WO2019016950A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2019016950A1
WO2019016950A1 PCT/JP2017/026516 JP2017026516W WO2019016950A1 WO 2019016950 A1 WO2019016950 A1 WO 2019016950A1 JP 2017026516 W JP2017026516 W JP 2017026516W WO 2019016950 A1 WO2019016950 A1 WO 2019016950A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
signal
information
unit
channel
Prior art date
Application number
PCT/JP2017/026516
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to AU2017423954A priority Critical patent/AU2017423954B2/en
Priority to PCT/JP2017/026516 priority patent/WO2019016950A1/ja
Priority to JP2019530336A priority patent/JP7177055B2/ja
Priority to CN201780093440.8A priority patent/CN110959280B/zh
Priority to US16/632,499 priority patent/US11317307B2/en
Priority to EP17918244.9A priority patent/EP3657747A4/en
Priority to BR112020001159-2A priority patent/BR112020001159A2/pt
Publication of WO2019016950A1 publication Critical patent/WO2019016950A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( New RAT (New Radio Access Technology), also referred to as LTE Rel.
  • TTI Transmission Time Interval
  • DL downlink
  • UL uplink
  • the communication of (UL: Uplink) is performed.
  • the TTI of 1 ms is a transmission time unit of one channel-coded data packet, and is a processing unit such as scheduling, link adaptation, and HARQ-ACK (Hybrid Automatic Repeat reQuest-Acknowledge).
  • the 1 ms TTI contains 2 slots.
  • the base station performs power control of the UE based on the information notified from the user terminal (UE: User Equipment) and Control scheduling. For example, the base station performs power control of the UE based on a power margin notified from the UE (also referred to as Power Headroom (PH)). The UE transmits a Power Headroom Report (PHR) including PH. Also, the base station controls UE scheduling conditions and the like based on channel state information (also referred to as CSI: Channel State Information) notified from the UE. The UE includes the CSI in uplink control information (UCI) and transmits it.
  • UE User Equipment
  • Control scheduling For example, the base station performs power control of the UE based on a power margin notified from the UE (also referred to as Power Headroom (PH)).
  • the UE transmits a Power Headroom Report (PHR) including PH.
  • PHR Power Headroom Report
  • the base station controls UE scheduling conditions and the like based on channel state information (also referred to
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • time units for example, subframes, TTIs
  • 1 ms time units also called subframes or TTIs
  • It is considered to introduce a TTI also referred to as a shortened TTI, a short TTI, an sTTI, a slot, a minislot, etc.
  • a TTI also referred to as a shortened TTI, a short TTI, an sTTI, a slot, a minislot, etc.
  • scheduling timing of data for example, a period from UL grant to UL data transmission, etc.
  • scheduling timing of data is set shorter than in the case of introduction of a time unit different from the existing LTE system.
  • the feedback timing of the acknowledgment signal also referred to as HARQ-ACK, ACK / NACK, A / N
  • HARQ-ACK also referred to as HARQ-ACK, ACK / NACK, A / N
  • the UE transmits predetermined information (for example, PHR, CSI, etc.), transmission of the predetermined information is instructed (triggered), and then the predetermined information is generated and transmitted.
  • predetermined information for example, PHR, CSI, etc.
  • transmission of the predetermined information is instructed (triggered), and then the predetermined information is generated and transmitted.
  • the processing capability of the UE the processing time required for calculation and / or generation
  • the present invention has been made in view of such a point, and provides a user terminal and a wireless communication method capable of suppressing deterioration of communication quality even when a time unit shorter than the existing system is introduced. As one of the goals.
  • a user terminal controls a reception unit that receives a DL signal, transmission of a UL channel scheduled after a first period after receiving the DL signal, and transmission of predetermined information.
  • a control unit and based on the first period and the second period necessary for generating the predetermined information, whether to transmit the predetermined information using the UL channel, transmitting on the UL channel And controlling at least one of the content of the predetermined information and the first period.
  • FIG. 1 is a diagram for explaining transmission timings of PUSCH / PUCCH and reporting of PH.
  • FIGS. 2A and 2B are diagrams showing an example of scheduling control based on UL signal transmission timing and PHR / CSI processing time.
  • FIG. 3 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of the entire configuration of a radio base station according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of a functional configuration of a wireless base station according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of the entire configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the
  • time units eg, subframes, slots, minislots, subslots
  • LTE Rel. 13 or earlier existing LTE systems
  • TTI radio frame, etc.
  • a sub-frame is a unit of time having a predetermined length of time (e.g., 1 ms) regardless of the terminology applied by the user terminal.
  • the slot is a time unit based on the neurology applied by the user terminal. For example, when the subcarrier spacing is 15 kHz and 30 kHz, the number of symbols per slot may be 7 or 14 symbols. On the other hand, when the subcarrier spacing is 60 kHz or more, the number of symbols per slot may be 14 symbols.
  • the slot may include a plurality of mini (sub) slots.
  • time units different from existing LTE systems
  • multiple time units will be applied to processing procedures (also called processing type) such as data scheduling to control transmission and reception of signals and / or channels.
  • processing procedures also called processing type
  • controlling the processing procedure using a first time unit (for example, slot unit) and a second time unit (for example, symbol unit or minislot unit) shorter than the first time unit Conceivable.
  • transmission timing of data and / or HARQ-ACK is controlled in slot unit.
  • the UE and / or the base station controls to feed back HARQ-ACK for DL data received in slot #N in slot # N + K1.
  • the UE and / or the base station controls to feed back HARQ-ACK for DL data received in slot #N in slot # N + K1.
  • it is assumed that all UEs support K111. Note that some UEs may be configured to support K1 0.
  • the UE and / or the base station controls to transmit UL data for the UL grant received in slot #N in slot # N + K2.
  • the UE and / or the base station controls to transmit UL data for the UL grant received in slot #N in slot # N + K2.
  • the second time unit for example, symbol unit
  • it is necessary to consider the processing time of the UE not in slot units but in symbol units. For example, it controls the feedback timing of the acknowledgment signal (HARQ-ACK, A / N) for DL data and the scheduling timing of UL data for UL grant on a symbol basis.
  • HARQ-ACK acknowledgment signal
  • a / N acknowledgment signal
  • N1, N2 processing time
  • N1 indicates the number of symbols required for UE processing from when the UE receives DL data (PDSCH) to when A / N transmission to the PDSCH can be started earliest.
  • N2 is the number of symbols required for processing of the UE after receiving downlink control information including a UL transmission instruction (UL grant) and being able to start UL data (PUSCH) transmission scheduled by the UL grant earliest Point to N1 may be considered as the number of symbols required for A / N transmission processing, and N2 may be considered as the number of symbols required for UL data transmission processing.
  • N1 and / or N2 may be configured not to include other time information such as timing advance (TA).
  • TA timing advance
  • part of time information for example, UL / DL switching time in UE, etc. may be included in N1 / N2.
  • N1 / N2 may be set in advance, or the UE may notify the base station of its own capability information.
  • the UE may be notified in advance by higher layer signaling or the like, or may be fixedly defined in specifications.
  • the UE feeds back a PHR including PH information for each serving cell to the eNB.
  • PHR is transmitted by MAC signaling using PUSCH.
  • the PHR is configured by a PHR MAC CE (Control Element) included in a MAC PDU (Protocol Data Unit).
  • the eNB can dynamically control the uplink transmission power of the UE based on the PHR.
  • the PH information may be the value of PH or an index associated with the value (or level) of PH.
  • the PHR includes, for example, PH which is difference information between the total transmission power of the user terminal and the maximum allowable transmission power, and PH which is difference information between the transmission power of the user terminal for each CC and the maximum allowable transmission power for each CC. included.
  • Type 1 PH (PH type 1) is a PH when only PUSCH power is considered (assuming that only PUSCH is transmitted).
  • type 2 PH (PH type 2) is a PH when both PUSCH and PUCCH powers are considered (assuming that PUSCH and PUCCH are simultaneously transmitted).
  • a predetermined calculation formula is applied to the calculation of PH type 1 and PH type 2.
  • the eNB may transmit PHR configuration information on PHR transmission conditions to the UE. For example, RRC signaling is used for the notification.
  • the UE determines the timing of transmitting the PHR based on the notified PHR configuration information. That is, when the PHR transmission condition is satisfied, the PHR is triggered.
  • PHR setting information for example, two timers (periodicPHR-Timer and prohibitPHR-Timer) and a path loss change threshold (dl-PathlossChange) can be used.
  • PHR path loss change threshold
  • PHR is also triggered when the second timer (periodicPHR-Timer) has expired.
  • triggering of the PHR may be controlled by explicit and / or implicit notification.
  • the UE reports information on PH (Real PH (Real PH) in consideration of actual transmission power for CCs performing UL transmission, and does not depend on PUSCH bandwidth for CCs not performing UL transmission.
  • PHR including real PH may be called real PHR
  • PHR including virtual PHR may be called virtual PHR.
  • the eNB can perform power control of the UE in consideration of uplink transmission power of CCs that are not transmitted as well as CCs that are transmitted.
  • CSI Channel State Information
  • A-CSI trigger information on the transmission instruction (transmission instruction information, hereinafter referred to as A-CSI trigger) is included in downlink control information (DCI) transmitted on the downlink control channel.
  • DCI downlink control information
  • a DCI including an A-CSI trigger may be used for scheduling of an uplink shared channel (PUSCH: Physical Uplink Shared Channel), DCI format 0 or 4, uplink scheduling grant (hereinafter referred to as UL grant), etc. Also called.
  • the user terminal transmits CSI using the PUSCH specified in the UL grant, according to the A-CSI trigger included in the UL grant. For example, based on the A-CSI trigger included in UL grant, UE transmits CSI including PUSCH transmitted after a predetermined period (for example, 4 ms).
  • the CSI transmitted according to the A-CSI trigger may be called aperiodic CSI (A-CSI) or the like.
  • the CSI includes at least one of a channel quality indicator (CQI), a precoding matrix indicator (PMI), and a rank identifier (RI).
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • RI rank identifier
  • At least one of scheduling, resource allocation, and transmission power control is appropriately performed based on the information received by the base station by notifying the base station of predetermined information such as PHR and CSI from the UE. Can do one.
  • transmission timings such as data and / or HARQ-ACK will be set shorter than in the existing radio communication system with the introduction of time units different from those in the existing LTE system.
  • the base station dynamically changes and controls the timing of UL data transmission and HARQ-ACK transmission in order to set the transmission timing and the transmission period more flexibly.
  • FIG. 1 shows a case where UL data (PUSCH) transmission is scheduled to slot # N + 4 by downlink control information (DCI) transmitted in a predetermined time unit (here, slot #N). Furthermore, the case where A / N (PUCCH) for DL data (PDSCH) in slot # N + 3 is transmitted in slot # N + 4 is shown. Here, a case where PUSCH-PUCCH simultaneous transmission (for example, PCell) is performed in slot # N + 4 is shown.
  • DCI downlink control information
  • the UE When reporting PH as in the existing system, the UE calculates (generates) PH type 2 for at least PCell and controls to transmit in slot # N + 4.
  • the predetermined case indicates, for example, the case where the UE needs to wait for the result of another process (for example, PDSCH decoding) before configuring a MAC PDU for transmitting a type 2 PHR.
  • PDSCH decoding for example, PDSCH decoding
  • A-CSI channel state information
  • the present inventors pay attention to the fact that the processing time required for calculation (or generation) of predetermined information to be transmitted by the UE may differ from UE to UE, and the data and / or Or, it was conceived to control transmission timing (for example, scheduling) such as HARQ-ACK. Also, the present inventors control transmission / non-transmission of predetermined information and / or transmission content based on the processing time of the predetermined information and the transmission timing (for example, the scheduled timing) of data and / or HARQ-ACK. I was inspired to do it.
  • the first aspect describes the case of controlling transmission timing and the like of UL data and / or HARQ-ACK based on the processing capability information of the UE for the predetermined information.
  • the processing capability information of the UE refers to information including processing time (for example, the number of symbols and / or absolute time ( ⁇ s)) required for calculation (or generation) of predetermined information.
  • a user terminal transmits information on processing time of predetermined information to a base station in units smaller than slots (for example, in units of symbols).
  • the processing time of the predetermined information may be a time required to calculate (or generate) the predetermined information, or may be a time required to transmit the predetermined information.
  • the UE transmits the number of symbols (for example, N3) corresponding to the processing time of PH as the UE capability information to the base station.
  • the UE transmits the number of symbols (for example, N4) corresponding to the processing time of CSI as UE capability information to the base station.
  • N3 and / or N4 receive scheduling information until the end when reporting of PHR and / or CSI (hereinafter also referred to as PHR / CSI) is triggered, It indicates the number of OFDM symbols required for processing of the UE until the start position where UL data (PUSCH) transmission can be made earliest.
  • the UE may report the value of the processing time (absolute time) to the base station as information on the processing time of the predetermined information, in addition to the number of symbols corresponding to the processing time. Further, information on processing time of a plurality of predetermined information (for example, PHR and CSI) may be collectively transmitted, or may be transmitted independently.
  • a base station controls transmission timing (for example, scheduling) and / or UL transmission power based on N3 / N4 notified from the UE.
  • the base station controls the timing of UL data transmission and / or HARQ-ACK feedback based on N3 notified from the UE, and also controls PHR configuration and / or a timer that triggers PHR (also referred to as PHR configuration information). Control.
  • the base station may control transmission timing (K1 / K2) etc. by comparing N2 corresponding to UE processing time from UL grant reception to corresponding UL data transmission with N3 / N4.
  • the control method (or scheduling) of transmission timing when N2 is equal to or less than N3 / N4 (N2 ⁇ N3 / N4) will be described below with reference to FIG. 2A.
  • FIG. 2A shows a case where UL data (PUSCH) is scheduled based on a UL grant, and shows a case where a period (scheduling timing) from UL grant reception to PUSCH transmission is controlled as K2.
  • the UE can appropriately perform UL data transmission using the PUSCH.
  • the UE can appropriately calculate PHR / CSI and appropriately perform PHR / CSI transmission using PUSCH. Also, as in the case 1 above, the UE can appropriately perform UL data transmission using the PUSCH.
  • the UE can appropriately perform UL data transmission using PUSCH.
  • PHR / CSI can not be properly calculated before PUSCH transmission.
  • the UE controls PHR / CSI triggered simultaneously with or after the UL grant so as not to transmit using the PUSCH scheduled with the UL grant.
  • the UE may be configured not to calculate and / or generate PHR / CSI itself.
  • the UE can not perform UL data transmission using the PUSCH. Furthermore, the UE can not properly calculate PHR / CSI before PUSCH transmission.
  • the base station may control UL data transmission timing and / or HARQ-ACK feedback timing for each UE based on N3 / N4 (+ N1 / N2) notified from the UE. For example, in the case of realizing at least UL data transmission from the UE, the base station may apply the scheduling timings shown in cases 1 to 3. Also, in the case of realizing PHR / CSI report in addition to UL data from the UE, the base station may apply the scheduling timing shown in Case 2. Thus, by controlling the transmission timing based on the processing capability of the UE, the UE can appropriately transmit UL data and PHR / CSI.
  • the base station controls scheduling and / or resource allocation etc. in consideration of N2 (for example, applying case # 2 of FIG. 2B) do it.
  • the base station controls the period (K2) from when the UE receives the DL signal to when performing UL transmission is later than N2.
  • the UE may transmit PHR / CSI triggered at least at or before timing of receiving the UL grant, using the PUSCH scheduled by the UL grant.
  • the predetermined information it is possible to appropriately transmit the predetermined information by controlling the transmission timing based on the processing capability of the UE for the predetermined information.
  • the processing time can be sufficiently secured when the UE calculates (or generates) predetermined information, the processing load such as calculation can be suppressed.
  • the second aspect is the case of controlling the presence / absence of transmission of predetermined information and / or the content of predetermined information to be transmitted based on the processing capability information of the UE for the predetermined information and the transmission timing of UL data and / or HARQ-ACK Explain.
  • the transmission timing (K1 and / or K2) of the UL signal (UL data and / or HARQ-ACK) is set earlier than a predetermined value (for example, N3 / N4) (for example, as shown in FIG. The case 3) of 2A will be described as an example.
  • a predetermined value for example, N3 / N4 (for example, as shown in FIG. The case 3) of 2A will be described as an example.
  • transmission timing is set without considering the processing capability of UE for predetermined information, it is applicable similarly.
  • the UE may transmit only UL data without transmitting PHR / CSI.
  • the UE may control not to transmit UL data (UL transmission itself) in addition to PHR / CSI.
  • the UE may not calculate (or generate) PHR / CSI itself. Thereby, the load of transmission processing of UE can be suppressed.
  • the base station changes scheduling timing (eg, sets late) and controls retransmission when no UL data is transmitted from the UE, or when triggered PHR / CSI is not included in the UL signal. It is also good. This enables the UE to appropriately calculate and transmit PHR / CSI at the time of retransmission.
  • the UE may change the content of the predetermined information to be transmitted using the UL signal and transmit. That is, the UE selects the content of PHR / CSI based on the scheduling timing.
  • predetermined information is PHR and the case where it is CSI are each demonstrated.
  • the UE calculates / generates PH on the assumption that PUSCH and / or PUCCH are not transmitted when the scheduling timing of the UL signal is set earlier than a predetermined value (for example, Case 3 in FIG. 2A). For example, the UE calculates and transmits virtual PH type 1 (virtual PH type 1) and / or virtual PH type 2 (virtual PH type 2) on the assumption that PUSCH and / or PUCCH are not transmitted.
  • the formula currently defined by existing LTE may be used for calculation of PH, and the newly defined formula may be used.
  • PHR in the case of transmitting PUSCH and / or PUCCH with a predetermined number of resources may be calculated / generated.
  • the UE controls calculation (or generation) of PH for each CC. For example, the UE calculates a virtual PH for a CC for which the scheduling timing of the UL signal is set earlier than a predetermined value.
  • the UE it is assumed that PUSCH and / or PUCCH is transmitted to a CC for which the scheduling timing of the UL signal is set to be the same as or later than the predetermined value, and the real PH type 1 (real PH type 1) And / or real PH type 2 (real PH type 2) may be calculated and transmitted.
  • the real PH type 1 real PH type 1
  • real PH type 2 real PH type 2
  • one of PH type 1 and PH type 2 may be calculated as real PH, and the other may be virtual PH.
  • the UE may calculate PH type 2 as real PH and PH type 1 as virtual PH.
  • the UE transmits the latest CSI (latest CSI) already measured for the CSI measurement signal (or the CSI process) in the UL signal. May be In this case, the base station can control scheduling and / or resource allocation and the like based on at least information on latest CSI held by the UE.
  • the UE may transmit the UL signal including the predetermined value determined in advance.
  • the predetermined value may be information indicating that CSI (for example, CQI) is out of range (OOR (Out of Range)), or a predetermined CSI value set in advance.
  • the base station If the base station receives the OOR, it can recognize that the UE could not calculate CSI properly. As a result, when the base station triggers A-CSI again, control such as setting the scheduling timing later can be performed. Also, when the base station receives a predetermined CSI value, the base station controls scheduling conditions etc. based on at least the predetermined CSI value, and there is a possibility that the UE could not calculate CSI properly. It can be recognized.
  • the UE controls calculation / generation of A-CSI for each CC. For example, the UE transmits any of the latest CSI held by the UE, OOR, or a predetermined CSI value set in advance in a CC in which the scheduling timing of the UL signal is set earlier than the predetermined value.
  • the CC in which the scheduling timing of the UL signal is set to be the same as or later than the predetermined value CSI calculated based on the trigger of CSI may be included in UL transmission and transmitted. By this means, it is possible to flexibly control the content of CSI to be transmitted for each CC according to the scheduling timing set for each CC.
  • the UE may be configured to autonomously determine the presence / absence of transmission of CSI and / or the transmission content on the UE side.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
  • FIG. 3 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • the radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do.
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. It may be called (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology) or the like, or may be called a system for realizing these.
  • the radio communication system 1 includes a radio base station 11 forming a macrocell C1 with a relatively wide coverage, and radio base stations 12 (12a to 12c) disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. And. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 simultaneously uses the macro cell C1 and the small cell C2 using CA or DC. Also, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, 5 or less CCs, or 6 or more CCs).
  • CCs cells
  • Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth carrier (also called an existing carrier, legacy carrier, etc.).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • the user terminal 20 can perform communication in each cell using time division duplex (TDD) and / or frequency division duplex (FDD). Also, in each cell (carrier), a single numerology may be applied, or a plurality of different numerologies may be applied.
  • TDD time division duplex
  • FDD frequency division duplex
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly It may be done.
  • wire for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface, etc.
  • CPRI Common Public Radio Interface
  • X2 interface etc.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink as a radio access scheme, and single carrier frequency division multiple access (SC-FDMA: single carrier) to the uplink.
  • SC-FDMA single carrier frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication.
  • SC-FDMA is a single carrier transmission that reduces interference between terminals by dividing the system bandwidth into a band configured by one or continuous resource blocks for each terminal, and a plurality of terminals use different bands. It is a system.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, etc. are used as downlink channels. Used. User data, upper layer control information, SIB (System Information Block), etc. are transmitted by the PDSCH. Also, a MIB (Master Information Block) is transmitted by the PBCH.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • the downlink L1 / L2 control channel includes PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
  • Downlink control information (DCI) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
  • scheduling information may be notified by DCI.
  • DCI scheduling DL data reception may be referred to as DL assignment
  • DCI scheduling UL data transmission may be referred to as UL grant.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • Delivery confirmation information (for example, also referred to as retransmission control information, HARQ-ACK, and ACK / NACK) of HARQ (Hybrid Automatic Repeat reQuest) for the PUSCH is transmitted by the PHICH.
  • the EPDCCH is frequency division multiplexed with a PDSCH (downlink shared data channel), and is used for transmission such as DCI, similarly to the PDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • User data, upper layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR: Scheduling Request) and the like are transmitted by the PUCCH.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a cell-specific reference signal (CRS: Cell-specific Reference Signal), a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal), a demodulation reference signal (DMRS: DeModulation Reference Signal, positioning reference signal (PRS), etc.
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DMRS DeModulation Reference Signal
  • PRS positioning reference signal
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signal
  • PRS positioning reference signal
  • DMRS Demodulation reference signal
  • PRS positioning reference signal
  • FIG. 4 is a diagram showing an example of the entire configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data.
  • Control Transmission processing such as retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc. It is transferred to 103. Further, transmission processing such as channel coding and inverse fast Fourier transform is also performed on the downlink control signal and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
  • the transmission / reception unit 103 can be configured of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting and receiving unit 103 receives the upstream signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of the communication channel, state management of the radio base station 10, management of radio resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the other wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). May be
  • an inter-base station interface for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface.
  • the transmission / reception unit 103 transmits a DL signal (for example, downlink control information including UL transmission instruction (for example, UL grant) and / or HARQ-ACK transmission instruction, downlink data, and the like).
  • the transmitting / receiving unit 103 receives a UL channel scheduled (or assigned) after a first period after receiving a DL signal, and predetermined information (for example, PHR and / or CSI etc.) transmitted on the UL channel. Do.
  • the transmission / reception unit 103 transmits at least one of information on HARQ-ACK processing time (N1) for DL data (PDSCH), UL data processing time (N2), PH processing time (N3) and CSI processing time (N4). May be received as UE capability information.
  • N1 HARQ-ACK processing time
  • N2 DL data
  • N2 UL data processing time
  • N3 PH processing time
  • N4 CSI processing time
  • FIG. 5 is a diagram showing an example of a functional configuration of a wireless base station according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has another functional block required for wireless communication.
  • the baseband signal processing unit 104 at least includes a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the wireless base station 10, and some or all of the configurations may not be included in the baseband signal processing unit 104.
  • a control unit (scheduler) 301 performs control of the entire radio base station 10.
  • the control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the control unit 301 controls, for example, generation of a signal in the transmission signal generation unit 302, assignment of a signal in the mapping unit 303, and the like. Further, the control unit 301 controls reception processing of a signal in the reception signal processing unit 304, measurement of a signal in the measurement unit 305, and the like.
  • the control unit 301 schedules (for example, resources) system information, downlink data signals (for example, signals transmitted on PDSCH), downlink control signals (for example, signals transmitted on PDCCH and / or EPDCCH, delivery confirmation information, etc.) Control allocation). Further, the control unit 301 controls generation of the downlink control signal, the downlink data signal, and the like based on the result of determining whether the retransmission control for the uplink data signal is necessary or not. The control unit 301 also controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • PSS Primary Synchronization Signal
  • SSS Synchronization Signal
  • control unit 301 may perform uplink data signals (for example, signals transmitted on PUSCH), uplink control signals (for example, signals transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), random access preambles (for example, It controls scheduling of signals transmitted on PRACH, uplink reference signals and the like.
  • uplink data signals for example, signals transmitted on PUSCH
  • uplink control signals for example, signals transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.
  • random access preambles for example, It controls scheduling of signals transmitted on PRACH, uplink reference signals and the like.
  • the control unit 301 processes the information notified from the UE (for example, processing time (N1) for processing HARQ-ACK for DL data (PDSCH), processing time for UL data (N2), processing time for PH (N3), and processing CSI
  • processing time (N1) for processing HARQ-ACK for DL data (PDSCH) processing time for UL data (N2)
  • processing time for PH (N3) processing time for PH (N3)
  • processing CSI The transmission timing of UL data and / or HARQ-ACK is controlled based on at least one of the information on time (N4).
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal or the like) based on an instruction from the control unit 301, and outputs the downlink signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, DL assignment for notifying downlink data allocation information and / or UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301.
  • DL assignment and UL grant are both DCI and follow DCI format.
  • coding processing and modulation processing are performed on the downlink data signal in accordance with the coding rate, modulation scheme, and the like determined based on channel state information (CSI) and the like from each user terminal 20.
  • CSI channel state information
  • Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the mapped downlink signal to transmission / reception section 103.
  • the mapping unit 303 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103.
  • the reception signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the received signal processing unit 304 can be configured from a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception process to the control unit 301. For example, when the PUCCH including the HARQ-ACK is received, the HARQ-ACK is output to the control unit 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measuring unit 305 can be configured from a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 305 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, and the like based on the received signal.
  • the measurement unit 305 may use received power (for example, reference signal received power (RSRP)), received quality (for example, reference signal received quality (RSRQ), signal to interference plus noise ratio (SINR), signal to noise ratio (SNR)). , Signal strength (e.g., received signal strength indicator (RSSI)), channel information (e.g., CSI), and the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • CSI channel information
  • the measurement result may be output to the control unit 301.
  • FIG. 6 is a diagram showing an example of the entire configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmitting and receiving antennas 201, an amplifier unit 202, a transmitting and receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • each of the transmitting and receiving antenna 201, the amplifier unit 202, and the transmitting and receiving unit 203 may be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmitting and receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured of a transmitter / receiver, a transmission / reception circuit or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs reception processing of FFT processing, error correction decoding, retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing on a layer higher than the physical layer and the MAC layer. Moreover, broadcast information may also be transferred to the application unit 205 among downlink data.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission processing of retransmission control (for example, transmission processing of HARQ), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. It is transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
  • the transmission / reception unit 203 receives a DL signal (for example, downlink control information including UL transmission instruction (for example, UL grant) and / or HARQ-ACK transmission instruction, downlink data, etc.).
  • the transmission / reception unit 203 transmits predetermined information (for example, PHR and / or CSI, etc.) using a UL channel scheduled or assigned after the first period after receiving the DL signal and the UL channel. .
  • the transmission / reception unit 203 transmits at least one of information on HARQ-ACK processing time (N1), UL data processing time (N2), PH processing time (N3) and CSI processing time (N4) for DL data (PDSCH). May be transmitted as UE capability information.
  • FIG. 7 is a diagram showing an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has another functional block required for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 at least includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, generation of a signal in the transmission signal generation unit 402, assignment of a signal in the mapping unit 403, and the like. Further, the control unit 401 controls reception processing of signals in the reception signal processing unit 404, measurement of signals in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of the retransmission control for the downlink control signal and / or the downlink data signal.
  • the control unit 401 controls transmission of a UL channel scheduled after a first period after receiving a DL signal, and transmission of predetermined information. For example, based on the first period and the second period required to generate the predetermined information, the control unit 401 determines whether to transmit the predetermined information using the UL channel, the content of the predetermined information to be transmitted on the UL channel, And at least one of the first periods.
  • the control unit 401 controls not to transmit the predetermined information on the UL channel.
  • a predetermined value for example, the second period (N3 / N4)
  • the control unit 401 may generate the virtual power headroom report on the assumption that at least the uplink shared channel is not transmitted.
  • the control unit 401 controls to transmit the channel state information or the predetermined value measured before the reception of the DL signal. It is also good.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal or the like) based on an instruction from the control unit 401, and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates, for example, an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401. Further, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, when the downlink control signal notified from the radio base station 10 includes a UL grant, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the uplink signal to transmission / reception section 203.
  • the mapping unit 403 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 203.
  • the reception signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, or the like) transmitted from the radio base station 10.
  • the received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception process to the control unit 401.
  • the received signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measuring unit 405 can be configured of a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • each functional block (components) are realized by any combination of hardware and / or software.
  • the implementation method of each functional block is not particularly limited. That is, each functional block may be realized using one physically and / or logically coupled device, or directly and / or two or more physically and / or logically separated devices. Or it may connect indirectly (for example, using a wire communication and / or radio), and it may be realized using a plurality of these devices.
  • a wireless base station, a user terminal, and the like in an embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention.
  • FIG. 8 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication device 1004 is performed. This is realized by controlling communication, and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, or may be realized similarly for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
  • a computer readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • Hardware may be included, and part or all of each functional block may be realized using the hardware.
  • processor 1001 may be implemented using at least one of these hardware.
  • the channels and / or symbols may be signaling.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
  • the slot may be configured by one or more symbols in the time domain (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.).
  • the slot may be a time unit based on the neurology.
  • the slot may include a plurality of minislots. Each minislot may be configured by one or more symbols in the time domain. Minislots may also be referred to as subslots.
  • a radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal.
  • subframes, slots, minislots and symbols other names corresponding to each may be used.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot or one minislot may be referred to as a TTI.
  • TTI transmission time interval
  • the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the radio base station performs scheduling to assign radio resources (frequency bandwidth usable in each user terminal, transmission power, etc.) to each user terminal in TTI units.
  • radio resources frequency bandwidth usable in each user terminal, transmission power, etc.
  • the TTI may be a transmission time unit of a channel encoded data packet (transport block), a code block, and / or a codeword, or may be a processing unit such as scheduling and link adaptation. Note that, when a TTI is given, the time interval (eg, the number of symbols) in which the transport block, the code block, and / or the codeword is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, or the like.
  • a long TTI for example, a normal TTI, a subframe, etc.
  • a short TTI eg, a shortened TTI, etc.
  • a resource block is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be respectively configured by one or more resource blocks. Note that one or more RBs may be a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, etc. It may be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • a resource block may be configured by one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be one subcarrier and one symbol radio resource region.
  • the above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB
  • the number of subcarriers, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be variously changed.
  • the information, parameters, etc. described in the present specification may be expressed using absolute values, may be expressed using relative values from predetermined values, or other corresponding information. May be represented.
  • radio resources may be indicated by a predetermined index.
  • the names used for parameters and the like in the present specification are not limited names in any respect.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable names, various assignments are made to these various channels and information elements.
  • the name is not limited in any way.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed using a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
  • notification of information is not limited to the aspects / embodiments described herein, and may be performed using other methods.
  • notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not notifying the predetermined information or other information Notification may be performed).
  • the determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” as used herein are used interchangeably.
  • base station Base Station
  • radio base station eNB
  • gNB gigad Generation
  • cell cell
  • cell group cell group
  • carrier carrier
  • carrier may be used interchangeably.
  • a base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
  • a base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication services may also be provided by the Remote Radio Head, where the term "cell” or “sector” refers to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage. Point to.
  • RRH Small base station for indoor use
  • MS mobile station
  • UE user equipment
  • a base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
  • Node station Node station
  • NodeB NodeB
  • eNodeB eNodeB
  • access point access point
  • transmission point reception point
  • femtocell small cell, and so on.
  • the mobile station may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, by those skilled in the art. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client or some other suitable term.
  • the radio base station in the present specification may be replaced with a user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the above-described radio base station 10 has.
  • the wordings such as "up” and “down” may be read as "side".
  • the upstream channel may be read as a side channel.
  • a user terminal herein may be read at a radio base station.
  • the radio base station 10 may have a function that the above-described user terminal 20 has.
  • the operation supposed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark) And / or systems based on other suitable wireless communication methods and / or extended next generation systems based on these.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • any reference to an element using the designation "first”, “second” and the like as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
  • determining may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as “determining”. Also, “determination” may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as “determining” (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, “determination” may be considered as “determining” some action.
  • connection refers to any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements “connected” or “connected” to each other.
  • the coupling or connection between elements may be physical, logical or a combination thereof. For example, “connection” may be read as "access”.
  • the radio frequency domain It can be considered as “connected” or “coupled” with one another using electromagnetic energy or the like having wavelengths in the microwave region and / or the light (both visible and invisible) regions.
  • a and B are different may mean “A and B are different from each other”.
  • the terms “leave”, “combined” and the like may be interpreted similarly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)

Abstract

既存システムより短い時間単位が導入される場合であっても、通信品質の劣化を抑制するために、本発明の一態様に係るユーザ端末は、DL信号を受信する受信部と、前記DL信号を受信してから第1の期間後にスケジューリングされるULチャネルの送信と、所定情報の送信とを制御する制御部と、を有し、前記第1の期間と前記所定情報の生成に必要となる第2の期間とに基づいて、前記ULチャネルを利用した前記所定情報の送信有無、前記ULチャネルで送信する前記所定情報の内容、及び前記第1の期間の少なくとも一つが制御される。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT:New Radio Access Technology)、LTE Rel.14、15~等ともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.13以前)では、1msの伝送時間間隔(TTI:Transmission Time Interval)(サブフレーム等ともいう)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該1msのTTIは、チャネル符号化された1データパケットの送信時間単位であり、スケジューリング、リンクアダプテーション、再送制御(HARQ-ACK:Hybrid Automatic Repeat reQuest-Acknowledge)などの処理単位となる。1msのTTIには、2スロットが含まれる。
 また、既存のLTEシステム(例えば、LTE Rel.8-13)では、基地局(eNB(eNode B))は、ユーザ端末(UE:User Equipment)から通知される情報に基づいてUEの電力制御及びスケジューリングを制御する。例えば、基地局は、UEから通知される電力余裕(パワーヘッドルーム(PH:Power Headroom)などとも呼ばれる)に基づいてUEの電力制御を行う。UEは、パワーヘッドルームレポート(PHR:Power Headroom Report)にPHを含めて送信する。また、基地局は、UEから通知されるチャネル状態情報(CSI:Channel State Informationなどとも呼ばれる)に基づいてUEのスケジューリングの条件等を制御する。UEは、CSIを上り制御情報(UCI)に含めて送信する。
 将来の無線通信システム(例えば、LTE Rel.14又は15、5G、NRなど)では、既存のLTEシステムにおける1msの時間単位(サブフレーム、TTIともいう)とは時間長が異なる時間単位(例えば、1msのTTIよりも短いTTI(短縮TTI、ショートTTI、sTTI、スロット、ミニスロット等ともいう))を導入することが検討されている。
 例えば、既存のLTEシステムと異なる時間単位の導入に伴い、データのスケジューリングタイミング(例えば、ULグラントからULデータ送信までの期間等)が既存より短く設定されることが想定される。あるいは、データに対応する送達確認信号(HARQ-ACK、ACK/NACK、A/Nとも呼ぶ)のフィードバックタイミングが既存より短く設定されることも想定される。
 一方で、UEが所定情報(例えば、PHR、CSI等)の送信を行う場合、当該所定情報の送信が指示(トリガ)されてから所定情報を生成して送信を行う。この場合、所定情報の生成に必要となるUEの処理能力(算出及び/又は生成に要する処理時間)によっては、既存と同じメカニズム(例えば、タイミング等)で所定情報の送信を適切に行えなくなるおそれがある。
 UEから基地局にPHR及び/又はCSI等が適切に報告されない場合、適切なUL送信電力制御及び/又はスケジューリング制御を行うことができず、通信品質が劣化する問題が生じる。
 本発明はかかる点に鑑みてなされたものであり、既存システムより短い時間単位が導入される場合であっても、通信品質の劣化を抑制することができるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本発明の一態様に係るユーザ端末は、DL信号を受信する受信部と、前記DL信号を受信してから第1の期間後にスケジューリングされるULチャネルの送信と、所定情報の送信とを制御する制御部と、を有し、前記第1の期間と前記所定情報の生成に必要となる第2の期間とに基づいて、前記ULチャネルを利用した前記所定情報の送信有無、前記ULチャネルで送信する前記所定情報の内容、及び前記第1の期間の少なくとも一つが制御されることを特徴とする。
 本発明によれば、既存システムより短い時間単位が導入される場合であっても、通信品質の劣化を抑制することができる。
図1は、PUSCH/PUCCHの送信タイミング及びPHの報告を説明するための図である。 図2A及び図2Bは、UL信号の送信タイミングとPHR/CSIの処理時間に基づくスケジューリング制御の一例を示す図である。 図3は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図4は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 図5は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 図6は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 図7は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 図8は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 将来の無線通信システムでは、複数のニューメロロジーのサポートなどに伴い、既存のLTEシステム(LTE Rel.13以前)と同一及び/又は異なる時間単位(例えば、サブフレーム、スロット、ミニスロット、サブスロット、TTI、無線フレーム等ともいう)を適用することが検討されている。
 例えば、サブフレームは、ユーザ端末が適用するニューメロロジーに関係なく、所定の時間長(例えば、1ms)を有する時間単位である。一方、スロットは、ユーザ端末が適用するニューメロロジーに基づく時間単位である。例えば、サブキャリア間隔が15kHz、30kHzである場合、1スロットあたりのシンボル数は、7又は14シンボルであってもよい。一方、サブキャリア間隔が60kHz以上の場合、1スロットあたりのシンボル数は、14シンボルであってもよい。また、スロットには、複数のミニ(サブ)スロットが含まれてもよい。
 既存のLTEシステムと異なる時間単位の導入に伴い、データのスケジューリング等の処理手順(processing typeとも呼ぶ)に複数の時間単位を適用して信号及び/又はチャネルの送受信を制御することが想定される。一例として、第1の時間単位(例えば、スロット単位)と、第1の時間単位より短い第2の時間単位(例えば、シンボル単位又はミニスロット単位)とを利用して処理手順を制御することが考えられる。
 第1の時間単位(例えば、スロット単位)を適用する場合、スロット単位でデータ及び/又はHARQ-ACKの送信タイミングが制御される。例えば、スロット単位スケジューリング(slot-based scheduling)において、UE及び/又は基地局は、スロット#Nで受信したDLデータに対するHARQ-ACKをスロット#N+K1でフィードバックするように制御する。かかる場合、全てのUEがK1≧1をサポートすることが想定される。なお、一部のUEがK1=0をサポートする構成としてもよい。
 また、スロット単位スケジューリング(slot-based scheduling)において、UE及び/又は基地局は、スロット#Nで受信したULグラントに対するULデータをスロット#N+K2で送信するように制御する。かかる場合、全てのUEがK2≧1をサポートすることが想定される。なお、一部のUEがK2=0をサポートする構成としてもよい。
 第2の時間単位(例えば、シンボル単位)を適用する場合、スロット単位ではなくシンボル単位でUEの処理時間を考慮することが必要となる。例えば、DLデータに対する送達確認信号(HARQ-ACK、A/N)のフィードバックタイミングと、ULグラントに対するULデータのスケジューリングタイミングをシンボル単位で制御する。この場合、UEにおけるULデータ及び/又はHARQ-ACK生成の処理時間(processing time)を、スロット単位(K)にかえてシンボル単位(N1、N2)で考慮する必要がある。
 ここで、N1は、UEがDLデータ(PDSCH)を受信してから、当該PDSCHに対するA/N送信を最も早く開始できるまでにUEの処理に必要となるシンボル数を指す。N2は、UL送信指示(ULグラント)を含む下り制御情報を受信してから、当該ULグラントでスケジューリングされるULデータ(PUSCH)送信を最も早く開始できるまでにUEの処理に必要となるシンボル数を指す。なお、N1をA/N送信処理に要するシンボル数、N2をULデータ送信処理に要するシンボル数と考えてもよい。
 N1及び/又はN2(以下、N1/N2とも記す)には、タイミングアドバンス(TA)等の他の時間情報が含まれない構成としてもよい。あるいは、一部の時間情報(例えば、UEにおけるUL/DL切り替え時間等)がN1/N2に含まれる構成としてもよい。
 また、N1/N2は予め設定される値としてもよいし、UEが自身の能力情報として基地局に通知してもよい。N1/N2を予め設定する場合には、上位レイヤシグナリング等でUEに予め通知してもよいし、仕様で固定的に定義してもよい。
 ところで、既存のLTEでは、UEがeNBに対して、サービングセル毎のPH情報を含むPHRをフィードバックする。PHRは、PUSCHを用いてMACシグナリングにより送信される。具体的には、PHRは、MAC PDU(Protocol Data Unit)に含まれるPHR MAC CE(Control Element)により構成される。eNBは、PHRに基づいてUEの上り送信電力を動的に制御することができる。なお、PH情報は、PHの値であってもよいし、PHの値(又はレベル)と関連付けられたインデックスであってもよい。
 PHRには、例えば、ユーザ端末の総送信電力と最大許容送信電力との差分情報であるPHや、CCごとのユーザ端末の送信電力とCCごとの最大許容送信電力との差分情報であるPHが含まれる。
 現状、2タイプのPH(タイプ1 PH、タイプ2 PH)が規定されている。タイプ1 PH(PHタイプ1)は、PUSCHの電力のみを考慮した場合(PUSCHのみが伝送されると仮定した場合)のPHである。また、タイプ2 PH(PHタイプ2)は、PUSCH及びPUCCHの両方の電力を考慮した場合(PUSCH及びPUCCHが同時送信されると仮定した場合)のPHである。既存のLTEシステムでは、PHタイプ1及びPHタイプ2の算出に所定の計算式を適用することが定義されている。
 eNBは、UEに対して、PHR送信条件に関するPHR設定情報を送信してもよい。例えば当該通知には、RRCシグナリングが用いられる。UEは、通知されたPHR設定情報に基づいて、PHRを送信するタイミングを判断する。つまり、PHR送信条件を満たす場合、PHRがトリガされる。
 ここで、PHR設定情報としては、例えば、2つのタイマ(periodicPHR-Timer及びprohibitPHR-Timer)と、パスロス変化閾値(dl-PathlossChange)と、を用いることができる。例えば、第1のタイマ(prohibitPHR-Timer)が満了(expire)し、下りリンクのパスロス値が以前のPHR送信時の値からパスロス変化閾値(dl-PathlossChange)より大きく値が変化した場合に、PHRがトリガされる。また、第2のタイマ(periodicPHR-Timer)が満了した場合にも、PHRがトリガされる。なお、PHRをトリガする方法はこれに限られない。例えば、明示的及び/又は暗示的な通知によりPHRのトリガを制御してもよい。
 また、UEは、UL送信を行うCCについては実際の送信電力を考慮したPH(リアルPH(Real PH))に関する情報を報告し、UL送信を行わないCCについてはPUSCH帯域幅に依存しないPH(仮想PH(Virtual PH))に関する情報を報告するように制御する。リアルPHを含むPHRはリアルPHRと呼ばれてもよいし、仮想PHRを含むPHRは仮想PHRと呼ばれてもよい。eNBは、リアルPHRや仮想PHRに関する情報を受信することにより、送信があるCCだけでなく、送信がないCCの上り送信電力を考慮して、UEの電力制御を行うことができる。
 また、既存のLTEシステムでは、無線基地局からの送信指示に応じて、ユーザ端末がチャネル状態情報(CSI:Channel State Information)を送信する非周期CSI報告がサポートされている。当該送信指示に関する情報(送信指示情報、以下、A-CSIトリガという)は、下り制御チャネルで送信される下り制御情報(DCI)に含まれる。A-CSIトリガを含むDCIは、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)のスケジューリングに用いられてもよく、DCIフォーマット0又は4、上りスケジューリンググラント(以下、ULグラント(Uplink grant)という)等とも呼ばれる。
 非周期CSI(A-CSI)報告では、ユーザ端末は、ULグラントに含まれるA-CSIトリガに従って、当該ULグラントで指定されたPUSCHを用いて、CSIを送信する。例えば、UEは、ULグラントに含まれるA-CSIトリガに基づいて、所定期間(例えば、4ms)後に送信するPUSCHにCSIを含めて送信する。A-CSIトリガに従って送信されるCSIは、非周期CSI(A-CSI:Aperiodic CSI)などと呼ばれてもよい。このCSIは、チャネル品質識別子(CQI:Channel Quality Indicator)、プリコーディングマトリクス識別子(PMI:Precoding Matrix Indicator)、ランク識別子(RI:Rank Indicator)の少なくとも一つを含む。
 このように既存のLTEシステムでは、PHR及びCSI等の所定情報をUEから基地局に通知することにより、基地局が受信した情報に基づいて適切にスケジューリング、リソース割り当て、及び送信電力制御の少なくとも一つを行うことができる。
 一方で、上述したように、将来の無線通信システムでは既存のLTEシステムと異なる時間単位の導入に伴い、データ及び/又はHARQ-ACK等の送信タイミングが既存より短く設定されることが想定される。また、将来の無線通信システムでは、送信タイミング及び送信期間をより柔軟に設定するために、基地局がULデータ送信とHARQ-ACK送信のタイミングを動的に変更して制御することも考えられる。
 例えば、図1は、所定の時間単位(ここでは、スロット#N)で送信される下り制御情報(DCI)によりULデータ(PUSCH)送信がスロット#N+4にスケジューリングされる場合を示している。さらに、スロット#N+3のDLデータ(PDSCH)に対するA/N(PUCCH)がスロット#N+4で送信される場合を示している。ここでは、スロット#N+4において、PUSCH-PUCCH同時送信(例えば、PCell)が行われる場合を示している。
 既存システムと同様にPHの報告を行う場合、UEは、少なくともPCellについてPHタイプ2を算出(生成)してスロット#N+4で送信するように制御する。
 しかし、基地直が送信タイミング及び送信期間をより柔軟に設定する場合、UEがPHの報告を行うスロットまでに当該PHの算出に必要となる処理時間が不足するおそれがある。例えば、図1では、UEの能力次第では、スロット#N+4までにPHの算出が出来ないおそれがある。
 また、所定ケースにおいてPHの報告に必要とされる要求を緩和することが検討されている。所定ケースは、例えば、UEがタイプ2のPHRを伝送するMAC PDUを構成する前に、他の処理(例えば、PDSCH復号)の結果を待つ必要がある場合等を指す。この場合、図1において、スロット#N+3のPDSCHを復号した後にタイプ2のPHを算出することが必要となるが、UEの処理能力次第ではスロット#N+4までにPHを算出して送信することは困難となる。
 チャネル状態情報(A-CSI)についても同様に、A-CSIトリガ(+PUSCHスケジューリング)のDCIを受信してからPUSCH送信までの期間が短い場合、UEがチャネル状態情報の生成に必要となる処理時間が不足するおそれがある。この場合、当該PUSCHにCSIを含めて送信することが困難となる。
 そこで、本発明者らは、UEが送信する所定情報の算出(又は生成)に必要となる処理時間がUE毎に異なる可能性がある点に着目し、当該処理時間を考慮してデータ及び/又はHARQ-ACK等の送信タイミング(例えば、スケジューリング)を制御することを着想した。また、本発明者らは、当該所定情報の処理時間と、データ及び/又はHARQ-ACKの送信タイミング(例えば、スケジューリングされるタイミング)に基づいて、所定情報の送信有無及び/又は送信内容を制御することを着想した。
 以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。なお、以下の説明では、UEが報告する所定情報として、PHRとCSIを例に挙げて説明するが、本実施の形態が適応可能な所定情報はこれに限られず、他の信号及び/又はチャネルに適用してもよい。また、以下の説明においてCSIはCSIプロセスと読み替えてもよい。
(第1の態様)
 第1の態様は、所定情報に対するUEの処理能力情報に基づいて、ULデータ及び/又はHARQ-ACKの送信タイミング等を制御する場合を説明する。UEの処理能力情報は、所定情報の算出(又は生成)に必要となる処理時間に関する情報(例えば、シンボル数及び/又は絶対時間(μs))を含む情報をいう。
 ユーザ端末(UE)は、所定情報の処理時間に関する情報を、スロットより小さい単位(例えば、シンボル単位)で基地局に送信する。所定情報の処理時間は、所定情報を算出(又は生成)するために必要な時間としてもよいし、所定情報の送信を行うまでに必要な時間としてもよい。例えば、UEは、PHの処理時間に対応するシンボル数(例えば、N3)をUE能力情報として基地局に送信する。あるいは、UEは、CSIの処理時間に対応するシンボル数(例えば、N4)をUE能力情報として基地局に送信する。
 つまり、N3及び/又はN4(以下、N3/N4とも記す)は、PHR及び/又はCSI(以下、PHR/CSIとも記す)の報告がトリガされた時に、スケジューリング情報を最後まで受信してから、ULデータ(PUSCH)送信が最も早く可能となる開始位置までにUEの処理に必要となるOFDMシンボル数を指す。
 UEは、所定情報の処理時間に関する情報として、処理時間に対応するシンボル数に加えて、処理時間の値(絶対時間(absolute time))を基地局に報告してもよい。また、複数の所定情報(例えば、PHR及びCSI)の処理時間に関する情報をまとめて送信してもよいし、それぞれ独立に送信してもよい。
 基地局(gNB)は、UEから通知されたN3/N4に基づいて、送信タイミング(例えば、スケジューリング)及び/又はUL送信電力を制御する。例えば、基地局は、UEから通知されたN3に基づいて、ULデータ送信及び/又はHARQ-ACKフィードバックのタイミングを制御すると共に、PHR構成及び/又はPHRをトリガするタイマ(PHR設定情報とも呼ぶ)を制御する。
 基地局は、ULグラント受信から対応するULデータ送信までのUE処理時間に相当するN2と、N3/N4とを比較して送信タイミング(K1/K2)等を制御してもよい。以下に、図2Aを参照して、N2がN3/N4以下の場合(N2≦N3/N4)の送信タイミングの制御方法(又は、スケジューリング)について説明する。なお、図2Aでは、ULグラントに基づいてULデータ(PUSCH)がスケジューリングされる場合を示しており、ULグラント受信からPUSCH送信までの期間(スケジューリングタイミング)をK2として制御する場合を示す。
 PUSCHのスケジューリングタイミングK2がN2より遅い場合(図2Aのケース#1)、UEはPUSCHを利用したULデータ送信を適切に行うことができる。
 PUSCHのスケジューリングタイミングK2がN3/N4より遅い場合(図2Aのケース#2)、UEはPHR/CSIの算出を適切に行い、PUSCHを利用したPHR/CSI送信を適切に行うことができる。また、上記ケース1と同様に、UEはPUSCHを利用したULデータ送信を適切に行うことができる。
 PUSCHのスケジューリングタイミングK2がN2より遅く、N3/N4より早い場合(図2Aのケース#3)、UEはPUSCHを利用したULデータ送信を適切に行うことができる。但し、PUSCH送信までにPHR/CSIの算出を適切に行うことができない。この場合、UEはULグラントと同時又はそれ以降にトリガされたPHR/CSIを当該ULグラントでスケジューリングされるPUSCHを利用した送信は行わないように制御する。また、UEはPHR/CSIの算出及び/又は生成自体を行わない構成としてもよい。
 PUSCHのスケジューリングタイミングK2がN2より早い場合(図2Aのケース#4)、UEはPUSCHを利用したULデータ送信を行うことができない。さらに、UEはPUSCH送信までにPHR/CSIの算出を適切に行うことができない。
 基地局は、UEから通知されたN3/N4(+N1/N2)に基づいて、UE毎にULデータの送信タイミング及び/又はHARQ-ACKフィードバックタイミングを制御すればよい。例えば、UEからのULデータ送信を少なくとも実現する場合、基地局はケース1~3で示したスケジューリングタイミングを適用すればよい。また、UEからのULデータに加えてPHR/CSI報告を実現する場合、基地局はケース2で示したスケジューリングタイミングを適用すればよい。このように、UEの処理能力に基づいて送信タイミングを制御することにより、UEがULデータと、PHR/CSIの送信を適切に行うことが可能となる。
 一方で、N2がN3/N4より大きい場合(N2>N3/N4)、基地局はN2を考慮して(例えば、図2Bのケース#2を適用して)スケジューリング及び/又はリソース割当て等を制御すればよい。これは、ULデータが適切に送信されない場合(図2Bのケース#1、#3、#4)、適切に算出したPHR/CSIの送信を行うことができなくなるためである。具体的には、基地局は、UEがDL信号を受信してからUL送信を行うまでの期間(K2)がN2より遅くなるように制御する。この場合、UEは、少なくともULグラントを受信するタイミング又はそれ以前のタイミングにトリガされたPHR/CSIを、当該ULグラントでスケジューリングされるPUSCHを利用して送信すればよい。
 以上のように、所定情報に対するUEの処理能力に基づいて送信タイミングを制御することにより、当該所定情報の送信を適切に行うことが可能となる。また、UEが所定情報の算出(又は生成)する際に処理時間を十分に確保することができるため、算出等の処理負荷を抑制することができる。
(第2の態様)
 第2の態様は、所定情報に対するUEの処理能力情報と、ULデータ及び/又はHARQ-ACKの送信タイミングとに基づいて、所定情報の送信有無及び/又は送信する所定情報の内容を制御する場合を説明する。
 なお、以下の説明では、UL信号(ULデータ及び/又はHARQ-ACK)の送信タイミング(K1及び/又はK2)が、所定値(例えば、N3/N4)より早く設定される場合(例えば、図2Aのケース3)を例に挙げて説明する。他にも、所定情報に対するUEの処理能力を考慮せずに送信タイミングが設定されるケースであれば同様に適用可能である。
<所定情報の送信有無の制御>
 UL信号(例えば、PUSCH)の送信が所定値より早くスケジューリングされる場合、PHR/CSIがトリガされたとしてもUEは当該UL信号の送信までにPHR/CSIを処理する時間を確保できない。したがって、UEは、UL送信のスケジューリングタイミングが所定値より早く設定される場合にUL送信を行わないように制御する。
 例えば、UL信号がスケジューリングされたタイミングにおいて、UEは、PHR/CSIは送信せずにULデータのみ送信してもよい。あるいは、UEは、PHR/CSIに加えてULデータの送信(UL送信自体)も行わないように制御してもよい。この場合、UEは、PHR/CSIの算出(又は生成)自体を行わなくてもよい。これによりUEの送信処理の負荷を抑制することができる。
 基地局は、UEからULデータが送信されない場合、あるいは、トリガされたPHR/CSIがUL信号に含まれていない場合、スケジューリングタイミングを変更して(例えば、遅く設定して)再送を制御してもよい。これにより、再送時にUEは適切にPHR/CSIを算出して送信することができる。
<所定情報の送信内容の制御>
 UEは、UL信号のスケジューリングタイミングが所定値より早く設定される場合、当該UL信号を利用して送信する所定情報の内容を変更して送信してもよい。つまり、UEは、スケジューリングタイミングに基づいてPHR/CSIの内容を選択する。以下に、所定情報がPHRの場合と、CSIの場合についてそれぞれ説明する。
[PHR]
 UEは、UL信号のスケジューリングタイミングが所定値より早く設定される場合(例えば、図2Aのケース3)、PUSCH及び/又はPUCCHが送信されないと想定してPHの算出/生成を行う。例えば、UEは、PUSCH及び/又はPUCCHが送信されないと想定して仮想PHタイプ1(virtual PH type 1)及び/又は仮想PHタイプ2(virtual PH type 2)を算出して送信する。なお、PHの算出には既存のLTEで定義されている式を利用してもよいし、新たに定義した式を利用してもよい。例えば、実際にスケジューリングされるPUSCH/PUCCHのリソース数(例えば、PRB数)に関わらず、所定のリソース数でPUSCH及び/又はPUCCHを送信する場合のPHRを算出/生成するものとしてもよい。
 複数のCCが設定される場合(例えば、CA適用時)、UEはCC毎にPHの算出(又は生成)を制御する。例えば、UEは、UL信号のスケジューリングタイミングが所定値より早く設定されるCCに対して仮想PHを算出する。一方で、UL信号のスケジューリングタイミングが所定値と同じ又は所定値より遅く設定されるCCに対しては、PUSCH及び/又はPUCCHが送信されると想定してリアルPHタイプ1(real PH type 1)及び/又はリアルPHタイプ2(real PH type 2)を算出して送信してもよい。これにより、CC毎に設定されるスケジューリングタイミングに応じて、CC毎に送信するPHRの内容を柔軟に制御することができる。
 あるいは、UL信号のスケジューリングタイミングが所定値より早く設定される場合、PHタイプ1とPHタイプ2の一方をリアルPHとして算出し、他方を仮想PHとしてもよい。例えば、UEは、PUCCHが送信され、PUSCHが送信されないと想定し、PHタイプ2をリアルPHとし、PHタイプ1を仮想PHとして算出してもよい。これにより、ULグラントに基づきスケジューリングされるPUSCHと、DLアサインメントに基づきスケジューリングされるPDSCHに対するHARQ-ACK送信タイミングが異なる場合であっても、それぞれのタイミングに応じて適切にリアルPH・仮想PHを算出することができるため、基地局は適切に送信電力を把握することができる。
[CSI]
 UEは、UL信号のスケジューリングタイミングが所定値より早く設定される場合、当該CSI測定信号(または当該CSIプロセス)について、すでに測定済みの最新のCSI(latest CSI)を当該UL信号に含めて送信してもよい。この場合、基地局は少なくともUEが保持している最新のCSIの情報に基づいてスケジューリング及び/又はリソース割り当て等を制御することができる。
 あるいは、UEは、UL信号のスケジューリングタイミングが所定値より早く設定される場合、予め決められた所定値をUL信号に含めて送信してもよい。所定値としては、CSI(例えば、CQI)が範囲外であることを示す情報(OOR(Out of Range))、又は予め設定された所定のCSI値とすればよい。
 基地局がOORを受信した場合、UEがCSIを適切に算出できなかったことを認識できる。これにより、基地局が再度A-CSIをトリガする場合、スケジューリングタイミングを遅く設定する等の制御を行うことができる。また、基地局が所定のCSI値を受信した場合、基地局側で少なくとも所定のCSI値に基づいてスケジューリング条件等を制御すると共に、UEがCSIを適切に算出できなかった可能性があることを認識できる。
 複数のCCが設定される場合(例えば、CA適用時)、UEはCC毎にA-CSIの算出/生成を制御する。例えば、UEは、UL信号のスケジューリングタイミングが所定値より早く設定されるCCにおいて、UEが保持している最新のCSI、OOR、又は予め設定された所定CSI値のいずれかを送信する。一方で、UL信号のスケジューリングタイミングが所定値と同じ又は所定値より遅く設定されるCCでは、CSIのトリガに基づいて算出したCSIをUL送信に含めて送信してもよい。これにより、CC毎に設定されるスケジューリングタイミングに応じて、CC毎に送信するCSIの内容を柔軟に制御することができる。
 あるいは、UEは、UL信号のスケジューリングタイミングが所定値より早く設定される場合、UE側で自律的にCSIの送信有無及び/又は送信内容を決定する構成としてもよい。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図3は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、又は6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
 図4は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 送受信部103は、DL信号(例えば、UL送信指示(例えば、ULグラント)及び/又はHARQ-ACK送信指示を含む下り制御情報、下りデータ等)を送信する。送受信部103は、DL信号を受信してから第1の期間後にスケジューリングされる(又は、割当てられる)ULチャネル、当該ULチャネルで送信される所定情報(例えば、PHR及び/又はCSI等)を受信する。
 送受信部103は、DLデータ(PDSCH)に対するHARQ-ACKの処理時間(N1)、ULデータの処理時間(N2)、PHの処理時間(N3)及びCSIの処理時間(N4)に関する情報の少なくとも一つをUE能力情報として受信してもよい。
 図5は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
 制御部301は、UEから通知された情報(例えば、DLデータ(PDSCH)に対するHARQ-ACKの処理時間(N1)、ULデータの処理時間(N2)、PHの処理時間(N3)及びCSIの処理時間(N4)に関する情報の少なくとも一つ)に基づいて、ULデータ及び/又はHARQ-ACKの送信タイミングを制御する。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図6は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
 送受信部203は、DL信号(例えば、UL送信指示(例えば、ULグラント)及び/又はHARQ-ACK送信指示を含む下り制御情報、下りデータ等)を受信する。送受信部203は、DL信号を受信してから第1の期間後にスケジューリングされる(又は、割当てられる)ULチャネル、当該ULチャネルを用いて所定情報(例えば、PHR及び/又はCSI等)を送信する。
 送受信部203は、DLデータ(PDSCH)に対するHARQ-ACKの処理時間(N1)、ULデータの処理時間(N2)、PHの処理時間(N3)及びCSIの処理時間(N4)に関する情報の少なくとも一つをUE能力情報として送信してもよい。
 図7は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 制御部401は、DL信号を受信してから第1の期間後にスケジューリングされるULチャネルの送信と、所定情報の送信とを制御する。例えば、制御部401は、第1の期間と所定情報の生成に必要となる第2の期間とに基づいて、ULチャネルを利用した所定情報の送信有無、ULチャネルで送信する所定情報の内容、及び第1の期間の少なくとも一つを制御する。
 また、制御部401は、第1の期間が所定値(例えば、第2の期間(N3/N4))より短い場合、所定情報をULチャネルで送信しないように制御する。あるいは、制御部401は、第1の期間が所定値より短く、所定情報がパワーヘッドルームレポートである場合、少なくとも上り共有チャネルが送信されないと想定して仮想パワーヘッドルームレポートを生成してもよい。あるいは、制御部401は、第1の期間が所定値より短く、所定情報がチャネル状態情報である場合、DL信号の受信前に測定したチャネル状態情報又は所定の値を送信するように制御してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
 本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
 本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  DL信号を受信する受信部と、
     前記DL信号を受信してから第1の期間後にスケジューリングされるULチャネルの送信と、所定情報の送信とを制御する制御部と、を有し、
     前記第1の期間と前記所定情報の生成に必要となる第2の期間とに基づいて、前記ULチャネルを利用した前記所定情報の送信有無、前記ULチャネルで送信する前記所定情報の内容、及び前記第1の期間の少なくとも一つが制御されることを特徴とするユーザ端末。
  2.  前記所定情報は、パワーヘッドルームレポート及び/又はチャネル状態情報であり、
     前記パワーヘッドルームレポート及び/又は前記チャネル状態情報の生成に必要となる第2の期間に関するユーザ能力情報を送信する送信部を有することを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、前記第1の期間が所定値より短い場合、前記所定情報を前記ULチャネルで送信しないように制御することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、前記第1の期間が所定値より短く、前記所定情報がパワーヘッドルームレポートである場合、少なくとも上り共有チャネルが送信されないと想定して仮想パワーヘッドルームレポートを生成することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  5.  前記制御部は、前記第1の期間が所定値より短く、前記所定情報がチャネル状態情報である場合、前記DL信号の受信前に測定したチャネル状態情報又は所定の値を送信するように制御することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  6.  ユーザ端末の無線通信方法であって、
     DL信号を受信する工程と、
     前記DL信号を受信してから第1の期間後にスケジューリングされるULチャネルの送信と、所定情報の送信とを制御する工程と、を有し、
     前記第1の期間と前記所定情報の生成に必要となる第2の期間とに基づいて、前記ULチャネルを利用した前記所定情報の送信有無、前記ULチャネルで送信する前記所定情報の内容、及び前記第1の期間の少なくとも一つが制御されることを特徴とする無線通信方法。
PCT/JP2017/026516 2017-07-21 2017-07-21 ユーザ端末及び無線通信方法 WO2019016950A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2017423954A AU2017423954B2 (en) 2017-07-21 2017-07-21 User terminal and wireless communication method
PCT/JP2017/026516 WO2019016950A1 (ja) 2017-07-21 2017-07-21 ユーザ端末及び無線通信方法
JP2019530336A JP7177055B2 (ja) 2017-07-21 2017-07-21 端末、無線通信方法及びシステム
CN201780093440.8A CN110959280B (zh) 2017-07-21 2017-07-21 用户终端以及无线通信方法
US16/632,499 US11317307B2 (en) 2017-07-21 2017-07-21 User terminal and radio communication method
EP17918244.9A EP3657747A4 (en) 2017-07-21 2017-07-21 USER TERMINAL DEVICE AND WIRELESS COMMUNICATION PROCEDURE
BR112020001159-2A BR112020001159A2 (pt) 2017-07-21 2017-07-21 terminal de usuário e método de radiocomunicação

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/026516 WO2019016950A1 (ja) 2017-07-21 2017-07-21 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2019016950A1 true WO2019016950A1 (ja) 2019-01-24

Family

ID=65015652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026516 WO2019016950A1 (ja) 2017-07-21 2017-07-21 ユーザ端末及び無線通信方法

Country Status (7)

Country Link
US (1) US11317307B2 (ja)
EP (1) EP3657747A4 (ja)
JP (1) JP7177055B2 (ja)
CN (1) CN110959280B (ja)
AU (1) AU2017423954B2 (ja)
BR (1) BR112020001159A2 (ja)
WO (1) WO2019016950A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116652A1 (ja) * 2022-11-30 2024-06-06 キヤノン株式会社 通信装置、制御方法、及び、プログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113473619B (zh) * 2017-09-14 2022-04-12 华为技术有限公司 信号处理的方法和装置
US11523412B2 (en) * 2017-11-17 2022-12-06 Qualcomm Incorporated UE processing time for UCI multiplexing
US11490434B2 (en) * 2018-06-25 2022-11-01 Qualcomm Incorporated Dual connectivity transmission techniques

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508265A (ja) * 2012-02-21 2015-03-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) データブロック伝送の処理時間依存制御
JP2015521420A (ja) * 2012-05-10 2015-07-27 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Csiレポーティングのための方法及び装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9001747B2 (en) * 2008-03-26 2015-04-07 Nokia Corporation Reporting channel state information
TW201322681A (zh) * 2011-09-26 2013-06-01 Innovative Sonic Corp 無線通訊系統中處理通道狀態資訊之方法和通訊設備
US9155098B2 (en) 2012-03-29 2015-10-06 Qualcomm Incorporated Channel state information reference signal (CSI-RS) configuration and CSI reporting restrictions
KR20140047394A (ko) * 2012-10-12 2014-04-22 삼성전자주식회사 이동 통신 시스템에서 하향링크 채널의 채널 상태 정보 송수신 장치 및 방법
WO2018006311A1 (en) * 2016-07-07 2018-01-11 Qualcomm Incorporated Processing relaxation for aperiodic csi-rs
EP3577937B1 (en) * 2017-02-04 2021-12-29 QUALCOMM Incorporated Coupling aperiodic channel state information (csi) reference symbol (rs) (csi-rs) structure with feedback content and reporting timing
CA3053235C (en) * 2017-02-10 2023-02-28 Lg Electronics Inc. Method for measuring and reporting channel state information in wireless communication system and device therefor
CN110663214B (zh) * 2017-03-24 2022-10-14 瑞典爱立信有限公司 Pusch上的半持续csi反馈
WO2018223349A1 (en) * 2017-06-08 2018-12-13 Qualcomm Incorporated Collision handling mechanisms for dynamic tdd systems
EP3989460B1 (en) * 2017-06-14 2024-01-03 Sony Group Corporation Apparatus and method for determining whether to provide a csi report

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015508265A (ja) * 2012-02-21 2015-03-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) データブロック伝送の処理時間依存制御
JP2015521420A (ja) * 2012-05-10 2015-07-27 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Csiレポーティングのための方法及び装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8", 3GPP TS36.300, April 2010 (2010-04-01)
NTT DOCOMO INC.: "CSI feedback for shortened TTI with shortened processing time", 3GPP TSG-RAN WG1 MEETING #89, no. R1-1708421, 19 May 2017 (2017-05-19), Hangzhou, China, XP051262438 *
See also references of EP3657747A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024116652A1 (ja) * 2022-11-30 2024-06-06 キヤノン株式会社 通信装置、制御方法、及び、プログラム

Also Published As

Publication number Publication date
AU2017423954B2 (en) 2022-11-24
US11317307B2 (en) 2022-04-26
JP7177055B2 (ja) 2022-11-22
EP3657747A1 (en) 2020-05-27
US20200205228A1 (en) 2020-06-25
BR112020001159A2 (pt) 2020-07-21
CN110959280A (zh) 2020-04-03
CN110959280B (zh) 2022-11-01
JPWO2019016950A1 (ja) 2020-07-16
EP3657747A4 (en) 2021-03-10
AU2017423954A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
WO2018173235A1 (ja) ユーザ端末及び無線通信方法
WO2019097646A1 (ja) ユーザ端末及び無線通信方法
WO2019049282A1 (ja) ユーザ端末及び無線通信方法
WO2019087340A1 (ja) ユーザ端末及び無線通信方法
WO2019142341A1 (ja) ユーザ端末及び無線通信方法
WO2019176025A1 (ja) ユーザ端末及び無線通信方法
WO2019180886A1 (ja) ユーザ端末及び無線通信方法
WO2019064569A1 (ja) ユーザ端末及び無線通信方法
WO2018235270A1 (ja) ユーザ端末及び無線通信方法
WO2019138555A1 (ja) ユーザ端末及び無線通信方法
WO2019082244A1 (ja) ユーザ端末及び無線通信方法
WO2019035213A1 (ja) ユーザ端末及び無線通信方法
JP7293134B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7177055B2 (ja) 端末、無線通信方法及びシステム
WO2019159296A1 (ja) ユーザ端末及び無線通信方法
WO2019159243A1 (ja) ユーザ端末及び無線通信方法
JP7197522B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018203401A1 (ja) ユーザ端末及び無線通信方法
WO2018207374A1 (ja) ユーザ端末及び無線通信方法
WO2019225655A1 (ja) ユーザ端末
JP7299215B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019234929A1 (ja) ユーザ端末及び無線通信方法
WO2019159244A1 (ja) 無線基地局及び無線通信方法
WO2019175989A1 (ja) ユーザ端末及び無線通信方法
WO2019092857A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918244

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530336

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020001159

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017423954

Country of ref document: AU

Date of ref document: 20170721

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017918244

Country of ref document: EP

Effective date: 20200221

ENP Entry into the national phase

Ref document number: 112020001159

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200117