WO2019049279A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2019049279A1
WO2019049279A1 PCT/JP2017/032322 JP2017032322W WO2019049279A1 WO 2019049279 A1 WO2019049279 A1 WO 2019049279A1 JP 2017032322 W JP2017032322 W JP 2017032322W WO 2019049279 A1 WO2019049279 A1 WO 2019049279A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
base station
signal
radio
unit
Prior art date
Application number
PCT/JP2017/032322
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US16/644,854 priority Critical patent/US20200288438A1/en
Priority to PCT/JP2017/032322 priority patent/WO2019049279A1/ja
Priority to BR112020004578-0A priority patent/BR112020004578A2/pt
Priority to CN201780096562.2A priority patent/CN111316736B/zh
Priority to JP2019540214A priority patent/JP7132225B2/ja
Priority to EP17924507.1A priority patent/EP3681231A4/en
Publication of WO2019049279A1 publication Critical patent/WO2019049279A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE Rel. 8, 9 LTE Rel. 8, 9
  • LTE successor system for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel. 14 or 15).
  • downlink Downlink
  • uplink using a subframe of 1 ms (also referred to as transmission time interval (TTI) etc.)
  • TTI transmission time interval
  • UL Uplink
  • the subframe is a transmission time unit of one channel-coded data packet, and is a processing unit such as scheduling, link adaptation, and retransmission control (HARQ: Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest
  • a radio base station controls allocation (scheduling) of data to a user terminal (UE: User Equipment), and uses downlink control information (DCI) to transmit data.
  • DCI downlink control information
  • UE User Equipment
  • UE User Equipment
  • a scheduling instruction For example, when a UE compliant with the existing LTE (for example, LTE Rel. 8-13) receives DCI (also referred to as a UL grant) instructing UL transmission, the sub after a predetermined period (for example, after 4 ms) In the frame, transmit UL data.
  • LTE for example, LTE Rel. 8-13
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • a future wireless communication system for example, NR
  • a communication service that requires low delay and high reliability for example, Ultra Reliable and Low Latency Communications (URLLC)
  • URLLC Ultra Reliable and Low Latency Communications
  • the UE transmits UL data without UL grant from the radio base station (also referred to as UL grant free transmission, UL grantless transmission, contention-based UL transmission, etc.) ing.
  • the radio base station also referred to as UL grant free transmission, UL grantless transmission, contention-based UL transmission, etc.
  • the user terminal includes a transmitter configured to transmit UL data without a UL transmission instruction from the radio base station, and a controller configured to repeatedly transmit the UL data based on the number of repetitive transmissions,
  • the control unit is characterized by controlling whether to count the number of repeated transmissions based on the radio resource type allocated to the repeated transmission.
  • FIG. 1A is a diagram for explaining UL grant based transmission
  • FIG. 1B is a diagram for explaining UL grant free transmission
  • FIG. 2 is a diagram illustrating an example of resources used for UL grant free transmission
  • FIG. 3 is a diagram illustrating an example of a flow of UL grant free transmission
  • FIG. 4 is a diagram for explaining repeated transmission of UL grant free.
  • FIG. 5 is a diagram for explaining ⁇ case 1> of UL grant free repetitive transmission.
  • FIG. 6 is a diagram for explaining ⁇ case 2> of UL grant free repetitive transmission.
  • FIG. 7 is a diagram for describing the case where ⁇ Case 1> and ⁇ Case 2> are mixed in the UL grant-free repetitive transmission.
  • FIG. 1A is a diagram for explaining UL grant based transmission
  • FIG. 1B is a diagram for explaining UL grant free transmission.
  • FIG. 2 is a diagram illustrating an example of resources used for UL grant free transmission.
  • FIG. 3 is
  • FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of the entire configuration of a radio base station according to an embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of a functional configuration of a wireless base station according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing an example of the entire configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 13 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • UL data is transmitted based on UL grant to realize low delay communication.
  • UL grant-based transmission is not sufficient, and it is considered to apply UL grant-free transmission that transmits UL data without UL grant.
  • FIG. 1A is a diagram for explaining UL grant based transmission
  • FIG. 1B is a diagram for explaining UL grant free transmission.
  • a radio base station for example, BS (Base Station), transmission / reception point (TRP: Transmission / Reception Point), eNB (eNode B), gNB, etc.) Good
  • TRP Transmission / Reception Point
  • eNB eNode B
  • gNB gNode B
  • Good transmits a downlink control channel (UL grant) instructing assignment of UL data
  • PUSCH Physical Uplink Shared Channel
  • the UE transmits UL data without receiving a UL grant for data scheduling.
  • resource configuration includes at least physical resources in the time and / or frequency domain.
  • resources used for UL grant free transmission are configured by upper layer signaling, such as UL semi-persistent scheduling (SPS) used in existing LTE (for example, LTE Rel. 8-13). Is being considered. Therefore, UL grant free transmission can also be considered as a function realized when resource configuration of UL SPS is a specific condition.
  • SPS semi-persistent scheduling
  • UL SPS a case where the period of resources set by upper layer signaling is relatively long (for example, 10 ms) is called UL SPS, and the period of resources set by the same upper layer signaling is relatively short (eg, 1 ms, 0.5 ms) Etc.) may be referred to as UL grant free transmission.
  • UL grant free transmission determines whether to perform UL transmission in the set resource according to the presence or absence of transmission data stored in its own buffer by the UE. It may be determined.
  • UL grant free transmission may be referred to as a configuration in which UL skipping is permitted if the set resource period is relatively short and there is no UL data.
  • UL grant free transmission may be referred to as UL transmission without UL grant, and so on. Note that regardless of the resource cycle, both may be referred to as UL SPS or UL grant free transmission.
  • FIG. 2 is a diagram illustrating an example of resources used for UL grant free transmission.
  • inter-TTI frequency hopping, intra-TTI frequency hopping, inter-slot frequency hopping, intra-slot frequency hopping and the like may be applied to frequency resources used for UL grant free transmission.
  • the time resource used for UL grant free transmission may be set continuously in time or may be set discontinuously (intermittently) in time.
  • resources other than the resources used for UL grant free transmission may be used for UL grant based transmission.
  • the UE may perform UL grant free transmission after the resource (for example, a radio base station) has been semi-statically configured using RRC.
  • the network may also apply L1 signaling for activation or deactivation and / or change of parameters for UL grant free transmission.
  • the UE can transmit UL grant free transmission (activation / deactivation) information and / or resource / transmission scheme (Modulation coding rate, MIMO layer number, RS parameter) ⁇
  • Information for changing transmission power is received by downlink physical control channel (for example, PDCCH), downlink physical data channel (for example, PDSCH), MAC CE, etc.
  • the control of UL grant free transmission may be changed accordingly.
  • the change may be valid for a predetermined period (for example, 80 ms), and then may not be changed again unless a change instruction is received by upper layer signaling such as RRC or another L1 signaling. .
  • repeated transmission is considered, in which the same UL data is repeatedly transmitted.
  • repetition transmission of UL data it is assumed that UE transmits UL data repeatedly for a predetermined number (for example, K) per transport block (TB: Transport Block).
  • the UE may continue to transmit TB repeatedly until one of the stop conditions is met.
  • One of the stop conditions may be that the terminal is notified by physical layer signaling (eg UL grant etc.) that the TB has been successfully received by the receiving base station.
  • one of the stop conditions may be that the number of repetitions for the same TB reaches the predetermined number.
  • the present inventors pay attention to the fact that there are several causes (reasons) when repeated transmission is blocked, and it is conceived to relate to this cause and to control the count of the repeated transmission. It came to the invention. Specifically, when performing UL grant free transmission of UL data based on the repeat transmission number, it is controlled whether to count the repeat transmission number based on the radio resource type allocated to the repeat transmission. .
  • the radio resource type may be the same as the reason for repetitive transmission skipping. Specific radio resource types will be described later.
  • NR ⁇ a prefix of “NR ⁇ ” indicating that it is for NR may be added and read.
  • parameters used for UL grant free transmission may be referred to as wireless parameters, configuration information, etc.
  • UL grant free transmission parameters may mean “parameter set” indicating one or more parameter sets.
  • FIG. 3 is a diagram illustrating an example of a flow of UL grant free transmission according to an embodiment of the present invention.
  • the UE may perform upper layer signaling (for example, RRC (Radio Resource Control) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access)
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access
  • the UE can perform UL grant free transmission based on the configuration information. Note that step S101 may be omitted, and the UL grant free transmission parameter may be determined according to the specification.
  • the UL grant free transmission parameters may include at least one of the following: time and / or frequency resources, modulation and coding scheme (MCS) (may include redundancy version (RV) ) Reference signal parameters, UL grant-free transmission repetition count (K), RV cycling (changing), power ramping related parameters, random backoff, MCS adjustment in each repetition, etc.
  • MCS modulation and coding scheme
  • time and / or frequency resources may be, for example, indexes related to time and / or frequency resources (eg, Physical Resource Block (PRB) index, cell index, slot index, subframe index, symbol index, etc.) , And may be indicated by the period of time and / or frequency of the resource.
  • PRB Physical Resource Block
  • some parameters may be set for a predetermined number of repeated transmissions or may be set for repeated transmissions.
  • power ramping may be applied in repeated transmissions, or the same transmission power may be applied in repeated transmissions and power ramping may be applied between repeated transmissions.
  • upper layer signaling for setting UL grant free transmission parameters may be UE-common signaling or UE-specific signaling.
  • the UE is dynamically notified of information on UL grant free transmission parameters from the gNB by L1 signaling (for example, PDCCH (Physical Downlink Control Channel) or the like) (step S102).
  • L1 signaling in step S102 may be referred to as L1 signaling for UL grant free transmission parameters, and so on.
  • L1 signaling related to UL grant free transmission parameters may be L1 signaling (which may be referred to as parameter notification L1 signaling) that notifies UL grant free transmission parameters.
  • the UE For the parameter notified by L1 signaling for parameter notification, the UE is configured in the case where the parameter is set by upper layer signaling (may be read as “defined by specification”, and so on). Also, UL grant-free transmission is controlled based on the value of the parameter notified by the L1 signaling.
  • the parameter notified by the L1 signaling may be a parameter that overrides, updates, adjusts, or modifies a radio parameter set by higher layer signaling.
  • expressions such as “overwrite” are one example, and it is obvious that they may be read as words having the same meaning as these.
  • Parameters notified by L1 signaling for parameter notification may be a subset of parameters set by upper layer signaling, or may be a different set from parameters set by upper layer signaling (that is, higher layers) Parameters not set by layer signaling may be notified by L1 signaling).
  • parameters notified by L1 signaling for parameter notification are not limited to UL grant free transmission parameters of the same cell (same carrier), but overwrite, adjust, modify, etc. UL grant free transmission parameters of another cell (another carrier) It may be signaling.
  • which cell (carrier) the UL grant free transmission parameter should be overwritten, adjusted, corrected, etc. may be set in advance to the UE by upper layer signaling, and the carrier identifier included in the parameter notification L1 signaling It may be specified by (carrier indicator). Whether to include the carrier identifier in the parameter notification L1 signaling may be separately set by upper layer signaling. In this case, the payload of L1 signaling can be appropriately controlled.
  • L1 signaling related to UL grant free transmission parameters may be L1 signaling (which may be called L1 signaling for activation) for activating parameters (parameter set) used for UL grant free transmission.
  • the L1 signaling for activation is also called activation (for example, activation, activation, etc.) from a plurality of parameter sets set by higher layer signaling in step S101 and used for UL grant free transmission. Used to make In addition to the predetermined parameter set, an instruction to activate the parameter set may be included in the activation L1 signaling.
  • UL grant-free transmission parameters for the same cell may be activated by activation L1 signaling, or UL grant-free transmission parameters for another cell (another carrier) may be activated.
  • L1 signaling for UL grant free transmission parameters may be, for example, DCI (DCI format 1/2 etc., may be referred to as DL assignment) for scheduling DL data reception or DCI (for DL data transmission scheduling) DCI format 0/4 etc. (may be called a UL grant).
  • DCI DCI format 1/2 etc.
  • DCI for DL data transmission scheduling
  • DCI format 0/4 etc. may be called a UL grant.
  • designations such as DL assignment, UL grant, etc. are used to indicate that their DCI and format are the same or similar, and in one embodiment of the present invention, these DCI are It is not necessary to instruct data scheduling.
  • the UE is configured such that the DL assignment or UL grant is UL grant free by the predetermined value of one or more fields (fields defined by the DCI format) included in the received DL assignment or UL grant. It may be validated that it is L1 signaling for transmission parameters. In addition, the combination of fields used for this confirmation, the value, etc. are different from the combination of the fields for confirming that the DL assignment or the UL grant is SPS activation or release (deactivation), the value, etc. It may be done.
  • the UE performs UL grant free transmission (for example, data transmission using a UL grant free transmission resource) based on L1 signaling in step S102 (step S103).
  • the UE may transmit UL data and transmit a detection signal for detecting UL grant free transmission.
  • ⁇ Repeated transmission on UL grant free> the UE repeatedly performs transmission based on the number of repetitions (K) of UL grant free transmission.
  • K the number of repetitions
  • the number of repetitions K is set to four.
  • UL grant free transmission using repetition (multiple UL grant free transmission by repetition) will be referred to as “Repetitions”. This may be referred to as “TTI Bundle”, “Aggregated data” or the like. Also, one repeat transmission in UL grant free transmission using repetition is referred to as “Repetition”. This may be referred to as “TTI”, “Each transmission” or the like.
  • Repetition # 1 to # 4 are different in FIG. 4, this is for showing different Repetition, and does not mean that different data is transmitted. However, these are data generated based on the same TB, and it is sufficient if they can receive, demodulate and decode the TB respectively, for example, RV, MCS, coding rate, time, frequency and space resources. The amount, etc. may be different.
  • a time interval is provided between Repetition # 1 to # 4 (although it is set discontinuously (intermittently) in time), a time interval is necessarily provided (discontinuously). ) It is not necessary, and two or more Repetitions may be configured on the time axis in succession.
  • ⁇ Case 1> In the resource specified by the UL grant free transmission parameter, if Repetition is skipped, and if the Repetition to be skipped (the radio resource type assigned to Repetition) is classified (typed) into Type A described later, the UE Does not count skipped Repetitions as part of Repetitions (one transmission).
  • Radio resource types (Repetition skip reasons) Type A and Type B will be described.
  • Type A means a situation in which the radio base station gNB performs the same recognition (understand) as the UE. From the viewpoint of radio resources, this means that the gNB recognizes that radio resources allocated to Repetition are used outside Repetitions. Also, from the viewpoint of the skip reason, it means that the gNB recognizes the reason for skipping Repetition.
  • -Transmission with other settings (configure) / indicated (contention, collision) such as reference signal for measurement (SRS: Sounding Reference Signal), contention-free RA (CFRA: Contention-Free Random Access), etc.
  • SRS Sounding Reference Signal
  • CFRA contention-free Random Access
  • Do. -Measurement gap is configured (configure).
  • DL downlink
  • DL reserved of other signaling is indicated (indicated).
  • the UE transmits a UE-specific random access preamble (dedicated preamble) previously assigned from the network by PRACH.
  • a UE-specific random access preamble (dedicated preamble) previously assigned from the network by PRACH.
  • the base station can grasp the block of Repetition by CFRA.
  • the UE supports inter-frequency measurement that performs measurement on a non-serving carrier different from the serving carrier.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • RSRP is the received power of the desired signal, and is measured using, for example, CRS.
  • RSSI is the total received power including the received power of the desired signal and the interference and noise power.
  • RSRQ is the ratio of RSRP to RSSI.
  • the UE switches the reception frequency from the serving carrier to the non-serving carrier in the measurement gap (MG: Measurement Gap), for example, at least RSRP, RSSI, and RSRQ using any of CRS, CSI-RS, SS, and the like. Measure one and switch the receive frequency from the non-serving carrier to the serving carrier.
  • the measurement gap is a period for performing different frequency measurement, and in this period, the UE stops transmission / reception on a carrier in communication and performs measurement on a carrier of another frequency.
  • Type B means a situation in which the radio base station gNB does not perform the same recognition (understand) as the UE. From the viewpoint of radio resources, this means that the gNB does not recognize that radio resources allocated to Repetition are used other than Repetitions. Also, from the viewpoint of the skip reason, it means that gNB does not recognize the reason for skipping Repetition.
  • a traffic arrival (the moment when data is transferred from the upper layer to the physical layer) occurs in the middle of one Repetition.
  • UE-triggered transmission occurrences such as Contention-Based Random Access (CBRA), beam recovery requests, etc.
  • CBRA Contention-Based Random Access
  • the UE transmits a preamble randomly selected from a plurality of random access preambles (contention preambles) prepared in the cell by using the PRACH.
  • the base station since the user terminal autonomously determines PRACH transmission, if Repetition is blocked by this, the base station can not recognize that.
  • FIG. 7 shows an example in which cases 1 and 2 are mixed.
  • Repetition skip reason Repetition's radio resource type to be skipped (Repetition skip reason) is classified into Type B.
  • the first skipped repetition is counted as part of Repetitions.
  • Repetition's radio resource type to be skipped (reason for Repetition skip) is classified as Type A. For this reason, skipped repetitions are not counted. Therefore, as shown in FIG. 7, counting is restarted from Repetition # 3 after two Repetition skips.
  • the difference between the count (recognition) of the number of repetitions in the user terminal and the count of the number of repetitions recognized and understood by the radio base station (gNB) is This can be prevented from occurring.
  • the radio base station gNB
  • the Repetition number and the RV index may be predetermined, or may be set by higher layer signaling or the like. For example, if packet combining of the same RV is preferable, transmission may be set to continue sending the same RV between Repetitions, and if hybrid ARQ gains by different RVs are preferable, switching transmission may be performed.
  • RA Resource Allocation
  • frequency hopping may be applied at multiple Repetitions.
  • RA sizes may be different in multiple Repetitions.
  • MCS Modulation and Coding Scheme
  • high MCS and small RA are applied to one or more Repetitions earlier (in time), and one or more late (in time) are applied.
  • Repetition it is conceivable to apply large RA with low MCS. According to this, it is possible to improve frequency utilization efficiency in one or more previous repetitions, and to improve the reliability of communication in the later repetitions.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
  • FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • the radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do.
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. It may be called (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology) or the like, or may be called a system for realizing these.
  • the radio communication system 1 includes a radio base station 11 forming a macrocell C1 with a relatively wide coverage, and radio base stations 12 (12a to 12c) disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. And. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 simultaneously uses the macro cell C1 and the small cell C2 using CA or DC. Also, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, 5 or less CCs, 6 or more CCs).
  • CCs cells
  • Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth carrier (also called an existing carrier, legacy carrier, etc.).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • the user terminal 20 can perform communication in each cell using time division duplex (TDD) and / or frequency division duplex (FDD). Also, in each cell (carrier), a single numerology may be applied, or a plurality of different numerologies may be applied.
  • TDD time division duplex
  • FDD frequency division duplex
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly It may be done.
  • wire for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface, etc.
  • CPRI Common Public Radio Interface
  • X2 interface etc.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink as a radio access scheme, and single carrier frequency division multiple access (SC-FDMA: single carrier) to the uplink.
  • SC-FDMA single carrier frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication.
  • SC-FDMA is a single carrier transmission that reduces interference between terminals by dividing the system bandwidth into a band configured by one or continuous resource blocks for each terminal, and a plurality of terminals use different bands. It is a system.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, etc. are used as downlink channels. Used. User data, upper layer control information, SIB (System Information Block), etc. are transmitted by the PDSCH. Also, a MIB (Master Information Block) is transmitted by the PBCH.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • the downlink L1 / L2 control channel includes PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
  • Downlink control information (DCI) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
  • scheduling information may be notified by DCI.
  • DCI scheduling DL data reception may be referred to as DL assignment
  • DCI scheduling UL data transmission may be referred to as UL grant.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • Delivery confirmation information (for example, also referred to as retransmission control information, HARQ-ACK, and ACK / NACK) of HARQ (Hybrid Automatic Repeat reQuest) for the PUSCH is transmitted by the PHICH.
  • the EPDCCH is frequency division multiplexed with a PDSCH (downlink shared data channel), and is used for transmission such as DCI, similarly to the PDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • User data, upper layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR: Scheduling Request) and the like are transmitted by the PUCCH.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a cell-specific reference signal (CRS: Cell-specific Reference Signal), a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal), a demodulation reference signal (DMRS: DeModulation Reference Signal, positioning reference signal (PRS), etc.
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DMRS DeModulation Reference Signal
  • PRS positioning reference signal
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signal
  • PRS positioning reference signal
  • DMRS Demodulation reference signal
  • PRS positioning reference signal
  • FIG. 9 is a diagram showing an example of the entire configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data.
  • Control Transmission processing such as retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc. It is transferred to 103. Further, transmission processing such as channel coding and inverse fast Fourier transform is also performed on the downlink control signal and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
  • the transmission / reception unit 103 can be configured of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting and receiving unit 103 receives the upstream signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of the communication channel, state management of the radio base station 10, management of radio resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the other wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). May be
  • an inter-base station interface for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface.
  • the transmission / reception unit 103 receives, from the user terminal 20, data transmitted by UL grant free transmission in which UL data is transmitted without a UL transmission instruction (UL grant) from the radio base station 10. Also, it receives data repeatedly transmitted with UL grant free.
  • UL grant UL transmission instruction
  • the transmission / reception unit 103 may transmit at least one of parameter notification L1 signaling, activation L1 signaling, and deactivation L1 signaling to the user terminal 20.
  • the transmitting / receiving unit 103 transmits predetermined physical layer signaling (for example, L1 signaling for parameter notification, L1 signaling for activation, L1 signaling for deactivation), and then transmits using predetermined signals and / or channels.
  • predetermined physical layer signaling for example, L1 signaling for parameter notification, L1 signaling for activation, L1 signaling for deactivation
  • a delivery confirmation signal may be received from the user terminal 20 indicating that the physical layer signaling has been received and / or not received.
  • the delivery confirmation may be transmitted using at least one of MAC signaling, SRS, PUCCH, and SR.
  • the transmitting and receiving unit 103 may transmit information on UL grant free transmission parameters, information on delivery confirmation, and the like to the user terminal 20.
  • the parameter may include a predetermined value K for repeatedly transmitting a predetermined number (for example, K) of UL data in units of transport blocks (TB: Transport Block) when the UE performs UL grant free transmission. .
  • FIG. 10 is a diagram showing an example of a functional configuration of a wireless base station according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has another functional block required for wireless communication.
  • the baseband signal processing unit 104 at least includes a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the wireless base station 10, and some or all of the configurations may not be included in the baseband signal processing unit 104.
  • a control unit (scheduler) 301 performs control of the entire radio base station 10.
  • the control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the control unit 301 controls, for example, generation of a signal in the transmission signal generation unit 302, assignment of a signal in the mapping unit 303, and the like. Further, the control unit 301 controls reception processing of a signal in the reception signal processing unit 304, measurement of a signal in the measurement unit 305, and the like.
  • the control unit 301 schedules (for example, resources) system information, downlink data signals (for example, signals transmitted on PDSCH), downlink control signals (for example, signals transmitted on PDCCH and / or EPDCCH, delivery confirmation information, etc.) Control allocation). Further, the control unit 301 controls generation of the downlink control signal, the downlink data signal, and the like based on the result of determining whether the retransmission control for the uplink data signal is necessary or not. The control unit 301 also controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • PSS Primary Synchronization Signal
  • SSS Synchronization Signal
  • control unit 301 may perform uplink data signals (for example, signals transmitted on PUSCH), uplink control signals (for example, signals transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), random access preambles (for example, It controls scheduling of signals transmitted on PRACH, uplink reference signals and the like.
  • uplink data signals for example, signals transmitted on PUSCH
  • uplink control signals for example, signals transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.
  • random access preambles for example, It controls scheduling of signals transmitted on PRACH, uplink reference signals and the like.
  • control unit 301 may receive a detection signal transmitted using the determined radio resource, and may recognize UL grant free transmission. Also, in response to reception of a signal for detecting UL grant free transmission, control may be performed to receive and demodulate UL data transmitted by UL grant free transmission.
  • control unit 301 may change the content of the UL grant free transmission parameter to be transmitted to the user terminal 20.
  • the number K of repetitions may be controlled based on the communication environment.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal or the like) based on an instruction from the control unit 301, and outputs the downlink signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, DL assignment for notifying downlink data allocation information and / or UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301.
  • DL assignment and UL grant are both DCI and follow DCI format.
  • coding processing and modulation processing are performed on the downlink data signal according to a coding rate, a modulation method, and the like determined based on channel state information (CSI: Channel State Information) and the like from each user terminal 20.
  • CSI Channel State Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the mapped downlink signal to transmission / reception section 103.
  • the mapping unit 303 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103.
  • the reception signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the received signal processing unit 304 can be configured from a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception process to the control unit 301. For example, when the PUCCH including the HARQ-ACK is received, the HARQ-ACK is output to the control unit 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measuring unit 305 can be configured from a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 305 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, and the like based on the received signal.
  • the measurement unit 305 may use received power (for example, reference signal received power (RSRP)), received quality (for example, reference signal received quality (RSRQ), signal to interference plus noise ratio (SINR), signal to noise ratio (SNR)). , Signal strength (e.g., received signal strength indicator (RSSI)), channel information (e.g., CSI), and the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • CSI channel information
  • the measurement result may be output to the control unit 301.
  • FIG. 11 is a diagram showing an example of the entire configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmitting and receiving antennas 201, an amplifier unit 202, a transmitting and receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • each of the transmitting and receiving antenna 201, the amplifier unit 202, and the transmitting and receiving unit 203 may be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmitting and receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured of a transmitter / receiver, a transmission / reception circuit or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs reception processing of FFT processing, error correction decoding, retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing on a layer higher than the physical layer and the MAC layer. Moreover, broadcast information may also be transferred to the application unit 205 among downlink data.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission processing of retransmission control (for example, transmission processing of HARQ), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. It is transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
  • the transmission / reception unit 203 performs UL grant free transmission in which UL data is transmitted without a UL transmission instruction (UL grant) from the radio base station 10. Also, the transmission / reception unit 203 receives, from the radio base station 10, UL grant free transmission parameters and information on delivery confirmation.
  • UL grant UL transmission instruction
  • the transmission / reception unit 203 repeatedly performs UL grant free transmission according to the number of repetitions K, radio resources (time and / or frequency resources), modulation and coding scheme, and the like included in the UL grant free transmission parameter.
  • FIG. 12 is a diagram showing an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has another functional block required for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 at least includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, generation of a signal in the transmission signal generation unit 402, assignment of a signal in the mapping unit 403, and the like. Further, the control unit 401 controls reception processing of signals in the reception signal processing unit 404, measurement of signals in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of the retransmission control for the downlink control signal and / or the downlink data signal.
  • the control unit 401 controls repetition of UL grant free transmission based on the number of repetitions when performing repeated transmission in UL grant free. For example, in the case of skipping repetition, it is controlled whether or not to count the number of repetitions, based on the type of radio resource allocated (used) for the repetition to be skipped.
  • Type A classifications such as Type A and Type B described above can be applied. More specifically, when the type of the radio resource allocated to the skipped repetition is Type A, the control unit 401 does not count the skipped repetition as the number of repetitions K. If Type B, count skipped iterations.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal or the like) based on an instruction from the control unit 401, and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates, for example, an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401. Further, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, when the downlink control signal notified from the radio base station 10 includes a UL grant, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the uplink signal to transmission / reception section 203.
  • the mapping unit 403 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 203.
  • the reception signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, or the like) transmitted from the radio base station 10.
  • the received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception process to the control unit 401.
  • the received signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measuring unit 405 can be configured of a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • each functional block (components) are realized by any combination of hardware and / or software.
  • the implementation method of each functional block is not particularly limited. That is, each functional block may be realized using one physically and / or logically coupled device, or directly and / or two or more physically and / or logically separated devices. Or it may connect indirectly (for example, using a wire communication and / or radio), and it may be realized using a plurality of these devices.
  • a wireless base station, a user terminal, and the like in an embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention.
  • FIG. 13 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication device 1004 is performed. This is realized by controlling communication, and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, or may be realized similarly for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
  • a computer readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • Hardware may be included, and part or all of each functional block may be realized using the hardware.
  • processor 1001 may be implemented using at least one of these hardware.
  • the channels and / or symbols may be signaling.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
  • the slot may be configured by one or more symbols in the time domain (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.).
  • the slot may be a time unit based on the neurology.
  • the slot may include a plurality of minislots. Each minislot may be configured by one or more symbols in the time domain. Minislots may also be referred to as subslots.
  • a radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal.
  • subframes, slots, minislots and symbols other names corresponding to each may be used.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot or one minislot may be referred to as a TTI.
  • TTI transmission time interval
  • the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the radio base station performs scheduling to assign radio resources (frequency bandwidth usable in each user terminal, transmission power, etc.) to each user terminal in TTI units.
  • radio resources frequency bandwidth usable in each user terminal, transmission power, etc.
  • the TTI may be a transmission time unit of a channel encoded data packet (transport block), a code block, and / or a codeword, or may be a processing unit such as scheduling and link adaptation. Note that, when a TTI is given, the time interval (eg, the number of symbols) in which the transport block, the code block, and / or the codeword is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, or the like.
  • a long TTI for example, a normal TTI, a subframe, etc.
  • a short TTI eg, a shortened TTI, etc.
  • a resource block is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be respectively configured by one or more resource blocks. Note that one or more RBs may be a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, etc. It may be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • a resource block may be configured by one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be one subcarrier and one symbol radio resource region.
  • the above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB
  • the number of subcarriers, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be variously changed.
  • the information, parameters, etc. described in the present specification may be expressed using absolute values, may be expressed using relative values from predetermined values, or other corresponding information. May be represented.
  • radio resources may be indicated by a predetermined index.
  • the names used for parameters and the like in the present specification are not limited names in any respect.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable names, various assignments are made to these various channels and information elements.
  • the name is not limited in any way.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed using a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
  • notification of information is not limited to the aspects / embodiments described herein, and may be performed using other methods.
  • notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not notifying the predetermined information or other information Notification may be performed).
  • the determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” as used herein may be used interchangeably.
  • base station Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell cell
  • cell group cell group
  • carrier carrier
  • carrier carrier
  • a base station may be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, transmission / reception point, femtocell, small cell, and the like.
  • a base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication service can also be provided by Remote Radio Head).
  • RRH Communication service can also be provided by Remote Radio Head.
  • the terms "cell” or “sector” refer to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • the mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal , Handset, user agent, mobile client, client or some other suitable term.
  • the base station and / or the mobile station may be called a transmitting device, a receiving device, etc.
  • the radio base station in the present specification may be replaced with a user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the above-described radio base station 10 has.
  • the wordings such as "up” and “down” may be read as "side".
  • the upstream channel may be read as a side channel.
  • a user terminal herein may be read at a radio base station.
  • the radio base station 10 may have a function that the above-described user terminal 20 has.
  • the operation supposed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark) And / or systems based on other suitable wireless communication methods and / or extended next generation systems based on these.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • any reference to an element using the designation "first”, “second” and the like as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
  • determining may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as “determining”. Also, “determination” may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as “determining” (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, “determination” may be considered as “determining” some action.
  • connection refers to any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements “connected” or “connected” to each other.
  • the coupling or connection between elements may be physical, logical or a combination thereof. For example, “connection” may be read as "access”.
  • the radio frequency domain It can be considered as “connected” or “coupled” with one another using electromagnetic energy or the like having wavelengths in the microwave region and / or the light (both visible and invisible) regions.
  • a and B are different may mean “A and B are different from each other”.
  • the terms “leave”, “combined” and the like may be interpreted similarly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一態様に係るユーザ端末は、無線基地局からのUL送信指示なしにULデータを送信する送信部と、繰り返し送信数に基づいて、前記ULデータの繰り返し送信を行う制御部と、を備え、前記制御部は、前記繰り返し送信に割り当てられた無線リソースタイプに基づいて、繰り返し送信数をカウントするか否かを制御することを特徴とする。このような一態様によれば、ULグラントフリーで繰り返し送信を適切に行い、無線通信のパフォーマンス及び信頼性を向上することができる。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-13)において、1msのサブフレーム(伝送時間間隔(TTI:Transmission Time Interval)などともいう)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該サブフレームは、チャネル符号化された1データパケットの送信時間単位であり、スケジューリング、リンクアダプテーション、再送制御(HARQ:Hybrid Automatic Repeat reQuest)などの処理単位となる。
 また、無線基地局(例えば、eNB(eNode B))は、ユーザ端末(UE:User Equipment)に対するデータの割当て(スケジューリング)を制御し、下り制御情報(DCI:Downlink Control Information)を用いてデータのスケジューリング指示をUEに通知する。例えば、既存のLTE(例えば、LTE Rel.8-13)に準拠するUEは、UL送信を指示するDCI(ULグラントとも呼ばれる)を受信した場合に、所定期間後(例えば、4ms後)のサブフレームにおいて、ULデータの送信を行う。
 将来の無線通信システム(例えば、NR)においては、既存のLTEシステムとは異なる構成を用いてデータのスケジューリングを制御することが想定される。例えば、低遅延かつ高い信頼性が求められる通信サービス(例えば、URLLC(Ultra Reliable and Low Latency Communications))を提供するために、通信遅延の低減(latency reduction)が検討されている。
 具体的には、ULデータの送信を開始するまでの遅延時間を短縮するため、複数のUEのUL送信の衝突を許容して通信を行うことが検討されている。例えば、UEが、無線基地局からのULグラントなしにULデータを送信すること(ULグラントフリー送信、ULグラントレス送信、衝突型UL送信(contention-based UL transmission)、などともいう)が検討されている。
 さらに、ULグラントフリーで同じ上りリンクデータを繰り返して送信すること(繰り返し送信)も検討されている。このような繰り返し送信を適切に行うことで、無線通信のパフォーマンス及び信頼性を向上することが望まれている。
 そこで、本発明は、ULグラントフリーで繰り返し送信を適切に行うことのできるユーザ端末及び無線通信方法を提供することを目的の一つとする。
 一態様に係るユーザ端末は、無線基地局からのUL送信指示なしにULデータを送信する送信部と、繰り返し送信数に基づいて、前記ULデータの繰り返し送信を行う制御部と、を備え、前記制御部は、前記繰り返し送信に割り当てられた無線リソースタイプに基づいて、繰り返し送信数をカウントするか否かを制御することを特徴とする。
 本発明によれば、ULグラントフリーで繰り返し送信を適切に行い、無線通信のパフォーマンス及び信頼性を向上することができる。
図1Aは、ULグラントベース送信を説明するための図であり、図1Bは、ULグラントフリー送信を説明するための図である。 図2は、ULグラントフリー送信に利用するリソースの一例を示す図である。 図3は、ULグラントフリー送信のフローの一例を示す図である。 図4は、ULグラントフリーの繰り返し送信を説明するための図である。 図5は、ULグラントフリーの繰り返し送信の<ケース1>を説明するための図である。 図6は、ULグラントフリーの繰り返し送信の<ケース2>を説明するための図である。 図7は、ULグラントフリーの繰り返し送信において、<ケース1>と<ケース2>とが混在した場合を説明するための図である。 図8は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図9は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 図10は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 図11は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 図12は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 図13は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 将来の無線通信システム(例えば、LTE Rel.14、15以降、5G、NRなど。以下、NRともいう)においては、低遅延の通信を実現するために、ULグラントに基づいてULデータを送信するULグラントベース送信(UL grant-based transmission)では十分ではなく、ULグラントなしにULデータを送信するULグラントフリー送信(UL grant-free transmission)を適用することが検討されている。
 ここで、ULグラントベース送信とULグラントフリー送信について説明する。図1Aは、ULグラントベース送信を説明するための図であり、図1Bは、ULグラントフリー送信を説明するための図である。
 ULグラントベース送信においては、図1Aに示すように、無線基地局(例えば、BS(Base Station)、送受信ポイント(TRP:Transmission/Reception Point)、eNB(eNode B)、gNBなどと呼ばれてもよい)が、ULデータ(PUSCH:Physical Uplink Shared Channel)の割り当てを指示する下り制御チャネル(ULグラント)を送信し、UEがULグラントにしたがってULデータを送信する。
 一方、ULグラントフリー送信においては、図1Bに示すように、UEは、データのスケジューリングのためのULグラントを受信することなくULデータを送信する。
 ところで、NRにおいては、ULグラントフリーで送信するULデータを割り当てるリソース領域を、少なくとも準静的(semi-static)に設定/再設定することをサポートすることが検討されている。リソース設定(configuration)には、時間及び/又は周波数領域の物理的なリソースを少なくとも含むことが検討されている。
 例えば、ULグラントフリー送信に利用するリソースは、既存のLTE(例えば、LTE Rel.8-13)で用いられるULセミパーシステントスケジューリング(SPS:Semi Persistent Scheduling)のように上位レイヤシグナリングによって設定されることが検討されている。したがって、ULグラントフリー送信は、UL SPSのリソース設定が特定条件の場合に実現される機能と考えることもできる。
 例えば、上位レイヤシグナリングによって設定されるリソースの周期が比較的長い(例えば10ms等)場合をUL SPSと呼び、同じ上位レイヤシグナリングによって設定されるリソースの周期が比較的短い(例えば1ms、0.5ms等)場合をULグラントフリー送信と呼称してもよい。また、ULグラントフリー送信は、リソースの周期が比較的短いことに加え、当該設定されたリソースにおいて、UL送信を行うかどうかをUEが自身のバッファに蓄積された送信データ有無に応じて判断・決定できるものとしてもよい。
 すなわち、ULグラントフリー送信は、設定されるリソースの周期が比較的短く、かつULデータが無い場合にUL送信のスキップ(UL skipping)が許可される設定のことを呼称するものであってもよい。ULグラントフリー送信は、UL transmission without UL grant、などと呼ばれてもよい。なお、リソースの周期に関わらず、両者ともにUL SPSまたはULグラントフリー送信と呼称されてもよい。
 図2は、ULグラントフリー送信に利用するリソースの一例を示す図である。図2に示すように、ULグラントフリー送信に利用する周波数リソースは、インターTTI周波数ホッピング、イントラTTI周波数ホッピング、インタースロット周波数ホッピング、イントラスロット周波数ホッピングなどが適用されてもよい。また、ULグラントフリー送信に利用する時間リソースは、時間的に連続して設定されてもよいし、時間的に非連続に(間欠的に)設定されてもよい。なお、ULグラントフリー送信に利用するリソース以外のリソースは、ULグラントベース送信に利用されてもよい。
 UEは、ネットワーク(例えば、無線基地局)によって、RRCを用いて準静的にリソースを設定された後に、ULグラントフリー送信を行うものとしてもよい。また、ネットワークによって、ULグラントフリー送信に対して、アクティベーション又はディアクティベーション、及び/又はパラメータの変更のためのL1シグナリングが適用されてもよい。
 すなわち、UEは、RRC等上位レイヤシグナリングに基づいて設定される当該キャリアのULグラントフリー送信に関して、ULグラントフリー送信の送信可否(活性化・不活性化)情報、及び/又は、リソース・送信方式(変調符号化率、MIMOレイヤ数、RSパラメータ)・送信電力を変更するための情報を、下り物理制御チャネル(例えば、PDCCH)や下り物理データチャネル(例えば、PDSCH)、MAC CE等によって受信し、それに応じてULグラントフリー送信の制御を変更してもよい。
 当該変更は、所定の期間(例えば80ms)の間有効であるとしてもよいし、次にRRC等上位レイヤシグナリングまたは別のL1シグナリングで変更指示を受けない限り再度の変更は行わないものとしてもよい。
 また、ULグラントフリー送信では、同一のULデータを繰り返して送信する、繰り返し送信が検討されている。ULデータの繰り返し送信においては、UEが、トランスポートブロック(TB:Transport Block)単位で、ULデータを所定数(例えば、K)繰り返し送信することが想定される。
 UEは、停止条件の1つが満たされるまで、TBの繰り返し送信を続けてもよい。停止条件の1つは、当該TBが、受信基地局によって正常に受信されたことが、物理レイヤシグナリング(例えばULグラント等)によって、端末に通知されることであってもよい。また、停止条件の1つは、同一のTBに対する繰り返し回数が上記所定数に達することであってもよい。
 このような繰り返し送信を適切に行ことで、無線通信のパフォーマンス及び信頼性を向上することが望まれている。その一方で、繰り返し送信を行うことは、無線リソース(周波数及び/又は時間リソース)を多く割り当てることになる。このため、他のデータ送信、メジャメントギャップ、などが設定(configure)された場合、それに使用される無線リソースと、繰り返し送信に割り当てられた無線リソースとが衝突する(繰り返し送信に他の信号及び/又はチャネルの送信が割り込む)可能性が高まる。
 また、上記衝突の場合には、衝突に対応する繰り返し送信(1回以上のULグラントフリー送信)のスキップを行う(すなわち、当該送信を行わない)ことが想定されるが、上述の所定数Kと関連した制御をどのように行うのかといった点は決まっていない。
 そこで、本発明者らは、繰り返し送信がブロックされる場合には、いくつかの原因(理由)があることに着目し、この原因と関連付けて繰り返し送信のカウントを制御することに着想し、本発明に至った。具体的には、繰り返し送信数に基づいて、ULグラントフリーでULデータの繰り返し送信を行う場合、繰り返し送信に割り当てられた無線リソースタイプに基づいて、繰り返し送信数をカウントするか否かを制御する。
 これにより、ユーザ端末における繰り返し送信回数のカウント(認識)と、無線基地局(gNB)で認識(recognize, understand)される繰り返し送信数との間でずれが生じることを防止することができる。よって、ULグラントフリー送信における繰り返し送信が適切に行われ、無線通信のパフォーマンス及び信頼性を向上することができる。
 なお、上記無線リソースタイプは、繰り返し送信スキップの理由と同義であってもよい。具体的な無線リソースタイプは後述する。
 以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 なお、以下の実施形態では、任意の信号及びチャネルに関して、NR用であることを示す「NR-」の接頭語が付与されて読み替えられてもよい。
 また、ULグラントフリー送信に利用するパラメータ(無線パラメータ、設定情報(configuration information)などと呼ばれてもよい)は、ULグラントフリー送信パラメータと呼ばれてもよい。なお、「パラメータ」は1つ又は複数のパラメータのセットを示す「パラメータセット」を意味してもよい。
(無線通信方法)
 本発明の一実施形態にかかるULグラントフリー送信のフローについて、図3を参照して説明する。図3は、本発明の一実施形態にかかるULグラントフリー送信のフローの一例を示す図である。
 まず、UEは、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)によって、ULグラントフリー送信パラメータを、gNBによって準静的に設定される(ステップS101)。
 UEは、当該設定情報に基づいて、ULグラントフリー送信を実施できる。なお、ステップS101は省略されてもよく、ULグラントフリー送信パラメータは仕様によって定められてもよい。
 ULグラントフリー送信パラメータは、以下の少なくとも1つを含んでもよい:時間及び/又は周波数リソース、変調及び符号化方式(MCS:Modulation and Coding Scheme)(冗長バージョン(RV:Redundancy Version)を含んでもよい)、参照信号のパラメータ、ULグラントフリー送信の繰り返し回数(K)、RVサイクリング(チェンジング)、パワーランピング関連パラメータ、ランダムバックオフ、各繰り返しにおけるMCS調整など。
 ここで、時間及び/又は周波数リソースは、例えば、時間及び/又は周波数リソースに関するインデックス(例えば、物理リソースブロック(PRB:Physical Resource Block)インデックス、セルインデックス、スロットインデックス、サブフレームインデックス、シンボルインデックスなど)、リソースの時間及び/又は周波数方向の周期などによって示されてもよい。
 なお、一部のパラメータ(例えば、パワーランピング関連パラメータ、RVサイクリング(チェンジング)、MCS調整など)については、所定回数の繰り返し送信内に関して設定されてもよいし、繰り返し送信間に関して設定されてもよい。例えば、繰り返し送信内においてパワーランピングが適用されてもよいし、繰り返し送信内において同じ送信電力が適用され、繰り返し送信間においてパワーランピングが適用されてもよい。
 また、ULグラントフリー送信パラメータを設定する上位レイヤシグナリングは、UE共通(UE-common)のシグナリングであってもよいし、UE個別(UE-specific)のシグナリングであってもよい。
 UEは、L1シグナリング(例えば、PDCCH(Physical Downlink Control Channel)など)によって、ULグラントフリー送信パラメータに関する情報を、gNBから動的に通知される(ステップS102)。ステップS102におけるL1シグナリングは、ULグラントフリー送信パラメータに関するL1シグナリングなどと呼ばれてもよい。
 ULグラントフリー送信パラメータに関するL1シグナリングは、ULグラントフリー送信パラメータを通知するL1シグナリング(パラメータ通知用L1シグナリングと呼ばれてもよい)であってもよい。
 UEは、パラメータ通知用L1シグナリングによって通知されたパラメータについては、当該パラメータが上位レイヤシグナリングによって設定されている(「仕様によって規定されている」と読み替えられてもよい。以下同様)場合であっても、当該L1シグナリングで通知されたパラメータの値に基づいて、ULグラントフリー送信を制御する。
 ここで、当該L1シグナリングによって通知されるパラメータは、上位レイヤシグナリングによって設定される無線パラメータを上書き(override)、更新(update)、調整(adjust)、修正(modify)などするパラメータであってもよい。なお、「上書き」などの表現は一例であって、これらと同義の文言に読み替えられてよいことは自明である。
 パラメータ通知用L1シグナリングによって通知されるパラメータは、上位レイヤシグナリングによって設定されるパラメータのサブセットであってもよいし、上位レイヤシグナリングによって設定されるパラメータとは異なるセットであってもよい(つまり、上位レイヤシグナリングによって設定されていないパラメータが、L1シグナリングによって通知されてもよい)。
 また、パラメータ通知用L1シグナリングによって通知されるパラメータは、同じセル(同じキャリア)のULグラントフリー送信パラメータに限られず、別セル(別キャリア)のULグラントフリー送信パラメータを上書き、調整、修正などするシグナリングであってもよい。
 なお、いずれのセル(キャリア)のULグラントフリー送信パラメータを上書き、調整、修正などするかは、あらかじめ上位レイヤシグナリングによってUEに設定されてもよいし、当該パラメータ通知用L1シグナリングに含まれるキャリア識別子(carrier indicator)によって指定されてもよい。当該パラメータ通知用L1シグナリングに当該キャリア識別子を含むかどうかは、別途上位レイヤシグナリングによって設定されてもよい。この場合、L1シグナリングのペイロードを適切に制御することができる。
 ULグラントフリー送信パラメータに関するL1シグナリングは、ULグラントフリー送信に利用するパラメータ(パラメータセット)をアクティベートするためのL1シグナリング(アクティベート用L1シグナリングと呼ばれてもよい)であってもよい。
 アクティベート用L1シグナリングは、ステップS101における上位レイヤシグナリングによって設定された複数のパラメータセットから、ULグラントフリー送信に利用するパラメータセットを活性化(例えば、アクティベート(activate)、有効化などと呼ばれてもよい)するために用いられる。なお、所定のパラメータセットとともに、当該パラメータセットをアクティベートする指示がアクティベート用L1シグナリングに含まれてもよい。
 また、アクティベート用L1シグナリングによって、同じセル(同じキャリア)のULグラントフリー送信パラメータがアクティベートされてもよいし、別セル(別キャリア)のULグラントフリー送信パラメータがアクティベートされてもよい。
 ULグラントフリー送信パラメータに関するL1シグナリングは、例えば、DLデータ受信をスケジューリングするためのDCI(DCIフォーマット1/2など。DLアサインメントと呼ばれてもよい)又はULデータ送信をスケジューリングするためのDCI(DCIフォーマット0/4など。ULグラントと呼ばれてもよい)であってもよい。本明細書において、DLアサインメント、ULグラントなどの呼称は、これらのDCIとフォーマットが同一又は類似であることを示すために利用されており、本発明の一実施形態においては、これらのDCIはデータのスケジューリングを指示しなくてもよい。
 UEは、受信したDLアサインメント又はULグラントに含まれる1つ又は複数のフィールド(DCIフォーマットによって規定されるフィールド)がそれぞれ所定の値であることによって、当該DLアサインメント又はULグラントがULグラントフリー送信パラメータに関するL1シグナリングであることを確認(validate)してもよい。なお、この確認に用いられるフィールドの組み合わせ、値などは、DLアサインメント又はULグラントがSPSアクティベーション又はリリース(ディアクティベーション)であることを確認するためのフィールドの組み合わせ、値などと異なって規定されてもよい。
 UEは、ステップS102におけるL1シグナリングに基づくULグラントフリー送信(例えば、ULグラントフリー送信用リソースを用いたデータ送信)を実施する(ステップS103)。ステップS103において、UEは、ULデータを送信するとともに、ULグラントフリー送信を検出するための検出用信号の送信を行ってもよい。
<ULグラントフリーにおける繰り返し送信>
 ステップS103における、ULグラントフリー送信では、UEは、ULグラントフリー送信の繰り返し回数(K)に基づいて繰り返し送信を行う。例えば、図4に示される例では、繰り返し回数Kが4に設定(configure)されている。これにより、Repetition(繰り返しインデックス)#1-#4のULグラントフリー送信で、同じデータが繰り返して送信される。
 以下、繰り返しを用いたULグラントフリー送信(繰り返しによる複数のULグラントフリー送信)を「Repetitions」と称する。これは、「TTI Bundle」、「Aggregated data」などと称されてもよい。また、繰り返しを用いたULグラントフリー送信における、一つの繰り返し送信を「Repetition」と称する。これは、「TTI」、「Each transmission」などと称されてもよい。
 なお、図4では、Repetition#1-#4のハッチングが異なっているが、これは異なるRepetitionを示すためであって、異なるデータが送信されることを意味するものではない。ただし、これらは同じTBをもとに生成されたデータであり、それぞれで当該TBを受信・復調・復号が可能であればよく、例えばRV、MCS、符号化率、時間・周波数・空間リソースの量、などが異なっていてもよい。また、Repetition#1-#4間に時間間隔が設けられているが(時間的に非連続に(間欠的に)設定されているが)、時間間隔が必ずしも設けられている(非連続である)必要は無く、2つ以上のRepetitionが時間軸上で連続して設定(configure)されてもよい。
 次に、繰り返し送信を行うUEがサポートするケースであって、Repetitionが1回以上スキップされる場合の2つのケースについて説明する。
<ケース1>
 ULグラントフリー送信パラメータで特定されるリソースにおいて、Repetitionをスキップする場合であって、スキップされるRepetition(Repetitionに割り当てられた無線リソースタイプ)が後述のType Aに分類(categorize)される場合、UEはスキップされるRepetitionをRepetitionsの一部(一送信)としてカウントしない。
 図5に示される例では、Repetition#2の送信後に、Repetition2回分だけ、繰り返し送信がスキップされている。この時、スキップされるRepetitionに割り当てられた無線リソースタイプ(Repetitionスキップの理由)が、Type Aである場合、スキップされた繰り返しはカウントされない。そのため、図5に示されるように、2回分のRepetitionスキップの後のRepetition#3からカウントが再開される。
<ケース2>
 ULグラントフリー送信パラメータで特定されるリソースにおいて、Repetitionをスキップする場合であって、スキップされるRepetition(Repetitionに割り当てられた無線リソースタイプ)が後述のType Bに分類(categorize)される場合、UEはスキップされるRepetitionをRepetitionsの一部(一送信)としてカウントする(カウントを継続する)。
 図6に示される例では、Repetition#2の送信後に、Repetition1回分だけ、繰り返し送信がスキップされている。この時、スキップされるRepetitionに割り当てられた無線リソースタイプ(Repetitionスキップの理由)が、Type Bである場合、スキップされた繰り返しはRepetitionsの一部としてカウントされる。言い換えると、Repetitionがスキップされた場合であっても、Repetitionのカウントは継続される。そのため、図6に示されるように、1回分のRepetitionスキップの後のRepetitionがRepetition#4としてカウントされる。
 次に、無線リソースタイプ(Repetitionスキップの理由)Type AとType Bについて説明する。
<Type A>
 Type Aは、無線基地局gNBが、UEと同様の認識(recognize, understand)をしている状況を意味する。無線リソースの観点からは、Repetitionに割り当てられた無線リソースが、Repetitions以外で使用されることをgNBが認識していることを意味する。また、スキップ理由の観点からは、gNBがRepetitionをスキップした理由を認識していることを意味する。
 具体的には、Repetitionをブロックする以下の3つを含む。
・測定用参照信号(SRS:Sounding Reference Signal)、コンテンションフリーRA(CFRA:Contention-Free Random Access)などの、他に設定(configure)/指示(indicate)された送信が発生(競合、衝突)する。
・メジャメントギャップが設定(configure)される。
・Repetitionの一部(Repetitionで用いられるリソースの一部)で、他のシグナリングの下りリンク(DL)又はreservedが指示(indicate)される。
 なお、CFRAでは、UEは、あらかじめネットワークから割り当てられたUE固有のランダムアクセスプリアンブル(dedicated preamble)をPRACHで送信する。この場合、基地局の指示に基づいてUEがPRACH送信を行うため、基地局はCFRAによるRepetitionのブロックを把握することができる。
 また、UEは、接続中のサービングキャリアとは異なる非サービングキャリアで測定を行う異周波測定(Inter-frequency measurement)をサポートする。異周波測定では、非サービングキャリアの参照信号受信電力(RSRP:Reference Signal Received Power)、受信信号強度(RSSI:Received Signal Strength Indicator)及び参照信号受信品質(RSRQ:Reference Signal Received Quality)の少なくとも一つが測定される。
 ここで、RSRPは、所望信号の受信電力であり、例えば、CRSなどを用いて測定される。また、RSSIは、所望信号の受信電力と干渉及び雑音電力とを含む合計の受信電力である。RSRQは、RSSIに対するRSRPの比である。
 UEは、上記メジャメントギャップ(MG:Measurement Gap)において、受信周波数をサービングキャリアから非サービングキャリアに切り替え、例えばCRS、CSI-RS、SS、などのいずれかを用いて、RSRP、RSSI及びRSRQの少なくとも一つを測定し、受信周波数を非サービングキャリアからサービングキャリアに切り替える。ここで、メジャメントギャップとは、異周波測定を行うための期間であり、UEは、当該期間において、通信中のキャリアでの送受信を停止して別の周波数のキャリアでの測定を行う。
<Type B>
 Type Bは、無線基地局gNBが、UEと同様の認識(recognize, understand)をしていない状況を意味する。無線リソースの観点からは、Repetitionに割り当てられた無線リソースが、Repetitions以外で使用されることをgNBが認識していないことを意味する。また、スキップ理由の観点からは、gNBがRepetitionをスキップした理由を認識していないことを意味する。
 具体的には、Repetitionをブロックする以下の3つを含む。
・一つのRepetitionの途中でトラフィックアライバル(上位レイヤからデータが物理レイヤに転送される瞬間)が発生する。
・衝突型ランダムアクセス(CBRA:Contention-Based Random Access)、ビームリカバリ要求などの、UEでトリガされる送信の発生。
・電力制限によるRepetitionのドロップ。
 なお、CBRAでは、UEは、セル内に用意された複数のランダムアクセスプリアンブル(contention preamble)からランダムに選択したプリアンブルをPRACHで送信する。この場合、ユーザ端末がPRACHの送信を自律的に判断するため、これによりRepetitionがブロックされた場合、基地局は、そのことを認識できない。
<ケース1、2の混在>
 UEが上述のケース1及びケース2をサポートすることで、これらのケースが混在した状況が想定される。図7は、ケース1、2が混在する例を示す。
 この例では、Repetition#1の送信後に、Repetition2回分だけ、繰り返し送信がスキップされている。最初のスキップは、スキップされるRepetitionの無線リソースタイプ(Repetitionスキップの理由)が、Type Bに分類される。このため、最初のスキップされた繰り返しはRepetitionsの一部としてカウントされる。
 一方、2回目のスキップは、スキップされるRepetitionの無線リソースタイプ(Repetitionスキップの理由)が、Type Aに分類される。このため、スキップされた繰り返しはカウントされない。そのため、図7に示されるように、2回分のRepetitionスキップの後、Repetition#3からカウントが再開される。
 以上説明した本発明の一実施形態によれば、ユーザ端末における繰り返し回数のカウント(認識)と、無線基地局(gNB)で認識(recognize, understand)される繰り返し数のカウントとの間でずれが生じることを防止することができる。これにより、ULグラントフリー送信において繰り返し送信が適切に行われ、無線通信のパフォーマンス及び信頼性を向上することができる。
<繰り返し送信の変形例>
 繰り返し送信回数Kで指定されるRepetitionsでは、各Repetitionで冗長バージョン(RV)が異なっていてもよい。例えばRepetitionsの最初にRV=#0を送信し、続くRepetitionsではRV=#2, #3, #1、などと切り替えていくものとしてもよい。Repetitionの番号とRVのインデックスは、あらかじめ定められたものであってもよいし、上位レイヤシグナリング等で設定可能であるとしてもよい。例えば、同一RVのパケット合成が好ましい場合にはRepetitions間で同じRVを送信し続けるよう設定し、異なるRVによるハイブリッドARQ利得が好ましい場合にはRVを切り替え送信するよう設定することができる。また、各Repetitionで、RA(Resource Allocation)が異なっていてもよい。例えば、複数のRepetitionで周波数ホッピングが適用されてもよい。複数のRepetitionで、RAサイズが異なっていてもよい。また、複数のRepetitionで、MCS(Modulation and Coding Scheme)が異なっていてもよい。
 これらの変形例を考慮すると、例えば、先の(時間的に早い)一つ以上のRepetitionには、高MCSで少ない(smaller)RAを適用し、後の(時間的に遅い)一つ以上のRepetitionには、低MCSで大きい(larger)RAを適用することが考えられる。これによれば、先の一つ以上のRepetitionでは、周波数利用効率を向上することができ、後のRepetitionでは、通信の確実性を高めることができる。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図8は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
 図9は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 送受信部103は、ユーザ端末20から、無線基地局10からのUL送信指示(ULグラント)なしにULデータを送信するULグラントフリー送信によって送信されたデータを受信する。また、ULグラントフリーで繰り返し送信されたデータを受信する。
 また、送受信部103は、パラメータ通知用L1シグナリング、アクティベート用L1シグナリング及びディアクティベート用L1シグナリングの少なくとも1つを、ユーザ端末20に対して送信してもよい。
 送受信部103は、所定の物理レイヤシグナリング(例えば、パラメータ通知用L1シグナリング、アクティベート用L1シグナリング、ディアクティベート用L1シグナリング)を送信した後に、所定の信号及び/又はチャネルを用いて送信された、当該物理レイヤシグナリングを受信した及び/又は受信しない旨を示す送達確認信号を、ユーザ端末20から受信してもよい。例えば、当該送達確認は、MACシグナリング、SRS、PUCCH、SRの少なくとも1つを用いて送信されてもよい。
 また、送受信部103は、ULグラントフリー送信パラメータに関する情報、送達確認に関する情報などをユーザ端末20に対して送信してもよい。パラメータには、UEが、ULグラントフリー送信するにあたって、トランスポートブロック(TB:Transport Block)単位で、ULデータを所定数(例えば、K)繰り返し送信するための所定値Kが含まれてもよい。
 図10は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
 また、制御部301は、ULグラントフリー送信が行われる場合、前記決定された無線リソースを用いて送信される検出用信号を受信し、ULグラントフリー送信を認識するようにしてもよい。また、ULグラントフリー送信を検出するための信号の受信に応じて、ULグラントフリー送信で送信されたULデータを受信、復調する制御を行ってもよい。
 また、制御部301は、ユーザ端末20に対して送信するULグラントフリー送信パラメータの内容を変更してもよい。例えば、通信環境に基づいて繰り返し数Kを制御してもよい。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図11は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
 送受信部203は、無線基地局10からのUL送信指示(ULグラント)なしにULデータを送信するULグラントフリー送信を行う。また、送受信部203は、無線基地局10からULグラントフリー送信パラメータ、送達確認に関する情報を受信する。
 送受信部203は、ULグラントフリー送信パラメータに含まれる、繰り返し回数K、無線リソース(時間及び/又は周波数リソース)、変調及び符号化方式、などにしたがって、ULグラントフリーの繰り返し送信を行う。
 図12は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 制御部401は、ULグラントフリーにおける繰り返し送信を行う場合、繰り返し数に基づいて、ULグラントフリー送信の繰り返しを制御する。例えば、繰り返しをスキップする場合、スキップされる繰り返しに割り当てられている(用いられる)無線リソースの種別に基づいて、繰り返し数をカウントするか否かを制御する。
 無線リソースの種別は、例えば、上述のType A、Type Bなどの分類を適用することができる。より具体的には、スキップされる繰り返しに割り当てられている無線リソースの種別がType Aである場合、制御部401は、スキップされた繰り返しを、繰り返し回数Kとしてカウントしない。Type Bである場合、スキップされた繰り返しをカウントする。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
 本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、送受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び/又は移動局は、送信装置、受信装置などと呼ばれてもよい。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
 本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
 本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。

Claims (5)

  1.  無線基地局からのUL送信指示なしにULデータを送信する送信部と、
     繰り返し送信数に基づいて、前記ULデータの繰り返し送信を行う制御部と、を備え、
     前記制御部は、前記繰り返し送信に割り当てられた無線リソースタイプに基づいて、繰り返し送信数をカウントするか否かを制御することを特徴とするユーザ端末。
  2.  前記制御部は、前記繰り返し送信をスキップし、前記無線リソースタイプに基づいて、繰り返し送信数をカウントするか否かを制御することを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、前記無線リソースタイプが、前記無線基地局で前記スキップを認識できることを示す場合、前記繰り返し送信数をカウントしないことを特徴とする請求項2に記載のユーザ端末。
  4.  前記制御部は、前記無線リソースタイプが、前記無線基地局で前記スキップを認識できないことを示す場合、前記繰り返し送信数をカウントすることを特徴とする請求項2又は請求項3に記載のユーザ端末。
  5.  無線基地局からのUL送信指示なしにULデータを送信する送信工程と、
     繰り返し送信数に基づいて、前記ULデータの繰り返し送信を行う制御工程と、を有し、
     前記制御工程は、前記繰り返し送信に割り当てられた無線リソースタイプに基づいて、繰り返し送信数をカウントするか否かを制御することを特徴とする、ユーザ端末における無線通信方法。
PCT/JP2017/032322 2017-09-07 2017-09-07 ユーザ端末及び無線通信方法 WO2019049279A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/644,854 US20200288438A1 (en) 2017-09-07 2017-09-07 User terminal and radio communication method
PCT/JP2017/032322 WO2019049279A1 (ja) 2017-09-07 2017-09-07 ユーザ端末及び無線通信方法
BR112020004578-0A BR112020004578A2 (pt) 2017-09-07 2017-09-07 terminal de usuário e método de radiocomunicação de um terminal de usuário
CN201780096562.2A CN111316736B (zh) 2017-09-07 2017-09-07 用户终端以及无线通信方法
JP2019540214A JP7132225B2 (ja) 2017-09-07 2017-09-07 端末、無線通信方法、基地局及びシステム
EP17924507.1A EP3681231A4 (en) 2017-09-07 2017-09-07 USER TERMINAL AND RADIO COMMUNICATION PROCESS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032322 WO2019049279A1 (ja) 2017-09-07 2017-09-07 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2019049279A1 true WO2019049279A1 (ja) 2019-03-14

Family

ID=65633768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032322 WO2019049279A1 (ja) 2017-09-07 2017-09-07 ユーザ端末及び無線通信方法

Country Status (6)

Country Link
US (1) US20200288438A1 (ja)
EP (1) EP3681231A4 (ja)
JP (1) JP7132225B2 (ja)
CN (1) CN111316736B (ja)
BR (1) BR112020004578A2 (ja)
WO (1) WO2019049279A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10849124B2 (en) * 2017-12-21 2020-11-24 Qualcomm Incorporated Grant-free downlink transmission
US11791951B2 (en) * 2018-08-09 2023-10-17 Huawei Technologies Co., Ltd. Mini-slot based repetition and frequency hopping
CN113950156A (zh) * 2020-07-15 2022-01-18 维沃移动通信有限公司 上行传输方法、接收方法、装置、设备和存储介质
CN113965997A (zh) * 2020-07-20 2022-01-21 维沃移动通信有限公司 上行传输方法、装置及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005035A (ja) * 2010-06-21 2012-01-05 Sharp Corp 移動局装置、基地局装置、無線通信システム、無線通信方法および集積回路
JP5285117B2 (ja) * 2011-05-02 2013-09-11 株式会社エヌ・ティ・ティ・ドコモ ユーザ端末、無線基地局装置、無線通信システム及び無線通信方法
US9667386B2 (en) * 2013-11-13 2017-05-30 Samsung Electronics Co., Ltd Transmission of control channel and data channels for coverage enhancements
JP6012588B2 (ja) * 2013-12-26 2016-10-25 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
"Offline discussions on some topics for AI6. 1. 3. 3. 3", 3GPP TSG RAN WG1 MEETING #90 R1-1715193, 25 August 2017 (2017-08-25), pages 1 - 8, XP051328673 *
"UL data transmission procedures", 3GPP TSG RAN WG1 MEETING 90BIS R1-1718219, 13 October 2017 (2017-10-13), XP051352927 *
"UL data transmission without UL grant", 3GPP TSG RAN WG1 MEETING #90 R1-1713952, 25 August 2017 (2017-08-25), XP051316744 *
"UL data transmission without UL grant", 3GPP TSG RAN WG1 MEETING NR AD-HOC#3 R1-1716664, 21 September 2017 (2017-09-21), XP051353791 *
SONY: "Discussion on the pre-emption and retransmission of UL transmission without grant", 3GPP TSG RAN WG1 MEETING #90, XP051315783 *

Also Published As

Publication number Publication date
US20200288438A1 (en) 2020-09-10
EP3681231A4 (en) 2021-03-10
JP7132225B2 (ja) 2022-09-06
EP3681231A1 (en) 2020-07-15
CN111316736B (zh) 2023-08-29
BR112020004578A2 (pt) 2020-09-08
JPWO2019049279A1 (ja) 2020-10-15
CN111316736A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2019092859A1 (ja) ユーザ端末及び無線通信方法
WO2019049282A1 (ja) ユーザ端末及び無線通信方法
JP7100113B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7305557B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020008649A1 (ja) ユーザ端末及び無線通信方法
JPWO2018056338A1 (ja) ユーザ端末及び無線通信方法
WO2019224876A1 (ja) 送信装置及び受信装置
WO2019092856A1 (ja) ユーザ端末及び無線通信方法
WO2019102599A1 (ja) ユーザ端末及び無線通信方法
WO2018235270A1 (ja) ユーザ端末及び無線通信方法
JP7046926B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019138555A1 (ja) ユーザ端末及び無線通信方法
WO2019021473A1 (ja) 送信装置、受信装置及び無線通信方法
WO2019225689A1 (ja) ユーザ端末及び無線通信方法
JP7132225B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019142330A1 (ja) ユーザ端末及び無線通信方法
WO2019138510A1 (ja) ユーザ端末及び無線通信方法
WO2019035213A1 (ja) ユーザ端末及び無線通信方法
JP7299215B2 (ja) 端末、無線通信方法、基地局及びシステム
JP6990698B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019130498A1 (ja) 基地局及び無線通信方法
WO2018207374A1 (ja) ユーザ端末及び無線通信方法
WO2019016950A1 (ja) ユーザ端末及び無線通信方法
WO2019215898A1 (ja) ユーザ端末及び無線通信方法
WO2019130497A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540214

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020004578

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017924507

Country of ref document: EP

Effective date: 20200407

ENP Entry into the national phase

Ref document number: 112020004578

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200306