD direction was 3.5 times, and the draw ratio in the TD direction was 6.1 times.
  • the stretching temperature was 25 ° C.
  • a paper tube-wrapping wrap film having a thickness of about 10 ⁇ m was produced by the same operation as in Example 1 except for the above. The evaluation results of the obtained film are shown in Table 1.
  • Example 4 A liquid component (15 parts by weight of glycerol diacetate monolaurate) is mixed and melted at a temperature of 220 ° C. with a crystalline polymer (85 parts by weight of polylactic acid) as a main component, and melt extruded by a melt extruder to obtain a parison Was subjected to inflation stretching to obtain a tubular film.
  • the stretching ratio in the MD direction was 3.8 times, and the stretching ratio in the TD direction was 8.0 times.
  • the stretching temperature was 33 ° C.
  • a paper tube-wrapping wrap film having a thickness of about 10 ⁇ m was produced by the same operation as in Example 1 except for the above. The evaluation results of the obtained film are shown in Table 1.
  • Example 5 Liquid component (15 parts by weight of glycerin triacetate) and other additives (3 parts by weight of epoxidized linseed oil, 2 parts by weight of mineral oil) are mixed at a temperature of 280 ° C. with crystalline polymer (80 parts by weight of nylon 66)
  • the parison was melted and extruded by a melt extruder, and the obtained parison was subjected to inflation stretching to form a tubular film.
  • the stretching ratio in the MD direction was 3.4 times, and the stretching ratio in the TD direction was 8.5 times.
  • the stretching temperature was 25 ° C.
  • a paper tube-wrapping wrap film having a thickness of about 10 ⁇ m was produced by the same operation as in Example 1 except for the above. The evaluation results of the obtained film are shown in Table 1.
  • Example 6 Liquid component (mineral oil 10 parts by weight) and other additives (5 parts by weight of Malcarez (registered trademark) R, 5 parts by weight of Tuftec (registered trademark) R) in crystalline polymer (80 parts by weight of polypropylene) as main component at 200 ° C.
  • the mixture was melted at temperature, melt extruded by a melt extruder, and the obtained parison was subjected to inflation stretching to form a tubular film.
  • the stretching ratio in the MD direction was 3.8 times, and the stretching ratio in the TD direction was 7.2 times.
  • the stretching temperature was 26 ° C.
  • a paper tube-wrapping wrap film having a thickness of about 10 ⁇ m was produced by the same operation as in Example 1 except for the above. The evaluation results of the obtained film are shown in Table 1.
  • the draw ratio in the MD was 3.7 times, and the draw ratio in the TD was 5.8.
  • the stretching temperature was 25 ° C.
  • a paper tube-wrapping wrap film having a thickness of about 10 ⁇ m was produced by the same operation as in Example 1 except for the above. The evaluation results of the obtained film are shown in Table 1.
  • the stretching ratio in the MD direction was 3.6 times, and the stretching ratio in the TD direction was 6.1 times.
  • the stretching temperature was 34 ° C.
  • a paper tube-wrapping wrap film having a thickness of about 10 ⁇ m was produced by the same operation as in Example 1 except for the above. The evaluation results of the obtained film are shown in Table 1.
  • the draw ratio in the MD direction was 3.5 times, and the draw ratio in the TD direction was 6.2 times.
  • the stretching temperature was 31 ° C.
  • a paper tube-wrapping wrap film having a thickness of about 10 ⁇ m was produced by the same operation as in Example 1 except for the above. The evaluation results of the obtained film are shown in Table 1.
  • Comparative Example 3 The polyethylene was melted at a temperature of 170 ° C., melt extruded by a melt extruder, and the obtained parison was subjected to inflation stretching to form a tubular film.
  • the draw ratio in the MD direction was 5.0 times, and the draw ratio in the TD direction was 5.0 times.
  • the stretching temperature was 39 ° C.
  • a paper tube-wrapping wrap film having a thickness of about 10 ⁇ m was produced by the same operation as in Example 1 except for the above. The evaluation results of the obtained film are shown in Table 2.
  • Comparative Example 4 Liquid component (mineral oil 10 parts by weight) and other additives (5 parts by weight of Malcarez (registered trademark) R, 5 parts by weight of Tuftec (registered trademark) R) in crystalline polymer (80 parts by weight of polypropylene) as the main component at 200 ° C.
  • the mixture was mixed and melted at temperature, extruded from an extruder equipped with a 20 mm ⁇ 0.5 mm T die having a slit width, and quenched with water to form a film top sheet. Then, while passing through a heating zone set at 140 ° C., this raw fabric was subjected to sequential biaxial stretching of 2.0 ⁇ 2.0 times with a stretcher and wound up.
  • a paper tube-wrapping wrap film having a thickness of about 10 ⁇ m was produced by the same operation as in Example 1 except for the above. The evaluation results of the obtained film are shown in Table 2.
  • Example 2 Although the phase image of AFM of the film surface obtained in Example 1 is shown in FIG. 2, the uniform network structure was observed. The mesh structures were observed also in Examples 2, 3, 4, 5, 6, 7, 8, 9 and Comparative Examples 4, 9, 10, 11, 12. In the examples, since the tensile strength, the tensile elongation and the tensile modulus are within the specific ranges, the desired effects were obtained as shown in the evaluation of Table 1. However, in Comparative Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, since the tensile strength, the tensile elongation and the tensile modulus are not within the specific ranges, the evaluation of Table 2 is made. The desired effect was not obtained as shown in. The phase image of AFM of the film surface of Comparative Example 1 is shown in FIG.
  • the wrap film according to the present invention has good firmness, stiffness, transparency, a longitudinal tear preventing effect and an unwinding preventing effect when used, even after heating to a high temperature (for example, 120 ° C.) Since it is a wrap film that is difficult to tear, has a low incidence of tearing during rewinding, and is excellent in oxygen and water barrier properties, it can be suitably used as a wrap film for various packaging including food packaging.
  • a high temperature for example, 120 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

Provided is a wrap film that has excellent adhesion during use, has tension and stiffness, is transparent, exhibits an effect for preventing vertical splitting and an effect for preventing re-winding, does not readily split even after being heated at high temperatures (e.g., over an electric range), has a low frequency of splitting during rewinding, and has exceptional oxygen/water barrier properties. This wrap film has a tensile strength of 100 MPa or higher, a tensile elasticity of 100% or lower, and a tensile modulus of 280 MPa or higher in the direction (TD) perpendicular to the flow direction, and has a tensile modulus of 380 MPa or higher in the flow direction (MD), the crystal long period preferably being 12.5 nm or less.

Description

ラップフィルム及びラップフィルム巻回体Wrap film and wrap film wound body
 本発明は、ラップフィルム及びそれを用いたラップフィルム巻回体に関する。 The present invention relates to a wrap film and a wrap film winding body using the same.
 従来、ラップフィルムは、フィルム同士や被着体への密着性、水蒸気や酸素等の気体に対するガスバリア性、化粧箱に入れて使用する際のカット性等の特性に優れているため、食品等のラップフィルムとして多くの一般家庭で使用されている。家庭用ラップフィルムは、主として冷蔵庫や冷凍庫での食品の保存や、電子レンジで容器に盛った食品を加熱する際にオーバーラップして使用されている。 Conventionally, wrap films are excellent in properties such as adhesion to films and adhesion to films, gas barrier properties to gases such as water vapor and oxygen, and cut properties when used in a cosmetic box, and so on. It is used in many general homes as a wrap film. Household wrap films are mainly used as an overlap in heating food stored in containers in a refrigerator or freezer or in a microwave oven.
 この家庭用ラップフィルムとして現在市販されているものの中で、最も使い勝手の良いという評価を受けているものは、ポリ塩化ビニリデン系樹脂を主体としたフィルムである。一方、その他にもポリエチレン系樹脂や、ポリプロピレン系樹脂や、ポリ塩化ビニル系樹脂或いはポリ4-メチルペンテン-1樹脂等を主成分としたフィルムなども市販されているが、いずれもポリ塩化ビニリデン系樹脂ラップフィルムの密着性にはおよばず、ラップ適性の劣るものであり、塩化ビニリデン製のラップが広く普及している。 Among the commercially available wrap films for home use, those which have been evaluated to be the most convenient are films based on polyvinylidene chloride resins. On the other hand, films based on polyethylene resin, polypropylene resin, polyvinyl chloride resin, poly 4-methylpentene-1 resin, etc. are also commercially available, but all are polyvinylidene chloride It is inferior to the adhesion of a resin wrap film and inferior in wrap suitability, and vinylidene chloride wraps are widely used.
 例えば、特許文献1、2には、フィルムの流れ方向に縦裂けしにくい特性に加えて、幅方向にはカットしやすい特性に関する技術が開示されている。 For example, Patent Literatures 1 and 2 disclose techniques relating to the characteristic of being easy to cut in the width direction, in addition to the characteristic of being hard to tear longitudinally in the film flowing direction.
 また、特許文献3には、表面のフィブリル構造により密着性や、金属又は金属酸化物を蒸着した際の酸素・水蒸気バリア性を向上させる技術が開示されている。 Further, Patent Document 3 discloses a technique for improving the adhesiveness and the oxygen / water vapor barrier property when depositing a metal or metal oxide by the fibril structure on the surface.
特許第5501791号公報Patent No. 5501791 国際公開第2016/189987号パンフレットInternational Publication No. 2016/189987 Pamphlet 特開平11-077824号公報Japanese Patent Application Laid-Open No. 11-077824
 家庭用ラップフィルムのラップ適性には、透明性及びカット性と共に、ハリ・コシ感などが要求されている。また、電子レンジなどでの加熱調理中にも溶融穿孔及び大きな変形あるいは容器への融着やそれ自身の変質が少ない安定性を有すると共に、加熱調理後にラップを剥がそうとした際にラップフィルムの裂けが発生してラップフィルムの破片が食品に混入しない様に、加熱後のラップフィルム強度も求められる。さらに、ラッピング時のラップ同士及び容器に対する密着性が要求され、密着性と同時に、それに対し相反する特性である化粧箱内の巻回ラップフィルムを箱の外に引き出すときの引出し性の良さもまた消費者から強く求められている。またさらに、家庭用ラップフィルムは、消費者が使用することを想定して、1000m以上巻いた原反の状態から、数十m程度の巻長へ紙管等に巻き返すことが行われる。この紙管等への巻き返し(リワインド)工程において、フィルム強度が十分でないと、フィルムが裂けてしまい、フィルムの搬送ができなくなり、生産効率が低下するおそれがある。 The wrap suitability of household wrap films is required to have a sense of stiffness and stiffness as well as transparency and cuttability. In addition, it has stability with little melting perforation and large deformation or fusion to a container or deterioration of itself during cooking with a microwave oven etc., and when trying to peel the wrap after cooking, the wrap film The wrap film strength after heating is also required so that tears do not occur and the wrap film fragments do not enter the food. Furthermore, adhesion between the wraps and the container at the time of wrapping is required, and at the same time the adhesion, the goodness of drawing out when winding the wound wrap film in the decorative box, which is the opposite characteristic, is also out of the box is also It is strongly sought by consumers. Furthermore, household wrap films are wound on paper tubes or the like to a winding length of about several tens of meters from the state of a raw fabric wound for 1000 m or more, on the assumption that they will be used by consumers. If the film strength is insufficient in the rewinding (rewinding) process to a paper tube or the like, the film may be torn, the film can not be transported, and the production efficiency may be reduced.
 しかし、特許文献1~3は、いずれも十分なカット時の縦裂け抑制効果、巻戻り抑制効果、酸素・水バリア性、高温に加熱した後の裂け抑制効果、紙管へ巻き返し時の裂け抑制効果、密着性、ハリ・コシ感、及び透明性を同時に兼ねそろえたラップフィルムは達成できていない。 However, Patent Documents 1 to 3 all have a sufficient effect of suppressing longitudinal tearing at the time of cutting, an effect of suppressing unwinding, oxygen / water barrier properties, an effect of suppressing tearing after heating to a high temperature, and suppressing tearing at the time of recoil We have not achieved a wrap film that combines effects, adhesion, stiffness, and transparency at the same time.
 本発明はラップ適性の良い新規なラップフィルムであり、使用時の密着性の良好な、ハリ・コシ感、透明性、縦裂け防止効果及び巻戻り防止効果を有し、高温(例えば、電子レンジ)で加熱した後にも裂けにくく、リワインド時の裂け発生率が低く、酸素・水バリア性に優れた、ラップフィルムを提供することにある。 The present invention is a novel wrap film having good wrap suitability, which has good adhesion at the time of use, stiffness, transparency, longitudinal tear preventing effect and unwinding preventing effect, and has a high temperature (for example, a microwave oven) The object of the present invention is to provide a wrap film which is less likely to tear after heating in (ii), has a low incidence of tearing during rewinding, and is excellent in oxygen and water barrier properties.
 本発明者らは、使用時の密着性、ハリ・コシ感、透明性、縦裂け防止効果及び巻戻り防止効果を有し、高温(例えば、電子レンジ)で加熱した後にも裂けにくく、リワインド時の裂け発生率が低く、酸素・水バリア性に優れるという観点から、鋭意検討を加えた結果、特定の範囲の引張強度、引張伸度及び引張弾性率を有することにより前記課題を解決できることを見出し、特にTD方向へ引っ張った際に十分な破断強度を保持し、リワインド時の裂けを抑制する効果がある事を見出し、本発明に至った。すなわち、本発明は、以下に関する。
(1)
 流れ方向と垂直な方向(TD)の引張強度が100MPa以上、引張伸度が100%以下、引張弾性率が280MPa以上であり、
 流れ方向(MD)の引張弾性率が380MPa以上である、ラップフィルム。
(2)
 結晶長周期が12.5nm以下である、上記(1)に記載のラップフィルム。
(3)
 ASTM  D-2732に準拠して測定した120℃における熱収縮率について、流れ方向(MD)の熱収縮率が4~30%であり、流れ方向(MD)の熱収縮率と、流れ方向に垂直な方向(TD)の熱収縮率との比(MD/TD)が、2以下である、上記(1)又は(2)に記載のラップフィルム。
(4)
 少なくとも一層の表面に、原子間力顕微鏡の位相像で観察される網目構造を有し、前記網目構造の網目がフィブリルにより構成され、前記網目構造において、観察されるフィブリルの平均幅が145nm以下である、上記(1)~(3)のいずれかに記載のラップフィルム。
   (5)
  酸素透過度が110cm/m2・day・atm at23℃ 以下であり、水蒸気透過度が20g/m2・day at38℃,90%RH 以下である、上記(1)~(4)のいずれかに記載のラップフィルム。
(6)
 厚みが5~15μmである、上記(1)~(5)のいずれかに記載のラップフィルム。
  (7)
  塩化ビニリデン単量体85~97質量%と、塩化ビニル単量体15~3質量%とからなる共重合体を含む、上記(1)~(6)のいずれかに記載のラップフィルム。
(8)
 未延伸シートを流れ方向と流れ方向に垂直な方向とに延伸する工程を含み、流れ方向の延伸倍率が4.0以下であり、かつ、流れ方向に垂直な方向の延伸倍率が5.8以上である、上記(1)~(7)のいずれかに記載のラップフィルムの製造方法。
(9)
 上記(1)~(7)のいずれかに記載のラップフィルムが、巻芯に巻きとられた巻回体。
The present inventors have adhesion during use, a sense of stiffness, stiffness, transparency, an effect of preventing longitudinal tearing and an effect of preventing recoiling, hardly tearing even after heating in high temperature (for example, a microwave oven), and rewinding time As a result of earnestly examining from the viewpoint that the rate of occurrence of tearing is low and the oxygen and water barrier properties are excellent, it is found that the above problems can be solved by having a specific range of tensile strength, tensile elongation and tensile elastic modulus. In particular, they were found to have sufficient breaking strength when pulled in the TD direction, and have an effect of suppressing tearing during rewinding, resulting in the present invention. That is, the present invention relates to the following.
(1)
The tensile strength in the direction (TD) perpendicular to the flow direction is 100 MPa or more, the tensile elongation is 100% or less, and the tensile elastic modulus is 280 MPa or more,
The wrap film whose tensile elasticity modulus of flow direction (MD) is 380 Mpa or more.
(2)
The wrap film as described in said (1) whose crystal | crystallization long period is 12.5 nm or less.
(3)
The thermal shrinkage at 120 ° C., measured according to ASTM D-2732, has a thermal shrinkage in the machine direction (MD) of 4 to 30% and is perpendicular to the thermal shrinkage in the machine direction (MD) The wrap film as described in said (1) or (2) whose ratio (MD / TD) with the thermal contraction rate of the said direction (TD) is 2 or less.
(4)
At least one surface of the layer has a network structure observed by the phase image of an atomic force microscope, the network of the network structure is constituted by fibrils, and in the network structure, the average width of the fibrils observed is 145 nm or less The wrap film according to any one of the above (1) to (3).
(5)
Any one of the above (1) to (4) which has an oxygen permeability of 110 cm 3 / m 2 · day · atm at 23 ° C. or less and a water vapor permeability of 20 g / m 2 · day at 38 ° C., 90% RH or less Wrap film described in.
(6)
The wrap film according to any one of the above (1) to (5), which has a thickness of 5 to 15 μm.
(7)
The wrap film according to any one of the above (1) to (6), which comprises a copolymer comprising 85 to 97% by mass of a vinylidene chloride monomer and 15 to 3% by mass of a vinyl chloride monomer.
(8)
Stretching the unstretched sheet in the flow direction and in the direction perpendicular to the flow direction, the stretch ratio in the flow direction is 4.0 or less, and the stretch ratio in the direction perpendicular to the flow direction is 5.8 or more The method for producing a wrap film according to any one of the above (1) to (7), which is
(9)
A wound body in which the wrap film according to any one of the above (1) to (7) is wound around a winding core.
 本発明により、ラップ適性の良い新規なラップフィルムであり、使用時の密着性の良好な、ハリ・コシ感、透明性、縦裂け防止効果、巻戻り防止効果、電子レンジで加熱した後にも裂けにくく、リワインド時の裂け発生率が低く、酸素・水バリア性に優れた、ラップフィルムを提供することが出来る。 According to the present invention, the film is a novel wrap film having good wrap suitability, good adhesion at the time of use, a sense of stiffness and stiffness, transparency, an effect of preventing longitudinal tearing, an effect of preventing unwinding, tearing even after heating in a microwave oven It is difficult to provide a wrap film with a low incidence of tearing during rewind and excellent oxygen and water barrier properties.
原子間力顕微鏡(AFM)の位相像で観察される網目構造の模式図である。It is a schematic diagram of the network structure observed by the phase image of an atomic force microscope (AFM). 本願の実施例1のラップフィルム表面の原子間力顕微鏡(AFM)の位相像である。It is a phase image of the atomic force microscope (AFM) of the wrap film surface of Example 1 of this application. 本願の比較例1のラップフィルム表面の原子間力顕微鏡(AFM)の位相像である。It is a phase image of the atomic force microscope (AFM) of the wrap film surface of the comparative example 1 of this application. 本実施の形態のラップフィルムの製造方法の一例の概念図である。It is a conceptual diagram of an example of the manufacturing method of the wrap film of this embodiment.
 以下、本発明を実施するための形態(以下、「本実施の形態」という。)について以下詳細に説明する。なお、本発明は以下の実施形態に限定されるものでなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, modes for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail below. In addition, this invention is not limited to the following embodiment, It can variously deform and implement within the range of the summary.
 本実施の形態のラップフィルムは、流れ方向と垂直な方向(以下「TD方向」とも記す)の引張強度X(MPa)が100以上であり、100≦X≦300の範囲であることが好ましい。TD方向の引張強度が100MPa以上の範囲であると、カットした際にTD方向に垂直な方向に沿って破断する強度が十分であり、食品包装用の巻回ラップの場合、カットした際に縦裂けトラブルが抑制される。TD方向の引張強度が300MPa以下の範囲では、カットした際にTD方向に垂直な方向に沿って破断する強度が高すぎず、食品包装用の巻回ラップの場合、カットした際に縦裂けトラブルが抑制される傾向にある。実用の使用感から、さらに好ましくは170≦X≦300であり、より好ましくは190≦X≦300である。 In the wrap film of the present embodiment, the tensile strength X 1 (MPa) in the direction perpendicular to the flow direction (hereinafter also referred to as “TD direction”) is 100 or more, and 100 ≦ X 1 ≦ 300. preferable. When the tensile strength in the TD direction is in the range of 100 MPa or more, the strength to break along the direction perpendicular to the TD direction when cut is sufficient, and in the case of a wound wrap for food packaging, the length when cut is longitudinal Ripping trouble is suppressed. When the tensile strength in the TD direction is 300 MPa or less, the strength to break along the direction perpendicular to the TD direction when cut is not too high, and in the case of a wound wrap for food packaging, vertical tearing trouble when cut Tend to be suppressed. From the practical sense of use, more preferably 170 ≦ X 1 ≦ 300, and more preferably 190 ≦ X 1 ≦ 300.
 また、本実施の形態のラップフィルムは、TD方向の引張伸度X(%)が100以下であり、15≦X≦100であることが好ましい。TD方向の引張伸度が100%以下の範囲であると、カットした際にフィルムが切断しやすく、食品包装用の巻回ラップの場合、カットした場合に縦裂けトラブルが抑制される。TD方向の引張伸度が15%以下の範囲では、カットした際にフィルムが適度に伸びて、切断し易くなり、食品包装用の巻回ラップの場合、カットした場合に縦裂けトラブルが抑制される傾向にある。実用の使用感から、さらに好ましくは15≦X≦60であり、より好ましくは15≦X≦50である。 In the wrap film of the present embodiment, the tensile elongation X 2 (%) in the TD direction is 100 or less, and preferably 15 ≦ X 2 ≦ 100. When the tensile elongation in the TD direction is in the range of 100% or less, the film is easily cut when cut, and in the case of a wound wrap for food packaging, the longitudinal tearing trouble is suppressed when cut. When the tensile elongation in the TD direction is 15% or less, the film is appropriately stretched when cut, making it easy to cut, and in the case of a wound wrap for food packaging, longitudinal tearing problems are suppressed when cut. Tend to From the practical sense of use, it is further preferable that 15 ≦ X 2 ≦ 60, and more preferably 15 ≦ X 2 ≦ 50.
 さらに、本実施の形態のラップフィルムは、流れ方向(以下「MD方向」とも記す)の引張弾性率X(MPa)、TD方向の引張弾性率Y(MPa)について、380≦Xであり、380≦X≦900であることが好ましく、280≦Yであり、280≦Y≦880であることが好ましい。MD方向の引張弾性率が380MPa以上の範囲であると、フィルムのハリ・コシ感が向上し、取り扱いやすくなる。また、TD方向の引張弾性率が280MPa以上の範囲であると、フィルムのハリ・コシ感が向上し、取り扱いやすくなる。MD方向の引張弾性率が900MPa以下の範囲では、フィルムが適度な硬さとなり、取り扱いやすくなる傾向にある。また、TD方向の引張弾性率が880MPa以下の範囲では、フィルムが適度な硬さとなり、取り扱いやすくなる傾向にある。実用の使用感から、より好ましくは540≦X≦900であり、さらに好ましくは620≦X≦900である。同様に、実用の使用感から、より好ましくは420≦Y≦880であり、さらに好ましくは500≦Y≦880である。TD方向の引張強度、引張伸度及び引張弾性率、並びにMD方向の引張弾性率を上記範囲に制御する方法としては、特に限定されないが、例えば、延伸倍率を流れ方向:4.0以下(好ましくは3.8以下)、流れ方向に垂直な方向:5.8以上にコントロールするか、ガラス転移温度の低い高分子を用いるか、適宜核剤を添加する方法が挙げられる。 Furthermore, the wrap film of the present embodiment has 380 ≦ X 3 for the tensile elastic modulus X 3 (MPa) in the flow direction (hereinafter also referred to as “MD direction”) and the tensile elastic modulus Y (MPa) in the TD direction. Preferably, 380 ≦ X 3 ≦ 900, 280 ≦ Y, and 280 ≦ Y ≦ 880. When the tensile modulus in the MD direction is in the range of 380 MPa or more, the firmness and stiffness of the film are improved, and the film becomes easy to handle. In addition, when the tensile elastic modulus in the TD direction is in the range of 280 MPa or more, the stiffness and stiffness of the film are improved, and the film becomes easy to handle. When the tensile elastic modulus in the MD direction is in the range of 900 MPa or less, the film has an appropriate hardness and tends to be easy to handle. When the tensile modulus in the TD direction is in the range of 880 MPa or less, the film has an appropriate hardness and tends to be easy to handle. From the practical sense of use, more preferably 540 ≦ X 3 ≦ 900, and still more preferably 620 ≦ X 3 ≦ 900. Similarly, from the practical sense of use, more preferably 420 ≦ Y ≦ 880, and still more preferably 500 ≦ Y ≦ 880. The method for controlling the tensile strength in the TD direction, the tensile elongation and the tensile elastic modulus, and the tensile elastic modulus in the MD direction to the above ranges is not particularly limited, but for example, the draw ratio is: flow direction: 4.0 or less (preferably And a direction perpendicular to the flow direction: 5.8 or more, or a method of using a polymer having a low glass transition temperature or adding a nucleating agent as appropriate.
 なお、本実施の形態において、TD方向の引張強度、引張伸度及び引張弾性率、並びにMD方向の引張弾性率は後述の実施例に記載の方法で測定することができる。 In the present embodiment, the tensile strength in the TD direction, the tensile elongation and the tensile elastic modulus, and the tensile elastic modulus in the MD direction can be measured by the methods described in the examples described later.
 本実施の形態のラップフィルムは、ASTM  D-2732に準拠して測定した120℃における熱収縮率について、流れ方向(MD)の熱収縮率が4~30%であり、流れ方向(MD)の熱収縮率と、流れ方向に垂直な方向(TD)の熱収縮率との比(MD/TD)が、2以下である。本実施の形態のラップフィルムは、このように熱収縮率を特定の範囲に制御することにより、特に、高温で加熱した後にも十分な強度を保持し、高温に加熱した後の裂けトラブルを抑制することができる。 In the wrap film of the present embodiment, the heat shrinkage rate in the machine direction (MD) is 4 to 30%, and the heat shrinkage rate at 120 ° C. measured in accordance with ASTM D-2732 is The ratio (MD / TD) of the thermal contraction rate to the thermal contraction rate in the direction (TD) perpendicular to the flow direction is 2 or less. The wrap film of the present embodiment maintains a sufficient strength even after heating at a high temperature, in particular, by controlling the thermal contraction rate within a specific range, and suppresses the tearing trouble after heating to a high temperature. can do.
 本実施の形態のラップフィルムは、120℃における流れ方向(MD)熱収縮率が、実用の使用感からはさらに好ましくは4%~25%であり、より好ましくは4%~20%である。 The wrap film of the present embodiment has a flow direction (MD) heat shrinkage at 120 ° C., more preferably 4% to 25%, and more preferably 4% to 20%, from the practical sense of use.
 なお、本実施の形態において、120℃におけるMD及びTDの熱収縮率は後述の実施例に記載の方法で測定することができる。 In the present embodiment, the thermal shrinkage rates of MD and TD at 120 ° C. can be measured by the method described in the examples described later.
[ラップフィルムの構成成分]
 本実施の形態のラップフィルムは高分子を含む構成成分で形成されていることが好ましい。
[Components of wrap film]
The wrap film of the present embodiment is preferably formed of a component containing a polymer.
 本実施の形態において高分子とは、フィルム形成能のある高分子である。この高分子はフィルム全体の50重量%以上を占める高分子のことを意味する。 In the present embodiment, the polymer is a film-forming polymer. This polymer means a polymer that accounts for 50% by weight or more of the whole film.
 非晶性の高分子では後述するが密着性の付与に有効な表面網目構造を形成できないので本実施の形態ではフィルムの主体となる高分子としては用いないことが好ましい。 Amorphous polymers, which will be described later, can not form a surface network structure effective for imparting adhesion, and therefore, in the present embodiment, it is preferable not to use as a polymer that is the main component of the film.
 ただし、非晶性高分子であっても結晶性高分子が部分的に結晶化できる量であればブレンドして用いることは可能である。さらに、結晶性高分子でも明確な結晶融点を持たないセルロースや芳香族ポリアミドのような水素結合性のポリマーでもよいが、結晶融点が分解温度以上の場合には湿式製膜を試みることになり、溶媒の回収など工程が必要となるので操作的には不利になり、操作性の観点から製造工程での溶融成形が可能である結晶融点が350℃以下のポリマーが好適に用いられる。 However, even if it is an amorphous polymer, it is possible to blend it as long as the crystalline polymer can be partially crystallized. Furthermore, it may be a crystalline polymer or a hydrogen bonding polymer such as cellulose or aromatic polyamide which does not have a clear crystalline melting point, but if the crystalline melting point is higher than the decomposition temperature, a wet film formation is attempted. A process such as recovery of the solvent is required, which is disadvantageous in terms of operation, and from the viewpoint of operability, a polymer having a crystalline melting point of 350 ° C. or less which can be melt-formed in the production process is preferably used.
 本実施の形態のラップフィルムを形成する高分子として、好適にはポリ塩化ビニリデン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂が用いられる。例えばポリオレフィン系樹脂としてはポリエチレン、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1及びこれらを主体とした共重合体等、ポリエステル系樹脂としてはポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリ-1,4-シクロヘキサンジメチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリ乳酸、ポリヒドロキシグリコール酸など、ポリアミド系樹脂としてはナイロン6、ナイロン7、ナイロン66、ナイロン610、ナイロン612、ナイロン46、ナイロン6Tなどを挙げることが出来る。 As polymers forming the wrap film of the present embodiment, polyvinylidene chloride resins, polyolefin resins, polyester resins, and polyamide resins are preferably used. For example, polyethylene resins such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1 and copolymers consisting mainly of these as polyolefin resins, and polyethylene terephthalate, polypropylene terephthalate, poly-1,4-polyester resins as polyester resins Cyclohexane dimethylene terephthalate, polyethylene-2,6-naphthalate, polylactic acid, polyhydroxyglycolic acid, etc., and examples of polyamide resins include nylon 6, nylon 7, nylon 66, nylon 610, nylon 612, nylon 46, nylon 6 T, etc. I can do it.
 本実施の形態のラップフィルムを形成する高分子として、更に好適にはポリ塩化ビニリデン系樹脂組成物を含む。ポリ塩化ビニリデン系樹脂組成物は、塩化ビニリデン単量体の単独重合体であってもよいし、塩化ビニリデン単量体とそれと共重合可能な単量体との共重合体であってもよい。本明細書において、ポリ塩化ビニリデン系樹脂ラップフィルムとは、ポリ塩化ビニリデン系樹脂組成物を含むラップフィルムをいう。ポリ塩化ビニリデン系樹脂組成物は、1種のポリ塩化ビニリデン系樹脂を含むものであってもよいし、2種以上のポリ塩化ビニリデン系樹脂を含むものであってもよい。 More preferably, a polyvinylidene chloride-based resin composition is included as the polymer forming the wrap film of the present embodiment. The polyvinylidene chloride resin composition may be a homopolymer of a vinylidene chloride monomer, or a copolymer of a vinylidene chloride monomer and a monomer copolymerizable therewith. In the present specification, a polyvinylidene chloride resin wrap film refers to a wrap film containing a polyvinylidene chloride resin composition. The polyvinylidene chloride resin composition may contain one polyvinylidene chloride resin, or may contain two or more polyvinylidene chloride resins.
 塩化ビニリデン単量体と共重合可能な単量体としては、特に限定されず、例えば、塩化ビニル、メチルアクリレート、ブチルアクリレート等のアクリル酸エステル、メチルメタアクリレート、ブチルメタアクリレート等のメタアクリル酸エステル、アクリロニトリル、酢酸ビニル等が挙げられる。これらの中でも、酸素・水バリア性と押出加工性とのバランスがとりやすく、フィルム密着性も優れている観点から、塩化ビニルが好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。 The monomer copolymerizable with the vinylidene chloride monomer is not particularly limited. For example, acrylic acid esters such as vinyl chloride, methyl acrylate and butyl acrylate, and methacrylic acid esters such as methyl methacrylate and butyl methacrylate , Acrylonitrile, vinyl acetate and the like. Among these, vinyl chloride is preferable from the viewpoint that the balance between the oxygen / water barrier property and the extrusion processability is easily obtained and the film adhesion is also excellent. These may be used singly or in combination of two or more.
 塩化ビニリデン単量体と、上記単量体との共重合体を用いる場合には、結晶性、加工性及びフィルム物性等の観点から、塩化ビニリデン単量体が85~97質量%と、これと共重合可能な単量体が15~3質量%と、からなる共重合体であることが好ましい。塩化ビニリデン単量体比率を85質量%以上とすることで、酸素・水バリア性やフィルムカット性をさらに向上させることができ、塩化ビニリデン単量体比率を97質量%以下とすることで加工性をさらに向上させることができる。単量体比率は、溶媒としてd-THFを用いてFX-270(日本電子社製)により測定したH-NMRスペクトルの各単量体成分由来のピークの積分比から算出した値である。 When a copolymer of vinylidene chloride monomer and the above-mentioned monomer is used, 85 to 97% by mass of vinylidene chloride monomer is used in view of crystallinity, processability, film physical properties, etc. It is preferable that the copolymer comprises 15 to 3% by mass of a copolymerizable monomer. By setting the vinylidene chloride monomer ratio to 85% by mass or more, oxygen / water barrier properties and film cuttability can be further improved, and by setting the vinylidene chloride monomer ratio to 97% by mass or less, processability Can be further improved. The monomer ratio is a value calculated from the integral ratio of the peaks derived from each monomer component in the 1 H-NMR spectrum measured by FX-270 (manufactured by Nippon Denshi Co., Ltd.) using d-THF as a solvent.
 ポリ塩化ビニリデン系樹脂組成物の重量平均分子量は、特に限定されないが、好ましくは7万~11万、より好ましくは8万~10万であることが好ましい。ポリ塩化ビニリデン系樹脂組成物の重量平均分子量を上記した下限値以上とすることでさらに良好なフィルム強度を得ることができ、上記した上限値以下とすることで加工性をさらに向上させることができる。ここで、重量平均分子量は、移動相としてテトラヒドロフランを用いたゲル浸透クロマトグラフィー(GPC)により測定し、分子量既知のポリスチレンで検量し換算した値である。 The weight average molecular weight of the polyvinylidene chloride resin composition is not particularly limited, but preferably 70,000 to 110,000, and more preferably 80,000 to 100,000. Better film strength can be obtained by setting the weight average molecular weight of the polyvinylidene chloride resin composition to the above lower limit or more, and processability can be further improved by setting the above upper limit or less. . Here, the weight average molecular weight is a value measured by gel permeation chromatography (GPC) using tetrahydrofuran as a mobile phase, and calibrated and converted with polystyrene of known molecular weight.
 ポリ塩化ビニリデン系樹脂組成物には、公知の可塑剤、安定剤等の添加剤を配合することができる。可塑剤としては、特に限定されず、公知のものを用いることもできる。例えば、アセチルトリブチルサイトレート、アセチル化モノグリセライド、ジブチルセバケート等が挙げられる。安定剤としては、特に限定されず、公知のものを用いることもできる。例えば、エポキシ化大豆油、エポキシ化アマニ油等のエポキシ化植物油等が挙げられる。 Additives such as known plasticizers and stabilizers can be blended into the polyvinylidene chloride resin composition. The plasticizer is not particularly limited, and known ones may be used. For example, acetyl tributyl citrate, acetylated monoglyceride, dibutyl sebacate and the like can be mentioned. The stabilizer is not particularly limited, and known ones may be used. For example, epoxidized vegetable oil such as epoxidized soybean oil, epoxidized linseed oil and the like can be mentioned.
 その他にも、本実施の形態の効果を阻害しない範囲で、食品包装材料に用いられる公知の耐候性向上剤、防曇剤、抗菌剤、ポリエステル等のオリゴマー、MBS(メチルメタクリレート・ブタジエン・スチレン)等のポリマー等を添加してもよい。耐候性向上剤としては、特に限定されず、公知のものを用いることもできる。例えば、2-(2’-ヒドロキシ-3’5’-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾールといった紫外線吸収剤等が挙げられる。防曇剤としては、特に限定されず、公知のものを用いることもできる。例えば、グリセリン脂肪酸エステルやジグリセリン脂肪酸エステル、ソルビタン脂肪酸エステルといった界面活性剤等が挙げられる。抗菌剤としては、特に限定されず、公知のものを用いることもできる。例えば、グレープフルーツ種子抽出物や孟宗竹抽出物といった天然物系抗菌剤等が挙げられる。 In addition, known weathering improvers, antifogging agents, antibacterial agents, oligomers such as polyesters, and MBS (methyl methacrylate butadiene styrene) used for food packaging materials, as long as the effects of the present embodiment are not impaired. And the like may be added. The weather resistance improver is not particularly limited, and known ones can also be used. For example, ultraviolet absorbers such as 2- (2'-hydroxy-3'5'-di-tert-butylphenyl) -5-chlorobenzotriazole and the like can be mentioned. The antifogging agent is not particularly limited, and any known one may be used. For example, surfactants such as glycerin fatty acid ester, diglycerin fatty acid ester, sorbitan fatty acid ester and the like can be mentioned. The antibacterial agent is not particularly limited, and known ones may be used. For example, natural product-based antibacterial agents such as grapefruit seed extract and moso bamboo extract can be mentioned.
 本実施の形態のラップフィルムは1層の単独組成である必要は必ずしもなく、多層構造の場合には容器に接触する層が結晶性高分子が主体でAFMの位相像で観察される網目構造を持ち、液状成分を含んでいれば、実用上の密着性は変わりなく、2層以上の多層構造から構成されていてもよい。 The wrap film of the present embodiment does not necessarily have a single composition of one layer, and in the case of a multilayer structure, the layer in contact with the container is mainly a crystalline polymer and has a network structure observed in the phase image of AFM. As long as the liquid component is contained, the adhesion in practical use does not change, and it may be composed of a multilayer structure of two or more layers.
 本実施の形態のラップフィルムは、液状成分を含んでいてもよい。 The wrap film of the present embodiment may contain a liquid component.
 液状成分は、高分子の種類によって好適に用いられる液状成分は各々異なる。そして少なくとも1種類は、フィルムに柔軟性を付与する観点から、例えば、脂肪族炭化水素系の高分子であれば、液状成分中にアルキル基若しくはメチレン連鎖部分を保有するものが好適に用いられるし、エステル系高分子、アミド系高分子ではカルボニル基やエーテル基、水酸基などの水素結合能のある官能基を含むものが好適に用いられる。 The liquid component used differs depending on the type of polymer. And, from the viewpoint of imparting flexibility to the film, at least one kind of polymer of aliphatic hydrocarbon type, for example, one having an alkyl group or a methylene chain moiety in the liquid component is preferably used. Among ester polymers and amide polymers, those containing a functional group having a hydrogen bonding ability such as a carbonyl group, an ether group or a hydroxyl group are suitably used.
 例えば、アルキル基を持つものとしては、ミネラルオイル、流動パラフィン、飽和炭化水素化合物などが挙げられる。カルボニル基やエーテル基、水酸基などの水素結合能のある官能基を含むものとしては、脂肪族アルコール、脂環式アルコール、これらの多価アルコール、及び上述のアルコール成分と脂肪族又は芳香族(多価)カルボン酸とのエステル、脂肪族ヒドロキシカルボン酸とアルコール及び/又は脂肪酸とのエステル、及びこれらエステルの変性物、及びポリオキシエチレンアルキルエーテル及び又はそのエステルなどを挙げることが出来る。さらに具体的には、例えば、グリセリンやジグリセリン、トリグリセリン、テトラグリセリン等のポリグリセリン類、及びこれらをアルコール成分の原料とし、酸成分として、脂肪酸、例えばラウリン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸等とのモノ、ジ、トリエステル、ポリエステル等、又はソルビタンと上記脂肪酸とのエステル、又はエチレングリコール、プロピレングリコール、テトラメチレングリコール、及びこれらの縮合物と上記脂肪酸とのエステル、又は脂肪族ヒドロキシカルボン酸としてクエン酸、リンゴ酸、酒石酸等と炭素数10以下の低級アルコールとのエステル、又は多価カルボン酸としてマロン酸、コハク酸、グルタル酸、アジピン酸等と脂肪族アルコールとのエステル、又はこれらエステルの変性物として、エポキシ化大豆油、エポキシ化アマニ油等が挙げられる。特に、食品包装用ラップとして使用する場合は、食品衛生法で規定されている食品添加物である液状成分が好適に用いられる。また、耐熱性の観点からは液状成分の沸点は200℃以上のものが好適に用いられる。 For example, as what has an alkyl group, mineral oil, liquid paraffin, a saturated hydrocarbon compound etc. are mentioned. Aliphatic alcohols, alicyclic alcohols, polyhydric alcohols thereof, and the above-mentioned alcohol components and aliphatic or aromatic compounds (including aliphatic alcohol, alicyclic alcohol, polyhydric alcohol thereof, and aliphatic or And esters of aliphatic hydroxycarboxylic acids with alcohols and / or fatty acids, modified products of these esters, and polyoxyethylene alkyl ethers and / or esters thereof. More specifically, for example, polyglycerins such as glycerin, diglycerin, triglycerin, tetraglycerin and the like, and these as raw materials of alcohol components, fatty acids as acid components, such as lauric acid, palmitic acid, stearic acid, olein Or mono-, di-, tri-ester, polyester, etc. with acid, linoleic acid, etc., or ester of sorbitan with the above fatty acid, or ethylene glycol, propylene glycol, tetramethylene glycol and esters of these condensates with the above fatty acid, or An ester of citric acid, malic acid, tartaric acid and the like with a lower alcohol having 10 or less carbon atoms as aliphatic hydroxycarboxylic acid, or a polybasic carboxylic acid with malonic acid, succinic acid, glutaric acid, adipic acid and the like with aliphatic alcohol Esters or esters thereof As sex was epoxidized soybean oil, epoxidized linseed oil, and the like. In particular, when used as a food packaging wrap, a liquid component which is a food additive defined by the Food Sanitation Law is preferably used. From the viewpoint of heat resistance, the boiling point of the liquid component is preferably 200 ° C. or higher.
 [ラップフィルムの表面構造]
 本実施の形態のラップフィルムは、少なくとも一層の表面に、原子間力顕微鏡(以下「AFM」とも記す)の位相像で観察される網目構造を有することが好ましい。
[Surface structure of wrap film]
The wrap film of the present embodiment preferably has a network structure observed on a phase image of an atomic force microscope (hereinafter also referred to as “AFM”) on at least one surface of the film.
 本実施の形態のラップフィルムにおいて、網目構造は、AFMの位相像で観察される網目を構成するフィブリルの平均幅が145nm以下であることが好ましい。フィブリルの平均幅が145nm以下の場合には、フィルム強度が適度となり、カット性が向上する。また、カット性が向上することにより、巻戻りの発生率も低下し、リワインド時の裂け発生率も低下する。さらに、延伸後に発達した結晶構造を形成するために、流れ方向(MD)の熱収縮率が低減し、流れ方向(MD)の熱収縮率と、流れ方向に垂直な方向(TD)の熱収縮率の比(MD/TD)も低減する。 In the wrap film of the present embodiment, in the network structure, it is preferable that the average width of fibrils constituting the network observed in the phase image of AFM is 145 nm or less. When the average width of fibrils is 145 nm or less, the film strength becomes appropriate and the cuttability is improved. In addition, as the cuttability is improved, the occurrence rate of rewinding also decreases, and the tear occurrence rate at the time of rewinding also decreases. Furthermore, in order to form a developed crystal structure after drawing, the thermal contraction rate in the machine direction (MD) is reduced, the thermal contraction rate in the machine direction (MD) and the thermal contraction in the direction perpendicular to the machine direction (TD) The ratio of rates (MD / TD) is also reduced.
 また、フィブリルの平均幅は、1nm以上の場合には網目構造が表面の添加剤を保持するのに十分となり、密着性も適度となり、引出性も向上するため好ましい。実用の使用感から、フィブリルの平均幅は、より好ましくは10nm~145nmである。さらにより好ましくは45nm~145nmである。 When the average width of the fibrils is 1 nm or more, the network structure is sufficient to hold the surface additive, the adhesion is appropriate, and the extraction property is also improved, which is preferable. From the practical sense of use, the average width of fibrils is more preferably 10 nm to 145 nm. Even more preferably, it is 45 nm to 145 nm.
 ここで、AFMの位相像とは、AFMのカンチレバーの刺激に対する位相の情報が画像化されたものである。本実施の形態のラップフィルムにおいて、網目構造は、例えば、フィブリルがカンチレバーの刺激に対する位相の遅れの少ない部分で、孔が位相の遅れの大きい部分であり、図1に例示したように、暗い部分が孔、明るい部分がフィブリルである。すなわちフィブリルと孔を比較した場合、孔の部分がより非晶的である。 Here, the phase image of the AFM is obtained by imaging information of the phase to the stimulation of the cantilever of the AFM. In the wrap film of the present embodiment, the network structure is, for example, a portion where the fibrils have a small phase delay with respect to the stimulation of the cantilever and the holes are a portion with a large phase delay, as illustrated in FIG. Is a hole, the bright part is a fibril. That is, when comparing fibrils with pores, the pores are more amorphous.
 なお、本実施の形態において、フィブリルの平均幅は後述の実施例に記載の方法で測定することができる。 In the present embodiment, the average width of fibrils can be measured by the method described in the examples described later.
 また、本実施の形態のラップフィルムにおいて、表面網目構造の形成方法については種々の形成方法があるが、例えば、網目構造は2軸の延伸過程での配向結晶化によって形成させることが出来る。本実施の形態のラップフィルムにおいて、網目構造を発現させるには2軸延伸を行うことにより上述した網目構造とすることが好ましい。ただし、湿式製膜のような場合は積極的な延伸を行わなくても、緊張下での脱溶媒などの工程があれば、収縮応力によって実質的に延伸されるので、自由収縮を起こさせなければ、積極的な2軸延伸を行わなくともよい。 In the wrap film of the present embodiment, there are various methods for forming the surface network structure. For example, the network structure can be formed by oriented crystallization in the process of biaxial stretching. In the wrap film of the present embodiment, in order to develop the network structure, it is preferable to make the network structure described above by performing biaxial stretching. However, in the case of wet film formation or the like, even if there is no aggressive stretching, if there is a process such as desolvation under tension, the film is substantially stretched by the shrinkage stress, so free shrinkage must be caused. For example, positive biaxial stretching may not be performed.
 延伸のタイミングであるが、高分子の結晶化速度が速い場合はその高分子を溶融で押出して空冷し、結晶化させながら延伸させてもよいが、結晶化に時間がかかる場合は、溶融状態での延伸では結晶化が追随せず、有効に配向結晶化がおこらず、網目構造が発現しない場合があるので、一旦固体状態にしたのちガラス転移温度以上で延伸するのが好ましい。また、結晶化速度を早くするために適宜核剤を添加してもよい。 Although it is the timing of stretching, if the crystallization rate of the polymer is high, the polymer may be melted, extruded, air-cooled, and drawn while being crystallized, but if crystallization takes time, the molten state In the stretching in the above, crystallization may not follow, orientation crystallization may not occur effectively, and a network structure may not be developed. Therefore, it is preferable to stretch once at a glass transition temperature after being in a solid state. Also, a nucleating agent may be added as appropriate to accelerate the crystallization rate.
 [ラップフィルムの結晶長周期]
 また、本実施の形態のラップフィルムは、結晶長周期が12.5nm以下であることが好ましく、8.2nm~12.5nmがより好ましい。前記結晶長周期が8.2nm以上の場合、カットした際にフィルムが十分な強度を有し、食品包装用の巻回ラップの場合、カットした場合に縦裂けトラブルが低下する。また、フィルムが十分な強度を有することにより、リワインド時の裂け発生率も低下する。さらに、延伸後に発達した結晶構造を形成するために、流れ方向(MD)の熱収縮率が低減し、流れ方向(MD)の熱収縮率と、流れ方向に垂直な方向(TD)の熱収縮率との比(MD/TD)も低減する。
Crystal long period of wrap film
The wrap film of the present embodiment preferably has a crystal long period of 12.5 nm or less, and more preferably 8.2 nm to 12.5 nm. When the crystal long period is 8.2 nm or more, the film has sufficient strength when cut, and in the case of a wound wrap for food packaging, the problem of longitudinal tearing is reduced when cut. In addition, when the film has sufficient strength, the tearing rate during rewinding also decreases. Furthermore, in order to form a developed crystal structure after drawing, the thermal contraction rate in the machine direction (MD) is reduced, the thermal contraction rate in the machine direction (MD) and the thermal contraction in the direction perpendicular to the machine direction (TD) The ratio to the rate (MD / TD) is also reduced.
 一方、前記結晶長周期が12.5nm以下であると、フィルムが切断しやすくなり、食品包装用の巻回ラップの場合、カットした場合に縦裂けトラブルが低下する。また、フィルムが切断しやすくなるために、リワインド時の裂け発生率も低下する。さらに、延伸後に発達した結晶構造を形成するために、流れ方向(MD)の熱収縮率が低減し、流れ方向(MD)の熱収縮率と、流れ方向に垂直な方向(TD)の熱収縮率との比(MD/TD)も低減する。前記結晶長周期は、実用の使用感からは、さらに好ましくは9.0nm~12.5nmである。 On the other hand, when the crystal long period is 12.5 nm or less, the film tends to be cut, and in the case of a wound wrap for food packaging, the trouble of longitudinal tearing is reduced when cut. In addition, since the film is easily cut, the tearing rate during rewinding is also reduced. Furthermore, in order to form a developed crystal structure after drawing, the thermal contraction rate in the machine direction (MD) is reduced, the thermal contraction rate in the machine direction (MD) and the thermal contraction in the direction perpendicular to the machine direction (TD) The ratio to the rate (MD / TD) is also reduced. The crystal long period is more preferably 9.0 nm to 12.5 nm from the practical sense of use.
 なお、本実施の形態において、結晶長周期は後述の実施例に記載の方法で測定することができる。 In the present embodiment, the crystal long period can be measured by the method described in the examples described later.
[酸素・水バリア性の評価]
 一般に、ラップには鮮度保持のため、酸素バリア性、水バリア性が求められる。
[Evaluation of oxygen and water barrier properties]
In general, an oxygen barrier property and a water barrier property are required for the wrap to maintain the freshness.
 本実施の形態のラップフィルムは、酸素透過度が110cm/m2・day・atm at23℃ 以下であることが好ましく、水蒸気透過度が20g/m2・day at38℃,90%RH 以下であることが好ましい。 The wrap film of the present embodiment preferably has an oxygen permeability of 110 cm 3 / m 2 · day · atm at 23 ° C. or less, and a water vapor permeability of 20 g / m 2 · day at 38 ° C., 90% RH or less Is preferred.
 また、本実施の形態ラップフィルムは、酸素透過度X(cm/m2・day・atm at23℃)が1≦X≦110の範囲であることがより好ましい。酸素透過度が1≦X≦110の範囲であると、酸素バリア性が十分であり、食品の鮮度が十分に保持される。X<1では十分な鮮度保持性能を発現し難い場合があり、X>110では十分なバリア性を発現し難い傾向にある。実用の使用感からさらに好ましくは1≦X≦77であり、よりさらに好ましくは、1≦X≦50である。また、本実施の形態ラップフィルムは、水蒸気透過度Y(g/m2・day at38℃,90%RH)が1≦Y≦20の範囲であることがより好ましい。水蒸気透過度が1≦Y≦20の範囲であると、水蒸気バリア性が十分であり、食品の鮮度が十分に保持される。Y<1では十分な鮮度保持性能を発現し難い場合があり、Y>20では十分なバリア性を発現し難い傾向にある。実用の使用感からさらに好ましくは1≦Y≦18であり、よりさらに好ましくは、1≦Y≦10である。 Further, in the wrap film of the present embodiment, the oxygen permeability X (cm 3 / m 2 · day · atm at 23 ° C) is more preferably in the range of 1 X X 110 110. When the oxygen permeability is in the range of 1 ≦ X ≦ 110, the oxygen barrier property is sufficient, and the freshness of the food is sufficiently maintained. When X <1, it may be difficult to exhibit sufficient freshness retention performance, and when X> 110, it tends to be difficult to exhibit sufficient barrier properties. More preferably, 1 ≦ X ≦ 77, and even more preferably 1 ≦ X ≦ 50, from the practical sense of use. In the wrap film of the present embodiment, the water vapor transmission rate Y (g / m 2 · day at 38 ° C., 90% RH) is more preferably in the range of 1 ≦ Y ≦ 20. When the water vapor transmission rate is in the range of 1 ≦ Y ≦ 20, the water vapor barrier property is sufficient, and the freshness of the food is sufficiently maintained. When Y <1, it may be difficult to exhibit sufficient freshness retention performance, and when Y> 20, it tends to be difficult to exhibit sufficient barrier properties. More preferably, 1 ≦ Y ≦ 18, and still more preferably 1 ≦ Y ≦ 10, from the practical sense of use.
 酸素透過度、並びに水蒸気透過度を上記範囲に制御する方法としては、特に限定されないが、例えば、延伸倍率を流れ方向:4.0以下(好ましくは3.8以下)、流れ方向に垂直な方向:5.8以上にコントロールするか、ガラス転移温度の低い高分子を用いるか、適宜核剤を添加する方法が挙げられる。 The oxygen permeability and the method of controlling the water vapor permeability to the above ranges are not particularly limited. For example, the stretching ratio is a flow direction: 4.0 or less (preferably 3.8 or less), a direction perpendicular to the flow direction The method includes: controlling to 5.8 or more, using a polymer having a low glass transition temperature, or adding an appropriate nucleating agent.
 なお、本実施の形態において、酸素透過度及び水蒸気透過度は後述の実施例に記載の方法で測定することができる。 In the present embodiment, the oxygen permeability and the water vapor permeability can be measured by the methods described in the following examples.
 [ラップフィルムの製造方法]
 次に、本実施の形態のラップフィルムの製造方法の一例について説明する。ポリ塩化ビニリデン系樹脂組成物を含むラップフィルムの製造方法は、種々の方法を採用することができるが、通常、インフレーション製膜法が採用されている。すなわち、本実施の形態によれば、インフレーション成形によって得られるラップフィルムとすることができる。より好ましくは、本実施の形態のラップフィルムは、上記したポリ塩化ビニリデン系樹脂組成物を、少なくともMD方向に延伸してインフレーション成形することによって得られるポリ塩化ビニリデン系樹脂ラップフィルムである。インフレーション製膜法では、例えば、ポリ塩化ビニリデン系樹脂組成物を円形ダイから管状に溶融押出した後、管状の樹脂の外側を冷水槽と呼ばれる貯槽に満たされた冷水等の冷媒に接触させる。その際、ダイ口とピンチロールとに挟まれた管状(筒状)の樹脂の内部に冷媒を注入し貯留した状態で、その内側をミネラルオイル等の冷媒と接触させることにより固化させてフィルムに成形する。本明細書において、このダイ口とピンチロールとに挟まれた筒状の樹脂の部分(押出物)を「ソック」という。このソックの内部に注入する冷媒(液体)を「ソック液」という。また、ソックは上記ピンチロール等で折り畳まれ、管状のダブルプライフィルムを形成するが、このダブルプライフィルムを「パリソン」と称する。
[Method of manufacturing wrap film]
Next, an example of a method of manufacturing the wrap film of the present embodiment will be described. Although various methods can be employ | adopted as a manufacturing method of the wrap film containing a polyvinylidene-chloride type-resin composition, Usually, the inflation film forming method is employ | adopted. That is, according to the present embodiment, a wrap film obtained by inflation molding can be obtained. More preferably, the wrap film of the present embodiment is a polyvinylidene chloride-based resin wrap film obtained by stretching the above-described polyvinylidene chloride-based resin composition at least in the MD direction and performing inflation molding. In the inflation film forming method, for example, a polyvinylidene chloride resin composition is melt extruded in a tubular form from a circular die, and then the outside of the tubular resin is brought into contact with a coolant such as cold water filled in a storage tank called a cold water tank. At that time, in a state where the refrigerant is injected and stored in the inside of a tubular (cylindrical) resin sandwiched between the die opening and the pinch roll, the inside is made to contact with a refrigerant such as mineral oil to solidify it into a film. To mold. In the present specification, a portion (extrudate) of a tubular resin sandwiched between the die opening and the pinch roll is referred to as "sock". The refrigerant (liquid) injected into the interior of this sock is called "sock liquid". Also, the sock is folded by the pinch roll or the like to form a tubular double-ply film, which is referred to as "parison".
 以下、インフレーション製膜法についてより具体的に説明する。図4は、本実施の形態のラップフィルムの製造方法の一例の概念図である。 Hereinafter, the inflation film forming method will be described more specifically. FIG. 4 is a conceptual view of an example of a method for producing a wrap film of the present embodiment.
 まず、押出工程において、溶融したポリ塩化ビニリデン系樹脂組成物が押出機(1)により、円形ダイ(2)のダイ口(3)から管状に押出され、ソック(管状のポリ塩化ビニリデン系樹脂組成物)(4)が形成される。 First, in the extrusion step, the molten polyvinylidene chloride resin composition is extruded into a tubular form from the die port (3) of the circular die (2) by the extruder (1), sock (tubular polyvinylidene chloride resin composition) Object (4) is formed.
 次に、冷却固化工程において、押出物であるソック(4)の外側を冷水槽(6)にて冷水に接触させ、ソック(4)の内部にはソック液(5)を常法により注入して貯留することにより、ソック(4)を内外から冷却して固化させる。この際、ソック(4)はその内側にソック液(5)が塗布された状態となる。固化されたソック(4)は、第1ピンチロール(7)にて折り畳まれ、ダブルプライシートであるパリソン(8)が成形される。ソック液の塗布量は第1ピンチロール(7)のピンチ圧により制御される。 Next, in the cooling / solidifying step, the outer side of the extruded sock (4) is brought into contact with cold water in a cold water tank (6), and the sock liquid (5) is injected into the inside of the sock (4) by a conventional method. The sock (4) is cooled and solidified from the inside and outside by storing it. At this time, the sock (4) is in a state where the sock liquid (5) is applied to the inside thereof. The solidified sock (4) is folded by the first pinch roll (7) to form a double ply sheet parison (8). The application amount of the sock liquid is controlled by the pinch pressure of the first pinch roll (7).
 ソック液には、水、ミネラルオイル、アルコール類、プロピレングリコールやグリセリン等の多価アルコール類、セルロース系やポリビニルアルコール系の水溶液等を用いることができる。これらは単体で使用しても、2種類以上を併用してもよい。また、ソック液には、本実施の形態の効果を阻害しない範囲で、食品包装材料に用いられる上記した耐候性向上剤、防曇剤、抗菌剤等を添加してもよい。 As the sock liquid, water, mineral oil, alcohols, polyhydric alcohols such as propylene glycol and glycerin, and aqueous solutions of cellulose and polyvinyl alcohol can be used. These may be used alone or in combination of two or more. In addition, the above-mentioned weather resistance improver, antifogging agent, antibacterial agent and the like used in food packaging materials may be added to the sock liquid, as long as the effects of the present embodiment are not impaired.
 ソック液の塗布量は、特に限定されないが、パリソンの開口性、フィルムの密着性の観点から、好ましくは50~20000ppm、より好ましくは100~15000ppm、更に好ましくは150~10000ppmである。ここで、塗布量(ppm)とは、ソックの合計質量に対して、ソックに塗布されたソック液の質量を、質量ppmで示したものである。 The application amount of the sock liquid is not particularly limited, but is preferably 50 to 20000 ppm, more preferably 100 to 15000 ppm, still more preferably 150 to 10000 ppm from the viewpoint of the openness of the parison and the adhesion of the film. Here, the application amount (ppm) is the mass of the sock liquid applied to the sock in mass ppm relative to the total mass of the sock.
 続いて、パリソン(8)の内側にエアーを注入することにより、再度パリソン(8)は開口されて管状となる。パリソン(8)は、温水(図示せず)により延伸に適した温度まで再加熱される。パリソン(8)の外側に付着した温水は、第2ピンチロール(9)にて搾り取られる。次いで、インフレーション工程において、適温まで加熱された管状のパリソン(8)にエアーを注入してインフレーション延伸によりバブル(10)を成形し、延伸フィルムが得られる。 Subsequently, by injecting air inside the parison (8), the parison (8) is opened again and becomes tubular. The parison (8) is reheated to a temperature suitable for drawing by hot water (not shown). The warm water adhering to the outside of the parison (8) is squeezed off by the second pinch roll (9). Next, in the inflation step, air is injected into a tubular parison (8) heated to an appropriate temperature to form bubbles (10) by inflation stretching, and a stretched film is obtained.
 ラップフィルムの結晶長周期は延伸倍率、ラップフィルムを構成する高分子の結晶性によってコントロールでき、TD方向への延伸倍率が、MD方向への延伸倍率と比較して大きくなるほど結晶長周期は大きくなる傾向にあり、高分子の結晶性が高くなるほど結晶長周期が大きくなる傾向にある。 The crystal length period of the wrap film can be controlled by the draw ratio and the crystallinity of the polymer constituting the wrap film, and the crystal length period increases as the draw ratio in the TD direction increases compared to the draw ratio in the MD direction There is a tendency, and as the crystallinity of the polymer increases, the crystal long period tends to increase.
 本実施の形態のラップフィルムの製造方法において、未延伸シートを流れ方向と流れ方向に垂直な方向とに延伸する工程を含むことが好ましく、この場合、TD方向の延伸倍率は5.8倍以上、かつMD方向の延伸倍率は4.0倍以下が好ましく、成膜性の観点から、MD方向の延伸倍率が3.4倍より大きく、3.8倍以下がより好ましい。TD方向の延伸倍率の上限は特に限定されないが、例えば、8.5倍以下である。 In the method for producing a wrap film of the present embodiment, it is preferable to include the step of stretching the unstretched sheet in the flow direction and the direction perpendicular to the flow direction, and in this case, the draw ratio in the TD direction is 5.8 or more The stretch ratio in the MD direction is preferably 4.0 times or less, and from the viewpoint of film formability, the stretch ratio in the MD direction is more than 3.4 times, more preferably 3.8 times or less. Although the upper limit of the draw ratio in the TD direction is not particularly limited, it is, for example, 8.5 or less.
 延伸倍率の制御方法としては、特に限定されず、公知の方法を採用することができる。例えば、再加熱用の温水温度を変更することで延伸温度を制御する方法等が挙げられる。延伸倍率を下げるためには、延伸温度が低いほど、延伸倍率が低い状態でインフレーションバブルが安定するため好ましい。その際、延伸温度はインフレーションバブルの安定性の観点から、延伸室温よりも高いことが好ましい。延伸温度はより好ましくは34℃以下であり、更により好ましくは25℃~34℃である。また、延伸温度はMD方向、及び、TD方向へ延伸が完了した点と、巻き取りが開始する点との、MD方向における距離の中間の点における温度を測定する。 It does not specifically limit as control method of a draw ratio, A well-known method is employable. For example, the method etc. which control extending | stretching temperature by changing the warm water temperature for reheating, etc. are mentioned. In order to lower the draw ratio, the lower the draw temperature, the more stable the inflation bubble is in the state of a low draw ratio, which is preferable. At that time, the stretching temperature is preferably higher than the stretching room temperature from the viewpoint of the stability of the inflation bubble. The stretching temperature is more preferably 34 ° C. or less, still more preferably 25 ° C. to 34 ° C. In addition, the stretching temperature is measured at a temperature at an intermediate point of the distance in the MD direction between the completion of the stretching in the MD direction and the TD direction and the point at which the winding starts.
 その後、延伸フィルムは、第3ピンチロール(11)で折り畳まれ、ダブルプライフィルム(12)となる。ダブルプライフィルム(12)は、巻取りロール(13)にて巻き取られる。さらに、このフィルムはスリットされて、1枚のフィルムになるように剥がされる(シングル剥ぎ)。最終的にこのフィルムは紙管等の巻芯に巻き取られ、紙管巻きのラップフィルム巻回体が得られる。 Thereafter, the stretched film is folded by the third pinch roll (11) to form a double ply film (12). The double ply film (12) is taken up by a take-up roll (13). In addition, the film is slit and peeled off into a single film (single peel). Finally, the film is wound on a core of a paper tube or the like to obtain a wrap film wound body of paper tube winding.
 結晶長周期は延伸倍率だけでなく、熱履歴にも影響される。ラップフィルムが熱履歴を受けると結晶長周期は低下し、引裂強度が低下する傾向にある。そのため、ラップフィルムが過度の熱履歴を受けないようにすることが好ましい。例えば、エージング処理を行う場合だけでなく、夏場にラップフィルムを搬送する場合や、家庭での使用時にラップフィルムをコンロ等の熱源近傍に置く場合等のような種々の環境下においてもフィルムが高い熱履歴を受けないようにすることが好ましく、これにより結晶長周期が低くなりすぎることを防ぎ、フィルムが裂けやすくなることを防止できる。 The crystal long period is influenced not only by the draw ratio but also by the heat history. When the wrap film is subjected to a heat history, the crystal long period tends to decrease and the tear strength tends to decrease. Therefore, it is preferable to prevent the wrap film from receiving an excessive heat history. For example, the film is high not only in the case of aging treatment, but also in various environments such as when transporting a wrap film in summer, or placing the wrap film near a heat source such as a stove at home use. It is preferable not to receive a heat history, which can prevent the crystal long period from being too low and can prevent the film from being easily torn.
 上記した説明は、本実施の形態のラップフィルムの製造方法の一例であり、上記した以外の各種装置構成や条件等によって行ってもよく、例えば、公知の他の方法を採用してもよい。 The above description is an example of the method for producing the wrap film of the present embodiment, and may be performed according to various apparatus configurations and conditions other than those described above, and for example, other known methods may be adopted.
 [巻回体]
 本実施の形態のラップフィルムは、種々の形態で使用することができ、例えば、ロール状のポリ塩化ビニリデン系樹脂ラップフィルムとすることができる。ロール状のラップフィルムとした場合、巻芯があってもよいし、巻芯がなくてもよい。
[Winding body]
The wrap film of the present embodiment can be used in various forms, and can be, for example, a roll-like polyvinylidene chloride resin wrap film. In the case of a roll-shaped wrap film, there may be a core or no core.
 巻芯に巻きつける形態とする場合、例えば、円筒状の巻芯と、前記巻芯に巻きとられた本実施の形態のポリ塩化ビニリデン系樹脂ラップフィルムと、を備えるラップフィルム巻回体とすることができる。巻回体とは、ラップフィルムを巻芯等に巻取るなどして巻物の形状であるものをいう。 In the case of winding around a winding core, for example, a wrap film winding body including a cylindrical winding core and the polyvinylidene chloride resin wrap film of the present embodiment wound around the winding core is used. be able to. The wound body refers to a wound film obtained by winding a wrap film around a core or the like.
 ロール状のラップフィルム等の使用時に発生する巻戻りトラブルは、本実施の形態のラップフィルムでは効果的に抑制できる。巻芯の材質や大きさ等は特に限定されず、紙管等の公知の巻芯を用いることができる。さらに、ラップフィルムがロール状であれば巻芯はあってもなくてもよい。本実施の形態のラップフィルム巻回体は、ラップフィルムを切断する切断刃を有する化粧箱に格納して使用することができる。 Rewind problems that occur when using a roll-shaped wrap film or the like can be effectively suppressed by the wrap film of the present embodiment. The material, size, and the like of the winding core are not particularly limited, and a known winding core such as a paper tube can be used. Furthermore, if the wrap film is in the form of a roll, the core may or may not be present. The wrap film roll of the present embodiment can be stored and used in a decorative box having a cutting blade for cutting the wrap film.
 [ラップフィルムの厚み]
 本実施の形態のラップフィルムの厚みは、特に限定されないが、使用感及び光学特性の観点から、5~30μmが好ましく、5~15μmがより好ましい。
[Lap film thickness]
The thickness of the wrap film of the present embodiment is not particularly limited, but is preferably 5 to 30 μm and more preferably 5 to 15 μm from the viewpoint of feeling in use and optical characteristics.
 [密着性の評価]
 次に、本実施の形態のラップフィルムは密着仕事量X(mJ/25cm)が1≦X≦2.5の範囲である。1≦Xであると、ラップフィルムは充分な密着性を発現する傾向にある。また、X≦2.5であると、ラップフィルムの剥離が容易となりいわゆる過剰密着を抑制でき、食品包装用の巻回ラップの場合は引き出しが容易となる傾向にある。実用の使用感からはさらに好ましくは1.5≦X≦2.4であり、より好ましくは1.8≦X≦2.3である。
[Evaluation of adhesion]
Next, in the wrap film of the present embodiment, the work amount of adhesion X (mJ / 25 cm 2 ) is in the range of 1 ≦ X ≦ 2.5. When 1 ≦ X, the wrap film tends to exhibit sufficient adhesion. Moreover, peeling of a wrap film becomes easy in it being X <= 2.5, so-called excessive adhesion can be suppressed, and in the case of a winding wrap for food packaging, it tends to become easy to draw out. From the practical sense of use, it is further preferable that 1.5 ≦ X ≦ 2.4, and more preferably 1.8 ≦ X ≦ 2.3.
 [加熱後の裂けにくさの評価]
 以上の要領で製造されたラップフィルムは、流れ方向に垂直な方向(TD)への延伸が、流れ方向(MD)に比較して、高倍率で延伸されており、かつ、成膜安定性が確保できる範囲内で、流れ方向に垂直な方向(TD)、及び、流れ方向(MD)に延伸しているので、120℃において、流れ方向(MD)の熱収縮率を4%~30%に制御することができ、流れ方向(MD)の熱収縮率と、流れ方向に垂直方向(TD)の熱収縮率との比(MD/TD)を、2以下に制御することができる。このような熱収縮特性をラップフィルムが持つことにより、油脂性の食品などの内容物を容器に入れ、ラップフィルムを容器に被せて密着させた後、電子レンジなどで加熱して、ラップフィルムが高温に曝された後に、ラップフィルムを剥がす際に、ラップフィルムが破断し、破片が食品に混入することを抑制することができる。本実施の形態のラップフィルムは、120℃における流れ方向(MD)熱収縮率が、実用の使用感からはさらに好ましくは4%~25%であり、より好ましくは4%~20%である。
[Evaluation of tear after heating]
In the wrap film produced in the above manner, the stretching in the direction (TD) perpendicular to the flow direction is stretched at a higher magnification than the flow direction (MD), and the film formation stability is Since the film is stretched in the direction (TD) perpendicular to the flow direction and in the flow direction (MD) within the range that can be secured, the heat shrinkage rate in the flow direction (MD) is 4% to 30% at 120 ° C. The ratio (MD / TD) of the thermal contraction rate in the flow direction (MD) to the thermal contraction rate in the direction perpendicular to the flow direction (TD) can be controlled to 2 or less. Since the wrap film has such heat-shrinkable properties, the contents such as greasy food are put in a container, the wrap film is put on the container and brought into close contact, and then the wrap film is heated by a microwave oven or the like. After being exposed to high temperature, when peeling off the wrap film, the wrap film can be broken, and the inclusion of fragments in the food can be suppressed. The wrap film of the present embodiment has a flow direction (MD) heat shrinkage at 120 ° C., more preferably 4% to 25%, and more preferably 4% to 20%, from the practical sense of use.
 以下、実施例及び比較例を挙げて本発明をさらに詳細に説明する。また、AFMによるラップフィルム表面網目構造の観察、ラップフィルムの結晶長周期、引裂強度、縦裂けトラブル率、密着性、引張強度・引張伸度、引張弾性率、ハリ・コシ感、透明性、巻き戻り率、酸素透過度、水蒸気透過度、熱収縮率、加熱後の裂けにくさ、リワインド時の裂け発生率の評価には以下の測定方法を使用した。 Hereinafter, the present invention will be described in more detail by way of examples and comparative examples. In addition, observation of the surface network structure of the wrap film by AFM, crystal length period of the wrap film, tear strength, longitudinal tear failure rate, adhesion, tensile strength / tensile elongation, tensile modulus, stiffness, stiffness, transparency, winding The following measurement methods were used to evaluate the rate of return, oxygen permeability, water vapor permeability, heat shrinkage rate, tear resistance after heating, tearing rate during rewinding.
(1)AFM測定
 フィルムをSiウエハに貼付け固定し、表面をブルカー社製Dimension IconにてTappingモードで位相像を観察した。測定にはSi単結晶のカンチレバー(ばね定数 カタログ値 40N/m)を用い、Scan rateが0.5-2Hz、Scansizeが1μm×1μmで、サンプリング点数512×256若しくは512×512の条件で実施した。フィルムによってカンチレバーの触圧をコントロールしたが、target amplitudeが400mVの場合はSet Pointが240-320mV、target amplitudeが800mV の場合はSet Pointが450-500mVの範囲であった。フィブリルの幅(フィブリル径)計測の際は各位相像について1画像を4分割し、各領域毎に典型的と思われるフィブリルを5箇所選択し、特にフィブリル径が大きかったもの計5箇所の平均値をフィブリルの平均幅として採用した。
(1) AFM Measurement A film was attached and fixed to a Si wafer, and the surface was observed with a Bruker Dimension Icon in a tapping mode using a phase image. The measurement was performed using a single crystal Si cantilever (spring constant catalog value: 40 N / m) under conditions of a scan rate of 0.5-2 Hz, a scan size of 1 μm × 1 μm, and a sampling number of 512 × 256 or 512 × 512. . The film controlled the contact pressure of the cantilever, but when the target amplitude was 400 mV, the Set Point was 240-320 mV, and when the target amplitude was 800 mV, the Set Point was 450-500 mV. When measuring the width (fibril diameter) of fibrils, one image is divided into four for each phase image, and five fibrils that are considered to be typical are selected in each region, and the average value of a total of 5 locations especially when the fibril diameter is large. Was adopted as the average width of fibrils.
(2)結晶長周期測定
 結晶長周期は、以下の装置、条件で小角X線散乱(SAXS)測定をして求めた。
装置      (株)リガク製 NANOPIX
X線入射方向  フィルム法線方向
X線波長    0.154nm
光学系     ポイントコリメーション
        (1st:0.55mmΦ、2nd:Open、guard:0.35mmΦ)
検出器     HyPix-6000(2次元検出器)
カメラ長    SAXS:1113mm
露光時間    比較例5~8、10、12      :10分/1試料
        実施例1~9、比較例1~4、9、11:1時間/1試料
HyPix-6000から得られたX線散乱パターンに対して検出器のバックグラウンド補正、空セル散乱補正を行った。その後、円環平均を行い、SAXSプロフィールI(q)を得た。さらに、SAXSプロフィールI(q)に対して、qをかけるローレンツ補正を行った。ローレンツ補正済みのSAXSプロフィールの結晶長周期由来のピークの散乱ベクトルの大きさを(式1)からブラッグ角θを算出し、これをブラッグの式(式2)に代入し、結晶長周期dを算出した。
(2) Crystal Long Period Measurement The crystal long period was determined by small angle X-ray scattering (SAXS) measurement under the following apparatus and conditions.
Equipment (Rigaku Co., Ltd.) NANOPIX
X-ray incidence direction Film normal direction X-ray wavelength 0.154 nm
Optical system point collimation (1st: 0.55mm 、, 2nd: Open, guard: 0.35mm))
Detector HyPix-6000 (2D Detector)
Camera length SAXS: 1113 mm
Exposure time Comparative examples 5-8, 10, 12: 10 minutes / one sample Examples 1-9, comparative examples 1-4, 9, 11: 1 time / one sample X-ray scattering pattern obtained from HyPix-6000 The background correction of the detector and the empty cell scatter correction were performed. Thereafter, circular averaging was performed to obtain a SAXS profile I (q). Further, with respect SAXS profile I (q), was Lorentz correction applying q 2. The magnitude of the scattering vector of the peak derived from the crystal long period of the SAXS profile after Lorentz correction is calculated from (Equation 1), and the Bragg angle θ is substituted into the Bragg equation (Equation 2) to obtain the crystal long period d Calculated.
q=4π sinθ/λ        式(1)
θ:ブラッグ角
q:散乱ベクトルの大きさ
λ:X線波長
q = 4π sinθ / λ equation (1)
θ: Bragg angle q: Scattering vector size λ: X-ray wavelength
2d sinθ=λ          式(2)
d:結晶長周期
θ:ブラッグ角
λ:X線波長
2d sin θ = λ equation (2)
d: crystal long period θ: Bragg angle λ: X-ray wavelength
(3)引裂強度
 ASTM-D-1992に準拠して測定した。測定は23℃、50%RHの雰囲気中で行った。軽荷重引裂試験機(東洋精機製)を用いて、MD方向とTD方向の引裂強度を測定した(単位:cN)。
(3) Tear strength Measured in accordance with ASTM-D-1992. The measurement was performed in an atmosphere of 23 ° C. and 50% RH. The tear strength in the MD direction and the TD direction was measured (unit: cN) using a light load tear tester (manufactured by Toyo Seiki Co., Ltd.).
(4)縦裂けトラブル率
 市販のラップフィルムの化粧箱(旭化成ホームプロダクツ社製、商品名サランラップ(登録商標)の化粧箱、30cm×20m)を使用し、カットテストを行った。テストは23℃、50%RHの雰囲気中で行った。化粧箱の開度を30°に固定してフィルムのカットを行い、カット後のフィルムを引き出す際にフィルムの縦裂けが発生する確率(%)を算出した。N数は500回で行った(単位:%)。
(4) Longitudinal tear trouble rate A cut test was performed using a commercially available wrap film cosmetic box (Asahi Kasei Home Products Co., Ltd., cosmetic box with a trade name Saran Wrap (registered trademark), 30 cm × 20 m). The test was performed in an atmosphere of 23 ° C. and 50% RH. The film was cut with the opening degree of the decorative box fixed at 30 °, and the probability (%) of longitudinal tearing of the film was calculated when the cut film was pulled out. N was performed 500 times (unit:%).
(5)密着性
 ラップフィルムを家庭で使用することを想定し、ラップフィルム同士の密着性を評価した。測定は23℃、50%RHの雰囲気中で行った。まず底面積25cm、高さ55mm、重さ400gのアルミ製の治具を2個用意し、双方の治具の底面に底面積と同面積の濾紙を貼り付けた。双方の治具の濾紙を貼り付けた底面に皺が入らないようにラップフィルムを被せて輪ゴムで抑えて固定した。ラップフィルムを被せた側の底面が重なり合うように2個の治具を合わせて、荷重500gで1分間圧着した。次いで、引張圧縮試験機(島津製作所製)にて5mm/分の速度で双方のラップフィルム面を相互に面に垂直に引き剥したときに必要な仕事量を測定した(単位:mJ/25cm)。
(5) Adhesion Assuming that the wrap film is used at home, the adhesion between the wrap films was evaluated. The measurement was performed in an atmosphere of 23 ° C. and 50% RH. First, two aluminum jigs having a bottom area of 25 cm 2 , a height of 55 mm and a weight of 400 g were prepared, and filter papers having the same area as the bottom areas were attached to the bottoms of both jigs. A wrap film was placed on the bottom of the filter paper of both jigs so as not to get wrinkles on it, and was held down with a rubber band and fixed. The two jigs were combined so that the bottom surface of the side on which the wrap film was put would overlap, and was crimped for 1 minute with a load of 500 g. Next, the work required was measured when both wrap film surfaces were peeled off perpendicularly to each other at a speed of 5 mm / min using a tensile compression tester (manufactured by Shimadzu Corporation) (unit: mJ / 25 cm 2 ).
(6)引張強度・引張伸度
 ASTM-D-882に準拠して測定した。測定は23℃、50%RHの雰囲気中で行った。引張圧縮試験機(島津製作所製)にて300mm/分の速度で、幅1cm、チャック間距離10cmにセットしたラップフィルムを上下に引っ張り、破断した際の強度(単位:MPa)、及び、伸度(単位:%)を測定した。
(6) Tensile strength and tensile elongation Measured in accordance with ASTM-D-882. The measurement was performed in an atmosphere of 23 ° C. and 50% RH. Strength (unit: MPa) and elongation at break when a wrap film set to a width of 1 cm and a distance between chucks of 10 cm is pulled up and down at a speed of 300 mm / min with a tensile compression tester (manufactured by Shimadzu Corporation) (Unit:%) was measured.
(7)引張弾性率
 ASTM-D-882に準拠して測定した。フィルムのMD方向、及び、TD方向に平行な方向へ、長さ12cm、幅1cmでフィルムを切り出して測定試料とした。測定は23℃、50%RHの雰囲気中で行った。引張圧縮試験機(島津製作所製)にて、チャック間距離10cmにセットしたラップフィルムを上下に5mm/分の速度で、引っ張り、2%変位した点(ストローク2mm)での強度を50倍して、100%変位へ換算する事で測定した(単位:MPa)。
(7) Tensile modulus of elasticity Measured in accordance with ASTM-D-882. The film was cut out with a length of 12 cm and a width of 1 cm in the direction parallel to the MD direction and the TD direction of the film to prepare a measurement sample. The measurement was performed in an atmosphere of 23 ° C. and 50% RH. Using a tensile compression tester (manufactured by Shimadzu Corporation), pull the lap film set at a distance of 10 cm between the chucks at a speed of 5 mm / min to increase the strength at 50% displacement (stroke 2 mm) by 50 And 100% displacement (unit: MPa).
(8)ハリ・コシ感の評価
 熟練したパネリスト20人を用意して、開口部の直径15cmのガラス容器に長さ、幅共30cmのラップフィルムを使用し、該容器を覆う際の使用感を加味し下記要領にて評価を行った。
(8) Evaluation of stiffness and stiffness A panel of 20 skilled panelists is prepared, and a wrap film of 30 cm in length and 30 cm in width is used for a glass container having a diameter of 15 cm at the opening. Evaluation was performed according to the following procedure.
評価記号内容
A : ハリ・コシ感が極めて優れ、取り扱いが極めて容易である。
B : ハリ・コシ感が優れ、取り扱い上問題を感じない。
C : ハリ・コシ感が劣るが、取り扱い上問題を感じない。
D : ハリ・コシ感が劣り使い難い。
Evaluation Symbol Content A: The feeling of stiffness and stiffness is extremely excellent and the handling is extremely easy.
B: The feeling of stiffness and stiffness is excellent, and I do not feel any problems in handling.
C: The feeling of stiffness is poor, but I do not feel any problem in handling.
D: Hard and hard to use.
(9)ヘイズ
 JIS-K-7136に準拠して測定した。測定は23℃、50%RHの雰囲気中で行った。濁度計(日本電色社製)を用いて、ヘイズを測定した(単位:%)。
(9) Haze Measured in accordance with JIS-K-7136. The measurement was performed in an atmosphere of 23 ° C. and 50% RH. The haze was measured using a turbidity meter (manufactured by Nippon Denshoku Co., Ltd.) (unit:%).
(10)リワインド時の裂け発生率の評価
 ダブルプライフィルムをスリットして、1枚のフィルムになるように剥がした後、市販のラップフィルムの紙管(旭化成ホームプロダクツ社製、商品名サランラップの紙管、30cm×20m)を使用し、フィルムを紙管に巻き取った。巻き取りの際のフィルム搬送速度は300m/分で行い、巻長は20mで行った。巻き取り作業中に、フィルムが裂けてフィルムが搬送出来なくなる確率(%)を算出した。N数は3000回で行った(単位:%)。下記要領にて評価を行った。
(10) Evaluation of tearing rate during rewinding Double-ply film is slit and peeled off into one film, and then a paper tube of a commercially available wrap film (paper made by Asahi Kasei Home Products Co., Ltd., trade name Saran wrap) The film was wound on a paper tube using a tube, 30 cm × 20 m). The film transport speed during winding was 300 m / min, and the winding length was 20 m. During the winding operation, the probability (%) of the film being torn and the film being unconveyable was calculated. The N number was 3000 times (unit:%). Evaluation was conducted as follows.
評価記号内容
A : リワインド時の裂け発生率 0.03%以下 (裂け発生本数 1本以下 / 3000本)。
B : リワインド時の裂け発生率 0.03%より高く0.07%以下 (裂け発生本数 1本より多く2本以下 / 3000本)。
C : リワインド時の裂け発生率 0.07%より高く0.10%以下 (裂け発生本数 2本より多く3本以下 / 3000本)。
D : リワインド時の裂け発生率 0.10%より高い (裂け発生本数 3本より多い / 3000本)。
Evaluation symbol contents A: Rip incidence rate at rewinding 0.03% or less (Rip incidence number 1 or less / 3000).
B: Rip incidence rate during rewinding is higher than 0.03% and lower than or equal to 0.07% (more than 1 and less than 2/3000).
C: The incidence of tearing during rewinding is higher than 0.07% and not more than 0.10% (more than 2 occurrences of tearing and 3 or less).
D: The occurrence rate of tearing during rewinding is higher than 0.10% (more than 3 occurrences of tearing / 3000).
(11)熱収縮率
 ASTM  D-2732に準拠して測定した。測定は、設定温度(120℃)に調節された恒温槽内でラップフィルムの試料を1分間静置した。1分が経過したら、恒温槽からラップフィルムを取り上げて、23℃、50%RHの雰囲気中で、30分以内に当初つけた印の長さを、流れ方向(MD)及び流れ方向に垂直な方向(TD)のそれぞれについて測定した。この時原長10cmからの減少値を、原長10cmに対する割合として百分率で求めた。この求めた百分率が、熱収縮率となる。
(11) Thermal shrinkage was measured in accordance with ASTM D-2732. The measurement set | placed the sample of the wrap film for 1 minute in the thermostat which was adjusted to preset temperature (120 degreeC). When one minute has passed, take the wrap film from the thermostatic chamber and in the atmosphere of 23 ° C., 50% RH, length of the mark originally applied within 30 minutes, perpendicular to the flow direction (MD) and the flow direction It measured about each of direction (TD). At this time, the decrease value from the original length of 10 cm was determined as a percentage to the original length of 10 cm. The calculated percentage is the thermal contraction rate.
(12)120℃加熱後 裂けにくさの評価
 ラップフィルムを電子レンジで使用することを想定し、ラップフィルムを加熱した際の裂けにくさを評価した。紙管に巻き取ったラップフィルムを巻き出し、MD方向、及び、TD方向に平行な方向へ、長さ10cm、幅10cmでフィルムを切り出して評価試料とした。切り出した試料のTD方向に平行な端面の内、巻き出し側(表層に近い側)の端面に、切込みを入れた。切込みは、評価者が、紙管に巻いたラップフィルムを正面から見た際に、巻回体を、巻き出し側の端面が上方向から巻き出されるように置き、その際に、評価者から見て左側となる方向へ、中央から1/√2cm移動した位置から、TD方向に平行な端面とのなす角の角度が、45°で、1cmの長さで切込みを入れた。上述の手順で切込みを入れたラップフィルムの試料を、設定温度(120℃)に調節された恒温槽内でラップフィルムの試料を1分間静置した。1分が経過したら、恒温槽からラップフィルムを取り上げて、23℃、50%RHの雰囲気中で、裂けにくさの評価を行った。裂けにくさの評価は、上述の手順で切込みを入れたラップフィルムの端面の内、切込みを入れた端面の中央に重りを吊り下げて耐荷重を測定した。重りは10gの重りから、20g,30g、40g,50g,60g,70gと軽い方から順に吊り下げていき、ラップフィルムが裂けた際の最大荷重を測定した。ラップフィルムが裂けた際の最大荷重が重い程、ラップフィルムを高温で加熱した後に裂けにくい。N数は500回で行い、500回の平均値を算出し、下記要領にてラップフィルムが高温で加熱した後の裂けにくさの判定を行った。
(12) Evaluation of tear hardness after heating at 120 ° C. Assuming that the wrap film is used in a microwave oven, the tear resistance when the wrap film was heated was evaluated. The wrap film wound up on a paper tube was unwound, and a film having a length of 10 cm and a width of 10 cm was cut out in a direction parallel to the MD direction and the TD direction and used as an evaluation sample. Among the end faces parallel to the TD direction of the cut-out sample, a cut was made in the end face on the unwinding side (the side close to the surface layer). When the evaluator sees the wrap film wound on the paper tube from the front, the inclining places the wound body so that the end face on the unwinding side is unwound from the top, and at that time, from the evaluator From the position moved 1 / √2 cm from the center in the direction to become the left side, the angle formed by the end face parallel to the TD direction was 45 °, and a cut was made with a length of 1 cm. The lapping film sample cut in the above-described procedure was allowed to stand for 1 minute in a thermostatic bath adjusted to a set temperature (120 ° C.). After one minute, the wrap film was taken out of the thermostatic chamber and evaluated for tearing resistance in an atmosphere of 23 ° C. and 50% RH. The evaluation of the tear resistance was carried out by measuring the load resistance by suspending a weight at the center of the end face of the incision into which the end of the lap film was cut according to the above-mentioned procedure. The weight was suspended in order from the lighter side of 20 g, 30 g, 40 g, 50 g, 60 g, 70 g from a 10 g weight, and the maximum load when the wrap film was torn was measured. The heavier the maximum load when the wrap film is torn, the harder it is to tear after heating the wrap film at high temperature. The N number was 500 times, the average value of 500 times was calculated, and the degree of tearing after the wrap film was heated at a high temperature was judged in the following manner.
評価記号内容
A : 裂けが発生した際の最大荷重平均値が、60gよりも重い。
B : 裂けが発生した際の最大荷重平均値が、50gよりも重く、60g以下。
C : 裂けが発生した際の最大荷重平均値が、40gよりも重く、50g以下。
D : 裂けが発生した際の最大荷重平均値が、40g以下。
Evaluation Symbol Content A: The maximum load average value when a tear occurs is heavier than 60 g.
B: The maximum load average value when cracking occurred was heavier than 50 g and not more than 60 g.
C: The maximum load average value when cracking occurred was heavier than 40 g and not more than 50 g.
D: The maximum load average value at the time of tearing is 40 g or less.
(13)酸素透過度
 MOCON社製 OX TRAN 2/21MH<商品名>を用い、測定法はASTM D3985に従って酸素透過度を測定した。サンプルを装置にセットして4時間後の値を採用した。測定は23℃の条件下で行った。酸素透過度が小さいほど酸素バリア性が高い。
(13) Oxygen Permeability The oxygen permeability was measured according to ASTM D 3985 using OX TRAN 2/21 MH (trade name) manufactured by MOCON. The sample was set in the apparatus and the value after 4 hours was adopted. The measurement was performed under the condition of 23 ° C. The lower the oxygen permeability, the higher the oxygen barrier property.
(14)水蒸気透過度
 MOCON社製 PERMATRAN W-398<商品名>を用い、測定法はASTM F1249に従って水蒸気透過度を測定した。サンプルを装置にセットして3時間後の値を採用した。測定は38℃、90%RHの条件下で行った。水蒸気透過度が小さいほど水バリア性が高い。
(14) Water Vapor Permeability The water vapor permeability was measured according to ASTM F1249 using PERMATRAN W-398 (trade name) manufactured by MOCON. The sample was set in the apparatus and the value after 3 hours was adopted. The measurement was performed under conditions of 38 ° C. and 90% RH. The smaller the water vapor permeability, the higher the water barrier property.
(15)巻戻り率
 市販のラップフィルムの化粧箱(旭化成ホームプロダクツ社製、商品名サランラップの化粧箱、30cm×20m)を使用し、カットテストを行った。テストは23℃、50%RHの雰囲気中で行った。化粧箱の開度を30°に固定してフィルムのカットを行い、カット後のフィルムを引き出す際にフィルムの巻戻りが発生する確率(%)を算出した。N数は500回で行った(単位:%)。
(15) Rewinding rate A cut test was performed using a commercially available wrap film vanity box (Asahi Kasei Home Products Co., Ltd., brand name Saran lap box, 30 cm × 20 m). The test was performed in an atmosphere of 23 ° C. and 50% RH. The film was cut with the degree of opening of the decorative box fixed at 30 °, and the probability (%) of film rewinding occurring when the film after cut was pulled out was calculated. N was performed 500 times (unit:%).
[実施例1]
 重量平均分子量が9万である塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で溶融させ、溶融押出機にて溶融押出し、得られたパリソンを、インフレーション延伸して筒状フィルムとした。重量平均分子量は、移動相としてテトラヒドロフランを用いたゲル浸透クロマトグラフィー(GPC)により測定し、分子量既知のポリスチレンで検量し換算した値である。
 このとき、MD方向の延伸倍率を3.8倍とし、TD方向の延伸倍率を5.8倍にした。また、延伸温度は26℃とした。この筒状フィルムを折り畳み、巻き取った後、300mm幅にスリットし、1枚のフィルムになるように剥がしながら、外径36.6mm、長さ305mmの紙管に20m巻取り、厚み約10μmの紙管巻きラップフィルムを製造した。
  得られたフィルムのAFM測定、SAXS測定、引裂強度、引張伸度、引張弾性率、熱収縮率、120℃加熱後裂けにくさ、リワインド時の裂け発生率、巻戻り率、酸素透過度、透湿度、密着性、透明性について評価した結果を表1に示す。
Example 1
A polyvinylidene chloride resin composition having a weight average molecular weight of 90,000 vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) is melted at a temperature of 170 ° C. and melted by a melt extruder. The parison obtained was extruded and stretched by inflation to form a tubular film. The weight average molecular weight is a value measured by gel permeation chromatography (GPC) using tetrahydrofuran as a mobile phase, and calibrated and converted with polystyrene of known molecular weight.
At this time, the draw ratio in the MD direction was 3.8 times, and the draw ratio in the TD direction was 5.8 times. The stretching temperature was 26 ° C. This tubular film is folded and wound, slit into a width of 300 mm, and peeled off to form a single film, and wound 20 m on a paper tube with an outer diameter of 36.6 mm and a length of 305 mm, and a thickness of about 10 μm A paper tube wrap film was produced.
The obtained film was subjected to AFM measurement, SAXS measurement, tear strength, tensile elongation, tensile modulus, thermal contraction rate, tearing after heating at 120 ° C., tearing rate during rewinding, recoiling rate, oxygen permeability, permeability The results of evaluation of the humidity, adhesion and transparency are shown in Table 1.
[実施例2]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で溶融させ、溶融押出機にて溶融押出し、得られたパリソンを、インフレーション延伸して筒状フィルムとした。
 MD方向の延伸倍率を3.6倍、TD方向の延伸倍率を6.0倍にした。また、延伸温度は25℃とした。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表1に示す。
Example 2
The polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) is melted at a temperature of 170 ° C., and melt extruded by a melt extruder to obtain the obtained parison, Inflation stretching was performed to obtain a tubular film.
The stretching ratio in the MD direction was 3.6 times, and the stretching ratio in the TD direction was 6.0 times. The stretching temperature was 25 ° C. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 1.
[実施例3]
塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で溶融させ、溶融押出機にて溶融押出し、得られたパリソンを、インフレーション延伸して筒状フィルムとした。
 MD方向の延伸倍率を3.5倍、TD方向の延伸倍率を6.1倍にした。また、延伸温度は25℃とした。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表1に示す。
[Example 3]
The polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) is melted at a temperature of 170 ° C., and melt extruded by a melt extruder to obtain the obtained parison, Inflation stretching was performed to obtain a tubular film.
The draw ratio in the MD direction was 3.5 times, and the draw ratio in the TD direction was 6.1 times. The stretching temperature was 25 ° C. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 1.
[実施例4]
 主体となる結晶性高分子(ポリ乳酸 85重量部)に液状成分(グリセリンジアセテートモノラウレート 15重量部)を220℃の温度で混合溶融させ、溶融押出機にて溶融押出し、得られたパリソンを、インフレーション延伸して筒状フィルムとした。
 MD方向の延伸倍率を3.8倍、TD方向の延伸倍率を8.0倍にした。また、延伸温度は33℃とした。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表1に示す。
Example 4
A liquid component (15 parts by weight of glycerol diacetate monolaurate) is mixed and melted at a temperature of 220 ° C. with a crystalline polymer (85 parts by weight of polylactic acid) as a main component, and melt extruded by a melt extruder to obtain a parison Was subjected to inflation stretching to obtain a tubular film.
The stretching ratio in the MD direction was 3.8 times, and the stretching ratio in the TD direction was 8.0 times. The stretching temperature was 33 ° C. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 1.
[実施例5]
 主体となる結晶性高分子(ナイロン66 80重量部)に液状成分(グリセリントリアセテート 15重量部)やその他添加剤(エポキシ化亜麻仁油 3重量部、ミネラルオイル 2重量部)を280℃の温度で混合溶融させ、溶融押出機にて溶融押出し、得られたパリソンを、インフレーション延伸して筒状フィルムとした。
 MD方向の延伸倍率を3.4倍、TD方向の延伸倍率を8.5倍にした。また、延伸温度は25℃とした。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表1に示す。
[Example 5]
Liquid component (15 parts by weight of glycerin triacetate) and other additives (3 parts by weight of epoxidized linseed oil, 2 parts by weight of mineral oil) are mixed at a temperature of 280 ° C. with crystalline polymer (80 parts by weight of nylon 66) The parison was melted and extruded by a melt extruder, and the obtained parison was subjected to inflation stretching to form a tubular film.
The stretching ratio in the MD direction was 3.4 times, and the stretching ratio in the TD direction was 8.5 times. The stretching temperature was 25 ° C. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 1.
[実施例6]
 主体となる結晶性高分子(ポリプロピレン80重量部)に液状成分(ミネラルオイル10重量部)やその他添加剤(マルカレッツ(登録商標)R5重量部、タフテック(登録商標)R5重量部)を200℃の温度で混合溶融させ、溶融押出機にて溶融押出し、得られたパリソンを、インフレーション延伸して筒状フィルムとした。
 MD方向の延伸倍率を3.8倍、TD方向の延伸倍率を7.2倍にした。また、延伸温度は26℃とした。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表1に示す。
[Example 6]
Liquid component (mineral oil 10 parts by weight) and other additives (5 parts by weight of Malcarez (registered trademark) R, 5 parts by weight of Tuftec (registered trademark) R) in crystalline polymer (80 parts by weight of polypropylene) as main component at 200 ° C. The mixture was melted at temperature, melt extruded by a melt extruder, and the obtained parison was subjected to inflation stretching to form a tubular film.
The stretching ratio in the MD direction was 3.8 times, and the stretching ratio in the TD direction was 7.2 times. The stretching temperature was 26 ° C. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 1.
[実施例7]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で溶融させ、溶融押出機にて溶融押出し、得られたパリソンを、インフレーション延伸して筒状フィルムとした。
 MD方向の延伸倍率を3.7倍、TD方向の延伸倍率を5.8倍にした。また、延伸温度は25℃とした。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表1に示す。
[Example 7]
The polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) is melted at a temperature of 170 ° C., and melt extruded by a melt extruder to obtain the obtained parison, Inflation stretching was performed to obtain a tubular film.
The draw ratio in the MD was 3.7 times, and the draw ratio in the TD was 5.8. The stretching temperature was 25 ° C. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 1.
[実施例8]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で溶融させ、溶融押出機にて溶融押出し、得られたパリソンを、インフレーション延伸して筒状フィルムとした。
 MD方向の延伸倍率を3.6倍、TD方向の延伸倍率を6.1倍にした。また、延伸温度は34℃とした。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表1に示す。
[Example 8]
The polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) is melted at a temperature of 170 ° C., and melt extruded by a melt extruder to obtain the obtained parison, Inflation stretching was performed to obtain a tubular film.
The stretching ratio in the MD direction was 3.6 times, and the stretching ratio in the TD direction was 6.1 times. The stretching temperature was 34 ° C. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 1.
[実施例9]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で溶融させ、溶融押出機にて溶融押出し、得られたパリソンを、インフレーション延伸して筒状フィルムとした。
 MD方向の延伸倍率を3.5倍、TD方向の延伸倍率を6.2倍にした。また、延伸温度は31℃とした。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表1に示す。
[Example 9]
The polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) is melted at a temperature of 170 ° C., and melt extruded by a melt extruder to obtain the obtained parison, Inflation stretching was performed to obtain a tubular film.
The draw ratio in the MD direction was 3.5 times, and the draw ratio in the TD direction was 6.2 times. The stretching temperature was 31 ° C. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 1.
[比較例1]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=91/9(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で溶融させ、溶融押出機にて溶融押出し、得られたパリソンを、インフレーション延伸して筒状フィルムとした。
 MD方向の延伸倍率を3.7倍、TD方向の延伸倍率を4.3倍にした。また、延伸温度は40℃とした。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表2に示す。
Comparative Example 1
The polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 1/9 (mass ratio) is melted at a temperature of 170 ° C., melt extruded by a melt extruder, and the obtained parison is Inflation stretching was performed to obtain a tubular film.
The draw ratio in the MD direction was 3.7 times, and the draw ratio in the TD direction was 4.3 times. The stretching temperature was 40 ° C. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 2.
[比較例2]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で溶融させ、溶融押出機にて溶融押出し、得られたパリソンを、インフレーション延伸して筒状フィルムとした。
 MD方向の延伸倍率を5.0倍、TD方向の延伸倍率を6.0倍にした。また、延伸温度は35℃とした。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表2に示す。
Comparative Example 2
The polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) is melted at a temperature of 170 ° C., and melt extruded by a melt extruder to obtain the obtained parison, Inflation stretching was performed to obtain a tubular film.
The draw ratio in the MD direction was 5.0 times, and the draw ratio in the TD direction was 6.0. The stretching temperature was 35 ° C. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 2.
[比較例3]
 ポリエチレンを170℃の温度で溶融させ、溶融押出機にて溶融押出し、得られたパリソンを、インフレーション延伸して筒状フィルムとした。
 MD方向の延伸倍率を5.0倍、TD方向の延伸倍率を5.0倍にした。また、延伸温度は39℃とした。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表2に示す。
Comparative Example 3
The polyethylene was melted at a temperature of 170 ° C., melt extruded by a melt extruder, and the obtained parison was subjected to inflation stretching to form a tubular film.
The draw ratio in the MD direction was 5.0 times, and the draw ratio in the TD direction was 5.0 times. The stretching temperature was 39 ° C. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 2.
[比較例4]
 主体となる結晶性高分子(ポリプロピレン80重量部)に液状成分(ミネラルオイル10重量部)やその他添加剤(マルカレッツ(登録商標)R5重量部、タフテック(登録商標)R5重量部)を200℃の温度で混合溶融させ、スリット幅が20mm×0.5mmTダイ装着した押出機より押出し、水で急冷し、フィルム上シートを形成させた。
 ついでこの原反を140℃にセットした加熱ゾーンを通しながら、ストレッチャーで2.0×2.0倍に逐次2軸延伸を施し巻き取った。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表2に示す。
Comparative Example 4
Liquid component (mineral oil 10 parts by weight) and other additives (5 parts by weight of Malcarez (registered trademark) R, 5 parts by weight of Tuftec (registered trademark) R) in crystalline polymer (80 parts by weight of polypropylene) as the main component at 200 ° C. The mixture was mixed and melted at temperature, extruded from an extruder equipped with a 20 mm × 0.5 mm T die having a slit width, and quenched with water to form a film top sheet.
Then, while passing through a heating zone set at 140 ° C., this raw fabric was subjected to sequential biaxial stretching of 2.0 × 2.0 times with a stretcher and wound up. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 2.
[比較例5]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で混合溶融させ、スリット幅が20mm×0.5mmTダイ装着した押出機より押出し、水で急冷し、フィルム上シートを形成させた。
 ついでこの原反を140℃にセットした加熱ゾーンを通しながら、ストレッチャーで1.0×8.6倍に逐次2軸延伸を施し巻き取った。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表2に示す。
Comparative Example 5
An extruder with a polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) mixed and melted at a temperature of 170 ° C. and a die having a slit width of 20 mm × 0.5 mm T It was further extruded and quenched with water to form a film top sheet.
Then, while passing through a heating zone set at 140 ° C., this raw fabric was subjected to sequential biaxial stretching of 1.0 × 8.6 times with a stretcher and wound up. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 2.
[比較例6]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で混合溶融させ、スリット幅が20mm×0.5mmTダイ装着した押出機より押出し、水で急冷し、フィルム上シートを形成させた。
 ついでこの原反を38℃にセットした加熱ゾーンを通しながら、ストレッチャーで4.3×1.0倍に逐次2軸延伸を施し巻き取った。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表2に示す。
Comparative Example 6
An extruder with a polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) mixed and melted at a temperature of 170 ° C. and a die having a slit width of 20 mm × 0.5 mm T It was further extruded and quenched with water to form a film top sheet.
Then, while passing through a heating zone set at 38 ° C., this raw fabric was wounded by successive biaxial stretching of 4.3 × 1.0 times with a stretcher. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 2.
[比較例7]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で混合溶融させ、スリット幅が20mm×0.5mmTダイ装着した押出機より押出し、水で急冷し、フィルム上シートを形成させた。
 ついでこの原反を39℃にセットした加熱ゾーンを通しながら、ストレッチャーで5.3×1.0倍に逐次2軸延伸を施し巻き取った。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表2に示す。
Comparative Example 7
An extruder with a polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) mixed and melted at a temperature of 170 ° C. and a die having a slit width of 20 mm × 0.5 mm T It was further extruded and quenched with water to form a film top sheet.
Then, while passing through a heating zone set at 39 ° C., this raw fabric was wounded by successive biaxial stretching of 5.3 × 1.0 times with a stretcher. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 2.
[比較例8]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で混合溶融させ、スリット幅が20mm×0.5mmTダイ装着した押出機より押出し、水で急冷し、フィルム上シートを形成させた。
 ついでこの原反を40℃にセットした加熱ゾーンを通しながら、ストレッチャーで6.3×1.0倍に逐次2軸延伸を施し巻き取った。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表2に示す。
Comparative Example 8
An extruder with a polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) mixed and melted at a temperature of 170 ° C. and a die having a slit width of 20 mm × 0.5 mm T It was further extruded and quenched with water to form a film top sheet.
Then, while passing through a heating zone set at 40 ° C., this raw fabric was subjected to successive biaxial stretching of 6.3 × 1.0 times with a stretcher and wound up. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 2.
[比較例9]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で混合溶融させ、スリット幅が20mm×0.5mmTダイ装着した押出機より押出し、水で急冷し、フィルム上シートを形成させた。
 ついでこの原反を42℃にセットした加熱ゾーンを通しながら、ストレッチャーで8.0×1.0倍に逐次2軸延伸を施し巻き取った。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表2に示す。
Comparative Example 9
An extruder with a polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) mixed and melted at a temperature of 170 ° C. and a die having a slit width of 20 mm × 0.5 mm T It was further extruded and quenched with water to form a film top sheet.
Then, while passing through a heating zone set at 42 ° C., this raw fabric was subjected to sequential biaxial stretching of 8.0 × 1.0 times with a stretcher and wound up. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 2.
[比較例10]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で混合溶融させ、スリット幅が20mm×0.5mmTダイ装着した押出機より押出し、水で急冷し、フィルム上シートを形成させた。
 ついでこの原反を49℃にセットした加熱ゾーンを通しながら、ストレッチャーで3.5×10.0倍に逐次2軸延伸を施し巻き取った。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表2に示す。
Comparative Example 10
An extruder with a polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) mixed and melted at a temperature of 170 ° C. and a die having a slit width of 20 mm × 0.5 mm T It was further extruded and quenched with water to form a film top sheet.
Then, while passing through a heating zone set at 49 ° C., this raw fabric was subjected to sequential biaxial stretching of 3.5 × 10.0 times with a stretcher and wound up. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 2.
[比較例11]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で混合溶融させ、スリット幅が20mm×0.5mmTダイ装着した押出機より押出し、水で急冷し、フィルム上シートを形成させた。
 ついでこの原反を49℃にセットした加熱ゾーンを通しながら、ストレッチャーで5.0×7.0倍に逐次2軸延伸を施し巻き取った。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表2に示す。
Comparative Example 11
An extruder with a polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) mixed and melted at a temperature of 170 ° C. and a die having a slit width of 20 mm × 0.5 mm T It was further extruded and quenched with water to form a film top sheet.
Then, while passing through a heating zone set at 49 ° C., this raw fabric was subjected to sequential biaxial stretching of 5.0 × 7.0 times with a stretcher and wound up. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 2.
[比較例12]
 塩化ビニリデン(VDC)/塩化ビニル(VC)=88/12(質量比)のポリ塩化ビニリデン系樹脂組成物を170℃の温度で混合溶融させ、スリット幅が20mm×0.5mmTダイ装着した押出機より押出し、水で急冷し、フィルム上シートを形成させた。
 ついでこの原反を53℃にセットした加熱ゾーンを通しながら、ストレッチャーで5.0×10.0倍に逐次2 軸延伸を施し巻き取った。それ以外は実施例1に準じた操作で厚み約10μmの紙管巻きラップフィルムを製造した。
 得られたフィルムの評価結果を表2に示す。
Comparative Example 12
An extruder with a polyvinylidene chloride resin composition of vinylidene chloride (VDC) / vinyl chloride (VC) = 88/12 (mass ratio) mixed and melted at a temperature of 170 ° C. and a die having a slit width of 20 mm × 0.5 mm T It was further extruded and quenched with water to form a film top sheet.
Then, while passing through a heating zone set at 53 ° C., this raw fabric was subjected to sequential biaxial stretching of 5.0 × 10.0 times with a stretcher and wound up. A paper tube-wrapping wrap film having a thickness of about 10 μm was produced by the same operation as in Example 1 except for the above.
The evaluation results of the obtained film are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図2に実施例1で得られたフィルム表面のAFMの位相像を示すが、均一な網目構造が観察された。実施例2,3,4,5,6,7,8,9、比較例4,9,10,11,12でも網目構造は観察された。実施例では、引張強度、引張伸度及び引張弾性率が特定の範囲であるので表1の評価に示すとおり所望の効果が得られた。しかしながら、比較例1,2,3,4,5,6,7,8,9,10,11及び12では引張強度、引張伸度及び引張弾性率が特定の範囲ではないので、表2の評価に示すように所望の効果が得られなかった。比較例1のフィルム表面のAFMの位相像を図3に示す。 Although the phase image of AFM of the film surface obtained in Example 1 is shown in FIG. 2, the uniform network structure was observed. The mesh structures were observed also in Examples 2, 3, 4, 5, 6, 7, 8, 9 and Comparative Examples 4, 9, 10, 11, 12. In the examples, since the tensile strength, the tensile elongation and the tensile modulus are within the specific ranges, the desired effects were obtained as shown in the evaluation of Table 1. However, in Comparative Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, since the tensile strength, the tensile elongation and the tensile modulus are not within the specific ranges, the evaluation of Table 2 is made. The desired effect was not obtained as shown in. The phase image of AFM of the film surface of Comparative Example 1 is shown in FIG.
 本発明に係るラップフィルムは、使用時の密着性の良好な、ハリ・コシ感、透明性、縦裂け防止効果及び巻戻り防止効果を有し、高温(例えば、120℃)に加熱した後にも裂けにくく、リワインド時の裂け発生率が低く、酸素・水バリア性に優れた、ラップフィルムであるため、食品包装用をはじめとする種々の包装用ラップフィルムとして好適に用いることができる。 The wrap film according to the present invention has good firmness, stiffness, transparency, a longitudinal tear preventing effect and an unwinding preventing effect when used, even after heating to a high temperature (for example, 120 ° C.) Since it is a wrap film that is difficult to tear, has a low incidence of tearing during rewinding, and is excellent in oxygen and water barrier properties, it can be suitably used as a wrap film for various packaging including food packaging.
1  押出機 
2  円形ダイ 
3  ダイ口 
4  管状の塩化ビニリデン系樹脂組成物(ソック) 
5  ソック液 
6  冷水槽 
7  第1ピンチロール 
8  パリソン 
9  第2ピンチロール 
10  バブル 
11  第3ピンチロール 
12  ダブルプライフィルム 
13  巻取りロール 
14  孔
15  フィブリル
1 Extruder
2 Round die
3 die mouth
4 Tubular vinylidene chloride resin composition (Sock)
5 Sock liquid
6 Cold water tank
7 1st pinch roll
8 Parison
9 2nd pinch roll
10 bubbles
11 3rd pinch roll
12 double ply film
13 Winding roll
14 holes 15 fibrils

Claims (9)

  1.  流れ方向と垂直な方向(TD)の引張強度が100MPa以上、引張伸度が100%以下、引張弾性率が280MPa以上であり、
     流れ方向(MD)の引張弾性率が380MPa以上である、ラップフィルム。
    The tensile strength in the direction (TD) perpendicular to the flow direction is 100 MPa or more, the tensile elongation is 100% or less, and the tensile elastic modulus is 280 MPa or more,
    The wrap film whose tensile elasticity modulus of flow direction (MD) is 380 Mpa or more.
  2.  結晶長周期が12.5nm以下である、請求項1に記載のラップフィルム。 The wrap film according to claim 1, wherein the crystal long period is 12.5 nm or less.
  3.  ASTM  D-2732に準拠して測定した120℃における熱収縮率について、流れ方向(MD)の熱収縮率が4~30%であり、流れ方向(MD)の熱収縮率と、流れ方向に垂直な方向(TD)の熱収縮率との比(MD/TD)が、2以下である、請求項1又は2に記載のラップフィルム。 The thermal shrinkage at 120 ° C., measured according to ASTM D-2732, has a thermal shrinkage in the machine direction (MD) of 4 to 30% and is perpendicular to the thermal shrinkage in the machine direction (MD) The wrap film according to claim 1 or 2, wherein a ratio (MD / TD) to a thermal contraction rate in one direction (TD) is 2 or less.
  4.  少なくとも一層の表面に、原子間力顕微鏡の位相像で観察される網目構造を有し、前記網目構造の網目がフィブリルにより構成され、前記網目構造において、観察されるフィブリルの平均幅が145nm以下である、請求項1~3のいずれか1項に記載のラップフィルム。 At least one surface of the layer has a network structure observed by the phase image of an atomic force microscope, the network of the network structure is constituted by fibrils, and in the network structure, the average width of the fibrils observed is 145 nm or less The wrap film according to any one of claims 1 to 3.
  5.  酸素透過度が110cm/m2・day・atm at23℃ 以下であり、水蒸気透過度が20g/m2・day at38℃,90%RH 以下である、請求項1~4のいずれか1項に記載のラップフィルム。 The oxygen permeability is 110 cm 3 / m 2 · day · atm at 23 ° C or less, the water vapor permeability is 20 g / m 2 · day at 38 ° C, 90% RH or less, any one of claims 1 to 4 Wrap film described.
  6.  厚みが5~15μmである、請求項1~5のいずれか1項に記載のラップフィルム。 The wrap film according to any one of claims 1 to 5, which has a thickness of 5 to 15 μm.
  7.  塩化ビニリデン単量体85~97質量%と、塩化ビニル単量体15~3質量%とからなる共重合体を含む、請求項1~6のいずれか1項に記載のラップフィルム。 The wrap film according to any one of claims 1 to 6, which comprises a copolymer comprising 85 to 97% by mass of a vinylidene chloride monomer and 15 to 3% by mass of a vinyl chloride monomer.
  8.  未延伸シートを流れ方向と流れ方向に垂直な方向とに延伸する工程を含み、流れ方向の延伸倍率が4.0以下であり、かつ、流れ方向に垂直な方向の延伸倍率が5.8以上である、請求項1~7のいずれか1項に記載のラップフィルムの製造方法。 Stretching the unstretched sheet in the flow direction and in the direction perpendicular to the flow direction, the stretch ratio in the flow direction is 4.0 or less, and the stretch ratio in the direction perpendicular to the flow direction is 5.8 or more The method for producing a wrap film according to any one of claims 1 to 7, which is
  9.  請求項1~7のいずれか1項に記載のラップフィルムが、巻芯に巻きとられた巻回体。 A wound body in which the wrap film according to any one of claims 1 to 7 is wound around a core.
PCT/JP2018/031969 2017-09-06 2018-08-29 Wrap film and body wound with wrapped film WO2019049750A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11202001968XA SG11202001968XA (en) 2017-09-06 2018-08-29 Wrap film and wrap film roll
CN201880053820.3A CN111032753A (en) 2017-09-06 2018-08-29 Wrap film and wrap film roll

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017171088 2017-09-06
JP2017-171085 2017-09-06
JP2017-171088 2017-09-06
JP2017171085 2017-09-06

Publications (1)

Publication Number Publication Date
WO2019049750A1 true WO2019049750A1 (en) 2019-03-14

Family

ID=65635002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031969 WO2019049750A1 (en) 2017-09-06 2018-08-29 Wrap film and body wound with wrapped film

Country Status (4)

Country Link
CN (1) CN111032753A (en)
SG (1) SG11202001968XA (en)
TW (2) TWI682846B (en)
WO (1) WO2019049750A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025387A (en) * 1996-07-10 1998-01-27 Asahi Chem Ind Co Ltd Vinylidene chloride-based resin composition and wrap film
JP2003212267A (en) * 2002-01-23 2003-07-30 Asahi Kasei Corp Adhesive wrapping film
WO2006009198A1 (en) * 2004-07-23 2006-01-26 Asahi Kasei Life & Living Corporation Propylene-based multilayered wrapping film
JP2010163203A (en) * 2009-01-19 2010-07-29 Asahi Kasei Home Products Kk Wrapping film
JP2014125561A (en) * 2012-12-26 2014-07-07 Kureha Corp Vinylidene chloride copolymer composition of plant origin, and heat-shrinkable film
JP2014172312A (en) * 2013-03-11 2014-09-22 Asahi Kasei Chemicals Corp Vinylidene chloride resin wrap film and production method thereof
WO2015093448A1 (en) * 2013-12-16 2015-06-25 旭化成ケミカルズ株式会社 Polyolefin-based-resin wrap film, and wrap-film container
JP2016023272A (en) * 2014-07-23 2016-02-08 旭化成ケミカルズ株式会社 Vinylidene chloride resin wrap film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5501791B2 (en) * 2010-02-22 2014-05-28 旭化成ケミカルズ株式会社 Polyvinylidene chloride resin wrap film and wrap film roll
JP6045622B2 (en) * 2015-03-05 2016-12-14 住友化学株式会社 Method for producing polyvinyl alcohol resin film, polarizing film and polarizing plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025387A (en) * 1996-07-10 1998-01-27 Asahi Chem Ind Co Ltd Vinylidene chloride-based resin composition and wrap film
JP2003212267A (en) * 2002-01-23 2003-07-30 Asahi Kasei Corp Adhesive wrapping film
WO2006009198A1 (en) * 2004-07-23 2006-01-26 Asahi Kasei Life & Living Corporation Propylene-based multilayered wrapping film
JP2010163203A (en) * 2009-01-19 2010-07-29 Asahi Kasei Home Products Kk Wrapping film
JP2014125561A (en) * 2012-12-26 2014-07-07 Kureha Corp Vinylidene chloride copolymer composition of plant origin, and heat-shrinkable film
JP2014172312A (en) * 2013-03-11 2014-09-22 Asahi Kasei Chemicals Corp Vinylidene chloride resin wrap film and production method thereof
WO2015093448A1 (en) * 2013-12-16 2015-06-25 旭化成ケミカルズ株式会社 Polyolefin-based-resin wrap film, and wrap-film container
JP2016023272A (en) * 2014-07-23 2016-02-08 旭化成ケミカルズ株式会社 Vinylidene chloride resin wrap film

Also Published As

Publication number Publication date
TWI707765B (en) 2020-10-21
TW201945159A (en) 2019-12-01
TW201919849A (en) 2019-06-01
CN111032753A (en) 2020-04-17
SG11202001968XA (en) 2020-04-29
TWI682846B (en) 2020-01-21

Similar Documents

Publication Publication Date Title
JP7173794B2 (en) Wrap film and wrap film roll
JP5501791B2 (en) Polyvinylidene chloride resin wrap film and wrap film roll
JP4756093B2 (en) Polyvinylidene chloride resin wrap film and method for producing the same
US20080102272A1 (en) Adhesive wrapping film
JP7416137B2 (en) Polypropylene resin multilayer film
JPWO2014103587A1 (en) Wrap film
JP2004216825A (en) Polyolefine resin anti-clouding/heat shrinkable multilayer film
JP2007045855A (en) Polyolefin-based resin composition
JP7170788B2 (en) Wrap film and wrap film roll
WO2019049750A1 (en) Wrap film and body wound with wrapped film
JP2010064369A (en) Polypropylene-based multilayered shrink film
JP2009096130A (en) Heat-shrinkable film
KR20230117111A (en) Biaxially oriented polypropylene resin film and package using the same
JP6289261B2 (en) Heat shrinkable laminated film
KR20220032061A (en) Biaxially oriented polypropylene resin film and package using same
JP2003025427A (en) Polylactic acid biaxially oriented film
JP2023179089A (en) wrap film
JP3801695B2 (en) Single layer film
JP3889631B2 (en) Adhesive wrap film
JP2003260764A (en) Polyolefin resin heat-shrinkable multi-layer film
WO2022118679A1 (en) Biaxially oriented polypropylene resin film and packaging using same
JP2023012774A (en) Wrap film wound body
JP3630485B2 (en) Polyolefin resin multilayer stretch packaging film
JP2000290403A (en) Adhesive heat-resistant wrap film
JP2002178473A (en) Heat resistant multilayer adhesive wrapping film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853276

Country of ref document: EP

Kind code of ref document: A1