WO2019049627A1 - 空間認識装置、空間認識方法、プログラム - Google Patents

空間認識装置、空間認識方法、プログラム Download PDF

Info

Publication number
WO2019049627A1
WO2019049627A1 PCT/JP2018/030413 JP2018030413W WO2019049627A1 WO 2019049627 A1 WO2019049627 A1 WO 2019049627A1 JP 2018030413 W JP2018030413 W JP 2018030413W WO 2019049627 A1 WO2019049627 A1 WO 2019049627A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflected light
distribution
analysis unit
space recognition
stationary structure
Prior art date
Application number
PCT/JP2018/030413
Other languages
English (en)
French (fr)
Inventor
淳 内村
高橋 博
将人 渡邊
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US16/643,971 priority Critical patent/US11585924B2/en
Publication of WO2019049627A1 publication Critical patent/WO2019049627A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/74Systems using reradiation of electromagnetic waves other than radio waves, e.g. IFF, i.e. identification of friend or foe

Definitions

  • the present invention relates to a space recognition apparatus, a space recognition method, and a program.
  • Patent Literatures 1 and 2 disclose techniques for analyzing the reflected light of the irradiated light in order to recognize the position of a moving object moving in a certain space.
  • this invention aims at providing the space recognition apparatus which can solve the above-mentioned subject, the space recognition method, and a program.
  • the space recognition apparatus is an optical device attached to a moving body, and is obtained by irradiating light to a reflection plate provided on a stationary structure located in a detection range Reflected light information obtained based on the reflected light according to the irradiation direction of the light is acquired from the optical device that receives the reflected light, and the distribution of the reflected light information at each coordinate of the detection range is obtained. And an analysis unit that determines the positional relationship between the stationary structure and the movable body provided with the reflection plate.
  • the space recognition device is an optical device attached to a moving body, and light is applied to a reflector provided on a stationary structure located in a detection range. Reflected light information obtained based on the reflected light according to the irradiation direction of the light is acquired from the optical device that receives the reflected light obtained by irradiation, and the reflected light information at each coordinate of the detection range is obtained It is characterized in that the positional relationship between the stationary structure provided with the reflection plate and the movable body is determined based on the distribution.
  • the program is an optical device attached to the mobile unit in the computer of the space recognition device, and the light is emitted to the reflector provided on the stationary structure located in the detection range.
  • Reflected light information obtained based on the reflected light according to the irradiation direction of the light is acquired from the optical device that receives the reflected light obtained by irradiation, and the reflected light information at each coordinate of the detection range is obtained
  • a process is performed to determine the positional relationship between the stationary structure provided with the reflection plate and the moving body based on the distribution.
  • the space recognition device in a space in which a large number of stationary structures are arranged in the same pattern and various objects are mounted, the space recognition device can easily recognize the objects positioned at the current position of the movable body and the vicinity thereof. can do.
  • FIG. 1 shows an overview of a space recognition system according to an embodiment of the present invention. It is a figure which shows the hardware constitutions of the space recognition apparatus by one Embodiment of this invention.
  • FIG. 2 is a functional block diagram of a space recognition apparatus according to an embodiment of the present invention. It is a figure which shows the processing flow of the space recognition apparatus by one Embodiment of this invention. It is a figure which shows the specific example of the sensing information by one Embodiment of this invention. It is a figure which shows the calculation outline of the coordinate in which the forklift is located by one Embodiment of this invention. It is a figure which shows the 1st modification of the reflecting plate by one Embodiment of this invention. It is a figure which shows the 2nd modification of the reflecting plate by one Embodiment of this invention.
  • FIG. 1 is a diagram showing a minimum configuration of a space recognition apparatus according to an embodiment of the present invention.
  • FIG. 1 is a view showing an outline of a space recognition system including a forklift equipped with a space recognition device according to the same embodiment.
  • the forklift 10 illustrated in FIG. 1 is an example of a moving body that moves in a space in which various loads are placed and a large number of stationary structures are arranged in the same pattern.
  • the forklift 10 transports a load such as a container placed in a space in which the forklift 10 can move.
  • the forklift 10 includes a space recognition device 1, a radar device 11, a ground communication antenna 12, a satellite antenna 13, and the like.
  • the stationary structure disposed in the space is, for example, a pillar or a wall.
  • FIG. 1 shows a state in which the reflection plates R1, R2, and R3 are attached to prismatic or cylindrical columns.
  • the reflectors R1, R2, and R3 are collectively referred to as a reflector R.
  • the radar device 11, which is one of the optical devices attached to the forklift 10, emits light to a detection range in space based on the control of the space recognition device 1 and receives the reflected light of the light.
  • the radar device 11 includes, for example, a sensor, and outputs the intensity (received light intensity) of the reflected light received by the light receiving element of the sensor.
  • the received light intensity of the reflected light reflected by the reflecting plate R and received by the radar device 11 is stronger than the received light intensity of the reflected light reflected by the radar device 11 by being reflected at a position other than the reflecting plate R.
  • the radar device 11 outputs information such as the light reception intensity obtained from the reflected light to the space recognition device 1.
  • the radar device 11 also outputs information on the distances to the respective reflection positions calculated based on the reflected light to the space recognition device 1.
  • the radar device 11 emits light to each reflection position corresponding to each pixel obtained by finely dividing the image plane in the detection range.
  • the radar device 11 outputs to the space recognition device 1 information on the light reception intensity and distance obtained from the reflected light obtained by reflecting the irradiated light at the reflection position.
  • the space recognition device 1 acquires from the radar device 11 information such as the light reception intensity and the distance obtained from the reflected light according to the reflection position of the light.
  • the space recognition device 1 determines at least the position of the stationary structure or the moving body provided with the reflecting plate R based on the acquired distribution of information.
  • the space recognition device 1 may analyze the identification information of the stationary structure provided with the reflecting plate R based on the distribution of the information of the reflected light in the range assumed to be the reflecting plate R.
  • the space recognition device 1 may analyze the distribution of the concavities and convexities provided in the reflecting plate R, and analyze the identification information of the stationary structure provided with the reflecting plate R.
  • the space recognition device 1 may analyze the position of the mobile based on the position of the stationary structure.
  • FIG. 2 is a diagram showing a hardware configuration of the space recognition apparatus 1 according to the same embodiment.
  • the space recognition device 1 includes a central processing unit (CPU) 201, an interface (IF) 202, a communication module 203, a read only memory (ROM) 204, a random access memory (RAM) 205, a hard disk drive (HDD) 206, and an RFID reader.
  • a configuration such as 207 is provided.
  • the communication module 203 transmits and receives signals via the ground communication antenna 12 and the satellite antenna 13.
  • the IF 202 is connected to, for example, a touch panel display or the like provided in the space recognition device 1.
  • the RFID reader 207 reads, for example, an RFID tag provided in a mounted container or the like, and acquires information such as a luggage ID.
  • FIG. 3 is a diagram showing functional blocks of the space recognition device 1 according to the same embodiment.
  • the space recognition device 1 includes functional units including a control unit 101, an analysis unit 102, a vehicle information acquisition unit 103, a display unit 104, and a recording unit 105.
  • the control unit 101 controls each function provided to the space recognition apparatus 1.
  • the control unit 101 acquires a signal received by the satellite antenna 13 from the satellite 20.
  • the control unit 101 also outputs a signal to the ground communication antenna 12.
  • the ground communication antenna 12 outputs, for example, a signal received from the control unit 101 to the server device 40 or the like via the wireless base station 30.
  • the radar device 2 irradiates light to the reflecting plate R provided on the stationary structure located in the detection range, and receives the reflected light.
  • the analysis unit 102 acquires, from the radar device 11, information obtained based on the reflected light according to the irradiation direction of the light.
  • the analysis unit 102 determines at least the positional relationship between the stationary structure provided with the reflecting plate R and the moving body, based on the distribution of information obtained based on the reflected light at each coordinate of the detection range of the radar device 11 .
  • the information distribution is, for example, a distribution of values indicating the light reception intensity and the distance obtained from the reflected light.
  • the vehicle information acquisition unit 103 acquires an ID (identification: ID) or the like of the forklift 10 provided with the space recognition device 1.
  • the display unit 104 outputs display information such as warning information and position information to a monitor or the like provided in the space recognition device 1.
  • the recording unit 105 records information such as the analysis result of the analysis unit 102 in a storage device such as the ROM 204 or the RAM 205.
  • FIG. 4 is a diagram showing a processing flow of the space recognition device 1.
  • the user operating the forklift 10 controls the space recognition device 1 to detect, for example, the current position of the forklift 10 and the type of an object such as a container placed in the vicinity.
  • the user gives the space recognition device 1 an instruction to start processing.
  • the control unit 101 of the space recognition device 1 instructs the radar device 11 to start processing.
  • the radar device 11 emits light in each direction of the detection range of its own device, and receives the reflected light from the reflection position.
  • the radar device 11 may detect, for example, the intensity of the reflected light reflected by each object included in the detection range for each irradiation direction of the light.
  • the radar device 11 outputs the intensity of the reflected light of the light irradiated in each direction of the detection range to the space recognition device 1 at predetermined intervals such as one second or several milliseconds. As the forklift 10 moves, the detection range of the radar device 11 also changes.
  • the control unit 101 detects sensing information including the light reception intensity of the reflected light and the distance to the reflection position of the reflected light corresponding to each light irradiation direction in the detection range received from the radar device 11 at predetermined intervals. It generates (step S101). The distance to the reflection position of the reflected light indicates the distance from the radar device 11 to the reflection position.
  • the control unit 101 outputs the generated sensing information to the analysis unit 102.
  • the sensing information includes information indicating each pixel obtained by finely dividing the image plane in the detection range, the received light intensity of the reflected light from each reflection position corresponding to each pixel, and the distance to the reflection position corresponding to each pixel. Is at least included.
  • FIG. 5 is a diagram showing a specific example of sensing information.
  • the analysis unit 102 extracts a data group in the high intensity range A2 in which the reflected light intensity (light reception intensity) such as the light reception amount is equal to or more than a predetermined value from the sensing information.
  • the data group in the high intensity range A2 has, for example, the intensity of the reflected light corresponding to the high intensity range A2 in which the intensity (amount of light reception) of the reflected light is high in the detection range A1 as shown in FIG.
  • the analysis unit 102 sequentially determines, in the row direction, pixels in each row of the data group in the detection range A1 whether or not the reflected light intensity is equal to or higher than a threshold, and identifies pixels whose reflected high intensity is equal to or higher than the threshold.
  • the analysis unit 102 performs a process of specifying a pixel whose reflected light intensity is equal to or more than a threshold value for each row of the detection range A1.
  • the analysis unit 102 determines that the range (high intensity range A2) of the pixel group whose reflected light intensity is equal to or more than the threshold value is the range of the reflecting plate R to be analyzed (step S102).
  • the threshold value of the reflected light intensity is, for example, the value “3000”.
  • the analysis unit 102 can determine that the forklift 10 provided with the radar device 11 is located at a position far from the reflection plate R where the range of the reflection plate R detected by the analysis unit 102 is substantially recognized as a point. If the range in the column direction or row direction of the pixels in the high intensity range A2 estimated to be the reflecting plate R detected by the analysis unit 102 is equal to or larger than a certain number of pixels covering the entire detection range A1, It can be determined as follows.
  • the analysis unit 102 can determine that the forklift 10 is positioned at a position very close to the reflection plate R. As an example, when the forklift 10 is located at a position far from the reflecting plate R where the reflecting plate R is recognized as a point, the analyzing unit 102 may exclude the reflecting plate R from the analysis target.
  • the analysis unit 102 generates reflector plate data including the pixel number of each pixel in the high intensity range A2 determined as the range of the reflector R to be analyzed and the reflected light intensity of each pixel (step S103).
  • the reflecting plate R is provided, for example, at different positions of the height H2 in each of the columns and walls which are stationary structures.
  • the analysis unit 102 controls the irradiation direction of the light of the radar device 11 and reads the reflector ID corresponding to the height H2 of the reflector detected in the detection range of each direction from the storage unit such as the HDD 206 (step S105).
  • the reflecting plate R provided in each pillar and wall which are stationary structures may have different shapes.
  • the analysis unit 102 analyzes the shape of the reflecting plate R by pattern recognition or the like, and reads the reflecting plate ID corresponding to the shape from the storage unit. That is, the analysis unit 102 determines the shape of the reflecting plate R based on the range of the reflecting plate R, and acquires the reflecting plate ID corresponding to the shape.
  • the position (coordinates) in the space corresponding to the reflecting plate ID is recorded in the HDD 206.
  • the analysis unit 102 reads the position in the space corresponding to the reflecting plate ID (step S106).
  • the reflecting plate R is provided at a position where the height H2 is different for each of the plurality of stationary structures.
  • the stationary structure provided with the reflecting plate R can be identified based on the height H2, and the position of the stationary structure can be detected.
  • the analysis unit 102 detects the reflector ID and the position corresponding to each reflector R.
  • the analysis unit 102 specifies the distance to the reflection position indicating the pixel in the central part of the range of the reflection plate R to be analyzed based on the sensing information (step S107).
  • the analysis unit 102 calculates, for example, the distance from the radar device 11 to the reflection position indicating the pixel of the central portion of the reflection plate R based on the time from the irradiation time of light to the light reception time.
  • the analysis unit 102 determines whether the distances to the reflecting plate R have been calculated for three or more reflecting plates R (step S108). If the analysis unit 102 has not calculated the distances to the reflecting plates R for three or more reflecting plates R (NO in step S108), the processing returns to the process in step S101.
  • the analysis unit 102 repeats the processing from the generation of the next sensing information based on the signal received from the radar device 11.
  • the analysis unit 102 performs calculation processing of coordinates at which the forklift 10 is positioned.
  • FIG. 6 is a diagram showing an outline of calculation processing of coordinates at which the forklift 10 is positioned.
  • the analysis unit 102 calculates the position of the own device based on the information. For example, the analysis unit 102 calculates the intersections of three circles based on the absolute positions of the three reflecting plates R1 to R3 and the distances from the central portions of the reflecting plates R1 to R3 to the radar device 11.
  • the first circle is a circle whose center is the coordinates (x1, y1) of the reflecting plate R1 and whose radius L1 is the distance from the central portion of the reflecting plate R1 to the radar device 11.
  • the second circle is a circle whose center is the coordinates (x2, y2) of the reflecting plate R2 and whose radius L2 is the distance from the central portion of the reflecting plate R2 to the radar device 11.
  • the third circle is a circle whose center is the coordinates (x3, y3) of the reflecting plate R3 and whose radius L3 is the distance from the central portion of the reflecting plate R3 to the radar device 11.
  • the analysis unit 102 specifies the intersection of the three circles as the coordinates of the forklift 10 provided with the own device (step S109). As described above, the analysis unit 102 analyzes the absolute position of the forklift 10 based on the absolute positions of the plurality of reflectors R in addition to the positional relationship between the plurality of reflectors R and the forklift 10.
  • the display unit 104 outputs the position of the forklift 10 calculated by the analysis unit 102 on the space map displayed on the monitor of the space recognition device 1 (step S110). Thereby, the user can recognize the position information in the space where the forklift 10 travels. In addition, the display unit 104 acquires information such as a package ID of a container or the like placed in the vicinity of the position of the forklift 10 based on the position of the forklift 10, the type of the package, and the amount of the package from the HDD 106 and is displayed on the monitor. It may be superimposed and output on the space map.
  • the control unit 101 determines whether to end the process (step S111). If the control unit 101 does not end the process (NO in step S111), the control unit 101 controls to repeat the process from step S101. On the other hand, when the process ends (YES in step S111), the control unit 101 ends the process flow illustrated in FIG.
  • the space recognition device 1 provided in the forklift 10 is located near the current position of the forklift 10 and the position thereof in a space where many stationary structures are arranged in the same pattern and various objects are mounted. An object to be placed can be easily recognized. Also, the space recognition device 1 analyzes the signal transmitted from the position information transmission tag to identify the position of the device itself, analyzes the position by the GNSS (Global Navigation Satellite System), etc., and identifies the position of the device itself. It is not necessary to have the device. That is, the space recognition apparatus 1 may be provided with the reflecting plate R on the stationary structure. For this reason, the cost of the apparatus which comprises a system can be reduced. In addition, the space recognition device 1 measures the position of a mobile attached to the device by light without using radio waves that affect the electronic circuit. For this reason, it is useful for recognition of the position of the own apparatus in the area where transmission of a radio signal is suppressed.
  • GNSS Global Navigation Satellite System
  • the analysis unit 102 determines whether the range of the reflection plate R is within the range where the reflected light intensity is equal to or higher than the threshold. However, the analysis unit 102 further reflects the reflection plate based on the difference between the pixel range in which the reflected light intensity is equal to or greater than the threshold and the reflected light intensity adjacent to the pixel range and the pixel in which the reflected light intensity is less than the threshold.
  • the range of R may be determined. That is, the analysis unit 102 may specify the pixel range in which the reflected light intensity is equal to or more than the threshold as the range of the reflecting plate R to be analyzed only when the difference is equal to or more than the predetermined threshold.
  • FIG. 7 is a view showing a first modified example of the reflecting plate R.
  • Two-dimensional code information D such as QR code (registered trademark) may be printed on the reflection plate R.
  • the analysis unit 102 divides the pixel where the reflected light intensity is less than the threshold and the pixel where the reflected light intensity is more than the threshold into binary values To get In this case, for example, the threshold used to acquire a binary image is larger than the threshold for determining the high intensity range A2.
  • the analysis unit 102 may determine a region surrounded by each pixel whose reflected light intensity is equal to or higher than the threshold value as the high intensity range A2.
  • the analysis unit 102 determines that the binary image is two-dimensional code information D.
  • the analysis unit 102 may read information such as coordinates of the reflecting plate R and a column number by a conventional method of analyzing the two-dimensional code information D based on the binary image in the high intensity range A2.
  • the analysis unit 102 is stationary based on the distribution (two-dimensional code information D) of the reflection area provided on the reflection plate R acquired based on the reflected light intensity at each coordinate in the range of the reflection plate R.
  • the identification information of the structure may be analyzed.
  • FIG. 8 is a view showing a second modification of the reflecting plate R.
  • the reflection plate R may be roughened as shown in FIG.
  • the analysis unit 102 calculates the distance to the reflection position corresponding to each pixel of the high intensity range A2 determined to be the range of the reflection plate R.
  • the analysis unit 102 calculates the distance from the radar device 11 to the reflection position corresponding to each pixel in the high-intensity range A2, for example, based on the time from the irradiation time of light to the light reception time.
  • the analysis unit 102 detects a pixel having a large difference in distance between adjacent pixels and a pixel having a small distance between adjacent pixels based on the calculated distances.
  • the analysis unit 102 acquires a binary image obtained by binarizing each pixel based on the distance between adjacent pixels, and determines that the binary image is two-dimensional code information D.
  • the analysis unit 102 may read information such as coordinates of the reflecting plate R and a column number by a conventional method of analyzing the two-dimensional code information D based on the binary image in the high intensity range A2.
  • the distribution of the reflected light information is the distribution of the distance from the irradiation point on the real space corresponding to each coordinate to the reflection point based on the time from the irradiation time of light to the reception time of the reflected light Good.
  • the analysis unit 102 determines the positional relationship based on the distribution of distances.
  • the analysis unit 102 may further analyze the identification information of the stationary structure based on the distribution of asperities provided on the reflecting plate R acquired based on the distribution of distances.
  • FIG. 9 is a view showing the minimum configuration of the space recognition apparatus 1.
  • the space recognition apparatus 1 shown in FIG. 9 may include at least the analysis unit 102.
  • the moving body is provided with an optical device.
  • the optical device receives reflected light obtained by irradiating light to a reflecting plate provided on a stationary structure located in a detection range.
  • the analysis unit 102 determines at least the positional relationship between the stationary structure provided with the reflection plate and the movable body, based on the distribution of the reflected light information in the obtained based on the reflected light according to the irradiation direction of the light.
  • the above-mentioned space recognition apparatus has a computer system inside. And the process of each process mentioned above is memorize
  • the computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory and the like.
  • the computer program may be distributed to a computer through a communication line, and the computer that has received the distribution may execute the program.
  • the program may be for realizing a part of the functions described above. Furthermore, it may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
  • difference file difference program
  • the space recognition device in a space in which a large number of stationary structures are arranged in the same pattern and various objects are mounted, the space recognition device can easily recognize the objects positioned at the current position of the movable body and the vicinity thereof. can do.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

移動体に取り付けられた光学装置であって、検出範囲に位置する静止構造物に設けられた反射板に光を照射して得られる反射光を受光する前記光学装置から、前記光の照射方向に応じた前記反射光に基づいて得られる反射光情報を取得し、前記検出範囲の各座標における前記反射光情報の分布に基づいて、前記反射板が設けられた前記静止構造物と移動体との位置関係を判定する解析部、を備える空間認識装置。

Description

空間認識装置、空間認識方法、プログラム
 本発明は、空間認識装置、空間認識方法、プログラムに関する。
 ある空間内を移動する移動体の位置を認識するために、照射した光の反射光を解析する技術が特許文献1、特許文献2に開示されている。
特開平7-152434号公報 特開2002-188918号公報
 静止構造物が同じパターンで数多く並んでいるような空間内に多様な物体が載置される際に、移動体の位置やその位置の近傍に載置される荷物を容易に低コストに認識できる技術が必要となっている。
 そこでこの発明は、上述の課題を解決することのできる空間認識装置、空間認識方法、プログラムを提供することを目的としている。
 本発明の第1の態様によれば、空間認識装置は、移動体に取り付けられた光学装置であって、検出範囲に位置する静止構造物に設けられた反射板に光を照射して得られる反射光を受光する前記光学装置から、前記光の照射方向に応じた前記反射光に基づいて得られる反射光情報を取得し、前記検出範囲の各座標における前記反射光情報の分布に基づいて、前記反射板が設けられた前記静止構造物と移動体との位置関係を判定する解析部、を備えることを特徴とする。
 本発明の第2の態様によれば、空間認識方法は、空間認識装置が、移動体に取り付けられた光学装置であって、検出範囲に位置する静止構造物に設けられた反射板に光を照射して得られる反射光を受光する前記光学装置から、前記光の照射方向に応じた前記反射光に基づいて得られる反射光情報を取得し、前記検出範囲の各座標における前記反射光情報の分布に基づいて、前記反射板が設けられた前記静止構造物と移動体との位置関係を判定することを特徴とする。
 本発明の第3の態様によれば、プログラムは、空間認識装置のコンピュータに、移動体に取り付けられた光学装置であって、検出範囲に位置する静止構造物に設けられた反射板に光を照射して得られる反射光を受光する前記光学装置から、前記光の照射方向に応じた前記反射光に基づいて得られる反射光情報を取得し、前記検出範囲の各座標における前記反射光情報の分布に基づいて、前記反射板が設けられた前記静止構造物と移動体との位置関係を判定する、処理を実行させることを特徴とする。
 本発明によれば、静止構造物が同じパターンで数多く並び多様な物体が載置される空間において、空間認識装置が移動体の現在位置やその位置の近傍に載置される物体を容易に認識することができる。
本発明の一実施形態による空間認識システムの概要を示す図である。 本発明の一実施形態による空間認識装置のハードウェア構成を示す図である。 本発明の一実施形態による空間認識装置の機能ブロックを示す図である。 本発明の一実施形態による空間認識装置の処理フローを示す図である。 本発明の一実施形態によるセンシング情報の具体例を示す図である。 本発明の一実施形態によるフォークリフトの位置する座標の算出概要を示す図である。 本発明の一実施形態による反射板の第一の変形例を示す図である。 本発明の一実施形態による反射板の第二の変形例を示す図である。 本発明の一実施形態による空間認識装置の最小構成を示す図である。
 以下、本発明の一実施形態による空間認識装置を図面を参照して説明する。
 図1は同実施形態による空間認識装置を備えたフォークリフトを含む空間認識システムの概要を示す図である。
 図1で示すフォークリフト10は、多様な荷物が載置され静止構造物が同じパターンで数多く並んでいるような空間内を移動する移動体の一例である。フォークリフト10はフォークリフト10の移動できる空間に載置されるコンテナ等の荷物を運搬する。フォークリフト10は一例として、空間認識装置1、レーダ装置11、地上通信アンテナ12、衛星アンテナ13などを備える。
 空間内に配置される静止構造物は例えば柱や壁などである。図1は角柱状や円柱状の柱に反射板R1、R2、R3が取り付けられている様子を示している。反射板R1、R2、R3を総称して反射板Rと呼ぶこととする。フォークリフト10に取り付けられた光学装置の一つであるレーダ装置11は、空間認識装置1の制御に基づいて空間内の検出範囲に光を照射し、その光の反射光を受光する。レーダ装置11は、例えば、センサを備え、センサが有する受光素子によって受光された反射光の強さ(受光強度)を出力する。反射板Rにおいて反射しレーダ装置11で受光された反射光の受光強度は、反射板R以外の位置で反射してレーダ装置11で受光された反射光の受光強度に比べて強い。レーダ装置11は反射光から得られる受光強度などの情報を空間認識装置1へ出力する。レーダ装置11は、反射光に基づいて算出した各反射位置までの距離の情報も空間認識装置1へ出力する。
 レーダ装置11は、検出範囲の像面を細かく分割した各ピクセルに対応する各反射位置それぞれに対して光を照射する。レーダ装置11は、照射された光が反射位置で反射した反射光から得られる受光強度や距離の情報を、空間認識装置1へ出力する。空間認識装置1は、光の反射位置に応じた反射光から得られる受光強度や距離等の情報を、レーダ装置11から取得する。空間認識装置1は、取得した情報の分布に基づいて、反射板Rが設けられた静止構造物や移動体の位置を少なくとも判定する。空間認識装置1は、反射板Rであると推定される範囲における反射光の情報の分布に基づいて、反射板Rが設けられた静止構造物の識別情報を解析してもよい。また、空間認識装置1は、反射板Rに設けられた凹凸の分布を解析して、反射板Rが設けられた静止構造物の識別情報を解析してもよい。空間認識装置1は、静止構造物の位置に基づいて移動体の位置を解析してもよい。
 図2は同実施形態による空間認識装置1のハードウェア構成を示す図である。
 空間認識装置1は、CPU(Central Processing Unit)201、IF(Interface)202、通信モジュール203、ROM(Read Only Memory)204、RAM(Random Access Memory)205、HDD(Hard Disk Drive)206、RFIDリーダ207などの構成を備えている。通信モジュール203は地上通信アンテナ12や衛星アンテナ13を介した信号の送受信を行う。IF202は、例えば空間認識装置1に設けられたタッチパネルディスプレイ等に接続されている。RFIDリーダ207は、例えば、載置されたコンテナ等に設けられたRFIDタグを読み取り、荷物IDなどの情報を取得する。
 図3は同実施形態による空間認識装置1の機能ブロックを示す図である。
 空間認識装置1は制御部101、解析部102、車両情報取得部103、表示部104、記録部105の各機能部を備える。
 制御部101は、空間認識装置1に備わる各機能を制御する。制御部101は、衛星アンテナ13が衛星20から受信した信号を取得する。また、制御部101は、地上通信アンテナ12に信号を出力する。地上通信アンテナ12は、例えば、制御部101から受信した信号を、無線基地局30を介してサーバ装置40等に出力する。
 レーダ装置2は、検出範囲に位置する静止構造物に設けられた反射板Rに光を照射しその反射光を受光する。解析部102は、レーダ装置11から、光の照射方向に応じた反射光に基づいて得られる情報を取得する。解析部102は、レーダ装置11の検出範囲の各座標における反射光に基づいて得られる情報の分布に基づいて、反射板Rが設けられた静止構造物と移動体との位置関係を少なくとも判定する。情報の分布は、例えば、反射光から得られる受光強度や距離を示す値の分布である。
 車両情報取得部103は空間認識装置1が備わるフォークリフト10のID(identification:ID)等を取得する。
 表示部104は空間認識装置1に設けられたモニタ等に、警告情報や位置情報などの表示情報を出力する。
 記録部105は解析部102の解析結果等の情報をROM204やRAM205等の記憶装置に記録する。
 図4は空間認識装置1の処理フローを示す図である。
 次に空間認識装置1の処理フローについて順を追って説明する。
 フォークリフト10を操作するユーザは、空間認識装置1を制御して、一例としてはフォークリフト10の現在位置と、近傍に載置されるコンテナ等の物体の種別とを検出するものである。ユーザは処理開始の指示を空間認識装置1に与える。すると空間認識装置1の制御部101はレーダ装置11に処理開始を指示する。レーダ装置11は自装置の検出範囲の各方向に光を照射し、反射位置からの反射光を受光する。レーダ装置11は一例としては検出範囲に含まれる各物体に反射した反射光の強度を、その光の照射方向毎に検出するものであってよい。レーダ装置11は1秒や数ミリ秒など所定の間隔毎に、検出範囲の各方向に照射した光の反射光の強度を空間認識装置1へ出力する。フォークリフト10が移動することによりレーダ装置11の検出範囲も変動する。制御部101は所定の間隔毎に、レーダ装置11から受信した検出範囲内の各光照射方向に対応する、反射光の受光強度や、その反射光の反射位置までの距離を含む、センシング情報を生成する(ステップS101)。反射光の反射位置までの距離は、レーダ装置11から反射位置までの距離を示す。制御部101は、生成したセンシング情報を解析部102へ出力する。センシング情報には、検出範囲の像面を細かく分割した各ピクセルを示す情報と、それら各ピクセルに対応する各反射位置からの反射光の受光強度と、各ピクセルに対応する反射位置までの距離とが少なくとも含まれる。
 図5はセンシング情報の具体例を示す図である。
 解析部102は検出範囲のセンシング情報を受信すると、センシング情報から受光量などの反射光強度(受光強度)が所定の値以上となる高強度範囲A2のデータ群を取り出す。高強度範囲A2のデータ群は、一例としては図5で示すような検出範囲A1のうち反射光の強度(受光量)が高い高強度範囲A2に対応する、反射光の強度を有する。図5で示す高強度範囲A2のデータ群は、検出範囲A1が縦方向13行、横方向17列に分割された各ピクセルのうち、高強度範囲A2の各ピクセルの、光の照射方向に対応する反射光の強度を一例として示している。解析部102は、検出範囲A1のデータ群の各行のピクセルについて行方向に順次、反射光強度が閾値以上か否かを判定し、反射高強度が閾値以上のピクセルを特定する。解析部102はその反射光強度が閾値以上のピクセルの特定処理を、検出範囲A1の各行について行う。解析部102は反射光強度が閾値以上のピクセル群の範囲(高強度範囲A2)を、解析対象の反射板Rの範囲であると判定する(ステップS102)。図5の例によると、反射光強度の閾値は、例えば、値「3000」である。
 解析部102が検出した反射板Rと推定される高強度範囲A2のピクセルの列方向や行方向の範囲が所定のピクセル数未満である場合には、次のように判定できる。すなわち、解析部102は、解析部102が検出した反射板Rの範囲がほぼ点として認識されるような反射板Rから遠い位置に、レーダ装置11を備えたフォークリフト10が位置すると判定できる。また解析部102が検出した反射板Rと推定される高強度範囲A2のピクセルの列方向や行方向の範囲が、検出範囲A1全体を覆うようなあるピクセル数以上である場合には、次のように判定できる。すなわち、解析部102は、反射板Rにかなり近い位置にフォークリフト10が位置すると判定できる。解析部102は一例としては、反射板Rが点として認識されるような反射板Rから遠い位置にフォークリフト10が位置する場合、その反射板Rを解析対象から除くようにしてよい。解析部102は、解析対象の反射板Rの範囲と判定した高強度範囲A2内の各ピクセルのピクセル番号や、それぞれのピクセルの反射光強度を含む反射板データを生成する(ステップS103)。
 解析部102は反射板データをセンシング情報に基づいて生成した場合、その反射板データが示す反射板Rの範囲における中央部分の高さを算出する(ステップS104)。例えば解析部102はレーダ装置11が取り付けられている高さH1と、反射板Rの中央部分の反射光を受信した際の光照射方向の角度θと、反射板Rの中央部分までの距離Xとに基づいて、反射板Rの中央部分の高さH2を算出する。反射板Rの中央部分までの距離Xは、光の照射時刻から受光時刻までの時間に基づいて算出される。解析部102は、式「H2=H1+Xsinθ」により、反射板Rの中央部分の高さH2を算出することができる。
 反射板Rは例えば静止構造物である柱や壁それぞれにおいて高さH2の異なる位置に設けられている。解析部102は、レーダ装置11の光の照射方向を制御して、各方向の検出範囲において検出される反射板の高さH2に応じた反射板IDを、HDD206等の記憶部から読み取る(ステップS105)。なお静止構造物である柱や壁それぞれに設けられた反射板Rは異なる形状をしていてもよい。この場合、解析部102は反射板Rの形状をパターン認識などにより解析し、その形状に対応する反射板IDを記憶部から読み取る。つまり、解析部102は、反射板Rの範囲に基づいて反射板Rの形状を判定し、形状に対応する反射板IDを取得する。
 HDD206には反射板IDに応じた空間内の位置(座標)が記録されている。解析部102は反射板IDに対応する空間内の位置を読み取る(ステップS106)。このように、複数の静止構造物それぞれについて高さH2が異なる位置に、反射板Rが設けられる。これにより、高さH2に基づいて、反射板Rが設けられた静止構造物を特定し、その静止構造物の位置を検出することができる。解析部102はセンシング情報から複数の解析対象の反射板Rが検出できる場合には、それぞれの反射板Rに対応する反射板IDと位置とを検出する。また解析部102は、解析対象の反射板Rの範囲の中央部分のピクセルを示す反射位置までの距離をセンシング情報に基づいて特定する(ステップS107)。解析部102は、例えば、光の照射時刻から受光時刻までの時間に基づいて、レーダ装置11から反射板Rの中央部分のピクセルを示す反射位置までの距離を算出する。解析部102は3つ以上の反射板Rについて、反射板Rまでの距離を算出したか否かを判定する(ステップS108)。解析部102は3つ以上の反射板Rについて、反射板Rまでの距離を算出していない場合には(ステップS108のNO)、ステップS101の処理に戻る。この場合、解析部102は、レーダ装置11から受信した信号に基づいて次のセンシング情報の生成からの処理を繰り返す。一方、3つ以上の反射板Rについて、反射板Rまでの距離を算出した場合(ステップS108のYES)、解析部102は、フォークリフト10が位置する座標の算出処理を行う。
 図6はフォークリフト10が位置する座標の算出処理の概要を示す図である。
 解析部102は複数の反射板IDとその反射板Rの絶対位置と反射板Rの中央部分までの距離とを取得すると、それらの情報に基づいて自装置の位置を算出する。例えば解析部102は、3つの反射板R1~R3それぞれの絶対位置と、各反射板R1~R3の中央部分からレーダ装置11までの各距離とに基づいた3つの円の交点を算出する。第一の円は、反射板R1の座標(x1,y1)を中心としその反射板R1の中央部分からレーダ装置11までの距離L1を半径とする円である。第二の円は、反射板R2の座標(x2,y2)を中心としその反射板R2の中央部分からレーダ装置11までの距離L2を半径とする円である。第三の円は、反射板R3の座標(x3,y3)を中心としその反射板R3の中央部分からレーダ装置11までの距離L3を半径とする円である。解析部102は、3つの円の交点を自装置が備わるフォークリフト10の座標であるとして特定する(ステップS109)。このように、解析部102は、複数の反射板Rとフォークリフト10との各位置関係に加えて、複数の反射板Rの絶対位置に基づくことによって、フォークリフト10の絶対位置を解析する。表示部104は解析部102の算出したフォークリフト10の位置を、空間認識装置1に備わるモニタに表示された空間地図上に出力する(ステップS110)。
 これによりユーザはフォークリフト10が走行する空間における位置情報を認識することができる。また表示部104はフォークリフト10の位置に基づいて、その位置の近傍に載置されるコンテナ等の荷物ID、荷物の種類、荷物の量などの情報をHDD106から取得し、モニタに表示されている空間地図上に重ねて出力してもよい。
 制御部101は処理を終了するか否かを判定する(ステップS111)。制御部101は処理を終了しない場合には(ステップS111のNO)、ステップS101からの処理を繰り返すよう制御する。一方、処理を終了する場合には(ステップS111のYES)、制御部101は、図4に示す処理フローを終了する。
 上述の処理によれば、フォークリフト10に備えられた空間認識装置1は、静止構造物が同じパターンで数多く並び多様な物体が載置される空間において、フォークリフト10の現在位置やその位置の近傍に載置される物体を容易に認識することができる。また空間認識装置1は位置情報発信タグから発信された信号を解析して自装置の位置を特定する装置や、GNSS(Global Navigation Satellite System)などによる位置を解析して自装置の位置を特定する装置を備えなくてよい。すなわち、空間認識装置1は、静止構造物に反射板Rを備え付ければよい。このため、システムを構成する装置のコストを軽減することができる。また空間認識装置1は電子回路に影響を及ぼす電波を用いずに光により自装置の取り付けられた移動体の位置を測定する。この為、電波信号の発信を抑制されるエリアにおける自装置の位置の認識に有用である。
 なお上述の処理において解析部102は反射光強度が閾値以上となる範囲に基づいて反射板Rの範囲であるかどうかを判定している。しかしながら解析部102はさらに反射光強度が閾値以上となったピクセル範囲と、そのピクセル範囲に隣接する、反射光強度が閾値未満となったピクセルとの反射光強度との差に基づいて、反射板Rの範囲を判定してもよい。すなわち、解析部102は、その差が所定の閾値以上となる場合にのみ、反射光強度が閾値以上となったピクセル範囲を解析対象の反射板Rの範囲と特定してもよい。
 図7は反射板Rの第一の変形例を示す図である。
 反射板RにはQRコード(登録商標)などの2次元コード情報Dが印刷されていてもよい。この場合、解析部102は反射板Rの範囲と判定した高強度範囲A2において、反射光強度が閾値未満となるピクセルと、反射光強度が閾値以上となるピクセルを2値に分けた2値画像を取得する。この場合、例えば、2値画像を取得するために使用する閾値は、高強度範囲A2を判定する場合の閾値より大きい。または、解析部102は反射光強度が閾値以上の各ピクセルによって包囲された領域を高強度範囲A2として判定してもよい。解析部102は、その2値画像が2次元コード情報Dであると判定する。解析部102は高強度範囲A2内の2値画像に基づいて、2次元コード情報Dを解析する従来の手法により、その反射板Rの座標や柱番号などの情報を読み取るようにしてもよい。このように、解析部102は、反射板Rの範囲における各座標の反射光強度に基づいて取得される反射板Rに設けられた反射領域の分布(2次元コード情報D)に基づいて、静止構造物の識別情報を解析してもよい。
 図8は反射板Rの第二の変形例を示す図である。
 反射板Rは図8で示すように凹凸がもうけられていてもよい。この場合、解析部102は反射板Rの範囲と判定した高強度範囲A2の各ピクセルに対応する反射位置までの距離を算出する。解析部102は、例えば、光の照射時刻から受光時刻までの時間に基づいて、レーダ装置11から高強度範囲A2の各ピクセルに対応する反射位置までの距離を算出する。解析部102は、算出した各距離に基づいて、隣接するピクセル間の距離の差が大きいピクセルと、隣接するピクセル間の距離が小さいピクセルとを検出する。解析部102は隣接するピクセルとの距離の大小に基づいて各ピクセルを2値化した2値画像を取得し、その2値画像が2次元コード情報Dであると判定する。解析部102は高強度範囲A2内の2値画像に基づいて、2次元コード情報Dを解析する従来の手法により、その反射板Rの座標や柱番号などの情報を読み取るようにしてもよい。
 このように、反射光情報の分布は、光の照射時刻から反射光の受信時刻までの時間に基づく、各座標に対応する実空間上の照射点から反射点までの距離の分布であってもよい。解析部102は、距離の分布に基づいて、位置関係を判定する。また、解析部102は、距離の分布に基づいて取得される反射板Rに設けられた凹凸の分布に基づいて、静止構造物の識別情報をさらに解析してもよい。
 図9は空間認識装置1の最小構成を示す図である。
 図9に示す空間認識装置1は少なくとも解析部102を備えればよい。
 移動体には、光学装置が設けられる。光学装置は、検出範囲に位置する静止構造物に設けられた反射板に光を照射して得られる反射光を受光する。解析部102は、光の照射方向に応じた反射光に基づいて得らにおける反射光情報の分布に基づいて、反射板が設けられた静止構造物と移動体との位置関係を少なくとも判定する。
 上述の空間認識装置は内部に、コンピュータシステムを有している。そして、上述した各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
 また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。
さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
 この出願は、2017年9月5日に日本出願された特願2017-170376号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明によれば、静止構造物が同じパターンで数多く並び多様な物体が載置される空間において、空間認識装置が移動体の現在位置やその位置の近傍に載置される物体を容易に認識することができる。
1・・・空間認識装置
10・・・フォークリフト
11・・・レーダ装置
12・・・地上通信アンテナ
13・・・衛星アンテナ
101・・・制御部
102・・・解析部
103・・・車両情報取得部
104・・・表示部
105・・・記録部

Claims (8)

  1.  移動体に取り付けられた光学装置であって、検出範囲に位置する静止構造物に設けられた反射板に光を照射して得られる反射光を受光する前記光学装置から、前記光の照射方向に応じた前記反射光に基づいて得られる反射光情報を取得し、前記検出範囲の各座標における前記反射光情報の分布に基づいて、前記反射板が設けられた前記静止構造物と移動体との位置関係を判定する解析部、
     を備える空間認識装置。
  2.  前記反射光情報の前記分布は、前記検出範囲のうち前記反射光情報に含まれる前記反射光の強度が強度閾値を超える反射範囲の分布であり、
     前記解析部は、前記反射範囲の前記分布に基づいて前記位置関係を判定する
     請求項1に記載の空間認識装置。
  3.  前記反射光情報の前記分布は、前記光の照射時刻から前記反射光の受信時刻までの時間に基づく、前記各座標に対応する実空間上の照射点から反射点までの距離の分布であり、
     前記解析部は、前記距離の前記分布に基づいて、前記位置関係を判定する
     請求項1に記載の空間認識装置。
  4.  前記解析部は、前記反射範囲の各座標の前記反射光の前記強度に基づいて取得される前記反射板に設けられた反射領域の分布に基づいて、前記静止構造物の識別情報をさらに解析する
     請求項2に記載の空間認識装置。
  5.  前記解析部は、前記距離の前記分布に基づいて取得される前記反射板に設けられた凹凸の分布に基づいて、前記静止構造物の識別情報をさらに解析する
     請求項3に記載の空間認識装置。
  6.  前記解析部は、前記位置関係に加えて前記静止構造物の絶対位置に基づいて、前記移動体の絶対位置をさらに解析する
     請求項2から請求項5の何れか一項に記載の空間認識装置。
  7.  空間認識装置が、
     移動体に取り付けられた光学装置であって、検出範囲に位置する静止構造物に設けられた反射板に光を照射して得られる反射光を受光する前記光学装置から、前記光の照射方向に応じた前記反射光に基づいて得られる反射光情報を取得し、前記検出範囲の各座標における前記反射光情報の分布に基づいて、前記反射板が設けられた前記静止構造物と移動体との位置関係を判定する
     空間認識方法。
  8.  空間認識装置のコンピュータに、
     移動体に取り付けられた光学装置であって、検出範囲に位置する静止構造物に設けられた反射板に光を照射して得られる反射光を受光する前記光学装置から、前記光の照射方向に応じた前記反射光に基づいて得られる反射光情報を取得し、前記検出範囲の各座標における前記反射光情報の分布に基づいて、前記反射板が設けられた前記静止構造物と移動体との位置関係を判定する、
     処理を実行させるプログラム。
PCT/JP2018/030413 2017-09-05 2018-08-16 空間認識装置、空間認識方法、プログラム WO2019049627A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/643,971 US11585924B2 (en) 2017-09-05 2018-08-16 Spatial recognition device, spatial recognition method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017170376A JP7392962B2 (ja) 2017-09-05 2017-09-05 空間認識装置、空間認識方法、プログラム
JP2017-170376 2017-09-05

Publications (1)

Publication Number Publication Date
WO2019049627A1 true WO2019049627A1 (ja) 2019-03-14

Family

ID=65634011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030413 WO2019049627A1 (ja) 2017-09-05 2018-08-16 空間認識装置、空間認識方法、プログラム

Country Status (3)

Country Link
US (1) US11585924B2 (ja)
JP (1) JP7392962B2 (ja)
WO (1) WO2019049627A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259685B2 (ja) * 2019-09-30 2023-04-18 トヨタ自動車株式会社 自動運転車両用の運転制御装置、停車用物標、運転制御システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166831A (ja) * 1997-12-04 1999-06-22 Nikon Corp レーザ測量システム
JP2005274232A (ja) * 2004-03-23 2005-10-06 Sharp Corp 位置検出装置、被検出器および位置検出システム
JP2017039188A (ja) * 2015-08-20 2017-02-23 株式会社東芝 移動ロボットおよび施工位置確認方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117409A (ja) * 1984-11-14 1986-06-04 Komatsu Zoki Kk 建設機械の現在地検出方法
US5215423A (en) * 1990-09-21 1993-06-01 Edelhoff Polytechnik Gmbh & Co. System for determining the spatial position of an object by means of a video optical sensor
JPH07152434A (ja) * 1993-12-01 1995-06-16 Fuji Heavy Ind Ltd 自律走行作業車の自己位置検出方法
JP4051883B2 (ja) 2000-12-20 2008-02-27 株式会社明電舎 無人車位置計測方式
JP4448497B2 (ja) * 2006-03-23 2010-04-07 本田技研工業株式会社 移動体の自己位置検出装置および位置検出システム
JP4978099B2 (ja) * 2006-08-03 2012-07-18 トヨタ自動車株式会社 自己位置推定装置
JP6596889B2 (ja) * 2015-04-03 2019-10-30 日産自動車株式会社 物体検出装置
JP6629055B2 (ja) * 2015-11-30 2020-01-15 株式会社ソニー・インタラクティブエンタテインメント 情報処理装置および情報処理方法
JP7152434B2 (ja) 2019-02-27 2022-10-12 キッコーマン株式会社 サーバー装置、相性判定方法および相性判定プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166831A (ja) * 1997-12-04 1999-06-22 Nikon Corp レーザ測量システム
JP2005274232A (ja) * 2004-03-23 2005-10-06 Sharp Corp 位置検出装置、被検出器および位置検出システム
JP2017039188A (ja) * 2015-08-20 2017-02-23 株式会社東芝 移動ロボットおよび施工位置確認方法

Also Published As

Publication number Publication date
JP2019045381A (ja) 2019-03-22
US20210063572A1 (en) 2021-03-04
US11585924B2 (en) 2023-02-21
JP7392962B2 (ja) 2023-12-06

Similar Documents

Publication Publication Date Title
Yang et al. Efficient object localization using sparsely distributed passive RFID tags
CN101840488B (zh) 射频环境对象监视系统和使用方法
EP2453253A1 (en) A multi-directional active sensor system and a method for sensing electromagnetic radiation
CN116907458A (zh) 基于光学目标的室内车辆导航的系统和方法
US20100073476A1 (en) Systems and methods for measuring three-dimensional profile
US20070273530A1 (en) Tag communication device, tag moving direction detecting system and tag moving direction detecting method
CN101351754A (zh) 移动设备跟踪
JP2012521546A (ja) 周辺空間を光学的に走査および測定する方法
EP3635430B1 (en) Method and apparatus for determining the location of a static object
JP2019102047A (ja) 画像処理装置、移動ロボットの制御システム、移動ロボットの制御方法
CN106716053B (zh) 移动体的三维姿势及位置识别装置
KR20160027605A (ko) 사용자기기의 실내 위치를 측정하기 위한 측위방법 및 이를 구현하기 위한 장치
JP4960599B2 (ja) 衝突防止装置及び衝突防止装置搭載車両
CN110703770A (zh) 一种轨道检测车自动行驶控制的方法及装置
KR20190056775A (ko) 차량의 객체 인식 장치 및 방법
Patruno et al. An embedded vision system for real-time autonomous localization using laser profilometry
CN115661240A (zh) 一种位置信息确定方法、装置、电子设备及存储介质
WO2019049627A1 (ja) 空間認識装置、空間認識方法、プログラム
JPWO2019031372A1 (ja) センサ制御装置
CN114102577A (zh) 一种机器人及应用于机器人的定位方法
US20210191414A1 (en) Apparatus, system and method for using vehicle markers for controlling devices
WO2019049624A1 (ja) 空間認識装置、空間認識方法、プログラム
US20190257910A1 (en) Measuring apparatus using beacon tag
KR20160038971A (ko) 상황정보 기반 콘텐츠 생성을 위한 구간영역 내 이동체 인식 방법 및 시스템
CN113093719A (zh) 自动导引车定位系统及其操作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854855

Country of ref document: EP

Kind code of ref document: A1