JP2003260764A - Polyolefin resin heat-shrinkable multi-layer film - Google Patents

Polyolefin resin heat-shrinkable multi-layer film

Info

Publication number
JP2003260764A
JP2003260764A JP2002062222A JP2002062222A JP2003260764A JP 2003260764 A JP2003260764 A JP 2003260764A JP 2002062222 A JP2002062222 A JP 2002062222A JP 2002062222 A JP2002062222 A JP 2002062222A JP 2003260764 A JP2003260764 A JP 2003260764A
Authority
JP
Japan
Prior art keywords
film
layer
weight
heat
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002062222A
Other languages
Japanese (ja)
Inventor
Masayuki Yoshino
正行 吉野
Hideki Ogiue
英樹 荻上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2002062222A priority Critical patent/JP2003260764A/en
Publication of JP2003260764A publication Critical patent/JP2003260764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyolefin resin heat-shrinkable multi-layer film having excellent properties of restoration from deformation in a range from a chilled zone of approximately 0°C to a refrigeration zone of approximately -10°C. <P>SOLUTION: The polyolefin resin heat-shrinkable multi-layer film is composed of at least three layers, and its heat-shrinkage factor at 80°C is 20-50%. The film has following characteristics as described from (1) to (3). (1) A peak temperature of tanδ of the film measured by dynamic viscoelasticity measurement is -10 to 2°C. (2) In a secondary melting behavior of the film measured by a differential scanning calorimeter (DSC), a peak is at least in a range of 155°C±15°C, and a heat of crystal fusion at 125°C or higher is 10 to 20 J/g. (3) A lengthwise tear strength of the film is at least 0.05 N or greater, and a ratio of lengthwise and widthwise tear strength is lengthwise/widthwise = 1.2 to 5.0 times. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シュリンク包装用
のポリオレフィン系樹脂熱収縮性多層フィルムに関する
もので、特に突上型や直線型等の自動包装機によるスト
レッチシュリンク包装及びピロー型の自動包装機による
シュリンク包装に適した延伸フィルムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat shrinkable multi-layer film of a polyolefin resin for shrink wrapping, and particularly stretch shrink wrapping and pillow type automatic wrapping machines by an automatic wrapping machine such as a bump type or a straight type. Stretched film suitable for shrink wrapping.

【0002】[0002]

【従来の技術】従来、シュリンク包装は、その特長とし
て、被包装物の形状や大きさに依らず、また同時に複数
個の製品を迅速かつタイトに包装することが出来、得ら
れた包装物は外観が美しく、ディスプレイ効果を発揮
し、商品価値を高め、また内容物を衛生的に保ち、視覚
による品質確認が容易なことから食品、雑貨等の包装に
多用されている。
2. Description of the Related Art Conventionally, shrink wrapping has the feature that it does not depend on the shape and size of the article to be packaged, and at the same time, it can quickly and tightly package a plurality of products. It is often used for packaging foods, sundries, etc. because it has a beautiful appearance, exhibits a display effect, enhances the product value, keeps the contents hygienic, and allows visual confirmation of quality.

【0003】かかる収縮包装には、フィルムに少し余裕
を持たせて内容物を一次包装した後、熱風等によりフィ
ルムを熱収縮させる方法、例えばピローシュリンク包装
がその代表例であるが、この方法は一般的には容器やト
レーに収納された食品等の被包装物をフィルムで筒状に
覆い、次ぎに回転ローラー式等のセンターシール装置に
て被包装物の裏面にシール線がくるように合掌ヒートシ
ールし、続いて該筒状フィルムの両開放端をヒートシー
ルして袋状とし、これを加熱収縮させる。このピローシ
ュリンク包装には上記以外の三方シール、および四方シ
ールした袋状フィルムを加熱収縮する方法等がある。
A typical example of such shrink-wrapping is a method of heat-shrinking the film with hot air or the like after the contents are primarily wrapped with a little room left in the film, for example, pillow shrink packaging. Generally, food items such as food stored in containers and trays are covered with a film in a tubular shape, and then a center roller device such as a rotating roller is used so that the seal line is on the back side of the items. After heat sealing, both open ends of the tubular film are heat sealed to form a bag, which is heat-shrinked. For this pillow shrink packaging, there is a method other than the above, such as a method of heat-shrinking a bag-like film that is sealed on three sides or four sides.

【0004】また、従来のストレッチ包装のようにフィ
ルムをある程度緊張状態で包装し、フィルムの端を被包
装物の底部に折り込んで、該折り込み部をフィルム同士
の自己密着力または熱融着により一次包装した後、同様
に加熱収縮処理を施して局部的なフィルムのタルミやシ
ワを除去するストレッチシュリンク等の方法があり、い
ずれもタイトで美しい仕上がりが得られる。一方、近年
自動包装機による包装速度の高速化や被包装物の多様化
が進み、更には商品としての包装体への要求品質もます
ます高度なものになってきており、包装用フィルムに対
する要求は、高性能化、高機能化の一途を辿っている。
Further, as in the conventional stretch wrapping, the film is wrapped in a tensioned state to some extent, the end of the film is folded into the bottom of the article to be wrapped, and the folded portion is primarily adhered to the film by self-adhesion or heat fusion. After packaging, there is a method such as a stretch shrink method in which heat shrinkage treatment is similarly applied to remove local tarmi and wrinkles of the film, and all of them have a tight and beautiful finish. On the other hand, in recent years, the speed of wrapping by automatic wrapping machines and the diversification of items to be packed have advanced, and the quality required for packaging as a product has become more and more sophisticated. Is in the process of higher performance and higher functionality.

【0005】従来、シュリンク包装用フィルムに適した
フィルムとして、特開平10−34848号公報に、エ
チレンα−オレフィン共重合体樹脂を50重量%以上含
有する表面層(A)と、内部層としてプロピレン系重合
体とポリブテン−1系樹脂の特定混合樹脂層(B)、表
面層と密度が異なり、かつ特定のMFRを有するエチレ
ンα−オレフィン共重合体樹脂を50重量%以上含有す
る層(C)を含む各層の厚み比率が特定された多層シュ
リンクフィルムが開示されている。
Conventionally, as a film suitable for a shrink wrapping film, a surface layer (A) containing 50% by weight or more of an ethylene α-olefin copolymer resin and a propylene as an inner layer are disclosed in JP-A-10-34848. Mixed resin layer (B) of a polymer-based polymer and a polybutene-1 resin, a layer having a density different from that of the surface layer and containing 50% by weight or more of an ethylene α-olefin copolymer resin having a specific MFR (C) A multilayer shrink film in which the thickness ratio of each layer including is specified is disclosed.

【0006】上記公報によれば、表面層(A)は、多層
フィルムの表面に透明性、光沢、(低温)ヒートシール
性、防曇性等を発揮させるためのものであり、線状低密
度ポリエチレン等のエチレンα−オレフィン共重合体樹
脂を50重量%以上含有し、混合する樹脂としてエチレ
ン−酢酸ビニル共重合体(以後、EVA)等の樹脂の使
用が例示されている。また、層(C)は、フィルムに高
い突き刺し強度を付与する効果を有しており、表面層
(A)より密度の高い線状低密度ポリエチレン等のエチ
レンα−オレフィン共重合体樹脂を50重量%以上含有
し、混合する樹脂としてEVA等の樹脂の使用が例示さ
れている。
According to the above-mentioned publication, the surface layer (A) is intended to provide the surface of the multilayer film with transparency, luster, (low temperature) heat sealability, antifogging property and the like, and has a linear low density. The use of a resin such as an ethylene-vinyl acetate copolymer (hereinafter EVA) as a resin containing 50% by weight or more of an ethylene α-olefin copolymer resin such as polyethylene is exemplified. Further, the layer (C) has an effect of imparting high puncture strength to the film, and contains 50 parts by weight of an ethylene α-olefin copolymer resin such as linear low density polyethylene having a higher density than the surface layer (A). The use of a resin such as EVA as an example of a resin containing at least 100% by weight is illustrated.

【0007】また、層(B)は主に多層フィルム全体に
耐熱性や変形回復性を付与する役割を持ち、プロピレン
系重合体とポリブテン−1との混合組成物が例示されて
いる。そして層(A)、層(B)、層(C)の4層以上
からなる多層フィルム原反を40〜120℃の温度下
で、面積延伸倍率3〜50倍に延伸し、その結果、耐熱
性、低温収縮性、耐突き破れ性、耐引き裂き性、変形回
復性に優れた厚み7〜20μmの高強度フィルムが得ら
れるものである。
The layer (B) mainly has a role of imparting heat resistance and deformation recovery to the entire multilayer film, and a mixed composition of a propylene polymer and polybutene-1 is exemplified. And the multilayer film original fabric which consists of four or more layers of layer (A), layer (B), and layer (C) is stretched at an area stretching ratio of 3 to 50 times at a temperature of 40 to 120 ° C., resulting in heat resistance. It is possible to obtain a high-strength film having a thickness of 7 to 20 μm, which has excellent properties, low-temperature shrinkage, puncture resistance, tear resistance, and deformation recovery.

【0008】しかしながら、上記特開平10−3484
8号公報に開示されているフィルムは0℃前後のチルド
域から−10℃前後の冷凍域での変形回復性が劣るとい
う特性を有していた。このため冷凍物を0℃前後で解凍
した時、内容物の体積変化現象にフィルムが追随して行
けずフィルムが弛み、見た目が良くないという問題があ
った。また包装品を冷蔵輸送した時、振動そのもの、ま
たは振動で内容物が移動することで同様にフィルムに弛
みやしわが生じ、見た目の商品性を著しく低下させると
いった問題があった。更に、店舗で冷蔵オープンショー
ケースに陳列されているトレー包装物のフィルムが指で
押し込まれた場合、フィルムが追随して行けず指跡が残
りフィルムがくぼんだままで外観を損ねるといった問題
も有していた。
However, the above-mentioned Japanese Laid-Open Patent Publication No. 10-3484.
The film disclosed in Japanese Patent No. 8 had a property that the deformation recovery property was poor in a chilled region around 0 ° C to a frozen region around -10 ° C. For this reason, when the frozen product is thawed at around 0 ° C., the film cannot follow the volume change phenomenon of the contents, and the film is slackened, resulting in a bad appearance. Further, when the packaged product is refrigerated and transported, there is a problem in that the film itself is slackened or wrinkled due to the vibration itself or the movement of the content due to the vibration, which significantly deteriorates the appearance of the product. Furthermore, when the film of the tray package displayed in the refrigerated open showcase at the store is pushed in with a finger, there is a problem that the film cannot follow and the finger mark remains and the film is dented and impairs the appearance. Was there.

【0009】また、冷凍やチルド状態で鋭利な突起やエ
ッジを有する被包装物においては、包装時に一旦生じた
フィルム破れが縦方向(フィルム製膜時の流れ方向。以
後MDと記す。)に伝播し、包装機を停止してのフィル
ムの再セット、再起動等の手間が必要であったり、包装
機によってはフィルムのカット性が安定せず、カットさ
れたフィルム端が引きちぎられたような状態になって、
その後のフィルムの折りこみ性不良や包装体の外観を損
ねたりするといった問題があった。
Further, in a packaged object having sharp protrusions or edges in a frozen or chilled state, a film breakage once generated during packaging propagates in the longitudinal direction (flow direction during film formation, hereinafter referred to as MD). However, it is necessary to stop the wrapping machine and reset the film, restart the film, or the like, and depending on the wrapping machine, the cuttability of the film is not stable and the cut film edge is torn off. become,
After that, there were problems that the foldability of the film was poor and the appearance of the package was impaired.

【0010】[0010]

【発明が解決しようとする課題】本発明は、0℃前後の
チルド域から−10℃前後の冷凍域での変形回復性の優
れた、ポリオレフィン系樹脂熱収縮性多層フィルムの提
供を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a polyolefin resin heat-shrinkable multilayer film which is excellent in deformation recovery from a chilled region around 0 ° C to a frozen region around -10 ° C. .

【0011】[0011]

【課題を解決するための手段】本発明者らは、かかる課
題を解決すべく検討した結果、フィルムの動的粘弾性測
定によるtanδおよび融解挙動、さらにフィルムの引
裂強度特性をある特定の範囲に調整することにより従来
のフィルムが有する耐熱性、収縮性、光学特性、耐突き
破れ性を保持しつつ、包装時のフィルムのカット性が著
しく向上し、且つ0℃前後のチルド域から−10℃前後
の冷凍域での変形回復性が格段に優れたシュリンクフィ
ルムが得られることを見出した。
Means for Solving the Problems As a result of studies to solve the above problems, the present inventors have found that tan δ and melting behavior by dynamic viscoelasticity measurement of the film, and tear strength property of the film within a specific range. By adjusting it, the heat resistance, shrinkage property, optical property, and piercing resistance of the conventional film are maintained, while the cut property of the film during packaging is remarkably improved, and the chilled region around 0 ° C is -10 ° C. It was found that a shrink film having significantly excellent deformation recovery in the front and rear frozen regions can be obtained.

【0012】すなわち、本発明は、下記の通りである。
1.少なくとも3層構成で成り、80℃における熱収縮
率が20%〜50%であるポリオレフィン系樹脂熱収縮
性多層フィルムにおいて、以下の(1)〜(3)を特徴
とするポリオレフィン系樹脂熱収縮性多層フィルム。 (1)フィルムの動的粘弾性測定によるtanδのピー
ク温度が−10〜2℃であること。 (2)フィルムの示差走査型熱量計(DSC)測定によ
る2nd.融解挙動において、少なくとも155℃±1
5℃の範囲にピークがあり、かつ、125℃以上の結晶
融解熱量が10〜20J/gであること。 (3)フィルムの引裂強度として、少なくとも縦方向が
0.05N以上であり、かつ、縦と横の引裂強度比が縦
/横=1.2〜5.0倍であること。
That is, the present invention is as follows.
1. A polyolefin resin heat-shrinkable multilayer film having a heat shrinkage rate of 20% to 50% at 80 ° C., which has at least three layers, and is characterized by the following (1) to (3): Multilayer film. (1) The peak temperature of tan δ measured by dynamic viscoelasticity of the film is −10 to 2 ° C. (2) 2nd. By the differential scanning calorimeter (DSC) measurement of the film. At least 155 ° C ± 1 in melting behavior
There is a peak in the range of 5 ° C, and the heat of fusion of crystals at 125 ° C or higher is 10 to 20 J / g. (3) The tear strength of the film is at least 0.05 N in the machine direction and the ratio of the tear strength in the machine direction and the tear strength in the machine direction is 1.2 to 5.0 times.

【0013】2.プロピレン系重合体(a)20重量%
〜60重量%と、ビカット軟化点が80℃未満のポリオ
レフィン系エラストマー(b)10重量%〜50重量%
と、ポリブテン−1系樹脂(c)10重量%〜40重量
%とから成る内部層を少なくとも1層有することを特徴
とする1.に記載のポリオレフィン系樹脂熱収縮性多層
フィルム。
2. 20% by weight of propylene polymer (a)
-60% by weight, and 10% to 50% by weight of a polyolefin-based elastomer (b) having a Vicat softening point of less than 80 ° C.
And at least one inner layer composed of 10% by weight to 40% by weight of the polybutene-1 resin (c). The polyolefin-based resin heat-shrinkable multi-layer film as described in 1.

【0014】[0014]

【発明の実施の形態】以下、本発明、特にその好ましい
態様を詳細に説明する。本発明が従来技術と相違する点
は、少なくとも3層構成で成り、80℃における熱収縮
率が20%〜50%であるポリオレフィン系樹脂熱収縮
性多層フィルムにおいて、フィルムの動的粘弾性測定に
よるtanδ、示差走査型熱量計(DSC)測定による
融解挙動、更にはフィルムの引裂強度特性が特定された
点にある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention, and particularly preferred embodiments thereof, will be described in detail below. The present invention is different from the prior art in that a polyolefin-based resin heat-shrinkable multi-layer film having at least a three-layer structure and having a heat shrinkage rate at 80 ° C. of 20% to 50% is measured by dynamic viscoelasticity measurement of the film. Tan δ, melting behavior by differential scanning calorimeter (DSC) measurement, and further the tear strength characteristics of the film are specified.

【0015】そして、上記を満たす好ましい態様とし
て、内部層に特定のビカット軟化点を有するポリオレフ
ィン系エラストマーを含む、特定の樹脂組成物層を少な
くとも1層有することを特徴とする点にある。まず、本
発明のフィルムは動的粘弾性測定によるtanδのピー
ク温度が−10〜2℃のものである。フィルムの動的粘
弾性測定によるtanδのピーク温度が2℃を超える
と、0℃前後のチルド域から−10℃前後の冷凍域での
変形回復性が悪くなる。一方、tanδのピーク温度が
−10℃未満ではフィルムが柔軟になりすぎて、タイト
に拘束出来ずユルミ、タルミの原因になる。
As a preferred embodiment that satisfies the above, there is a feature that at least one specific resin composition layer containing a polyolefin-based elastomer having a specific Vicat softening point is provided in the inner layer. First, the film of the present invention has a tan δ peak temperature of −10 to 2 ° C. measured by dynamic viscoelasticity. When the peak temperature of tan δ measured by dynamic viscoelasticity of the film exceeds 2 ° C, the deformation recovery property in the chilled region around 0 ° C to the frozen region around -10 ° C deteriorates. On the other hand, when the peak temperature of tan δ is less than −10 ° C., the film becomes too flexible and cannot be tightly bound, which causes Yumi and Talumi.

【0016】次に本発明のフィルムは示差走査型熱量計
(DSC)測定による2nd.融解挙動において、少な
くとも155℃±15℃の範囲にピークがあり、かつ、
125℃以上の結晶融解熱量が10〜20J/gの範囲
のものである。フィルムの示差走査型熱量計(DSC)
測定による2nd.融解挙動でピークが140℃未満で
はヒートシール時に穴が開きやすくなる等のトラブルが
発生しやすくなる。一方、ピークが170℃を超える
と、0℃前後のチルド域から−10℃前後の冷凍域での
変形回復性が悪くなる。
Next, the film of the present invention was measured by a differential scanning calorimeter (DSC) to have a 2nd. The melting behavior has a peak in the range of at least 155 ° C. ± 15 ° C., and
The heat of fusion of crystals at 125 ° C. or higher is in the range of 10 to 20 J / g. Differential scanning calorimeter (DSC) of film
2nd. If the melting behavior has a peak of less than 140 ° C., problems such as easy opening of holes during heat sealing tend to occur. On the other hand, when the peak exceeds 170 ° C, the deformation recovery property in the chilled region around 0 ° C to the frozen region around -10 ° C deteriorates.

【0017】また、フィルムの示差走査型熱量計(DS
C)測定による2nd.融解挙動において、125℃以
上の融解熱量が10J/g未満だと耐熱性が不十分にな
り、その為包装時にフィルムの走行が不安定になった
り、折り込みが不良になったり、ヒートシール時に穴が
開き易くなる等のトラブルが生じやすくなる。一方、1
25℃以上の融解熱量が20J/gを超えるとフィルム
のtanδのピーク温度が2℃を超えてしまい、0℃前
後のチルド域から−10℃前後の冷凍域での変形回復性
が悪くなる。
Further, a film differential scanning calorimeter (DS
C) 2nd. In the melting behavior, if the amount of heat of melting at 125 ° C or higher is less than 10 J / g, the heat resistance becomes insufficient, so the running of the film becomes unstable during packaging, defective folding, and holes during heat sealing. Trouble such as easy opening is likely to occur. On the other hand, 1
If the heat of fusion at 25 ° C. or more exceeds 20 J / g, the peak temperature of tan δ of the film exceeds 2 ° C., and the deformation recovery property from the chilled region around 0 ° C. to the frozen region around −10 ° C. deteriorates.

【0018】また、本発明のフィルムは引裂強度とし
て、少なくとも縦方向が0.05N以上であり、かつ、
縦と横の引裂強度比が縦/横=1.2〜5.0倍の範囲
のものである。縦方向の引裂強度が0.05N未満で
は、包装時に破れが起こりやすくなる。また、縦方向の
引裂強度は易開封性の観点から、1.0N未満が望まし
い。
The film of the present invention has a tear strength of at least 0.05 N in the longitudinal direction, and
The vertical and horizontal tear strength ratios are in the range of vertical / horizontal = 1.2 to 5.0 times. If the tear strength in the longitudinal direction is less than 0.05 N, tearing tends to occur during packaging. Further, the tear strength in the longitudinal direction is preferably less than 1.0 N from the viewpoint of easy opening.

【0019】また、本フィルムを用いて包装を行う場
合、用いられる包装機としては直線型包装機や突き上げ
式包装機が挙げられるが、特に高速タイプの直線型包装
機の例として、大森機械工業製「STC−IIB」(商
標)を説明すると、フィルム供給部において、サイドベ
ルトでフィルムを5〜10%横方向に引っ張りながら、
フィルムを筒状にし、被包装物を載せたトレーにフィル
ムを被せながら、トレーの前(進行方向側)をカッター
で切断し、トレー底面へフィルムを折込む機構になって
いるが、MD/TDの引き裂き強度の比が1.2倍未満
では、冷凍やチルド状態で鋭利な突起やエッジを有する
被包装物を包装する際に生じた微小な破れが、フィルム
供給部まで、MDに伝播しやすくなり、フィルムの再セ
ットや再起動等の手間が必要であり、包装ロスの大きな
原因となる。一方、MD/TDの引き裂き強度の比が
5.0倍を超えると包装時に被包装物の突起等により、
発生した破れが、極端に横方向に伝播し、包装ロスの原
因となる。
Further, when the present film is used for packaging, examples of the packaging machine to be used include a linear packaging machine and a push-up packaging machine. Particularly, as an example of a high speed type linear packaging machine, Omori Machinery Co., Ltd. "STC-IIB" (trademark) manufactured will be described. In the film supply unit, while pulling the film in the lateral direction by a side belt at 5 to 10%,
The mechanism is to make the film into a tubular shape, cut the front of the tray (the direction of travel) with a cutter, and fold the film to the bottom of the tray while covering the film with the film on the tray. MD / TD If the ratio of the tear strength is less than 1.2 times, the minute tears that occur when packaging a packaged object having sharp protrusions or edges in the frozen or chilled state easily propagate to the MD up to the film supply section. This requires time and effort such as resetting and restarting the film, which is a major cause of packaging loss. On the other hand, if the tear strength ratio of MD / TD exceeds 5.0 times, due to protrusions of the packaged object during packaging,
The tear that has occurred propagates extremely laterally and causes packaging loss.

【0020】本発明のフィルムの好ましい態様として
は、その内部層にプロピレン系重合体(a)、ビカット
軟化点が80℃未満のポリオレフィン系エラストマー
(b)と、ポリブテン−1系樹脂(c)から構成される
特定の樹脂組成物層(以下D層とする)を少なくとも1
層有するものである。上記プロピレン系重合体(a)は
好ましくは、プロピレン単独重合体(ホモタイプ)、プ
ロピレンと、エチレン、ブテン等の少なくとも1種のα
−オレフィンとの共重合体(ランダムタイプ、ブロック
タイプ)である。このプロピレン系重合体のより好まし
いものは、耐熱性の観点から、プロピレン単独重合体及
び、融点が150℃以上のプロピレン−エチレンランダ
ム共重合体である。該プロピレン系重合体はメルトフロ
ーレート(以下MFRとする)が0.2〜15g/10
分のものである。MFRとはJIS−K−7210−1
995に従って測定される値であり、上記プロピレン系
重合体のMFRは230℃、2.16kgfの条件で測
定されたものである。プロピレン系重合体(a)のMF
Rが0.2g/10分未満では、押出成形時の押出動力
が上昇し押し出された原反の表面平滑性が低下したり、
MDに配向が強く掛かり、MDの引裂強度が弱くなり包
装時にフィルムが破れやすくなる。またMFRが15g
/10分を越えると、延伸性が低下し、フィルムが得ら
れても変形回復性や突き刺し強度等の機械的特性に劣っ
たものしか得られない傾向にある。
In a preferred embodiment of the film of the present invention, a propylene-based polymer (a), a polyolefin-based elastomer (b) having a Vicat softening point of less than 80 ° C., and a polybutene-1-based resin (c) are used in its inner layer. At least one specific resin composition layer (hereinafter referred to as D layer) to be constituted
It has a layer. The propylene polymer (a) is preferably a propylene homopolymer (homotype), propylene, and at least one α such as ethylene and butene.
-Copolymer with olefin (random type, block type). From the viewpoint of heat resistance, more preferable propylene-based polymers are propylene homopolymers and propylene-ethylene random copolymers having a melting point of 150 ° C or higher. The propylene-based polymer has a melt flow rate (hereinafter referred to as MFR) of 0.2 to 15 g / 10.
It is for the minute. What is MFR JIS-K-7210-1
It is a value measured according to 995, and the MFR of the propylene-based polymer is measured under the conditions of 230 ° C. and 2.16 kgf. MF of propylene polymer (a)
If R is less than 0.2 g / 10 minutes, the extrusion power during extrusion will increase and the surface smoothness of the extruded raw fabric will decrease.
The orientation is strongly applied to the MD, the tear strength of the MD is weakened, and the film easily breaks during packaging. Also, MFR is 15g
If it exceeds / 10 minutes, the stretchability tends to deteriorate, and even if a film is obtained, only those having poor mechanical properties such as deformation recovery and puncture strength tend to be obtained.

【0021】上記プロピレン系重合体(a)がD層中に
占める割合は20重量%〜60重量%である。その量が
60重量%を超えると0℃前後のチルド域から−10℃
前後の冷凍域での変形回復性が悪くなり、20重量%未
満ではMDの引き裂き強度が低下し、MD/TDの引き
裂き強度の比が1.2倍未満となり、冷凍やチルド状態
で鋭利な突起やエッジを有する被包装物を包装する際に
生じた微小な破れがMDに伝播しやすくなり好ましくな
い。更にはフィルムが柔軟化しすぎて、腰がなくなる
他、耐熱性が不十分になる為、ヒートシール時に穴が開
き易くなる等のトラブルが生じやすくなる。
The proportion of the propylene polymer (a) in the D layer is 20% by weight to 60% by weight. If the amount exceeds 60% by weight, -10 ° C from the chilled region around 0 ° C.
The deformation recovery property in the front and rear frozen regions becomes poor, and the MD tear strength decreases when the content is less than 20% by weight, and the MD / TD tear strength ratio becomes less than 1.2 times, resulting in sharp protrusions in the frozen or chilled state. Micro breakage that occurs when a packaged object having edges or edges is easily propagated to the MD, which is not preferable. Furthermore, since the film becomes too soft and becomes less stiff, and the heat resistance becomes insufficient, problems such as easy opening of holes during heat sealing tend to occur.

【0022】次にビカット軟化点が80℃未満のポリオ
レフィン系エラストマー(b)はMFR0.2〜15g
/10分のものである。本発明でいうビカット軟化点
は、JIS−K−7206(試験荷重1kg、昇温速度
50℃/時間)で測定される値である。ビカット軟化点
が80℃以上ではプロピレン系重合体の柔軟化が不十分
となり延伸製膜安定性が悪くなる他、0℃前後のチルド
域から−10℃前後の冷凍域での変形回復性が低下す
る。また、該ポリオレフィン系エラストマー(b)のビ
カット軟化点は好ましくは80℃未満、より好ましくは
60℃未満のものであるが、その下限は前記した測定法
では数値の特定が困難であるが、通常は常温(23℃)
で固体である。
Next, the polyolefin-based elastomer (b) having a Vicat softening point of less than 80 ° C. has an MFR of 0.2 to 15 g.
/ 10 minutes. The Vicat softening point referred to in the present invention is a value measured by JIS-K-7206 (test load 1 kg, heating rate 50 ° C./hour). When the Vicat softening point is 80 ° C or higher, the softening of the propylene-based polymer becomes insufficient and the stretched film forming stability deteriorates, and the deformation recovery property in the chilled region around 0 ° C to the frozen region around -10 ° C decreases. To do. Further, the Vicat softening point of the polyolefin-based elastomer (b) is preferably less than 80 ° C., more preferably less than 60 ° C., but its lower limit is difficult to specify by the above-mentioned measuring method, Is room temperature (23 ℃)
And solid.

【0023】上記ポリオレフィン系エラストマー(b)
のMFRはJIS−K−7210−1995(230
℃、2.16kgf)に従って測定されたものである。
該ポリオレフィン系エラストマー(b)のMFRが0.
2g/10分未満では、押出成形時の押出動力が上昇し
押し出された原反の表面平滑性が低下したり、MDに配
向が強く掛かり、MDの引裂強度が弱くなり包装時にフ
ィルムが破れやすくなる。またMFRが15g/10分
を越えると、延伸性が低下し、フィルムが得られても変
形回復性や突き刺し強度等の機械的特性に劣ったものし
か得られない。
The above polyolefin elastomer (b)
MFR of JIS-K-7210-1995 (230
C., 2.16 kgf).
The polyolefin-based elastomer (b) has an MFR of 0.
If it is less than 2 g / 10 minutes, the extrusion power during extrusion will increase and the surface smoothness of the extruded raw material will decrease, or the MD will have a strong orientation, the MD tear strength will be weak and the film will easily break during packaging. Become. On the other hand, if the MFR exceeds 15 g / 10 minutes, the stretchability is lowered, and even if a film is obtained, only those having poor mechanical properties such as deformation recovery and puncture strength can be obtained.

【0024】該ポリオレフィン系エラストマー(b)の
密度は0.860〜0.910g/cm3のものであ
る。本発明でいう密度とは、JIS−K−7112に従
って測定される23℃の値である。密度が0.860g
/cm3未満では樹脂がブロッキングし易くなるため保
管温度を制御しなければならず取り扱いに支障がある。
また密度が0.910g/cm3を越えるとホモPPの
柔軟化が不十分となり延伸が不安定になる他、0℃前後
のチルド域から−10℃前後の冷凍域での変形回復性が
低下する。
The density of the polyolefin elastomer (b) is 0.860 to 0.910 g / cm 3 . The density referred to in the present invention is a value at 23 ° C. measured according to JIS-K-7112. 0.860g density
If it is less than / cm 3 , the resin tends to be blocked, so that the storage temperature must be controlled, which is an obstacle to handling.
Further, if the density exceeds 0.910 g / cm 3 , the softening of homo PP becomes insufficient and the stretching becomes unstable, and the deformation recovery property from the chilled region around 0 ° C to the frozen region around -10 ° C decreases. To do.

【0025】次に該ポリオレフィン系エラストマー
(b)のD層中に占める割合は10重量%〜50重量%
である。50重量%を越えるとMDの引き裂き強度が低
下し、MD/TDの引き裂き強度の比が1.2倍未満と
なり、突起のある商品を包装する際、縦に引き裂き伝播
が発生しやすくなり好ましくない。更にはフィルムが柔
軟化しすぎて、腰がなくなる他、耐熱性が不十分にな
り、ヒートシール時に穴が開き易くなる等のトラブルが
生じやすくなる。10重量%未満ではフィルムのtan
δのピーク温度が2℃を超えてしまい、0℃前後のチル
ド域から−10℃前後の冷凍域での変形回復性が悪くな
る。
Next, the proportion of the polyolefin elastomer (b) in the D layer is 10% by weight to 50% by weight.
Is. If it exceeds 50% by weight, the tear strength of MD is lowered and the tear strength ratio of MD / TD is less than 1.2 times, and when propagating a product with protrusions, tear propagation easily occurs in the vertical direction, which is not preferable. . Further, the film becomes too soft and loses its rigidity, and the heat resistance becomes insufficient, and troubles such as easy opening of holes during heat sealing tend to occur. Below 10% by weight the tan of the film
The peak temperature of δ exceeds 2 ° C., and the deformation recovery from the chilled region around 0 ° C. to the frozen region around −10 ° C. deteriorates.

【0026】該ポリオレフィン系エラストマー(b)の
具体例としては、プロピレンと1種または2種類以上の
α−オレフィン(エチレンの他、炭素数4〜8のもの)
との共重合体であって、チーグラー・ナッタ触媒のよう
な従来の触媒により重合されたもの以外に、メタロセン
系触媒等で重合されたものも含まれ、更に70重量%程
度までの高濃度のゴム成分を均一分散したもの、および
非晶質ポリαオレフィンやエチレン−ブチレン共重合体
であっても良く、これらの内少なくとも1種が用いら
れ、2種以上ブレンドしたものでもよい。
Specific examples of the polyolefin elastomer (b) include propylene and one or more kinds of α-olefins (having 4 to 8 carbon atoms in addition to ethylene).
In addition to those copolymerized with conventional catalysts such as Ziegler-Natta catalyst, those copolymerized with metallocene-based catalysts are also included, and copolymers with a high concentration of up to about 70% by weight. The rubber component may be uniformly dispersed, or an amorphous poly-α-olefin or an ethylene-butylene copolymer may be used, and at least one of them may be used and a blend of two or more thereof may be used.

【0027】あるいは、エチレンと炭素数が3〜18の
α−オレフィンから選ばれる少なくとも1種類の単量体
とのランダム共重合体で、α−オレフィンとしては、プ
ロピレン、ブテン−1、ペンテン−1、4−メチル−ペ
ンテン−1、ヘキセン−1、オクテン−1、デセン−
1、ドデセン−1等が挙げられ、これにポリエン構造を
有する炭化水素、例えばジシクロペンタジエン、1,4
−ヘキサジエン、ノルボルネン系単量体(例えば、エチ
リデンノルボルネン)等を共重合しても良い。共重合体
中のエチレン含量は、通常40〜95重量%、好ましく
は50〜90重量%、より好ましくは60〜85重量%
のものである。該樹脂はマルチサイト触媒あるいはシン
グルサイト触媒のいずれで重合されたものでも良い。
Alternatively, it is a random copolymer of ethylene and at least one monomer selected from α-olefins having 3 to 18 carbon atoms, and α-olefins include propylene, butene-1 and pentene-1. , 4-methyl-pentene-1, hexene-1, octene-1, decene-
1, dodecene-1, etc., and a hydrocarbon having a polyene structure, for example, dicyclopentadiene, 1,4
-Hexadiene, norbornene-based monomers (eg ethylidene norbornene) and the like may be copolymerized. The ethylene content in the copolymer is usually 40 to 95% by weight, preferably 50 to 90% by weight, more preferably 60 to 85% by weight.
belongs to. The resin may be polymerized with either a multi-site catalyst or a single-site catalyst.

【0028】また、このポリオレフィン系エラストマー
(b)は、単体でも溶融押出加工によってフィルムやペ
レット形成が可能な程度のものである。たとえば、D層
で用いられるプロピレンと1種または2種類以上のα−
オレフィン(エチレンの他、炭素数4〜8のもの)との
共重合体は以下のような多段重合法により製造される。
まず第一段階として、チタン化合物触媒およびアルミニ
ウム化合物触媒の存在下においてプロピレンモノマーお
よび必要に応じてエチレンモノマーまたはα−オレフィ
ンモノマーを用いて重合を行い、第一のプロピレン系樹
脂を得る。この第一のプロピレン系樹脂はプロピレン系
重合体、プロピレン−エチレン共重合体、プロピレン−
α−オレフィン共重合体等であり得る。
The polyolefin-based elastomer (b) can be used alone to form a film or pellets by melt extrusion. For example, propylene used in the D layer and one or more α-
A copolymer with an olefin (having 4 to 8 carbon atoms in addition to ethylene) is produced by the following multistage polymerization method.
First, as a first step, polymerization is carried out in the presence of a titanium compound catalyst and an aluminum compound catalyst using a propylene monomer and optionally an ethylene monomer or an α-olefin monomer to obtain a first propylene resin. This first propylene-based resin is a propylene-based polymer, propylene-ethylene copolymer, propylene-
It may be an α-olefin copolymer or the like.

【0029】第二段階として、前記のチタン化合物触媒
およびアルミニウム化合物触媒を含有したままの上記第
一のプロピレン系樹脂と、オレフィンモノマー(例え
ば、エチレン、プロピレン、またはα−オレフィン)と
を共重合させて、第二のポリオレフィン系樹脂を得る。
この二段階反応により得られる第二のポリオレフィン系
樹脂は、プロピレン−エチレン共重合体、プロピレン−
α−オレフィン共重合体、またはエチレン−α−オレフ
ィン共重合体であり得る。この製造方法の特徴は、重合
を一段階で終了するのではなく、二段階以上の多段重合
を行うことにある。
In the second step, the above-mentioned first propylene-based resin containing the titanium compound catalyst and the aluminum compound catalyst is copolymerized with an olefin monomer (for example, ethylene, propylene, or α-olefin). Thus, a second polyolefin resin is obtained.
The second polyolefin resin obtained by this two-step reaction is a propylene-ethylene copolymer, propylene-
It can be an α-olefin copolymer or an ethylene-α-olefin copolymer. The feature of this production method is that the polymerization is not completed in one step, but multi-step polymerization of two or more steps is performed.

【0030】このことより、複数の種類のポリマーを続
けて作り上げることが可能であり、通常のポリマーブレ
ンドとは全く異なる分子レベルでのブレンドタイプの共
重合体が生成され、樹脂の特徴としては、高柔軟性等が
挙げられる。実際の樹脂としては、サンアロマー社の
「ADFLEX」(商標)等が挙げられる。次にポリブ
テン−1系樹脂(c)はMFR0.2〜10g/10分
のものが好ましく、上記ポリブテン−1系樹脂(c)の
MFRはJIS−K−7210−1995(190℃、
2.16kg)に従って測定されたものである。
From the above, it is possible to successively produce a plurality of types of polymers, and a blend type copolymer at a molecular level, which is completely different from ordinary polymer blends, is produced. High flexibility is included. Examples of the actual resin include "ADFLEX" (trademark) manufactured by Sun Allomer. Next, the polybutene-1 resin (c) preferably has an MFR of 0.2 to 10 g / 10 min, and the MFR of the polybutene-1 resin (c) is JIS-K-7210-1995 (190 ° C,
2.16 kg).

【0031】MFRが0.2g/10分未満では、プロ
ピレン系重合体(a)との相溶性が悪化しやすく、フィ
ルムが白化したり、押し出された原反の表面平滑性が低
下する傾向がある。また、MFRが10g/10分を越
えると、延伸性が低下しやすく、フィルムが得られても
変形回復性や突き刺し強度等の機械的特性が十分でない
場合がある。また、ポリブテン−1系樹脂(c)として
は、ホモブテン−1、ブテン−1含有量が70重量%以
上のブテン−1とエチレンないしプロピレンとの共重合
体を用いることができる。ポリブテン−1系樹脂(c)
のD層中に占める割合は10重量%〜40重量%であ
る。40重量%を越えるとフィルムが柔軟化しすぎて、
腰がなくなる他、耐熱性が不十分になり、ヒートシール
時に穴が開き易くなる等のトラブルが生じやすくなる。
また、10重量%未満では延伸性及び引裂強度が低下す
る。
When the MFR is less than 0.2 g / 10 minutes, the compatibility with the propylene-based polymer (a) tends to be deteriorated, and the film tends to be whitened or the surface smoothness of the extruded raw sheet tends to be deteriorated. is there. When the MFR exceeds 10 g / 10 minutes, the stretchability is likely to be lowered, and mechanical properties such as deformation recovery and puncture strength may not be sufficient even if a film is obtained. As the polybutene-1 resin (c), homobutene-1, and a copolymer of butene-1 and ethylene or propylene having a butene-1 content of 70% by weight or more can be used. Polybutene-1 resin (c)
The ratio in the D layer is 10% by weight to 40% by weight. If it exceeds 40% by weight, the film becomes too soft,
In addition to lack of stiffness, heat resistance becomes insufficient, and problems such as easy opening of holes during heat sealing tend to occur.
Further, if it is less than 10% by weight, the stretchability and tear strength decrease.

【0032】また、本発明のフィルムには目的に応じ、
D層以外に両表面層(E層)と更に積層される、その他
の内部層(F層)を設けることが出来る。以下、E層、
F層について説明する。E層は、ヒートシールや密着等
による包装体としての気密性を確保するとともに、透明
性や光沢の他、添加剤としての防曇剤、帯電防止剤、滑
剤等を内部添加法によりブリードさせて、フィルムとし
て必要な表面特性を発揮する層である。E層に用いられ
る樹脂としてはエチレンα−オレフィン共重合体樹脂、
EVA、エチレン−脂肪族不飽和カルボン酸共重合体、
エチレン−脂肪族不飽和カルボン酸エステル共重合体等
のポリエチレン系樹脂の中から少なくとも1種、又は2
種以上の組成物を用いることができる。エチレンα−オ
レフィン共重合体樹脂の場合は引き裂き強度や突き刺し
強度、変形回復性および延伸安定性の点から、α−オレ
フィンとしては4−メチル−ペンテン−1、ヘキセン−
1、オクテン−1が好ましい。
Further, the film of the present invention may be
In addition to the D layer, another internal layer (F layer) that is further laminated with both surface layers (E layer) can be provided. Below, E layer,
The F layer will be described. The E layer secures airtightness as a package by heat sealing, adhesion, and the like, and in addition to transparency and gloss, bleeds additives such as antifogging agents, antistatic agents, and lubricants by an internal addition method. , A layer that exhibits the surface characteristics required as a film. As the resin used in the E layer, ethylene α-olefin copolymer resin,
EVA, ethylene-aliphatic unsaturated carboxylic acid copolymer,
At least one of polyethylene-based resins such as ethylene-aliphatic unsaturated carboxylic acid ester copolymer, or 2
More than one composition can be used. In the case of ethylene α-olefin copolymer resin, from the viewpoints of tear strength, puncture strength, deformation recovery property and stretching stability, α-olefin is 4-methyl-pentene-1, hexene-
1, octene-1 are preferred.

【0033】F層は延伸補助層として、エチレンα−オ
レフィン共重合体樹脂、EVA、エチレン−脂肪族不飽
和カルボン酸共重合体、エチレン−脂肪族不飽和カルボ
ン酸エステル共重合体等のポリエチレン系樹脂及びポリ
プロピレン系樹脂の中から選ばれる少なくとも1種が好
ましく用いられ、更には延伸製膜したフィルムを粉砕処
理し、再溶融後にペレット化したリサイクル樹脂も使用
可能であるが、引き裂き強度や突き刺し強度および変形
回復性と延伸製膜安定性の確保のため、エチレンα−オ
レフィン共重合体が20〜60%の範囲のものが好まし
い。
The F layer serves as a stretching assisting layer and is a polyethylene type resin such as ethylene α-olefin copolymer resin, EVA, ethylene-aliphatic unsaturated carboxylic acid copolymer and ethylene-aliphatic unsaturated carboxylic acid ester copolymer. At least one selected from resins and polypropylene-based resins is preferably used. Further, recycled resin obtained by pulverizing a stretched film and pelletizing after remelting can be used, but tear strength and puncture strength are also usable. In order to secure the deformation recovery property and the stretch film forming stability, the ethylene α-olefin copolymer preferably has a content of 20 to 60%.

【0034】次に、本発明の多層フィルムは、ヒートシ
ール性や機械的強度、変形回復性、耐熱性等より、全層
に占める各層の厚み比率は、E層が20〜60%、F層
が20〜70%、D層が10〜40%の範囲が好まし
く、また多層フィルムの厚みは、通常5〜60μm、好
ましくは6〜40μm特に本発明の効果がより一層発揮
されるのは、7〜20μmの薄肉の領域である。本発明
のフィルムは、表層を形成するE層及び内部層であるD
層、F層の合計少なくとも3層から構成されるが、層の
配置としては、例えば3層の場合:E/D/E、4層の
場合:E/F/D/E、5層の場合:E/F/D/F/
E、E/D/F/D/E、7層の場合:E/F/D/F
/D/F/E、E/D/F/D/F/D/E等が挙げら
れるが、E層と同一の樹脂層を更に内部層として使用す
ることも可能である。他に6層、8層、及びそれ以上の
層からも構成することが出来る。
Next, in the multilayer film of the present invention, the thickness ratio of each layer to all layers is 20 to 60% for the E layer and F layer for the heat sealing property, mechanical strength, deformation recovery property, heat resistance and the like. Is preferably 20 to 70% and the D layer is 10 to 40%, and the thickness of the multilayer film is usually 5 to 60 μm, preferably 6 to 40 μm. It is a thin region of ˜20 μm. The film of the present invention comprises an E layer forming a surface layer and an inner layer D
The layers are composed of at least 3 layers in total, and the layers are arranged, for example, in the case of 3 layers: E / D / E, in the case of 4 layers: E / F / D / E, in the case of 5 layers. : E / F / D / F /
E, E / D / F / D / E, 7 layers: E / F / D / F
Examples thereof include / D / F / E, E / D / F / D / F / D / E, etc., but it is also possible to use the same resin layer as the E layer as an inner layer. Besides, it can be composed of 6 layers, 8 layers, and more layers.

【0035】また、本発明のフィルムには、その本来の
特性を損なわない範囲で、さらに内部層として、ポリア
ミド、熱可塑性ポリエステル、エチレン−ビニルアルコ
ール共重合体を使用したガスバリアー層、また必要に応
じて更に加えて接着性樹脂よりなる接着層を設けても良
い。更に、本発明のフィルムは80℃における熱収縮率
が20〜50%である。この値が20%未満では、基本
的に低温収縮性に乏しく、包装時シュリンク後のフィッ
ト性が不十分になり、包装後にシワやタルミが発生する
原因となる。また50%を越えると、保管、流通過程に
おいて寸法収縮を生じ易いといった問題がある(特に巾
方向が問題となるが、ロール状の巻物の場合、巻芯部と
外側表面での巾寸法の差も問題となる)。
In the film of the present invention, a gas barrier layer using polyamide, thermoplastic polyester or ethylene-vinyl alcohol copolymer as an inner layer is also required as long as the original characteristics are not impaired. In addition, an adhesive layer made of an adhesive resin may be additionally provided. Furthermore, the film of the present invention has a heat shrinkage ratio at 20 ° C. of 20 to 50%. If this value is less than 20%, the low-temperature shrinkage is basically poor, and the fit after shrinking during packaging becomes insufficient, which causes wrinkles and lumps after packaging. On the other hand, if it exceeds 50%, there is a problem that dimensional shrinkage is likely to occur during storage and distribution processes (especially in the width direction, but in the case of a roll-shaped roll, the difference in width between the winding core and the outer surface). Is also a problem).

【0036】本発明の多層フィルムの各樹脂層には、そ
れぞれその本来の特性を損なわない範囲で、防曇剤、可
塑剤、酸化防止剤、界面活性剤、着色剤、紫外線吸収
剤、滑剤、無機フィラー等を添加しても良く、またフィ
ルム表面にショ糖エステル、各種シリコーンエマルジョ
ン、シリコーンオイル、各種界面活性剤、高級脂肪酸金
属塩、およびポリビニルアルコール等の公知の表面改質
用高分子等を必要に応じて適宜溶媒で希釈してコーティ
ングしても良い。
Each resin layer of the multi-layer film of the present invention contains an antifogging agent, a plasticizer, an antioxidant, a surfactant, a colorant, an ultraviolet absorber, a lubricant, in an amount that does not impair its original properties. Inorganic fillers may be added, and sucrose ester, various silicone emulsions, silicone oils, various surfactants, higher fatty acid metal salts, and known surface-modifying polymers such as polyvinyl alcohol may be added to the film surface. If necessary, the coating may be performed by appropriately diluting with a solvent.

【0037】次に、本発明の多層シュリンクフィルムの
製法の一例について述べる。まず各種(D、E、F層お
よび必要に応じて用いられるその他の層)を構成する樹
脂をそれぞれの押出機で溶融して、多層ダイで共押出
し、急冷固化して多層フィルム原反を得る。押出法は、
多層のTダイ法、多層のサーキュラー法等を用いること
が出来るが、好ましくは後者が良い。このようにして得
た多層フィルム原反を30〜100℃に加熱して延伸を
行う。延伸方法としては、ロール延伸法、テンター延伸
法、インフレ(ダブルバブル法を含む)等があるが、同
時二軸延伸で製膜される方法が好ましい。また延伸は少
なくとも1方向に面積延伸倍率で4〜30倍に延伸され
るが、この延伸倍率は用途により必要な熱収縮率等に応
じて適宜選択される。また、必要に応じ、後処理、例え
ば寸法安定性のためのヒートセット、コロナ処理、プラ
ズマ処理の他、各種フィルムとのラミネーションが行わ
れても良い。
Next, an example of a method for producing the multilayer shrink film of the present invention will be described. First, resins constituting various types (D, E, F layers and other layers used as necessary) are melted by respective extruders, coextruded by a multilayer die, and rapidly solidified to obtain a multilayer film original fabric. . The extrusion method is
A multi-layer T-die method, a multi-layer circular method or the like can be used, but the latter is preferable. The multilayer film stock thus obtained is heated to 30 to 100 ° C. and stretched. Examples of the stretching method include a roll stretching method, a tenter stretching method and an inflation (including a double bubble method) method, and a method of forming a film by simultaneous biaxial stretching is preferable. The stretching is performed in at least one direction at an area stretching ratio of 4 to 30 times, and the stretching ratio is appropriately selected according to the heat shrinkage ratio required depending on the application. If necessary, post-treatments such as heat setting for dimensional stability, corona treatment, and plasma treatment, as well as lamination with various films may be performed.

【0038】更に本発明のフィルムは、その少なくとも
1つの層が架橋されていても良く、架橋処理は電子線、
γ線、紫外線等のエネルギー線照射やパーオキサイドの
利用等の従来公知の方法が用いられる。以下、本発明を
実施例にて更に詳しく説明する。なお、本発明で用いた
測定評価方法および使用した樹脂は、以下の通りであ
る。 (1)延伸製膜安定性 以下の基準に従い、加熱延伸を行った際のフィルムの連
続製膜安定性を評価した。(延伸開始点〜延伸終了点ま
での距離Lに対して、延伸開始点の変動範囲をXとした
時のX/L) ◎:X/Lが2%未満(極めて安定) ○:X/Lが3%以上、5%未満(若干の変動が見られ
るが延伸バブルは揺れない) △:X/Lが6%以上、10%未満(延伸バブルが揺れ
るが、バブルの維持は可能) ×:X/Lが10%以上(延伸バブルが大きく揺れ、バ
ブルの維持が困難)
Further, in the film of the present invention, at least one layer thereof may be crosslinked, and the crosslinking treatment may be carried out by using an electron beam,
Conventionally known methods such as irradiation with energy rays such as γ-rays and ultraviolet rays and the use of peroxides are used. Hereinafter, the present invention will be described in more detail with reference to Examples. The measurement and evaluation methods used in the present invention and the resins used are as follows. (1) Stretching stability of film formation The continuous filming stability of the film when heat-stretched was evaluated according to the following criteria. (X / L when the variation range of the stretching start point is X with respect to the distance L from the stretching start point to the stretching end point) ◎: X / L is less than 2% (extremely stable) ○: X / L Is 3% or more and less than 5% (there are some fluctuations, but the stretching bubble does not shake) Δ: X / L is 6% or more and less than 10% (the stretching bubble shakes, but the bubble can be maintained) X: X / L is 10% or more (stretched bubbles sway greatly and it is difficult to maintain bubbles)

【0039】(2)熱収縮率 100mm角のフィルム試料を所定の温度に設定したエ
アーオーブン式恒温槽に入れ、自由に収縮する状態で3
0分間処理した後、フィルムの収縮量を求め、元の寸法
で割った値の百分比で表し、タテ、ヨコ両方についてそ
れぞれ測定した。 (3)tanδ 動的粘弾性試験機、商標「RSAII」(レオメトリッ
ク・サイエンティフィック・エフ・イー製)を用いて、
幅7mm(TD)×長さ40mm(MD)の短冊状サン
プルを切り出し、周波数1Hzで温度−70℃から+3
0℃まで5℃/分で昇温した時のtanδピークの温度
を採用した。
(2) A film sample having a heat shrinkage rate of 100 mm square is placed in an air oven type thermostatic chamber set to a predetermined temperature, and is shrunk freely to 3
After processing for 0 minutes, the amount of shrinkage of the film was obtained and expressed as a percentage of the value divided by the original size, and measured for both the vertical and horizontal directions. (3) tan δ Using a dynamic viscoelasticity tester, trademark “RSAII” (manufactured by Rheometric Scientific FE),
A strip sample having a width of 7 mm (TD) and a length of 40 mm (MD) is cut out, and the temperature is from −70 ° C. to +3 at a frequency of 1 Hz.
The temperature of the tan δ peak when the temperature was raised to 0 ° C. at 5 ° C./min was adopted.

【0040】(4)示差走査型熱量計(DSC)測定 示差走査型熱量計DSC7(パーキンエルマー製)を用
いて、温度−10℃から10℃/分で200℃まで昇温
した(1st.融解挙動)。200℃で5分間保持した
後、10℃/分で−10℃まで降温した(1st.結晶
化挙動)。次いで再び10℃/分で200℃まで昇温し
(2nd.融解挙動)、この時のピーク温度及び125
℃以上の融解熱量(ΔH)を採用した。試料重量は5〜
10mgの範囲に入るようにした。 (5)引き裂き強度 JIS−P−8116に準じて、軽荷重引き裂き試験器
(東洋精機製)を用いて、タテ方向とヨコ方向それぞれ
について測定した。なお、ここでの測定の読みは、目盛
りの20〜60の範囲になるように測定を行うが、測定
レンジによって測定値に差がある場合は、高い方の値を
採用した。
(4) Differential Scanning Calorimeter (DSC) Measurement Using a differential scanning calorimeter DSC7 (manufactured by Perkin Elmer), the temperature was raised from -10 ° C to 200 ° C at 10 ° C / min (1st. Melting. behavior). After holding at 200 ° C. for 5 minutes, the temperature was lowered to −10 ° C. at 10 ° C./minute (1st. Crystallization behavior). Then, the temperature was again raised to 200 ° C. at 10 ° C./minute (2nd. Melting behavior), and the peak temperature at this time and 125
The heat of fusion (ΔH) above ℃ was adopted. Sample weight is 5
It was made to fall within the range of 10 mg. (5) Tear strength According to JIS-P-8116, a light load tear tester (manufactured by Toyo Seiki Co., Ltd.) was used to measure in each of the vertical direction and the horizontal direction. In addition, the reading of the measurement here is performed so as to be in the range of 20 to 60 on the scale, but when there is a difference in the measured value depending on the measurement range, the higher value is adopted.

【0041】(6)変形回復性−1(賦型回復性) 中がくり抜かれた状態の外寸法が180×180mmの
木枠をフィルム支持台とし、該支持台の中心部に外寸法
が82×82mmの升状の木型を該支持台の各辺が平行
を保てるようにして、該支持台の下側から外支持台の上
面より10mm突き出させ、この状態でフィルムを該升
状の木型に上から覆い被せ、このフィルムの端をフィル
ム支持台の縁に両面テープで固定した。この際、フィル
ムの張りは最小限で、かつタルミが生じないように注意
深く固定した。次いで、この状態のままで90℃の熱風
トンネルを3秒間通過させ、フィルムをシュリンクさせ
た。トンネル通過後、それぞれ0℃、−10℃下で3分
間放置後にフィルム支持台から升状の木型を抜き取り、
0℃、−10℃下で該支持台に固定されているフィルム
の表面の状態を5分後に目視観察した。タルミやシワ、
または局部的なくぼみがわずかに認められるが商品性に
問題のないものを○、明らかにタルミやシワ、局部的な
くぼみが残っており、商品性に問題のあるものを×と
し、○と×の中間レベルのものを△とした。
(6) Deformation recovery-1 (mold recovery) A wooden frame having an outer size of 180 × 180 mm in a hollowed-out state is used as a film support, and the outer size is 82 at the center of the support. A box-shaped wooden mold of × 82 mm is made to project from the lower side of the support table by 10 mm from the upper surface of the outer support table so that the sides of the support table can be kept parallel, and in this state, the film is formed into the box-shaped tree pattern. The mold was covered over and the edge of this film was secured to the edge of the film support with double sided tape. At this time, the tension of the film was minimal, and the film was carefully fixed so as not to cause tarmi. Then, in this state, a hot air tunnel at 90 ° C. was passed for 3 seconds to shrink the film. After passing through the tunnel, leave them at 0 ° C and -10 ° C for 3 minutes, and then remove the box-shaped wooden mold from the film support.
The state of the surface of the film fixed on the support was visually observed after 5 minutes at 0 ° C. and −10 ° C. Talmi and wrinkles,
Or, there are slight local dents, but there is no problem in commercial property ○, clearly Talmi, wrinkles, local dents and problems in commercial property are marked ×, ○ and × The one of the intermediate level was marked with △.

【0042】(7)変形回復性−2(押し込み回復性) 中がくり抜かれた状態の外寸法が125±125mm、
深さ50mmの木枠をフィルム支持台とし、フィルムを
木枠に上から覆い被せ、このフィルムの端をフィルム支
持台の縁に両面テープで固定した。この際、フィルムの
張りは最小限で、かつタルミが生じないように注意深く
固定した。次いで、この状態のままで90℃の熱風トン
ネルを3秒間通過させ、フィルムをシュリンクさせた。
トンネル通過後、それぞれ0℃、−10℃下で3分間放
置後に、先端を半径7.5mmの球面に加工した、直径
15mmのSUS(ステンレス)製の押し込み棒を速度
1000mm/分でフィルムより15mmの深さまで、
上方より支持台の中心部に押し込んだ。15mmの深さ
まで押し込んだ後、保持時間0秒で、押し込み棒を10
00mm/分で引き上げた。その後0℃、−10℃下で
該支持台に固定されているフィルムの表面の状態を1分
後に目視観察した。タルミやシワ、または局部的なくぼ
みがわずかに認められるが商品性に問題のないものを
○、明らかにタルミやシワ、局部的なくぼみが残ってお
り、商品性に問題のあるものを×とし、○と×の中間レ
ベルのものを△とした。
(7) Deformation recovery-2 (indentation recovery) The outer dimensions of the hollowed-out state are 125 ± 125 mm,
A wooden frame having a depth of 50 mm was used as a film support, and the film was covered from above and the edge of this film was fixed to the edge of the film support with double-sided tape. At this time, the tension of the film was minimal, and the film was carefully fixed so as not to cause tarmi. Then, in this state, a hot air tunnel at 90 ° C. was passed for 3 seconds to shrink the film.
After passing through the tunnel for 3 minutes at 0 ° C and -10 ° C respectively, a SUS (stainless steel) push rod with a diameter of 15 mm, whose tip was processed into a spherical surface with a radius of 7.5 mm, was cut from the film at a speed of 1000 mm / min to 15 mm from the film. To the depth of
Pushed into the center of the support from above. After pushing in to a depth of 15 mm, hold down for 0 seconds and push the pushing bar in 10
It was pulled up at 00 mm / min. After that, the state of the surface of the film fixed to the support was visually observed after 1 minute at 0 ° C. and −10 ° C. Talmi, wrinkles, or local dents are slightly recognized, but there is no problem in productability. ○: Clearly talumi, wrinkles, or local dents remain, and productability is problematic. The ones with an intermediate level between ◯ and ◯ were marked with ∆.

【0043】(8)収縮後HAZE 90℃±3秒の条件で熱風トンネルを通過させたフィル
ムを面積で0%収縮させたものを用いて、ASTM−D
−1003−52に準じて測定した。 (9)防曇性 製膜後3日経過したフィルムを更に23℃のエアーオー
ブン式恒温槽に24時間入れた後、そのフィルムを用い
て、20℃の水が入ったビーカーを覆って密封し、5℃
の冷蔵庫で1時間放置後、フィルムに付着した水の状態
を以下の基準で目視評価した。 5:鏡面状に水膜が形成され、曇りが全くなく透明なも
の。 4:やや斑のある水膜であるが、内容物の確認にはほと
んど支障がないもの。 3:広がった水膜が付着しているが、内容物の確認は可
能であり、実用上支障がないもの。 2:小さい水滴が付着しており、内容物の形状が分かる
程度で、細部の確認が困難なもの。 1:白く曇り、内容物の存在が確認出来ないもの。
(8) HAZE after shrinkage ASTM-D was used by using a film obtained by passing through a hot air tunnel under conditions of 90 ° C. ± 3 seconds and shrinking 0% in area.
It was measured according to -1003-52. (9) The film 3 days after the formation of the antifogging film was further placed in an air oven type constant temperature bath at 23 ° C for 24 hours, and then the beaker containing water at 20 ° C was covered and sealed with the film. 5 ° C
After left in the refrigerator for 1 hour, the state of water attached to the film was visually evaluated according to the following criteria. 5: A transparent film with a water film formed in a mirror surface. 4: A slightly uneven water film, but there is almost no problem in checking the contents. 3: A spread water film is attached, but the contents can be confirmed and there is no practical problem. 2: Small water droplets are attached, and the shape of the contents can be seen, and it is difficult to check the details. 1: White and cloudy, and the presence of contents cannot be confirmed.

【0044】(10)包装時の破れ伝搬性 包装時に被包装物の鋭利な突起によって生じる破れのM
D方向への伝搬性を冷凍エビを用いて評価した。中央化
学製のトレー、商標「エビNo.24」にあらかじめ−
30℃で保存した冷凍エビ12尾(280g)を盛り付
け、大森機械工業製の包装機「STC−IIB」を用い
て各フィルムで包装した。各フィルムで10パックずつ
包装し、フィルムのエビの尾との接触部から生じる破れ
が全く伝播しないものを○、包装機の供給部まで大きく
伝播したものを×、中間レベルのものを△とした。
(10) Breakage during packaging Propagation M caused by sharp projections of the packaged object during packaging
Propagation in the D direction was evaluated using frozen shrimp. Chuo Kagaku's tray, trademark "Shrimp No. 24" beforehand-
Twelve frozen shrimps (280 g) stored at 30 ° C. were placed and each film was packaged using a packaging machine “STC-IIB” manufactured by Omori Machinery Co., Ltd. Each film was packaged in 10 packs, and the one that did not propagate the tear generated from the contact portion of the shrimp tail of the film was ○, the one that greatly propagated to the supply part of the packaging machine was X, and the intermediate one was Δ. .

【0045】(11)実施例および比較例において使用
した樹脂 LL1:エチレンα−オレフィン共重合体(シングルサ
イト触媒で重合されたもの、α−オレフィン=ヘキセン
−1、密度=0.904g/cm3、MI=4.0g/
10分) LL2:エチレンα−オレフィン共重合体(シングルサ
イト触媒で重合されたもの、α−オレフィン=オクテン
−1、密度=0.902g/cm3、MI=3.0g/
10分) LL3:エチレンα−オレフィン共重合体(シングルサ
イト触媒で重合されたもの、α−オレフィン=ヘキセン
−1、密度=0.912g/cm3、MI=0.8g/
10分) EVA1:エチレン−酢酸ビニル共重合体(酢酸ビニル
含量=15重量%、MI=2.2g/10分)
(11) Resin used in Examples and Comparative Examples LL1: ethylene α-olefin copolymer (polymerized with a single-site catalyst, α-olefin = hexene-1, density = 0.904 g / cm 3 , MI = 4.0 g /
10 minutes) LL2: ethylene α-olefin copolymer (polymerized with a single-site catalyst, α-olefin = octene-1, density = 0.902 g / cm 3 , MI = 3.0 g /
10 minutes) LL3: ethylene α-olefin copolymer (polymerized with a single-site catalyst, α-olefin = hexene-1, density = 0.912 g / cm 3 , MI = 0.8 g /
10 minutes) EVA1: ethylene-vinyl acetate copolymer (vinyl acetate content = 15% by weight, MI = 2.2 g / 10 minutes)

【0046】PP1:プロピレン系重合体(アイソタチ
ックポリプロピレン(ホモポリマー))、密度=0.9
00g/cm3、MFR=4.0g/10分、融点(D
SC法最高融解ピーク温度)=160℃ PP2:プロピレン系重合体(プロピレン−エチレンラ
ンダム共重合体)、密度=0.900g/cm3、MF
R=2.3g/10分、融点(DSC法最高融解ピーク
温度)=159℃ PP3:プロピレン系重合体(プロピレン−エチレンラ
ンダム共重合体)、密度=0.89g/cm3、MFR
=1.8g/10分、融点(DSC法最高融解ピーク温
度)=140℃
PP1: propylene polymer (isotactic polypropylene (homopolymer)), density = 0.9
00 g / cm 3 , MFR = 4.0 g / 10 min, melting point (D
SC method maximum melting peak temperature) = 160 ° C. PP2: propylene-based polymer (propylene-ethylene random copolymer), density = 0.900 g / cm 3 , MF
R = 2.3 g / 10 min, melting point (DSC method maximum melting peak temperature) = 159 ° C. PP3: propylene polymer (propylene-ethylene random copolymer), density = 0.89 g / cm 3 , MFR
= 1.8 g / 10 minutes, melting point (DSC method maximum melting peak temperature) = 140 ° C.

【0047】TPO1:ポリオレフィン系エラストマー
(ランダムポリプロピレンタイプでEPR含量65重量
%)、密度=0.880g/cm3、MFR=0.45
g/10分、ビカット軟化点=55℃ TPO2:ポリオレフィン系エラストマー(TPO1の
ビスブレイク品でEPR含量65重量%)、密度=0.
890g/cm3、MFR=4.0g/10分、ビカッ
ト軟化点=55℃ TPO3:ポリオレフィン系エラストマー(ランダムポ
リプロピレンタイプでEPR含量90重量%)、密度=
0.880g/cm3、MFR=1.5g/10分、ビ
カット軟化点≦25℃
TPO1: Polyolefin elastomer (random polypropylene type, EPR content 65% by weight), density = 0.880 g / cm 3 , MFR = 0.45
g / 10 minutes, Vicat softening point = 55 ° C. TPO2: polyolefin-based elastomer (TPO1 bisbreak product having EPR content of 65% by weight), density = 0.
890 g / cm 3 , MFR = 4.0 g / 10 min, Vicat softening point = 55 ° C. TPO3: Polyolefin elastomer (random polypropylene type, EPR content 90% by weight), density =
0.880 g / cm 3 , MFR = 1.5 g / 10 minutes, Vicat softening point ≦ 25 ° C.

【0048】TPO4:ポリオレフィン系エラストマー
(シングルサイト触媒で重合されたエチレン−オクテン
−1共重合体。オクテン−1含量=25重量%、密度=
0.870g/cm3、MI=1.0g/10分、Mw
/Mn=2.7、ビカット軟化点≦25℃) TPO5:ポリオレフィン系エラストマー(シングルサ
イト触媒で重合されたエチレン−オクテン−1共重合
体。オクテン−1含量=25重量%、密度=0.868
g/cm3、MI=0.5g/10分、Mw/Mn=
2.7、ビカット軟化点≦25℃)
TPO4: Polyolefin elastomer (ethylene-octene-1 copolymer polymerized with a single-site catalyst. Octene-1 content = 25% by weight, density =
0.870 g / cm 3 , MI = 1.0 g / 10 minutes, Mw
/Mn=2.7, Vicat softening point ≦ 25 ° C.) TPO5: Polyolefin elastomer (ethylene-octene-1 copolymer polymerized by a single site catalyst. Octene-1 content = 25% by weight, density = 0.868)
g / cm 3 , MI = 0.5 g / 10 min, Mw / Mn =
2.7, Vicat softening point ≤25 ° C)

【0049】TPO6:ポリオレフィン系エラストマー
(ホモポリプロピレンタイプでEPR含量65重量
%)、密度=0.890g/cm3、MFR=3.0g
/10分(MFR0.8g/10分と30g/10分の
2種を混合して調整)、ビカット軟化点=68℃ TPO7:ポリオレフィン系エラストマー(ランダムポ
リプロピレンタイプでEPR含量50重量%)、密度=
0.890g/cm3、MFR=6.0g/10分、ビ
カット軟化点=81℃
TPO6: Polyolefin elastomer (homopolypropylene type, EPR content 65% by weight), density = 0.890 g / cm 3 , MFR = 3.0 g
/ 10 minutes (adjusted by mixing two kinds of MFR 0.8 g / 10 minutes and 30 g / 10 minutes), Vicat softening point = 68 ° C. TPO7: polyolefin elastomer (random polypropylene type, EPR content 50% by weight), density =
0.890 g / cm 3 , MFR = 6.0 g / 10 min, Vicat softening point = 81 ° C.

【0050】PB1:ポリブテン−1系樹脂(プロピレ
ンをコモノマーとする共重合体)、密度=0.900g
/cm3、MFR=3.5g/10分、融点(DSC法
最高融解ピーク温度)=73℃ PB2:ポリブテン−1系樹脂(プロピレンをコモノマ
ーとする共重合体)、密度=0.900g/cm3、M
FR=1.0g/10分、融点(DSC法最高融解ピー
ク温度)=70℃
PB1: polybutene-1 resin (copolymer having propylene as a comonomer), density = 0.900 g
/ Cm 3 , MFR = 3.5 g / 10 minutes, melting point (DSC method maximum melting peak temperature) = 73 ° C. PB2: polybutene-1 resin (copolymer having propylene as a comonomer), density = 0.900 g / cm 3 , M
FR = 1.0 g / 10 minutes, melting point (DSC method maximum melting peak temperature) = 70 ° C.

【0051】[0051]

【実施例1】エチレンα−オレフィン共重合体LL1=
60重量%、エチレン−酢酸ビニル共重合体EVA1=
40重量%に、ジグリセリンオレート50重量%、グリ
セリンモノオレート50重量%の混合物を1.5重量%
含めたものをE層とし、またF層にポリオレフィン系エ
ラストマーTPO5を5重量%、エチレンα−オレフィ
ン共重合体LL1を50重量%にEVA1を加えて10
0重量%に調整した樹脂組成物に、ジグリセリンオレー
ト50重量%、グリセリンモノオレート50重量%の混
合物を2.3重量%配合したものを用いた。
Example 1 Ethylene α-olefin copolymer LL1 =
60% by weight, ethylene-vinyl acetate copolymer EVA1 =
1.5% by weight of a mixture of 50% by weight of diglycerin oleate and 50% by weight of glycerin monooleate to 40% by weight.
The E layer was included, and 5% by weight of the polyolefin-based elastomer TPO5 and 50% by weight of the ethylene α-olefin copolymer LL1 were added to the F layer, and EVA1 was added to obtain 10%.
A resin composition adjusted to 0% by weight was mixed with 2.3% by weight of a mixture of 50% by weight of diglycerin oleate and 50% by weight of glycerin monooleate.

【0052】更に、D層としてプロピレン系重合体PP
1を40重量%とビカット軟化点80℃未満のポリオレ
フィン系エラストマーTPO1を30重量%とポリブテ
ン−1系樹脂PB1を30重量%の3種混合樹脂を用い
て、層配置がE/F/D/F/Eの5層になるように環
状5層ダイを用いて押出した後、冷水にて冷却固化して
折り幅270mm、厚み100μmの各層とも均一な厚
み精度のチューブ状原反を作成した。
Further, as the D layer, the propylene polymer PP
40% by weight of 1 and 30% by weight of a polyolefin elastomer TPO1 having a Vicat softening point of less than 80 ° C. and 30% by weight of a polybutene-1 type resin PB1 are used as a mixed resin, and the layer arrangement is E / F / D / After being extruded using an annular five-layer die so as to have five layers of F / E, it was cooled and solidified with cold water to prepare a tube-shaped original fabric having a folding width of 270 mm and a thickness of 100 μm and uniform thickness accuracy.

【0053】この際、チューブ内部には、6%オレイン
酸ナトリウム水溶液を封入し、ニップロールでしごくこ
とにより内面コーティングを施した。各層の厚み比率は
チューブの外側から、10%/27.5%/25%/2
7.5%/10%になるように調整した。次いでこの原
反を2対の差動ニップロール間に通し、約50℃に加熱
した後、内部に空気を圧入してバブルを形成させて連続
延伸を行い、20℃の冷風を吹き付けてバブルを折り畳
み、延伸倍率でタテ3.2倍、ヨコ2.8倍に同時延伸
した厚み11μmのフィルムを得た。D層に使用した樹
脂組成とD層、E層の樹脂組成比及び得たフィルムの評
価結果を表1に示す。表1より、延伸製膜安定性および
引き裂き強度、突き刺し強度、収縮後の透明性、変形回
復性の全てにおいて優れるものであり、包装時の破れ伝
搬も起こらず、包装機適性にも優れていることが分か
る。
At this time, a 6% sodium oleate aqueous solution was enclosed inside the tube, and the inner surface was coated by squeezing with a nip roll. The thickness ratio of each layer is 10% / 27.5% / 25% / 2 from the outside of the tube.
It was adjusted to be 7.5% / 10%. Then, this raw fabric is passed between two pairs of differential nip rolls, heated to about 50 ° C., air is forced into the inside to form bubbles for continuous stretching, and cold air at 20 ° C. is blown to fold the bubbles. Then, a film having a thickness of 11 μm was simultaneously stretched at a stretching ratio of 3.2 times and a width of 2.8 times. Table 1 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film. From Table 1, the stretch film forming stability, tear strength, puncture strength, transparency after shrinkage, and deformation recovery are all excellent, and tear propagation during packaging does not occur, and packaging machine suitability is also excellent. I understand.

【0054】[0054]

【実施例2】実施例1で得られたフィルムを細片化して
押出機を通してリサイクルペレットを作成した。このペ
レットをF層に50重量%、LL1を43%とし、F層
中のLL1の量を実施例1のLL1の量と同量としたも
のに、更にTPO5を4%添加し、EVA1を加えて1
00重量%に調整した。その他は実施例1と同様の操作
を行い、厚さ11μmのフィルムを得た。得られたフィ
ルムを用いて、更に3回、上記と同様なリサイクル操作
を繰り返した。D層に使用した樹脂組成とD層、E層の
樹脂組成比及び得たフィルムの評価結果を表1に示す。
延伸製膜安定性および引き裂き強度、突き刺し強度、収
縮後の透明性、変形回復性も実施例1で得たフィルムと
ほぼ同じで、包装時の破れ伝搬も起こらず、包装機適性
にも優れており、リサイクル適性にも優れるものであっ
た。
Example 2 The film obtained in Example 1 was fragmented and passed through an extruder to prepare recycled pellets. This pellet was added to the F layer in an amount of 50% by weight and LL1 of 43%, and the amount of LL1 in the F layer was the same as the amount of LL1 in Example 1, 4% of TPO5 was further added, and EVA1 was added. 1
It was adjusted to 00% by weight. Otherwise, the same operations as in Example 1 were carried out to obtain a film having a thickness of 11 μm. Using the obtained film, the same recycling operation as above was repeated 3 times. Table 1 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film.
The stretched film forming stability and tear strength, puncture strength, transparency after shrinkage, and deformation recovery are almost the same as those of the film obtained in Example 1, and tear propagation during packaging does not occur, and it is also suitable for a packaging machine. And was excellent in recyclability.

【0055】[0055]

【実施例3】実施例1のD層のビカット軟化点80℃未
満のポリオレフィン系エラストマーをTPO2に変えた
以外は、実施例1と同様の操作を行い、厚さ11μmの
フィルムを得た。D層に使用した樹脂組成とD層、E層
の樹脂組成比及び得たフィルムの評価結果を表1に示
す。
Example 3 A film having a thickness of 11 μm was obtained in the same manner as in Example 1 except that TPO2 was used instead of the polyolefin-based elastomer having a Vicat softening point of less than 80 ° C. in the D layer. Table 1 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film.

【0056】[0056]

【実施例4】実施例1のD層のビカット軟化点80℃未
満のポリオレフィン系エラストマーをTPO3に変えた
以外は、実施例1と同様の操作を行い、厚さ11μmの
フィルムを得た。D層に使用した樹脂組成とD層、E層
の樹脂組成比及び得たフィルムの評価結果を表1に示
す。
Example 4 A film having a thickness of 11 μm was obtained in the same manner as in Example 1 except that TPO3 was used instead of the polyolefin-based elastomer having a Vicat softening point of less than 80 ° C. in the D layer. Table 1 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film.

【0057】[0057]

【実施例5】実施例1のD層のビカット軟化点80℃未
満のポリオレフィン系エラストマーをTPO4に変えた
以外は、実施例1と同様の操作を行い、厚さ11μmの
フィルムを得た。D層に使用した樹脂組成とD層、E層
の樹脂組成比及び得たフィルムの評価結果を表1に示
す。
Example 5 A film having a thickness of 11 μm was obtained by the same procedure as in Example 1 except that the polyolefin elastomer having a Vicat softening point of less than 80 ° C. in the D layer in Example 1 was changed to TPO4. Table 1 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film.

【0058】[0058]

【実施例6】実施例1のD層にプロピレン系重合体PP
1を30重量%とビカット軟化点80℃未満のポリオレ
フィン系エラストマーTPO5を40重量%とポリブテ
ン−1系樹脂PB1を30重量%の3種混合樹脂を用い
た以外は、実施例1と同様の操作を行い、厚さ11μm
のフィルムを得た。D層に使用した樹脂組成とD層、E
層の樹脂組成比及び得たフィルムの評価結果を表1に示
す。
Example 6 The propylene-based polymer PP was added to the D layer of Example 1.
The same operation as in Example 1 except that 30% by weight of 1 and 40% by weight of a polyolefin-based elastomer TPO5 having a Vicat softening point of less than 80 ° C. and 30% by weight of a polybutene-1 type resin PB1 were used as a mixed resin of three kinds. The thickness of 11 μm
I got a film of. Resin composition used for D layer and D layer, E
Table 1 shows the resin composition ratio of the layers and the evaluation results of the obtained film.

【0059】[0059]

【実施例7】実施例1のD層のプロピレン系重合体PP
1を50重量%、ビカット軟化点80℃未満のポリオレ
フィン系エラストマーTPO1を20重量%、ポリブテ
ン−1系樹脂PB1を30重量%、の比率に変えた以外
は、実施例1と同様の操作を行い、厚さ11μmのフィ
ルムを得た。D層に使用した樹脂組成とD層、E層の樹
脂組成比及び得たフィルムの評価結果を表1に示す。
Example 7 Propylene-based polymer PP of layer D of Example 1
1 was changed to 50% by weight, the polyolefin-based elastomer TPO1 having a Vicat softening point of less than 80 ° C. was changed to 20% by weight, and the polybutene-1 type resin PB1 was changed to 30% by weight. A film having a thickness of 11 μm was obtained. Table 1 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film.

【0060】[0060]

【実施例8】実施例1のD層のプロピレン系重合体PP
1を30重量%、ビカット軟化点80℃未満のポリオレ
フィン系エラストマーTPO1を40重量%、ポリブテ
ン−1系樹脂PB1を30重量%の比率に変えた以外
は、実施例1と同様の操作を行い、厚さ11μmのフィ
ルムを得た。D層に使用した樹脂組成とD層、E層の樹
脂組成比及び得たフィルムの評価結果を表1に示す。
[Example 8] Propylene-based polymer PP of layer D of Example 1
The same operation as in Example 1 was performed except that 1 was changed to 30% by weight, polyolefin elastomer TPO1 having a Vicat softening point of less than 80 ° C. was changed to 40% by weight, and polybutene-1 resin PB1 was changed to 30% by weight. A film having a thickness of 11 μm was obtained. Table 1 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film.

【0061】[0061]

【実施例9】実施例1のD層のPP系重合体をPP2に
変えた以外は実施例1と同様の操作を行い、厚さ11μ
mのフィルムを得た。D層に使用した樹脂組成とD層、
E層の樹脂組成比及び得たフィルムの評価結果を表1に
示す。
Example 9 The same operation as in Example 1 was carried out except that the PP polymer in the D layer in Example 1 was changed to PP2, and the thickness was 11 μm.
m film was obtained. The resin composition used for the D layer and the D layer,
Table 1 shows the resin composition ratio of the E layer and the evaluation results of the obtained film.

【0062】[0062]

【実施例10】実施例1のE層をEVA1に変えた以外
は同様の操作を行い、厚さ11μmのフィルムを得た。
D層に使用した樹脂組成とD層、E層の樹脂組成比及び
得たフィルムの評価結果を表1に示す。
Example 10 A film having a thickness of 11 μm was obtained by performing the same operation except that the E layer in Example 1 was changed to EVA1.
Table 1 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film.

【0063】[0063]

【実施例11】実施例1のE層中のLL1を40重量%
に、EVA1を60重量%に変えた以外は同様の操作を
行い、厚さ11μmのフィルムを得た。D層に使用した
樹脂組成とD層、E層の樹脂組成比及び得たフィルムの
評価結果を表1に示す。
Example 11 40% by weight of LL1 in the E layer of Example 1
The same operation was performed except that EVA1 was changed to 60% by weight to obtain a film having a thickness of 11 μm. Table 1 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film.

【0064】[0064]

【表1】 [Table 1]

【0065】表1より、上記実施例3〜11は実施例1
と同様に延伸製膜安定性および引き裂き強度、突き刺し
強度、収縮後の透明性、変形回復性の全てにおいて優れ
るものであり、包装時の破れ伝搬も起こらず、包装機適
性にも優れていることが分かる。
From Table 1, the above Examples 3 to 11 are the same as Example 1.
Similar to the above, it is excellent in stretch film forming stability and tear strength, puncture strength, transparency after shrinkage, and recovery from deformation, and does not cause tear propagation during packaging and is also suitable for packaging machines. I understand.

【0066】[0066]

【比較例1】先行技術である、特開平10−34848
号公報に記載の実施例1に従い、本発明の実施例1のE
層をLL2に、F層をLL3に、D層にPP3を70重
量%とPB2を30重量%混合したものを使用した以外
は本発明の実施例1と同様の操作を行い、厚さ11μm
のフィルムを得た。D層に使用した樹脂組成とD層、E
層の樹脂組成比及び得たフィルムの評価結果を表2に示
す。表2より、比較例1はD層中のプロピレン系重合体
の量が多い為に、tanδのピーク温度が下がらず、変
形回復性が劣る結果となった。
Comparative Example 1 Japanese Patent Laid-Open No. 10-34848, which is a prior art.
According to the first embodiment described in Japanese Patent Publication No.
A layer of LL2, an F layer of LL3, and a D layer of 70% by weight of PP3 and 30% by weight of PB2 were used.
I got a film of. Resin composition used for D layer and D layer, E
Table 2 shows the resin composition ratio of the layers and the evaluation results of the obtained film. From Table 2, in Comparative Example 1, the amount of the propylene-based polymer in the D layer was large, so that the peak temperature of tan δ did not decrease and the deformation recovery property was inferior.

【0067】[0067]

【比較例2】実施例1のD層の組成をプロピレン系重合
体PP1を70重量%、ポリブテン−1樹脂PB1を3
0%とし、ビカット軟化点80℃未満のポリオレフィン
系エラストマーを使用しなかったこと以外は、実施例1
と同様の操作を行い、厚さ11μmのフィルムを得た。
D層に使用した樹脂組成とD層、E層の樹脂組成比及び
得たフィルムの評価結果を表2に示す。表2より、比較
例2はD層中のプロピレン系重合体の量が多い為に、t
anδのピーク温度が下がらず、変形回復性が劣る結果
となった。
[Comparative Example 2] The composition of the layer D of Example 1 was 70% by weight of the propylene polymer PP1 and 3% of the polybutene-1 resin PB1.
Example 1 except that the polyolefin-based elastomer having a Vicat softening point of less than 80 ° C. was not used.
The same operation as above was performed to obtain a film having a thickness of 11 μm.
Table 2 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film. From Table 2, in Comparative Example 2, since the amount of the propylene-based polymer in the D layer was large, t
The peak temperature of an δ did not decrease, resulting in poor deformation recovery.

【0068】[0068]

【比較例3】実施例1のD層の組成をプロピレン系重合
体PP1を30重量%、ポリブテン−1樹脂PB1を7
0%とし、ビカット軟化点80℃未満のポリオレフィン
系エラストマーを使用しなかったこと以外は、実施例1
と同様の操作を行い、厚さ11μmのフィルムを得た。
D層に使用した樹脂組成とD層、E層の樹脂組成比及び
得たフィルムの評価結果を表2に示す。表2より、比較
例3はプロピレン系重合体の量は少なくtanδのピー
ク温度は下がっているがビカット軟化点80℃未満のポ
リオレフィン系エラストマーが無いために、変形回復性
が劣る結果となった。
[Comparative Example 3] The composition of the D layer of Example 1 was 30% by weight of the propylene-based polymer PP1 and 7% of the polybutene-1 resin PB1.
Example 1 except that the polyolefin-based elastomer having a Vicat softening point of less than 80 ° C. was not used.
The same operation as above was performed to obtain a film having a thickness of 11 μm.
Table 2 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film. From Table 2, in Comparative Example 3, the amount of propylene-based polymer was small and the peak temperature of tan δ was lowered, but there was no polyolefin-based elastomer having a Vicat softening point of less than 80 ° C., so that the deformation recovery was inferior.

【0069】[0069]

【比較例4】D層にプロピレン系重合体を使用せず、ビ
カット軟化点80℃以下のポリオレフィン系エラストマ
ーTPO6を70重量%、ポリブテン−1系樹脂PB1
を30重量%に変えた以外は、実施例1と同様の操作を
行い、厚さ11μmのフィルムを得た。D層に使用した
樹脂組成とD層、E層の樹脂組成比及び得たフィルムの
評価結果を表2に示す。表2より、比較例4はtanδ
のピーク温度が低く、変形回復性は良好であるが、プロ
ピレン系重合体が無い為にMDの引裂強度が低く、包装
時の破れ伝搬性が大きいものであった。
[Comparative Example 4] 70% by weight of a polyolefin-based elastomer TPO6 having a Vicat softening point of 80 ° C or less and a polybutene-1-based resin PB1 were used without using a propylene-based polymer in the D layer.
Was changed to 30% by weight and the same operation as in Example 1 was performed to obtain a film having a thickness of 11 μm. Table 2 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film. From Table 2, Comparative Example 4 has tan δ
Although the peak temperature was low and the deformation recovery was good, the MD tear strength was low due to the absence of the propylene polymer, and the tear propagation during packaging was large.

【0070】[0070]

【比較例5】実施例1のD層のポリオレフィン系エラス
トマーをTPO7に変えた以外は、実施例1と同様に行
った。D層に使用した樹脂組成とD層、E層の樹脂組成
比及び得たフィルムの評価結果を表2に示す。表2よ
り、比較例4はD層中のポリオレフィン系エラストマー
のビカット軟化点が高いため、延伸製膜安定性が劣り、
一方、tanδピーク温度が高く、変形回復性が劣る傾
向にあった。
[Comparative Example 5] The same procedure as in Example 1 was carried out except that TPO7 was used instead of the polyolefin-based elastomer in the layer D of Example 1. Table 2 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film. From Table 2, Comparative Example 4 has a high Vicat softening point of the polyolefin-based elastomer in the D layer, so that the stretching stability is poor,
On the other hand, the tan δ peak temperature was high, and the deformation recovery tended to be poor.

【0071】[0071]

【比較例6〜8】実施例1のD層に使用した樹脂の混合
比率を変えた以外は実施例1と同様に行った。D層に使
用した樹脂組成とD層、E層の樹脂組成比及び得たフィ
ルムの評価結果を表2に示す。表2より、比較例6はD
層中のポリオレフィン系エラストマーの量が少ない為に
変形回復性が劣り、比較例7はプロピレン系重合体の量
が少ない為に、引裂強度比が低く、包装時の破れ伝搬が
劣り、比較例8はD層のポリオレフィン系エラストマー
量は十分であるが、プロピレン系重合体の量が多く、t
anδのピーク温度が高い為に変形回復性が劣る上、引
裂強度比も低いために包装時の破れ伝搬性が大きい結果
となった。
Comparative Examples 6 to 8 The same procedure as in Example 1 was carried out except that the mixing ratio of the resin used in the D layer in Example 1 was changed. Table 2 shows the resin composition used for the D layer, the resin composition ratio of the D layer and the E layer, and the evaluation results of the obtained film. From Table 2, Comparative Example 6 is D
Since the amount of the polyolefin-based elastomer in the layer was small, the deformation recovery property was inferior. In Comparative Example 7, the amount of the propylene-based polymer was small, so that the tear strength ratio was low and the tear propagation during packaging was inferior. Has a sufficient amount of the polyolefin-based elastomer in the D layer, but has a large amount of the propylene-based polymer,
Since the peak temperature of an δ is high, the deformation recovery property is poor, and the tear strength ratio is also low, which results in large tear propagation during packaging.

【0072】[0072]

【表2】 [Table 2]

【0073】[0073]

【発明の効果】本発明のフィルムは、少なくとも3層構
成で成り、80℃における熱収縮率が20%〜50%で
フィルムの優れた諸特性即ち耐熱性、収縮性、光学特
性、耐突き破れ性、防曇性を保持しつつ、引裂強度のM
DとTDのバランスが良く、0℃前後のチルド域から−
10℃前後の冷凍域での変形回復性を両立させることが
出来たため、フィルム性能が飛躍的に向上し、市場で満
足が得られるものである。本発明のフィルムは、種々の
シュリンク包装用途への使用が可能であることは勿論、
家庭用、業務用ラップフィルム等の各種包装材料の用途
にも使用可能である。
The film of the present invention comprises at least three layers and has a heat shrinkage ratio of 20% to 50% at 80 ° C. and has various excellent properties of the film, that is, heat resistance, shrinkability, optical properties and breakthrough resistance. Tear strength M while maintaining the anti-fog property
Good balance between D and TD, from chilled area around 0 ℃-
Since it was possible to achieve both the deformation recovery property in the freezing region around 10 ° C., the film performance was dramatically improved and the market was satisfied. The film of the present invention can, of course, be used for various shrink packaging applications,
It can also be used for various packaging materials such as household and commercial wrap films.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29L 9:00 B29L 9:00 Fターム(参考) 4F100 AK03A AK03B AK03C AK07B AK09B AK62 AK62A AK62B AK62C AK66A AK66B AK66C AK68 AL05B AL09B BA03 BA04 BA05 BA06 BA07 BA10A BA10C BA16 EH20 EJ38 GB15 GB23 JA03 JA04 JA04B JJ03 JK03 JK07 JK14 JL01 JL04 JL07 JN00 YY00 YY00B 4F210 AA08 AA10 AA12 AA45 AB19 AG01 AG03 RA03 RC02 RG02 RG07 RG09 RG43 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B29L 9:00 B29L 9:00 F term (reference) 4F100 AK03A AK03B AK03C AK07B AK09B AK62 AK62A AK62B AK62C AK66A AK66B68AK66C AK66B6866 AL05B AL09B BA03 BA04 BA05 BA06 BA07 BA10A BA10C BA16 EH20 EJ38 GB15 GB23 JA03 JA04 JA04B JJ03 JK03 JK07 JK14 JL01 JL04 JL07 JN00 YY00 YY00B 4F210 AA08 AA10 AA12 AA45 AB19 AG01 AG02 RA03 RC02 RC02 RA03 RC02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも3層構成で成り、80℃にお
ける熱収縮率が20%〜50%であるポリオレフィン系
樹脂熱収縮性多層フィルムにおいて、以下の(1)〜
(3)を特徴とするポリオレフィン系樹脂熱収縮性多層
フィルム。 (1)フィルムの動的粘弾性測定によるtanδのピー
ク温度が−10〜2℃であること。 (2)フィルムの示差走査型熱量計(DSC)測定によ
る2nd.融解挙動において、少なくとも155℃±1
5℃の範囲にピークがあり、かつ、125℃以上の結晶
融解熱量が10〜20J/gであること。 (3)フィルムの引裂強度として、少なくとも縦方向が
0.05N以上であり、かつ、縦と横の引裂強度比が縦
/横=1.2〜5.0倍であること。
1. A polyolefin resin heat-shrinkable multi-layer film comprising at least three layers and having a heat shrinkage rate at 80 ° C. of 20% to 50%.
(3) A polyolefin resin heat-shrinkable multi-layer film characterized by: (1) The peak temperature of tan δ measured by dynamic viscoelasticity of the film is −10 to 2 ° C. (2) 2nd. By the differential scanning calorimeter (DSC) measurement of the film. At least 155 ° C ± 1 in melting behavior
There is a peak in the range of 5 ° C, and the heat of fusion of crystals at 125 ° C or higher is 10 to 20 J / g. (3) The tear strength of the film is at least 0.05 N in the machine direction and the ratio of the tear strength in the machine direction and the tear strength in the machine direction is 1.2 to 5.0 times.
【請求項2】 プロピレン系重合体(a)20重量%〜
60重量%と、ビカット軟化点が80℃未満のポリオレ
フィン系エラストマー(b)10重量%〜50重量%
と、ポリブテン−1系樹脂(c)10重量%〜40重量
%とから成る内部層を少なくとも1層有することを特徴
とする請求項1に記載のポリオレフィン系樹脂熱収縮性
多層フィルム。
2. Propylene polymer (a) 20% by weight to
60% by weight and 10% by weight to 50% by weight of a polyolefin-based elastomer (b) having a Vicat softening point of less than 80 ° C.
And a polybutene-1 resin (c) in an amount of 10% by weight to 40% by weight, at least one inner layer comprising the polyolefin resin heat-shrinkable multilayer film according to claim 1.
JP2002062222A 2002-03-07 2002-03-07 Polyolefin resin heat-shrinkable multi-layer film Pending JP2003260764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002062222A JP2003260764A (en) 2002-03-07 2002-03-07 Polyolefin resin heat-shrinkable multi-layer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062222A JP2003260764A (en) 2002-03-07 2002-03-07 Polyolefin resin heat-shrinkable multi-layer film

Publications (1)

Publication Number Publication Date
JP2003260764A true JP2003260764A (en) 2003-09-16

Family

ID=28670568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062222A Pending JP2003260764A (en) 2002-03-07 2002-03-07 Polyolefin resin heat-shrinkable multi-layer film

Country Status (1)

Country Link
JP (1) JP2003260764A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248066A (en) * 2005-03-11 2006-09-21 Toray Ind Inc Laminated polypropylene film
WO2007032306A1 (en) * 2005-09-15 2007-03-22 Asahi Kasei Chemicals Corporation Thermally shrinkable multilayer sheet
JP2009515733A (en) * 2005-11-15 2009-04-16 ダウ グローバル テクノロジーズ インコーポレイティド Stretched multilayer shrink label
JP2016068567A (en) * 2014-09-29 2016-05-09 積水フィルム株式会社 Multi-layer heat shrinkable film and production process therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248066A (en) * 2005-03-11 2006-09-21 Toray Ind Inc Laminated polypropylene film
WO2007032306A1 (en) * 2005-09-15 2007-03-22 Asahi Kasei Chemicals Corporation Thermally shrinkable multilayer sheet
JPWO2007032306A1 (en) * 2005-09-15 2009-03-19 旭化成ケミカルズ株式会社 Heat shrinkable multilayer film
JP4954882B2 (en) * 2005-09-15 2012-06-20 旭化成ケミカルズ株式会社 Heat shrinkable multilayer film
JP2009515733A (en) * 2005-11-15 2009-04-16 ダウ グローバル テクノロジーズ インコーポレイティド Stretched multilayer shrink label
JP2016068567A (en) * 2014-09-29 2016-05-09 積水フィルム株式会社 Multi-layer heat shrinkable film and production process therefor

Similar Documents

Publication Publication Date Title
JP4115846B2 (en) Polyolefin resin anti-fogging and heat shrinkable multilayer film
US20090230595A1 (en) Stretch/shrink layered film and process for producing the same
JP4205258B2 (en) Heat shrinkable multilayer film
JP2007045855A (en) Polyolefin-based resin composition
JP5041601B2 (en) Heat-shrinkable multilayer film and method for producing the same
JP2007144741A (en) Heat-shrinkable multilayered film
JP4906085B2 (en) Stretch shrink laminated film and manufacturing method thereof
JP4919620B2 (en) 3-layer crosslinked film
JP3751965B2 (en) Polyolefin multilayer shrink film
JP5084353B2 (en) Heat shrinkable multilayer film
JP2008080744A (en) Stretch/shrink laminated film and its manufacturing method
JPH0890737A (en) Multilayered polyethylenic stretch/shrink film and production thereof
JP2003260764A (en) Polyolefin resin heat-shrinkable multi-layer film
JP5545627B2 (en) Polyolefin thin film multilayer shrink film
JP4721925B2 (en) Stretch shrink laminated film and manufacturing method thereof
JP3366879B2 (en) Polyolefin resin film
JP3748639B2 (en) Polyolefin resin composition
JP4896421B2 (en) Stretch shrink laminated film and manufacturing method thereof
JP3755923B2 (en) Polyolefin resin multilayer shrink film
JP2011116123A (en) Polyolefin based heat-shrinkable film excellent in shrink finishing property
JP3493474B2 (en) Polyolefin-based heat-shrinkable multilayer film
JP2001129945A (en) Polyolefinic resin multilayered stretched film
JP5476533B2 (en) Heat shrinkable film for polyolefin sleeve packaging
JPH09239927A (en) Stretch-shrink laminated polyolefin film
JP4721931B2 (en) Stretch shrink laminated film and manufacturing method thereof