WO2018173235A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2018173235A1
WO2018173235A1 PCT/JP2017/011892 JP2017011892W WO2018173235A1 WO 2018173235 A1 WO2018173235 A1 WO 2018173235A1 JP 2017011892 W JP2017011892 W JP 2017011892W WO 2018173235 A1 WO2018173235 A1 WO 2018173235A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink control
control channel
pucch
short
long
Prior art date
Application number
PCT/JP2017/011892
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
リフェ ワン
ギョウリン コウ
ホイリン ジャン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2017/011892 priority Critical patent/WO2018173235A1/ja
Priority to EP17902154.8A priority patent/EP3605981B1/en
Priority to JP2019506868A priority patent/JP7269164B2/ja
Priority to KR1020197029808A priority patent/KR102423211B1/ko
Priority to CN201780091169.4A priority patent/CN110663235B/zh
Priority to US16/495,531 priority patent/US11218268B2/en
Publication of WO2018173235A1 publication Critical patent/WO2018173235A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A also referred to as LTE Advanced, LTE Rel. 10, 11 or 12
  • LTE Long Term Evolution
  • Successor systems for example, FRA (Future Radio access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Rel .13, 14 or 15 or later
  • FRA Fluture Radio access
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • NX New radio access
  • FX Fluture generation radio access
  • a 1 ms subframe (also referred to as a transmission time interval (TTI), etc.) is used for downlink (DL) and / or uplink. Communication of a link (UL: Uplink) is performed.
  • the subframe is a transmission time unit of one channel-encoded data packet, and is a processing unit such as scheduling, link adaptation, retransmission control (HARQ: Hybrid Automatic Repeat reQuest).
  • a user terminal (UE: User Equipment) has an uplink control channel (for example, PUCCH (Physical Uplink Control Channel)) and / or an uplink data channel (for example, Uplink control information (UCI) is transmitted using PUSCH (Physical Uplink Shared Channel).
  • PUCCH Physical Uplink Control Channel
  • UCI Uplink control information
  • PUSCH Physical Uplink Shared Channel
  • the configuration (format) of the uplink control channel is also called a PUCCH format.
  • UCI includes scheduling request (SR), retransmission control information (HARQ-ACK (Hybrid Automatic Repeat reQuest-Acknowledge)), ACK / NACK (Negative ACK) for DL data (DL data channel (PDSCH: Physical Downlink Shared Channel)) )), And at least one of channel state information (CSI).
  • SR scheduling request
  • HARQ-ACK Hybrid Automatic Repeat reQuest-Acknowledge
  • ACK / NACK Negative ACK for DL data
  • PDSCH Physical Downlink Shared Channel
  • CSI channel state information
  • Future wireless communication systems for example, 5G, NR are expected to realize various wireless communication services to meet different requirements (for example, ultra-high speed, large capacity, ultra-low delay, etc.) Yes.
  • eMBB enhanced Mobile Broad Band
  • mMTC massive Machine Type Communication
  • URLLC Ultra Reliable and Low Latency
  • the present invention has been made in view of this point, and provides a user terminal and a wireless communication method capable of appropriately reporting uplink control information even when a plurality of uplink control channels having different time lengths are used. This is one of the purposes.
  • the user terminal includes setting information for multiplexing a short uplink control channel having a short time length and a long uplink control channel having a longer time length than the short uplink control channel within a predetermined period.
  • the present invention it is possible to appropriately notify uplink control information even when a plurality of uplink control channels having different time lengths are used.
  • FIGS. 1A to 1C are diagrams illustrating an example of resource mapping of NR slots.
  • FIGS. 2A to 2C are diagrams illustrating an example of resource mapping in the case of performing TDM and / or FDM on long PUCCH and short PUCCH for different UEs.
  • 3A to 3C are diagrams illustrating an example of resource mapping when TDM is performed on a long PUCCH and a short PUCCH.
  • FIGS. 4A to 4C are diagrams illustrating another example of resource mapping when long PUCCH and short PUCCH are TDM.
  • FIGS. 5A to 5C are diagrams illustrating an example of resource mapping when the transmission timings of the long PUCCH and the short PUCCH overlap in time in the same slot.
  • FIG. 6A and 6B are diagrams illustrating an example of resource mapping when TDM and FDM are performed on a long PUCCH and a short PUCCH.
  • FIG. 7 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the neurology may mean a set of communication parameters that characterize a signal design, RAT design, etc. in a certain RAT (Radio Access Technology), a subcarrier spacing (SCS), a symbol It may be a parameter related to the frequency direction and / or the time direction such as a length, a cyclic prefix length, a subframe length, and a transmission time interval (TTI) length.
  • RAT Radio Access Technology
  • SCS subcarrier spacing
  • TTI transmission time interval
  • multiple SCSs such as 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz may be supported.
  • time unit eg, subframe, slot, minislot, subslot, TTI
  • LTE Rel. Short TTI, radio frame, etc.
  • TTI may represent a time unit for transmitting / receiving a transport block, a code block, and / or a code word of transmission / reception data.
  • a time interval (number of symbols) in which a data transport block, code block, and / or codeword is actually mapped may be shorter than the TTI.
  • the TTI when the TTI is composed of a predetermined number of symbols (for example, 14 symbols), a transport block, a code block, and / or a code word of transmission / reception data are included in one to a predetermined number of symbol sections. It can be sent and received.
  • a reference signal, a control signal, etc. are used for symbols not mapping data in the TTI. Can be mapped.
  • the subframe may be a time unit having a predetermined time length (for example, 1 ms) irrespective of the neurology used (and / or set) by the user terminal (for example, UE: User Equipment).
  • UE User Equipment
  • the slot may be a time unit based on the neurology used by the UE. For example, when the SCS is 15 kHz or 30 kHz, the number of symbols per slot may be 7 or 14 symbols. When the subcarrier interval is 60 kHz or more, the number of symbols per slot may be 14 symbols.
  • the slot may include a plurality of mini (sub) slots.
  • SCS and symbol length are inversely related. Therefore, if the number of symbols per slot (or mini (sub) slot) is the same, the slot length becomes shorter as the SCS becomes higher (wider), and the slot length becomes longer as the SCS becomes lower (narrower). “High SCS” may be rephrased as “wide SCS”, and “low SCS” may be rephrased as “SCS is narrow”.
  • an UL control channel (hereinafter referred to as a short PUCCH (short PUCCH, short PUCCH), which is composed of a shorter duration than the PUCCH (Physical Uplink Control Channel) format of an existing LTE system (for example, LTE Rel. 8-13). (also referred to as shortened PUCCH)) and / or to support a UL control channel (hereinafter also referred to as long PUCCH) that is configured with a longer duration than the short period. .
  • a short PUCCH Short PUCCH, short PUCCH
  • short PUCCH Physical Uplink Control Channel
  • long PUCCH Physical Uplink Control Channel
  • the short PUCCH may be referred to as a short-term PUCCH (PUCCH in short duration), and the long PUCCH may be referred to as a long-term PUCCH (PUCCH in long duration).
  • the short PUCCH may be referred to as PUCCH format 1, PUCCH configuration 1, PUCCH mode 1, etc.
  • the long PUCCH may be referred to as PUCCH format 2, PUCCH configuration 2, PUCCH mode 2, etc. Note that 1 and 2 may be reversed.
  • the short PUCCH is composed of a predetermined number of symbols (for example, 1 or 2 symbols) in a certain SCS.
  • uplink control information (UCI: Uplink Control Information) and a reference signal (RS: Reference Signal) may be time division multiplexed (TDM: Time Division Multiplexing) or frequency division multiplexed (FDM: Frequency Division). Multiplexing).
  • RS Reference Signal
  • TDM Time Division Multiplexing
  • FDM Frequency Division Multiplexing
  • the RS may be, for example, a demodulation reference signal (DMRS) used for UCI demodulation.
  • DMRS demodulation reference signal
  • the SCS of each symbol of the short PUCCH may be the same as or higher than the SCS of a data channel symbol (hereinafter also referred to as a data symbol).
  • the data channel may be, for example, a downlink data channel (PDSCH: Physical Downlink Shared Channel), an uplink data channel (PUSCH: Physical Uplink Shared Channel), and the like.
  • the short PUCCH may be referred to as a higher (larger, wider) SCS (for example, 60 kHz) PUCCH.
  • SCS for example, 60 kHz
  • a time unit in which one short PUCCH is transmitted may be referred to as a short TTI.
  • a multi-carrier waveform for example, a cyclic prefix OFDM (CP-OFDM) waveform
  • CP-OFDM cyclic prefix OFDM
  • a single carrier waveform for example, DFT spread OFDM (DFT- S-OFDM: Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing-based waveform) may be used.
  • DFT- S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing-based waveform
  • the waveform may be called a transmission method, a multiplexing method, a modulation method, an access method, a waveform method, or the like. Further, the waveform may be characterized by whether or not DFT precoding (spreading) is applied to the OFDM waveform.
  • DFT precoding spreading
  • CP-OFDM may be referred to as a waveform (signal) to which DFT precoding is not applied
  • DFT-S-OFDM may be referred to as a waveform (signal) to which DFT precoding is applied.
  • waveform may be read as “waveform signal”, “signal following waveform”, “signal waveform”, “signal”, or the like.
  • the long PUCCH is arranged over a plurality of symbols in the slot in order to improve the coverage and / or transmit more UCI than the short PUCCH.
  • Multiple symbol candidates supported by the long PUCCH may be defined or set.
  • the plurality of symbols supported by the long PUCCH may be a symbol having a predetermined number of symbols (for example, 4 symbols) or more.
  • UCI and RS for example, DMRS
  • DMRS for example, DMRS
  • the long PUCCH may be referred to as a lower (smaller, narrower) SCS (for example, 15 kHz) PUCCH.
  • a time unit in which one long PUCCH is transmitted may be referred to as a long TTI.
  • the long PUCCH may be configured with the same number of frequency resources as the short PUCCH, or a smaller number of frequency resources (for example, one or two physical resource blocks) than the short PUCCH in order to obtain a power boosting effect. (PRB: Physical Resource Block)). Moreover, long PUCCH may be arrange
  • a single carrier waveform for example, DFT-s-OFDM waveform
  • a multicarrier waveform for example, OFDM waveform
  • frequency hopping may be applied to the long PUCCH for each predetermined period in the slot (for example, mini (sub) slot).
  • the long PUCCH may be a PUCCH (a PUCCH of a different format) different from the PUCCH defined in the existing LTE system (for example, LTE Rel. 8-13).
  • PUCCH Physical Uplink Control Channel
  • the PUCCH may be TDM and / or FDM with a UL data channel (hereinafter also referred to as PUSCH) in the slot.
  • the PUCCH may be TDM and / or FDM with a DL data channel (hereinafter also referred to as PDSCH) and / or a DL control channel (hereinafter also referred to as PDCCH (Physical Downlink Control Channel)) in the slot.
  • PDSCH DL data channel
  • PDCCH Physical Downlink Control Channel
  • Retransmission control information also referred to as HARQ-ACK, ACK / NACK, A / N, etc.
  • scheduling request SR: Scheduling Request
  • CSI for example, periodic CSI (P-CSI: Periodic) using PUCCH CSI
  • A-CSI aperiodic CSI
  • BSR buffer status report
  • PHR power headroom report
  • the beam identification information includes a beam index (BI), a precoding matrix index (PMI), a TPMI (Transmitted PMI), a port index of a predetermined reference signal (for example, DMRS port index (DPI: DMRS Port Index), SRS Port Index (SPI: SRS Port Index)), resource index of a predetermined reference signal (for example, CSI-RS Resource Index (CRI), DMRS Resource Index (DRI): DMRS Resource) Index), SRS resource index (SRI: SRS Resource Index)), and the like.
  • a beam index for example, DMRS port index (DPI: DMRS Port Index), SRS Port Index (SPI: SRS Port Index)
  • resource index of a predetermined reference signal for example, CSI-RS Resource Index (CRI), DMRS Resource Index (DRI): DMRS Resource) Index
  • SRI SRS Resource Index
  • FIGS. 1A-1C are diagrams showing an example of resource mapping of NR slots.
  • a period during which data is transmitted is defined as a UL period
  • a period during which UL transmission can be performed with a small number of symbols is defined as a short UL period.
  • the UL period may be referred to as a long UL period.
  • the “period” may be read as “area”, “resource”, “symbol”, or the like.
  • the configuration of the NR slot (NR subframe) is not limited to the example shown in FIGS. 1A-1C.
  • the order of the areas is not limited to the order shown in the figure.
  • slots are configured in the order of a PDCCH region, a PDSCH region, a non-transmission period (also referred to as a guard period (GP)), and a short UL region including a short PUCCH from the head of the NR slot.
  • a slot including more symbols for performing DL communication than symbols for performing UL communication may be referred to as a DL centric slot.
  • slots are configured in the order of the PDCCH region, the guard period, the UL region including long PUCCH and PUSCH, and the short UL region including short PUCCH from the head of the NR slot.
  • a slot including more symbols for performing UL communication than symbols for performing DL communication may be referred to as a UL centric slot.
  • slots are configured in the order of the UL area including long PUCCH and PUSCH and the short UL area including short PUCCH from the head of the NR slot.
  • a slot having no symbol for performing DL communication (or including only a symbol for performing UL communication) may be referred to as a UL only slot.
  • the UL only slot may include a guard period.
  • FIGS. 2A to 2C are diagrams illustrating an example of resource mapping in the case of performing TDM and / or FDM on long PUCCH and short PUCCH for different UEs.
  • 2A and 2C show examples of DL centric slots, respectively.
  • the short PUCCH is TDMed with the long PUCCH and PUSCH.
  • the short PUCCH is TDM with the long PUCCH, and is PUSCH, TDM and FDM.
  • short PUCCH is long PUCCH and TDM and FDM, and PUSCH and TDM.
  • the present inventors studied a method for multiplexing the short PUCCH and the long PUCCH for the same UE in one slot, and reached the present invention.
  • the present inventors have also found a method of appropriately using both PUCCHs (signal allocation, etc.) when short PUCCH and long PUCCH for the same UE are multiplexed in one slot.
  • the first embodiment relates to a case where the UE is configured to multiplex long PUCCH and short PUCCH in the same slot.
  • the UE may transmit UCIs corresponding to different UCI types on the long PUCCH and the short PUCCH in the same slot, or may transmit UCIs corresponding to the same UCI type.
  • the UCI type may include information indicating the contents of UCI (which UCI is transmitted).
  • the UCI type indicates that the UCI includes one or more of HARQ-ACK, SR, CSI, P-CSI, A-CSI, beam identification information, BSR, PHR, and other control information. It may be the information shown.
  • the UCI type may include information on performance and / or quality required for UCI.
  • the UCI type may indicate any one of delay (such as low delay), reliability (such as high reliability), throughput (such as high throughput), or a combination thereof.
  • the UCI type may include information regarding the service type of the NR, and may include information indicating that the UCI is a UCI for at least one of eMBB, URLLC, and mMTC, for example.
  • the UE may transmit one or a plurality of P-CSI using a long PUCCH and one or a plurality of HARQ-ACKs using a short PUCCH in the same slot.
  • a CSI report having a relatively large payload can be transmitted using a long PUCCH having a large resource capacity, and a HARQ-ACK having a relatively small payload can be transmitted using a short PUCCH. Therefore, a balance between the quality of both can be ensured.
  • the SR may be multiplexed with the PUCSI of the long PUCCH or may be multiplexed with the HARQ-ACK of the short PUCCH. Note that separate SRs requesting different resources for different traffic may be transmitted using both the long PUCCH and the short PUCCH.
  • the UE transmits HARQ-ACK corresponding to a specific type of DL data using a long PUCCH, and transmits HARQ-ACK corresponding to another type of DL data using a short PUCCH.
  • long PUCCH may be used for HARQ-ACK for reliable DL data (eg, for URLLC)
  • short PUCCH is used for HARQ-ACK for low delay (eg, for eMBB) DL data. May be.
  • both HARQ-ACKs may be HARQ-ACK for data transmitted and received in different slots, minislots, component carriers and / or cells. Good.
  • HARQ-ACK for data up to the nk-1 slot is transmitted using long PUCCH, and HARQ-ACK for data in the nk slot is short. It can be transmitted on PUCCH.
  • the short PUCCH can take a long processing time until the transmission starts, so that the data is decoded.
  • the HARQ-ACK can be generated appropriately.
  • HARQ-ACK for data other than the m-th component carrier is transmitted on long PUCCH
  • HARQ-ACK for data on the m-th component carrier is transmitted on short PUCCH.
  • HARQ-ACK for the data of the m-th component carrier and HARQ-ACK for the data of other component carriers can be generated at different processing times, so that lower-latency HARQ-ACK generation can be performed for a specific component carrier. Can be realized.
  • the SR may be multiplexed with the HARQ-ACK of the long PUCCH or may be multiplexed with the HARQ-ACK of the short PUCCH. Note that separate SRs requesting different resources for different traffic may be transmitted using both the long PUCCH and the short PUCCH.
  • the UE may determine the UCI to be transmitted on the long PUCCH and / or the short PUCCH based on the information on the UCI type that can be transmitted on the long PUCCH and / or the short PUCCH.
  • Information on UCI types that can be transmitted on the long PUCCH and / or the short PUCCH includes upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling (for example, MAC control element (MAC CE (Control Element) )), Broadcast information, etc.), physical layer signaling (for example, downlink control information (DCI)) or a combination thereof, a base station (BS (Base Station), a transmission / reception point (TRP: Transmission / Reception) Point), eNB (eNode B), gNB, etc.) may be notified (set) to the UE.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE Control element
  • Broadcast information etc.
  • physical layer signaling for example, downlink control information (DCI)
  • BS Base Station
  • TRP Transmission / Reception point
  • eNB eNode B
  • gNB gNode B
  • the UE can determine a resource for transmitting (and set to) the long PUCCH and / or the short PUCCH based on information on the time and / or frequency resource of the long PUCCH and / or the short PUCCH.
  • Information on time and / or frequency resources of long PUCCH and / or short PUCCH is received from the base station using higher layer signaling (eg, RRC signaling, broadcast information), physical layer signaling (eg, DCI) or a combination thereof.
  • the UE may be notified (set).
  • information on time and / or frequency resources of long PUCCH and / or short PUCCH includes, for example, transmission timing (slot index, etc.), transmission cycle, number of symbols, symbol length, number of resource blocks, information on hopping (for example, hopping). Or the like, or an index for specifying a hopping pattern).
  • the long PUCCH and the short PUCCH may be TDM, FDM, TDM and FDM.
  • a multiplexing method of long PUCCH and short PUCCH in the same slot may be set for the UE.
  • Information on the multiplexing method may be notified (set) by upper layer signaling (for example, RRC signaling, broadcast information), physical layer signaling (for example, DCI), or a combination thereof.
  • the UE may use the long PUCCH at a predetermined time according to the scheduling of the base station (for example, the timing indication according to the above-described time and / or frequency resource information). And short PUCCH. Thereby, since the power of PUCCH can be increased, it is easy to ensure coverage.
  • the base station preferably performs control so that the time and frequency resources of the long PUCCH and the short PUCCH do not overlap.
  • FIGS. 3A to 3C are diagrams illustrating an example of resource mapping when TDM is performed on a long PUCCH and a short PUCCH.
  • 3A and 3C show an example of a DL centric slot in which one slot is composed of 7OS (OFDM Symbol), and
  • FIG. 3B shows an example of a UL only slot in which one slot is composed of 14OS.
  • the number of OSs in the slot is not limited to these.
  • the short PUCCH is TDMed with the long PUCCH and PUSCH.
  • TOS is performed such that a 2OS long short PUCCH is positioned at each of the beginning, center, and end of the slot, and a 4OS long long PUCCH and PUSCH are positioned therebetween.
  • short PUCCH, long PUCCH, PUSCH, etc. may be transmitted in a plurality of non-contiguous areas in one slot.
  • the transition time may be referred to as a transition period, a waveform undefined period, or the like, and is a time for switching from the required power at the off time to the required power at the on time (or vice versa).
  • the transmission signal quality is not guaranteed during the transition time. For this reason, the UE is allowed to transmit an incorrect signal (or does not satisfy a predetermined quality) and / or no signal transmission during the transition time. That is, waveform distortion is allowed at the transition time.
  • a predetermined period for example, 20 ⁇ s, 5 ⁇ s, etc.
  • a transition time occurs in the slot, so that interference or the like may occur between the short PUCCH and other signals (or channels), and communication quality may be deteriorated. Therefore, when using a large (or long) transition time, as shown in FIG. 3C, a gap period for reducing the influence of the large transition time is provided before (and / or after) the short PUCCH. Is preferred.
  • FIGS. 4A to 4C are diagrams illustrating another example of resource mapping when long PUCCH and short PUCCH are TDM.
  • 4A to 4C show examples in which the frequency resource of the short PUCCH in FIG. 3A to 3C is the same frequency resource (bandwidth) as that of the long PUCCH.
  • the short PUCCH is TDM with the long PUCCH, and is PUSCH, TDM, and FDM.
  • long PUCCH resources for example, time and / or frequency resources
  • short PUCCH resources may overlap (is set to overlap). For example, there are cases where both resources overlap in time and frequency overlap. The control in this case will be described with reference to FIG.
  • FIGS. 5A to 5C are diagrams illustrating an example of resource mapping when the transmission timings of the long PUCCH and the short PUCCH overlap in time in the same slot.
  • the short PUCCH resource is indicated by a broken line.
  • the UE may perform at least one of the following controls (1) to (3): (1) long PUCCH Drop (FIG. 5A), (2) Drop short PUCCH (FIG. 5B), (3) Puncture long PUCCH in overlapping symbols (FIG. 5C).
  • the dropped or punctured resources are indicated by dashed lines.
  • the HARQ-ACK and / or SR that was scheduled to be transmitted on the long PUCCH may be transmitted (piggyback) on the short PUCCH.
  • UCI for example, CSI
  • UCI types other than HARQ-ACK and SR
  • the predetermined information may be dropped.
  • the HARQ-ACK and / or SR that was scheduled to be transmitted on the short PUCCH may be transmitted on the long PUCCH.
  • UCI for example, CSI
  • UCI types other than HARQ-ACK and SR
  • the predetermined information may be dropped.
  • information on the predetermined priority and information on the predetermined information to be dropped may be notified to the UE by higher layer signaling or the like, or may be determined in advance in the specification.
  • the UCI that was scheduled to be transmitted using the long PUCCH punctured resource may or may not be transmitted on the short PUCCH.
  • information on the punctured resource (symbol) of the long PUCCH may be transmitted on the short PUCCH.
  • the UE transmits one or both of the long PUCCH and the short PUCCH at a predetermined time according to the scheduling of the base station.
  • the base station preferably performs control so that the time and frequency resources of the long PUCCH and the short PUCCH do not overlap.
  • FIGS. 6A and 6B are diagrams illustrating an example of resource mapping when long PUCCH and short PUCCH are TDM and FDM.
  • 6A and 6B show examples of DL centric slots.
  • the short PUCCH is TDM and FDM with the long PUCCH, and is TDM with the PUSCH.
  • short PUCCH, PUSCH, and the like may be transmitted in a plurality of non-contiguous areas in one slot.
  • the UE When long PUCCH and short PUCCH resources (for example, time and / or frequency resources) overlap at least partially in the same slot, the UE performs at least one control of (1) to (4) below. It is also possible to: (1) drop long PUCCH, (2) drop short PUCCH, (3) puncture long PUCCH in overlapping symbols, and (4) puncture short PUCCH in overlapping symbols.
  • the UCI transmitted on the PUCCH that is dropped and / or punctured may be transmitted on the PUCCH that is not dropped and / or punctured as described in the example of the TDM.
  • the UE even when the UE is configured to multiplex long PUCCH and short PUCCH in the same slot, it is possible to appropriately perform transmission of PUCCH.
  • the second embodiment relates to a case where the UE is not set to multiplex long PUCCH and short PUCCH in the same slot.
  • the UE transmits one of the long PUCCH and the short PUCCH in one slot according to the scheduling of the base station (for example, the timing instruction based on the information on the time and / or frequency resource described above).
  • the UE may drop the long PUCCH or the short PUCCH. May be dropped.
  • the HARQ-ACK and / or SR that was scheduled to be transmitted on the long PUCCH may be transmitted on the short PUCCH.
  • the HARQ-ACK and / or SR that was scheduled to be transmitted on the short PUCCH may be transmitted on the long PUCCH.
  • UCIs for example, CSI
  • corresponding to other UCI types other than HARQ-ACK and SR
  • the PUCCH can be appropriately transmitted.
  • the third embodiment relates to a method for appropriately determining validity / invalidity of multiplexing of a long PUCCH and a short PUCCH in the same slot as described in the first and second embodiments.
  • UE may transmit capability information (capability information) regarding the presence / absence of capability of multiplexing long PUCCH and short PUCCH in the same slot to the base station.
  • capability information capability information
  • the UE may transmit, as the capability information, information on at least one of the following: (1) supporting TDM of long PUCCH and short PUCCH in the same slot, (2) long PUCCH in the same slot And (3) support long PUCCH and short PUCCH TDM and FDM in the same slot, and (4) do not support long PUCCH and short PUCCH TDM in the same slot.
  • the capability information may be common (separated) with capability information regarding the presence / absence of capability of multiplexing NR PUCCH and NR PUSCH.
  • the capability information related to multiplexing of PUCCH and PUSCH may be regarded as capability information related to multiplexing of long PUCCH and short PUCCH in the same slot (may be replaced). That is, in the common case, if the UE transmits capability information related to multiplexing of PUCCH and PUSCH, this is equivalent to transmitting capability information related to multiplexing of long PUCCH and short PUCCH in the same slot.
  • the capability information related to multiplexing of PUCCH and PUSCH may be, for example, capability information related to TDM and / or FDM of short PUCCH and PUSCH, or capability information related to TDM and / or FDM of long PUCCH and PUSCH. May be.
  • the base station sets a multiplexing method (for example, TDM and / or FDM) of the long PUCCH and the short PUCCH in the same slot for the UE based on the at least one capability information notified from the UE.
  • Information on the multiplexing method (which may be referred to as setting information) is notified (set) by higher layer signaling (for example, RRC signaling, broadcast information), physical layer signaling (for example, DCI) or a combination thereof. Also good.
  • the UE may determine whether to multiplex the short PUCCH and the long PUCCH within one slot based on the setting information. According to this determination result, it is possible to determine whether to execute the process of the first embodiment or the process of the second embodiment.
  • the UE can appropriately determine whether long PUCCH and short PUCCH can be multiplexed in the same slot.
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
  • FIG. 7 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously by CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • a single neurology may be applied, or a plurality of different neurology may be applied.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
  • Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
  • scheduling information may be notified by DCI.
  • DCI for scheduling DL data reception may be referred to as DL assignment
  • DCI for scheduling UL data transmission may be referred to as UL grant.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
  • HARQ Hybrid Automatic Repeat reQuest
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH) shared by each user terminal 20
  • an uplink control channel (PUCCH: Physical Uplink Control Channel)
  • a random access channel (PRACH: Physical Random Access Channel)
  • User data, higher layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • delivery confirmation information SR
  • scheduling request etc.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 8 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing, and other transmission processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device, which is described based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 may transmit and / or receive signals using TTIs (TTI lengths) having a plurality of different lengths.
  • TTIs TTI lengths
  • the transmission / reception unit 103 uses a first TTI (for example, a long TTI) and a second TTI (for example, a short TTI) that is shorter than the first TTI in one or a plurality of carriers (cell, CC). ) May be used to receive the signal.
  • the transmission / reception unit 103 may receive a short PUCCH and a long PUCCH transmitted from the user terminal 20 after being multiplexed (for example, TDM and / or FDM) within a predetermined period (for example, one slot).
  • a short PUCCH and a long PUCCH transmitted from the user terminal 20 after being multiplexed (for example, TDM and / or FDM) within a predetermined period (for example, one slot).
  • the transmission / reception unit 103 includes information on the UCI type that can be transmitted on the long PUCCH and / or the short PUCCH, information on the time and / or frequency resources of the long PUCCH and / or the short PUCCH, and multiplexing of the long PUCCH and the short PUCCH in the same slot. At least one of the information on the method (setting information) may be transmitted to the user terminal 20.
  • the transmission / reception unit 103 may receive capability information regarding the capability of multiplexing the short PUCCH and the long PUCCH within the predetermined period from the user terminal 20.
  • FIG. 9 is a diagram illustrating an example of a functional configuration of the radio base station according to the embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and the wireless base station 10 shall also have another functional block required for radio
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
  • the control unit 301 controls, for example, signal generation by the transmission signal generation unit 302, signal allocation by the mapping unit 303, and the like.
  • the control unit 301 also controls signal reception processing by the reception signal processing unit 304, signal measurement by the measurement unit 305, and the like.
  • the control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control).
  • the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
  • the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • control unit 301 includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, Scheduling of the uplink reference signal and the like.
  • uplink data signal for example, a signal transmitted on PUSCH
  • uplink control signal for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.
  • a random access preamble for example, Scheduling of the uplink reference signal and the like.
  • the control unit 301 includes a first TTI (for example, a long TTI, a subframe, a slot, and the like), a second TTI (for example, a short TTI, an sTTI, a minislot, and the like) that has a TTI length shorter than the first TTI, Control transmission and / or reception of signals in one or more CCs using.
  • a first TTI for example, a long TTI, a subframe, a slot, and the like
  • a second TTI for example, a short TTI, an sTTI, a minislot, and the like
  • control unit 301 for a predetermined user terminal 20, a short uplink control channel (short PUCCH) having a short time length, a long uplink control channel (long PUCCH) having a longer time length than the short uplink control channel, May be determined (controlled) whether or not to be multiplexed within a predetermined period.
  • the control unit 301 may perform control to transmit information (setting information) on the multiplexing method of the long PUCCH and the short PUCCH in the same slot to a predetermined user terminal 20.
  • the control unit 301 may make the determination based on the capability information of the predetermined user terminal 20 acquired from the reception signal processing unit 304.
  • the capability information may be information regarding the capability of multiplexing the short PUCCH and the long PUCCH within the predetermined period.
  • the predetermined period may be one or a plurality of TTIs, for example, one or a plurality of slots, one or a plurality of minislots, and the like.
  • the control unit 301 may determine a PUCCH resource of a short PUCCH and / or a long PUCCH for a predetermined user terminal 20 and perform control for transmitting information for setting the PUCCH resource to the user terminal 20.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
  • the DL assignment and UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
  • the measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 301.
  • FIG. 10 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 may transmit and / or receive a signal using a plurality of TTIs (TTI lengths) having different lengths.
  • TTI lengths For example, the transmission / reception unit 203 uses a first TTI (for example, a long TTI) and a second TTI (for example, a short TTI) that is shorter than the first TTI in one or a plurality of carriers (cell, CC). ) May be used for signal transmission.
  • the transmission / reception unit 203 may multiplex (for example, TDM and / or FDM) the short PUCCH and the long PUCCH within a predetermined period (for example, 1 slot) and transmit the multiplexed data to the radio base station 10.
  • TDM and / or FDM multiplex
  • the short PUCCH and the long PUCCH within a predetermined period (for example, 1 slot) and transmit the multiplexed data to the radio base station 10.
  • the transmission / reception unit 203 includes information on UCI types that can be transmitted on the long PUCCH and / or short PUCCH, information on time and / or frequency resources of the long PUCCH and / or short PUCCH, and multiplexing of the long PUCCH and short PUCCH in the same slot. At least one of the information on the method (setting information) may be received from the radio base station 10.
  • the transmission / reception unit 203 may transmit capability information regarding the capability of multiplexing the short PUCCH and the long PUCCH within the predetermined period to the radio base station 10.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • the functional blocks of the characteristic part in the present embodiment are mainly shown, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402, signal allocation by the mapping unit 403, and the like.
  • the control unit 401 also controls signal reception processing by the reception signal processing unit 404, signal measurement by the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
  • the control unit 401 includes a first TTI (for example, a long TTI, a subframe, a slot, etc.), a second TTI (for example, a short TTI, an sTTI, a minislot, etc.) having a TTI length shorter than the first TTI, Control transmission and / or reception of signals in one or more CCs using.
  • a first TTI for example, a long TTI, a subframe, a slot, etc.
  • a second TTI for example, a short TTI, an sTTI, a minislot, etc.
  • control unit 401 multiplexes a short uplink control channel (short PUCCH) having a short time length and a long uplink control channel (long PUCCH) having a longer time length than the short uplink control channel within a predetermined period. It may be determined whether or not.
  • short PUCCH short uplink control channel
  • long PUCCH long uplink control channel
  • the control unit 401 may make the determination based on the setting information acquired from the reception signal processing unit 404.
  • the predetermined period may be one or a plurality of TTIs, for example, one or a plurality of slots, one or a plurality of minislots, and the like.
  • control unit 401 When determining that the short PUCCH and the long PUCCH are multiplexed within the predetermined period based on the setting information, the control unit 401 transmits UCIs corresponding to different UCI types in the short PUCCH and the long PUCCH, respectively. Control may be performed.
  • control unit 401 determines that the short PUCCH and the long PUCCH are multiplexed within the predetermined period based on the setting information, and the short PUCCH resource and the long PUCCH resource overlap at least partially Alternatively, control may be performed to drop any PUCCH among these PUCCHs or to puncture resources overlapping any PUCCH.
  • control unit 401 determines that the short PUCCH and the long PUCCH are not multiplexed within the predetermined period, and transmits the short PUCCH and the long PUCCH within the predetermined period. When set to, control may be performed to drop any PUCCH among these PUCCHs.
  • the control unit 401 may perform control to transmit capability information related to the capability of multiplexing the short PUCCH and the long PUCCH within the predetermined period (for example, capability information related to the presence or absence of capability).
  • the setting information used for the determination may be determined by the radio base station 10 based on the capability information, for example.
  • the control unit 401 may control generation and / or mapping of UCI to be transmitted on the short PUCCH and / or the long PUCCH. For example, the control unit 401 may perform control to transmit UCIs corresponding to the same UCI type using short PUCCH and long PUCCH, or may perform control to transmit UCIs corresponding to different (separate) UCI types. Also good. The control unit 401 may determine a PUCCH resource of a short PUCCH and / or a long PUCCH.
  • control unit 401 may update parameters used for control based on the information.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • CSI channel state information
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • each function in the radio base station 10 and the user terminal 20 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004. It is realized by controlling the reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the like data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain). Further, the slot may be a time unit based on the numerology.
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • mathematical formulas and the like using these parameters may differ from those explicitly disclosed herein.
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limiting in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory), or may be managed by a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicitly performed, but implicitly (for example, by not performing notification of the predetermined information or another (By notification of information).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group a base station
  • carrier a base station
  • component carrier a base station
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • access point transmission point
  • reception point femtocell
  • small cell small cell
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the specific operation assumed to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by one or more network nodes other than the base station and the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark), The present invention may be applied to a system using other appropriate wireless communication methods and / or a next generation system extended based on these.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection refers to any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples It can be considered to be “connected” or “coupled” to each other, such as by using electromagnetic energy having wavelengths in the region, microwave region, and / or light (both visible and invisible) region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本発明の一態様に係るユーザ端末は、時間長の短いショート上り制御チャネルと、当該ショート上り制御チャネルより時間長が長いロング上り制御チャネルと、を所定の期間内で多重するための設定情報を受信する受信部と、当該設定情報に基づいて、前記ショート上り制御チャネル及び前記ロング上り制御チャネルを前記所定の期間内で多重するか否かを判断する制御部と、を有することを特徴とする。本発明の一態様によれば、互いに異なる時間長を有する複数の上り制御チャネルを用いる場合であっても、上り制御情報を適切に通知できる。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.13、14又は15以降などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-13)では、1msのサブフレーム(送信時間間隔(TTI:Transmission Time Interval)などともいう)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該サブフレームは、チャネル符号化された1データパケットの送信時間単位であり、スケジューリング、リンクアダプテーション、再送制御(HARQ:Hybrid Automatic Repeat reQuest)などの処理単位となる。
 また、既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末(UE:User Equipment)は、上り制御チャネル(例えば、PUCCH(Physical Uplink Control Channel))及び/又は上りデータチャネル(例えば、PUSCH(Physical Uplink Shared Channel))を用いて、上り制御情報(UCI:Uplink Control Information)を送信する。当該上り制御チャネルの構成(フォーマット)は、PUCCHフォーマットなどとも呼ばれる。
 UCIは、スケジューリング要求(SR:Scheduling Request)、DLデータ(DLデータチャネル(PDSCH:Physical Downlink Shared Channel))に対する再送制御情報(HARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledge)、ACK/NACK(Negative ACK)などとも呼ばれる)、チャネル状態情報(CSI:Channel State Information)の少なくとも一つを含む。
 将来の無線通信システム(例えば、5G、NR)は、様々な無線通信サービスを、それぞれ異なる要求条件(例えば、超高速、大容量、超低遅延など)を満たすように実現することが期待されている。
 例えば、NRでは、高速大容量通信をサポートするeMBB(enhanced Mobile Broad Band)、大量の端末をサポートするmMTC(massive Machine Type Communication)、超高信頼低遅延通信をサポートするURLLC(Ultra Reliable and Low Latency Communications)などと呼ばれる無線通信サービスの提供が検討されている。
 ところで、NRでは、互いに異なる時間長(例えば、シンボル数)を有する複数のPUCCHを用いることが検討されている。しかしながら、1スロット内において、同じUEがこれらの両方のPUCCHを多重することは、これまで検討されていない。このような構成により、NRにおけるスケジューリングの柔軟性を高めることができると期待される。また、このような構成について利用できないとすると、通信スループット、周波数利用効率などの劣化が生じるおそれがある。
 本発明はかかる点に鑑みてなされたものであり、互いに異なる時間長を有する複数の上り制御チャネルを用いる場合であっても、上り制御情報を適切に通知できるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本発明の一態様に係るユーザ端末は、時間長の短いショート上り制御チャネルと、当該ショート上り制御チャネルより時間長が長いロング上り制御チャネルと、を所定の期間内で多重するための設定情報を受信する受信部と、当該設定情報に基づいて、前記ショート上り制御チャネル及び前記ロング上り制御チャネルを前記所定の期間内で多重するか否かを判断する制御部と、を有することを特徴とする。
 本発明によれば、互いに異なる時間長を有する複数の上り制御チャネルを用いる場合であっても、上り制御情報を適切に通知できる。
図1A-1Cは、NRスロットのリソースマッピングの一例を示す図である。 図2A-2Cは、それぞれ異なるUEに対するロングPUCCH及びショートPUCCHをTDM及び/又はFDMする場合のリソースマッピングの一例を示す図である。 図3A-3Cは、ロングPUCCH及びショートPUCCHをTDMする場合のリソースマッピングの一例を示す図である。 図4A-4Cは、ロングPUCCH及びショートPUCCHをTDMする場合のリソースマッピングの別の一例を示す図である。 図5A-5Cは、同一スロットにおいて、ロングPUCCH及びショートPUCCHの送信タイミングが時間的に重複する場合のリソースマッピングの一例を示す図である。 図6A及び6Bは、ロングPUCCH及びショートPUCCHをTDM及びFDMする場合のリソースマッピングの一例を示す図である。 図7は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図8は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 図9は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 図10は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 図11は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 図12は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 将来の無線通信システム(例えば、LTE Rel.14、15以降、5G、NRなど。以下、NRともいう)では、単一のニューメロロジーではなく、複数のニューメロロジーを導入することが検討されている。
 ここで、ニューメロロジーとは、あるRAT(Radio Access Technology)における信号のデザイン、RATのデザインなどを特徴付ける通信パラメータのセットを意味してもよく、サブキャリア間隔(SCS:SubCarrier-Spacing)、シンボル長、サイクリックプレフィックス長、サブフレーム長、送信時間間隔(TTI:Transmission Time Interval)長などの、周波数方向及び/又は時間方向に関するパラメータであってもよい。例えば、NRでは、15kHz、30kHz、60kHz、120kHz、240kHzなどの複数のSCSがサポートされてもよい。
 また、NRでは、複数のニューメロロジーのサポートなどに伴い、既存のLTEシステム(LTE Rel.13以前)と同一及び/又は異なる時間単位(例えば、サブフレーム、スロット、ミニスロット、サブスロット、TTI、ショートTTI、無線フレームなどともいう)を導入することが検討されている。
 なお、TTIとは、送受信データのトランスポートブロック、コードブロック、及び/又はコードワードなどを送受信する時間単位のことを表してもよい。TTIが与えられたとき、実際にデータのトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(シンボル数)は、当該TTIよりも短くてもよい。
 例えば、TTIが所定数のシンボル(例えば、14シンボル)で構成される場合、送受信データのトランスポートブロック、コードブロック、及び/又はコードワード、などは、その中の1から所定数のシンボル区間で送受信されるものとすることができる。送受信データのトランスポートブロック、コードブロック、及び/又はコードワードを送受信するシンボル数がTTIを構成するシンボル数よりも小さい場合、TTI内でデータをマッピングしないシンボルには、参照信号、制御信号などをマッピングすることができる。
 サブフレームは、ユーザ端末(例えば、UE:User Equipment)が利用する(及び/又は設定された)ニューメロロジーに関係なく、所定の時間長(例えば、1ms)を有する時間単位としてもよい。
 一方、スロットは、UEが利用するニューメロロジーに基づく時間単位であってもよい。例えば、SCSが15kHz又は30kHzである場合、1スロットあたりのシンボル数は、7又は14シンボルであってもよい。サブキャリア間隔が60kHz以上の場合、1スロットあたりのシンボル数は、14シンボルであってもよい。また、スロットには、複数のミニ(サブ)スロットが含まれてもよい。
 一般に、SCSとシンボル長とは逆数の関係にある。このため、スロット(又はミニ(サブ)スロット)あたりのシンボル数が同一であれば、SCSが高く(広く)なるほどスロット長は短くなるし、SCSが低く(狭く)なるほどスロット長が長くなる。なお、「SCSが高い」は、「SCSが広い」と言い換えられてもよく、「SCSが低い」は、「SCSが狭い」と言い換えられてもよい。
 NRでは、既存のLTEシステム(例えば、LTE Rel.8-13)のPUCCH(Physical Uplink Control Channel)フォーマットよりも短い期間(short duration)で構成されるUL制御チャネル(以下、ショートPUCCH(short PUCCH、shortened PUCCH)ともいう)、及び/又は、当該短い期間よりも長い期間(long duration)で構成されるUL制御チャネル(以下、ロングPUCCH(long PUCCH)ともいう)をサポートすることが検討されている。
 ショートPUCCHは、短期間PUCCH(PUCCH in short duration)と呼ばれてもよく、ロングPUCCHは、長期間PUCCH(PUCCH in long duration)と呼ばれてもよい。あるいは、ショートPUCCHはPUCCHフォーマット1、PUCCH構成1、PUCCHモード1などと呼ばれてもよく、ロングPUCCHはPUCCHフォーマット2、PUCCH構成2、PUCCHモード2、などと呼ばれてもよい。なお、1と2は逆であってもよい。
 ショートPUCCHは、あるSCSにおける所定数のシンボル(例えば、1又は2シンボル)で構成される。当該ショートPUCCHでは、上り制御情報(UCI:Uplink Control Information)と参照信号(RS:Reference Signal)とが時分割多重(TDM:Time Division Multiplexing)されてもよいし、周波数分割多重(FDM:Frequency Division Multiplexing)されてもよい。RSは、例えば、UCIの復調に用いられる復調用参照信号(DMRS:DeModulation Reference Signal)であってもよい。
 ショートPUCCHの各シンボルのSCSは、データチャネル用のシンボル(以下、データシンボルともいう)のSCSと同一であってもよいし、より高くてもよい。データチャネルは、例えば、下りデータチャネル(PDSCH:Physical Downlink Shared Channel)、上りデータチャネル(PUSCH:Physical Uplink Shared Channel)などであってもよい。
 ショートPUCCHは、より高い(大きい、広い)SCS(例えば、60kHz)のPUCCHと呼ばれてもよい。なお、1つのショートPUCCHが送信される時間単位は、ショートTTIと呼ばれてもよい。
 ショートPUCCHでは、マルチキャリア波形(例えば、サイクリックプレフィックスOFDM(CP-OFDM:Cyclic Prefix Orthogonal Frequency Division Multiplexing)ベースの波形)が用いられてもよいし、シングルキャリア波形(例えば、DFT拡散OFDM(DFT-S-OFDM:Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing)ベースの波形)が用いられてもよい。
 なお、波形は、伝送方式、多重方式、変調方式、アクセス方式、波形方式などと呼ばれてもよい。また、波形は、OFDM波形に対するDFTプリコーディング(スプレッディング)の適用有無で特徴付けられてもよい。例えば、CP-OFDMはDFTプリコーディングを適用しない波形(信号)と呼ばれてもよいし、DFT-S-OFDMはDFTプリコーディングを適用する波形(信号)と呼ばれてもよい。また、「波形」は「波形の信号」、「波形に従う信号」、「信号の波形」、「信号」などで読み替えられてもよい。
 一方、ロングPUCCHは、ショートPUCCHよりもカバレッジを向上させる及び/又はより多くのUCIを伝送するために、スロット内の複数シンボルに渡って配置される。ロングPUCCHがサポートする複数シンボルの候補が規定又は設定されてもよい。例えば、ロングPUCCHがサポートする複数シンボルは所定のシンボル数(例えば、4シンボル)以上のシンボルであってもよい。当該ロングPUCCHでは、UCIとRS(例えば、DMRS)とがTDMされてもよいし、FDMされてもよい。
 ロングPUCCHは、より低い(小さい、狭い)SCS(例えば、15kHz)のPUCCHと呼ばれてもよい。なお、1つのロングPUCCHが送信される時間単位は、ロングTTIと呼ばれてもよい。
 ロングPUCCHは、ショートPUCCHと等しい数の周波数リソースで構成されてもよいし、電力増幅(power boosting)効果を得るため、ショートPUCCHよりも少ない数の周波数リソース(例えば、1又は2つの物理リソースブロック(PRB:Physical Resource Block))で構成されてもよい。また、ロングPUCCHは、ショートPUCCHと同一のスロット内に配置されてもよい。
 ロングPUCCHでは、シングルキャリア波形(例えば、DFT-s-OFDM波形)が用いられてもよいし、マルチキャリア波形(例えば、OFDM波形)が用いられてもよい。また、ロングPUCCHには、スロット内の所定期間(例えば、ミニ(サブ)スロット)ごとに周波数ホッピングが適用されてもよい。
 なお、ロングPUCCHは、既存のLTEシステム(例えば、LTE Rel.8-13)で規定されるPUCCHと異なるPUCCH(異なるフォーマットのPUCCH)であってもよい。
 以下、単なる「PUCCH」という表記は、「ショートPUCCH及び/又はロングPUCCH」と読み替えられてもよい。
 PUCCHは、スロット内でULデータチャネル(以下、PUSCHともいう)とTDM及び/又はFDMされてもよい。また、PUCCHは、スロット内でDLデータチャネル(以下、PDSCHともいう)及び/又はDL制御チャネル(以下、PDCCH(Physical Downlink Control Channel)ともいう)とTDM及び/又はFDMされてもよい。
 PUCCHを用いて、DLデータに対する再送制御情報(HARQ-ACK、ACK/NACK、A/Nなどともいう)、スケジューリングリクエスト(SR:Scheduling Request)、CSI(例えば、周期的CSI(P-CSI:Periodic CSI)、非周期的CSI(A-CSI:Aperiodic CSI))、ビーム識別情報、バッファステータスレポート(BSR:Buffer Status Report)、パワーヘッドルームレポート(PHR:Power Headroom Report)及びその他の制御情報の少なくとも1つを含むUCIが送信される。
 なお、ビーム識別情報は、ビームインデックス(BI:Beam Index)、プリコーディング行列指標(PMI:Precoding Matrix Indicator)、TPMI(Transmitted PMI)、所定の参照信号のポートインデックス(例えば、DMRSポートインデックス(DPI:DMRS Port Index)、SRSポートインデックス(SPI:SRS Port Index))、所定の参照信号のリソース指標(例えば、CSI-RSリソース指標(CRI:CSI-RS Resource Indicator)、DMRSリソースインデックス(DRI:DMRS Resource Index)、SRSリソースインデックス(SRI:SRS Resource Index))などで特定されてもよい。
 図1A-1Cは、NRスロットのリソースマッピングの一例を示す図である。NRでは、データが送信される期間をUL期間と定義し、少ないシンボル数でUL送信を行える期間をショートUL期間と定義することが検討されている。なお、UL期間はロングUL期間と呼ばれてもよい。また、「期間」は、「領域」、「リソース」、「シンボル」などで読み替えられてもよい。また、NRスロット(NRサブフレーム)の構成は図1A-1Cに示す例に限られない。例えば、各領域の順番は図に示す順番に限られない。
 図1Aでは、NRスロット先頭から、PDCCH領域、PDSCH領域、無送信期間(ガード期間(GP:Guard Period)ともいう)、そしてショートPUCCHを含むショートUL領域の順でスロットが構成されている。このようにDL通信を行うシンボルがUL通信を行うシンボルよりも多く含まれるスロットは、DLセントリックスロットと呼ばれてもよい。
 図1Bでは、NRスロット先頭から、PDCCH領域、ガード期間、ロングPUCCH及びPUSCHを含むUL領域、そしてショートPUCCHを含むショートUL領域の順でスロットが構成されている。このようにUL通信を行うシンボルがDL通信を行うシンボルよりも多く含まれるスロットは、ULセントリックスロットと呼ばれてもよい。
 図1Cでは、NRスロット先頭から、ロングPUCCH及びPUSCHを含むUL領域、そしてショートPUCCHを含むショートUL領域の順でスロットが構成されている。このようにDL通信を行うシンボルよりがない(又はUL通信を行うシンボルのみが含まれる)スロットは、ULオンリースロットと呼ばれてもよい。なお、ULオンリースロットには、ガード期間が含まれてもよい。
 ところで、NRにおいては、1スロット内に、それぞれ異なるUEに対するショートPUCCH及びロングPUCCHを、TDM及び/又はFDMすることをサポートすることが検討されている。
 また、URLLCにおいては、低遅延を実現するために、SR送信のためのリソースを1スロットより短い時間間隔で設定することが検討されている。
 図2A-2Cは、それぞれ異なるUEに対するロングPUCCH及びショートPUCCHをTDM及び/又はFDMする場合のリソースマッピングの一例を示す図である。図2A及び2Cは、それぞれDLセントリックスロットの例を示す。
 図2Aでは、ショートPUCCHは、ロングPUCCH及びPUSCHとTDMされている。図2Bでは、ショートPUCCHは、ロングPUCCHとTDMされ、PUSCHとTDM及びFDMされている。図2Cでは、ショートPUCCHは、ロングPUCCHとTDM及びFDMされ、PUSCHとTDMされている。
 しかしながら、1スロット内に、同じUEに対する(同じUE用の)ショートPUCCH及びロングPUCCHを多重することは、これまで検討されていない。このような構成により、NRにおけるスケジューリングの柔軟性を高めることができると期待される。また、このような構成について利用できないとすると、通信スループット、周波数利用効率などの劣化が生じるおそれがある。
 そこで、本発明者らは、1スロット内に、同じUEに対するショートPUCCH及びロングPUCCHを多重するための方法を検討し、本発明に至った。また、1スロット内に、同じUEに対するショートPUCCH及びロングPUCCHを多重する場合に、両PUCCHの使い分け(信号の割り当てなど)を適切に行う方法についても見出した。
 以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(無線通信方法)
<第1の実施形態>
 第1の実施形態は、UEが、同一スロットにおけるロングPUCCH及びショートPUCCHの多重を設定された場合に関する。
 UEは、同一スロットにおいて、ロングPUCCH及びショートPUCCHで、それぞれ異なるUCIタイプに対応するUCIを送信してもよいし、同じUCIタイプに対応するUCIを送信してもよい。
 ここで、UCIタイプは、UCIの内容(どのUCIが送信されるか)を示す情報を含んでもよい。例えば、UCIタイプは、UCIが、HARQ-ACK、SR、CSI、P-CSI、A-CSI、ビーム識別情報、BSR、PHR及びその他の制御情報のうち、特定の1つ又は複数を含むことを示す情報であってもよい。
 また、UCIタイプは、UCIに求められる性能及び/又は品質に関する情報を含んでもよい。例えば、UCIタイプは、遅延(低遅延など)、信頼性(高信頼性など)、スループット(高スループットなど)のいずれか又はこれらの組み合わせを示してもよい。また、UCIタイプは、NRのサービスタイプに関する情報を含んでもよく、例えば、UCIがeMBB、URLLC、mMTCの少なくとも1つ向けのUCIであることを示す情報を含んでもよい。
 例えば、UEは、同じスロットにおいて、ロングPUCCHを用いて1つ又は複数のP-CSIを送信し、ショートPUCCHを用いて1つ又は複数のHARQ-ACKを送信してもよい。この場合、ペイロードが比較的大きいCSI報告はリソース容量の大きいロングPUCCHで送信し、ペイロードが比較的小さいHARQ-ACKはショートPUCCHで送信できるので、両者の品質のバランスを確保することができる。
 ここで、SRがある場合には、当該SRはロングPUCCHのP-CSIと多重されてもよいし、ショートPUCCHのHARQ-ACKと多重されてもよい。なお、ロングPUCCH及びショートPUCCHの両方を用いて、それぞれ異なるトラフィック向けの異なるリソースを要求する別々のSRが送信されてもよい。
 また、UEは、同じスロットにおいて、ロングPUCCHを用いて特定のタイプのDLデータに対応するHARQ-ACKを送信し、ショートPUCCHを用いて別のタイプのDLデータに対応するHARQ-ACKを送信してもよい。例えば、ロングPUCCHは高信頼な(例えば、URLLC向けの)DLデータに対するHARQ-ACKに用いられてもよく、ショートPUCCHは低遅延な(例えば、eMBB向けの)DLデータに対するHARQ-ACKに用いられてもよい。この場合、品質を確保しやすいロングPUCCHで高信頼性が要求されるUCIをフィードバックし、低遅延が望まれるUCIにはショートPUCCHを適用することで、遅延を低減することができる。
 なお、ロングPUCCHとショートPUCCHの両方でHARQ-ACKを送信する場合、両者のHARQ-ACKは、異なるスロット、ミニスロット、コンポーネントキャリア及び/又はセルで送受信されたデータに対するHARQ-ACKであってもよい。
 例えば、第nスロットでロングPUCCHとショートPUCCHを送信する場合、第n-k-1スロットまでのデータに対するHARQ-ACKはロングPUCCHで送信し、第n-kスロットのデータに対するHARQ-ACKはショートPUCCHで送信することができる。この場合、処理時間が不足して第n-kスロットのデータに対するHARQ-ACKをロングPUCCHで送信できない場合であっても、ショートPUCCHは送信開始までの処理時間を大きくとれることから、データを復号し、適切にHARQ-ACKを生成することができる。
 あるいは、第mコンポーネントキャリアでロングPUCCHとショートPUCCHを送信する場合、第mコンポーネントキャリア以外のデータに対するHARQ-ACKはロングPUCCHで送信し、第mコンポーネントキャリアのデータに対するHARQ-ACKはショートPUCCHで送信することができる。この場合も、第mコンポーネントキャリアのデータに対するHARQ-ACKとそれ以外のコンポーネントキャリアのデータに対するHARQ-ACKを異なる処理時間で生成できることから、特定のコンポーネントキャリアにおいて、より低遅延なHARQ-ACK生成を実現することができる。
 また、SRがある場合には、当該SRはロングPUCCHのHARQ-ACKと多重されてもよいし、ショートPUCCHのHARQ-ACKと多重されてもよい。なお、ロングPUCCH及びショートPUCCHの両方を用いて、それぞれ異なるトラフィック向けの異なるリソースを要求する別々のSRが送信されてもよい。
 UEは、ロングPUCCH及び/又はショートPUCCHで送信可能なUCIタイプに関する情報に基づいて、ロングPUCCH及び/又はショートPUCCHで送信するUCIを判断してもよい。
 ロングPUCCH及び/又はショートPUCCHで送信可能なUCIタイプに関する情報は、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング(例えば、MAC制御要素(MAC CE(Control Element))、ブロードキャスト情報など)、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information))又はこれらの組み合わせを用いて、基地局(BS(Base Station)、送受信ポイント(TRP:Transmission/Reception Point)、eNB(eNode B)、gNBなどと呼ばれてもよい)からUEに通知(設定)されてもよい。
 また、UEは、ロングPUCCH及び/又はショートPUCCHの時間及び/又は周波数リソースに関する情報に基づいて、ロングPUCCH及び/又はショートPUCCHを送信する(と設定された)リソースを判断できる。
 ロングPUCCH及び/又はショートPUCCHの時間及び/又は周波数リソースに関する情報は、上位レイヤシグナリング(例えば、RRCシグナリング、ブロードキャスト情報)、物理レイヤシグナリング(例えば、DCI)又はこれらの組み合わせを用いて、基地局からUEに通知(設定)されてもよい。
 なお、ロングPUCCH及び/又はショートPUCCHの時間及び/又は周波数リソースに関する情報は、例えば、送信タイミング(スロットインデックスなど)、送信周期、シンボル数、シンボル長、リソースブロック数、ホッピングに関する情報(例えば、ホッピングの有無、ホッピングパターンを特定するインデックス)などの少なくとも1つであってもよい。
 また、ロングPUCCH及びショートPUCCHは、TDMされてもよいし、FDMされてもよいし、TDM及びFDMされてもよい。
 同一スロットにおけるロングPUCCH及びショートPUCCHの多重方法(例えば、TDM及び/又はFDM)が、UEに対して設定されてもよい。当該多重方法に関する情報は、上位レイヤシグナリング(例えば、RRCシグナリング、ブロードキャスト情報)、物理レイヤシグナリング(例えば、DCI)又はこれらの組み合わせにより、通知(設定)されてもよい。
[ロングPUCCH及びショートPUCCHをTDM]
 ロングPUCCH及びショートPUCCHをTDMする(TDMすると設定された)場合、UEは、基地局のスケジューリング(例えば、上述の時間及び/又は周波数リソースに関する情報によるタイミング指示)に従って、所定の時間において、ロングPUCCH及びショートPUCCHのいずれか一方を送信する。これにより、PUCCHの電力を大きくできるため、カバレッジの確保が容易になる。基地局は、ロングPUCCH及びショートPUCCHの時間及び周波数リソースが重複しないように制御することが好ましい。
 図3A-3Cは、ロングPUCCH及びショートPUCCHをTDMする場合のリソースマッピングの一例を示す図である。図3A及び3Cは、1スロットが7OS(OFDM Symbol)で構成されるDLセントリックスロットの例を示し、図3Bは、1スロットが14OSで構成されるULオンリースロットの例を示す。なお、スロットのOSの数は、これらに限られない。
 図3A-3Cでは、ショートPUCCHは、ロングPUCCH及びPUSCHとTDMされている。図3Bでは、スロットの先頭、中央及び末尾のそれぞれに2OS長のショートPUCCHが位置し、それらの間に4OS長のロングPUCCH及びPUSCHが位置するようにTDMされている。このように、ショートPUCCH、ロングPUCCH及びPUSCHなどは、1スロット内の複数の非連続的な領域で送信されてもよい。
 図3A及び3Bは、遷移時間(transient time)が小さい(又は短い)場合に利用されてもよい。ここで、遷移時間は、遷移期間(transient period)、波形無定義区間などと呼ばれてもよく、オフ時の要求電力からオン時の要求電力に切り替える(または、この逆)ための時間である。
 遷移時間においては送信信号の品質が保証されない。このため、UEは、遷移時間中における正しくない(又は所定の品質を満たさない)信号の送信及び/又は信号の無送信が許容される。つまり、遷移時間では波形の歪が許容される。遷移時間としては、1つ又は複数の期間が規定されてもよく、例えば、所定期間(例えば、20μs、5μsなど)が規定されてもよい。
 ショートPUCCHを適用する場合、スロット内で遷移時間が発生するため、ショートPUCCHと他の信号(又はチャネル)間で干渉等が発生し、通信品質が劣化するおそれがある。このため、大きな(又は長い)遷移時間を利用する場合、図3Cに示すように、ショートPUCCHの前(及び/又は後)に、当該大きな遷移時間の影響を低減するためのギャップ期間を設けることが好ましい。
 図4A-4Cは、ロングPUCCH及びショートPUCCHをTDMする場合のリソースマッピングの別の一例を示す図である。図4A-4Cはそれぞれ、図3A-3CにおいてショートPUCCHの周波数リソースがロングPUCCHと同じ周波数リソース(帯域幅)である例を示す。図4A-4Cでは、ショートPUCCHは、ロングPUCCHとTDMされ、PUSCHとTDM及びFDMされている。
 同一スロットにおいて、ロングPUCCHのリソース(例えば、時間及び/又は周波数リソース)及びショートPUCCHのリソースが重複する(重複するように設定される)場合がある。例えば、両リソースが時間的に重複する場合、周波数的に重複する場合などがある。この場合の制御について、図5を参照して説明する。
 図5A-5Cは、同一スロットにおいて、ロングPUCCH及びショートPUCCHの送信タイミングが時間的に重複する場合のリソースマッピングの一例を示す図である。図5A-5Cの左部分は、ショートPUCCHのリソースを破線で示したものである。
 同一スロットにおいて、ロングPUCCH及びショートPUCCHの送信タイミングが時間的に重複する場合、UEは、以下の(1)-(3)の少なくとも1つの制御を実施してもよい:(1)ロングPUCCHをドロップ(図5A)、(2)ショートPUCCHをドロップ(図5B)、(3)重複シンボルにおいてロングPUCCHをパンクチャ(図5C)。図5A-5Cの右部分において、ドロップ又はパンクチャされたリソースが破線で示されている。
 上記(1)の場合、ロングPUCCHで伝送する予定だったHARQ-ACK及び/又はSRは、ショートPUCCHで伝送(piggyback)されてもよい。ロングPUCCHで伝送する予定だった他の(HARQ-ACK及びSR以外の)UCIタイプに該当するUCI(例えば、CSI)は、一部又は全部がショートPUCCHで伝送されてもよいし、所定の優先度に基づき、所定の情報がドロップされてもよい。
 上記(2)の場合、ショートPUCCHで伝送する予定だったHARQ-ACK及び/又はSRは、ロングPUCCHで伝送されてもよい。ショートPUCCHで伝送する予定だった他の(HARQ-ACK及びSR以外の)UCIタイプに該当するUCI(例えば、CSI)は、一部又は全部がロングPUCCHで伝送されてもよいし、所定の優先度に基づき、所定の情報がドロップされてもよい。
 なお、所定の優先度に関する情報、ドロップ対象となる所定の情報に関する情報などは、上位レイヤシグナリングなどでUEに通知されてもよいし、仕様で予め定められてもよい。
 上記(3)の場合、ロングPUCCHのパンクチャされたリソースで伝送する予定だったUCIは、ショートPUCCHで伝送されてもよいし、伝送されなくてもよい。また、ロングPUCCHのパンクチャされたリソース(シンボル)に関する情報が、ショートPUCCHで伝送されてもよい。
[ロングPUCCH及びショートPUCCHをTDM及びFDM]
 ロングPUCCH及びショートPUCCHをTDM及びFDMする場合、UEは、基地局のスケジューリングに従って、所定の時間において、ロングPUCCH及びショートPUCCHの一方又は両方を送信する。基地局は、ロングPUCCH及びショートPUCCHの時間及び周波数リソースが重複しないように制御することが好ましい。
 図6A及び6Bは、ロングPUCCH及びショートPUCCHをTDM及びFDMする場合のリソースマッピングの一例を示す図である。図6A及び6Bは、DLセントリックスロットの例を示す。図6A及び6Bでは、ショートPUCCHは、ロングPUCCHとTDM及びFDMされ、PUSCHとTDMされている。図6Bに示すように、ショートPUCCH及びPUSCHなどは、1スロット内の複数の非連続的な領域で送信されてもよい。
 同一スロットにおいて、ロングPUCCH及びショートPUCCHのリソース(例えば、時間及び/又は周波数リソース)が少なくとも一部重複する場合、UEは、以下の(1)-(4)の少なくとも1つの制御を実施してもよい:(1)ロングPUCCHをドロップ、(2)ショートPUCCHをドロップ、(3)重複シンボルにおいてロングPUCCHをパンクチャ、(4)重複シンボルにおいてショートPUCCHをパンクチャ。
 ドロップ及び/又はパンクチャされてしまうPUCCHで送信されるUCIについては、上記TDMの例で説明したように、ドロップ及び/又はパンクチャされないPUCCHで送信されてもよい。
 以上、説明したように、第1の実施形態によれば、UEが、同一スロットにおけるロングPUCCH及びショートPUCCHの多重を設定された場合であっても、PUCCHの送信を適切に実施できる。
<第2の実施形態>
 第2の実施形態は、UEが、同一スロットにおけるロングPUCCH及びショートPUCCHの多重を設定されない場合に関する。
 第2の実施形態では、UEは、基地局のスケジューリング(例えば、上述の時間及び/又は周波数リソースに関する情報によるタイミング指示)に従って、1スロット内ではロングPUCCH及びショートPUCCHのいずれか一方を送信する。
 なお、仮に同一スロットにおいて、ロングPUCCH及びショートPUCCHの送信タイミングが時間的に重複する(時間的に重複する設定が行われた)場合、UEは、ロングPUCCHをドロップしてもよいし、ショートPUCCHをドロップしてもよい。
 前者の場合、ロングPUCCHで伝送する予定だったHARQ-ACK及び/又はSRは、ショートPUCCHで伝送されてもよい。後者の場合、ショートPUCCHで伝送する予定だったHARQ-ACK及び/又はSRは、ロングPUCCHで伝送されてもよい。なお、他の(HARQ-ACK及びSR以外の)UCIタイプに該当するUCI(例えば、CSI)は、ドロップされなかった方のPUCCHで伝送されてもよいし、ドロップされてもよい。
 以上、説明したように、第2の実施形態によれば、UEが、同一スロットにおけるロングPUCCH及びショートPUCCHの多重を設定されない場合であっても、PUCCHの送信を適切に実施できる。
<第3の実施形態>
 第3の実施形態は、第1及び第2の実施形態で説明したような、同一スロットにおけるロングPUCCH及びショートPUCCHの多重の有効/無効を適切に判断する方法に関する。
 UEは、同一スロットにおけるロングPUCCH及びショートPUCCHの多重を行う能力の有無に関する能力情報(capability information)を、基地局に送信してもよい。
 例えば、UEは、当該能力情報として、以下の少なくとも1つに関する情報を送信してもよい:(1)同一スロットにおけるロングPUCCH及びショートPUCCHのTDMをサポートすること、(2)同一スロットにおけるロングPUCCH及びショートPUCCHのFDMをサポートすること、(3)同一スロットにおけるロングPUCCH及びショートPUCCHのTDM及びFDMをサポートすること、(4)同一スロットにおけるロングPUCCH及びショートPUCCHのTDMをサポートしないこと。
 なお、当該能力情報は、NR PUCCH及びNR PUSCHの多重を行う能力の有無に関する能力情報と共通(common)であってもよいし、別々(separated)であってもよい。共通の場合、PUCCH及びPUSCHの多重に関する能力情報を、同一スロットにおけるロングPUCCH及びショートPUCCHの多重に関する能力情報とみなしてもよい(読み替えてもよい)。つまり、共通の場合は、UEは、PUCCH及びPUSCHの多重に関する能力情報を送信すれば、同一スロットにおけるロングPUCCH及びショートPUCCHの多重に関する能力情報を送信することに等しい。
 ここで、PUCCH及びPUSCHの多重に関する能力情報は、例えば、ショートPUCCH及びPUSCHのTDM及び/又はFDMに関する能力情報であってもよいし、ロングPUCCH及びPUSCHのTDM及び/又はFDMに関する能力情報であってもよい。
 基地局は、UEから通知された上述の少なくとも1つの能力情報に基づいて、当該UEに対して、同一スロットにおけるロングPUCCH及びショートPUCCHの多重方法(例えば、TDM及び/又はFDM)を設定する。当該多重方法に関する情報(設定情報と呼ばれてもよい)は、上位レイヤシグナリング(例えば、RRCシグナリング、ブロードキャスト情報)、物理レイヤシグナリング(例えば、DCI)又はこれらの組み合わせにより、通知(設定)されてもよい。
 UEは、当該設定情報に基づいて、ショートPUCCH及びロングPUCCHを1スロット内で多重するか否かを判断してもよい。この判断結果に従って、第1の実施形態の処理を実施するか、第2の実施形態の処理を実施するかを決定できる。
 以上、説明したように、第3の実施形態によれば、UEが、同一スロットにおけるロングPUCCH及びショートPUCCHの多重の可否について、適切に判断できる。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図7は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示すものに限られない。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
 PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
 図8は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 送受信部103は、複数の異なる長さのTTI(TTI長)を用いて信号を送信及び/又は受信してもよい。例えば、送受信部103は、1つ又は複数のキャリア(セル、CC)において、第1のTTI(例えば、ロングTTI)及び当該第1のTTIよりTTI長が短い第2のTTI(例えば、ショートTTI)を用いて、信号の受信を行ってもよい。
 例えば、送受信部103は、ユーザ端末20から、所定の期間(例えば、1スロット)内で多重(例えば、TDM及び/又はFDM)して送信されたショートPUCCH及びロングPUCCHを受信してもよい。
 また、送受信部103は、ロングPUCCH及び/又はショートPUCCHで送信可能なUCIタイプに関する情報、ロングPUCCH及び/又はショートPUCCHの時間及び/又は周波数リソースに関する情報、同一スロットにおけるロングPUCCH及びショートPUCCHの多重方法に関する情報(設定情報)の少なくとも1つを、ユーザ端末20に対して送信してもよい。
 送受信部103は、ショートPUCCH及びロングPUCCHを上記所定の期間内で多重する能力に関する能力情報を、ユーザ端末20から受信してもよい。
 図9は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号の生成、マッピング部303による信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304による信号の受信処理、測定部305による信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
 制御部301は、第1のTTI(例えば、ロングTTI、サブフレーム、スロットなど)と、第1のTTIよりTTI長が短い第2のTTI(例えば、ショートTTI、sTTI、ミニスロットなど)と、を用いた1つ又は複数のCCにおける信号の送信及び/又は受信を制御する。
 例えば、制御部301は、所定のユーザ端末20に対して、時間長の短いショート上り制御チャネル(ショートPUCCH)と、当該ショート上り制御チャネルより時間長の長いロング上り制御チャネル(ロングPUCCH)と、を所定の期間内で多重するか否かを判断(制御)してもよい。制御部301は、所定のユーザ端末20に対して、同一スロットにおけるロングPUCCH及びショートPUCCHの多重方法に関する情報(設定情報)を送信する制御を行ってもよい。
 制御部301は、当該判断を、受信信号処理部304から取得した当該所定のユーザ端末20の能力情報に基づいて行ってもよい。当該能力情報は、ショートPUCCH及びロングPUCCHを上記所定の期間内で多重する能力に関する情報であってもよい。
 また、当該所定の期間は、1つ又は複数のTTIであってもよく、例えば、1つ又は複数のスロット、1つ又は複数のミニスロットなどであってもよい。
 制御部301は、所定のユーザ端末20について、ショートPUCCH及び/又はロングPUCCHのPUCCHリソースを判断し、当該ユーザ端末20に当該PUCCHリソースを設定するための情報を送信する制御を行ってもよい。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
 図10は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 送受信部203は、複数の異なる長さのTTI(TTI長)を用いて信号を送信及び/又は受信してもよい。例えば、送受信部203は、1つ又は複数のキャリア(セル、CC)において、第1のTTI(例えば、ロングTTI)及び当該第1のTTIよりTTI長が短い第2のTTI(例えば、ショートTTI)を用いて、信号の送信を行ってもよい。
 例えば、送受信部203は、ショートPUCCH及びロングPUCCHを所定の期間(例えば、1スロット)内で多重(例えば、TDM及び/又はFDM)して無線基地局10に送信してもよい。
 また、送受信部203は、ロングPUCCH及び/又はショートPUCCHで送信可能なUCIタイプに関する情報、ロングPUCCH及び/又はショートPUCCHの時間及び/又は周波数リソースに関する情報、同一スロットにおけるロングPUCCH及びショートPUCCHの多重方法に関する情報(設定情報)の少なくとも1つを、無線基地局10から受信してもよい。
 送受信部203は、ショートPUCCH及びロングPUCCHを上記所定の期間内で多重する能力に関する能力情報を、無線基地局10に対して送信してもよい。
 図11は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成、マッピング部403による信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404による信号の受信処理、測定部405による信号の測定などを制御する。
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 制御部401は、第1のTTI(例えば、ロングTTI、サブフレーム、スロットなど)と、第1のTTIよりTTI長が短い第2のTTI(例えば、ショートTTI、sTTI、ミニスロットなど)と、を用いた1つ又は複数のCCにおける信号の送信及び/又は受信を制御する。
 例えば、制御部401は、時間長の短いショート上り制御チャネル(ショートPUCCH)と、当該ショート上り制御チャネルより時間長の長いロング上り制御チャネル(ロングPUCCH)と、を所定の期間内で多重するか否かを判断してもよい。
 制御部401は、当該判断を、受信信号処理部404から取得した設定情報に基づいて行ってもよい。また、当該所定の期間は、1つ又は複数のTTIであってもよく、例えば、1つ又は複数のスロット、1つ又は複数のミニスロットなどであってもよい。
 制御部401は、上記設定情報に基づいて、ショートPUCCH及びロングPUCCHを上記所定の期間内で多重すると判断した場合、当該ショートPUCCH及び当該ロングPUCCHにおいて、それぞれ異なるUCIタイプに該当するUCIを送信する制御を行ってもよい。
 制御部401は、上記設定情報に基づいて、ショートPUCCH及びロングPUCCHを上記所定の期間内で多重すると判断した場合、かつ、当該ショートPUCCHのリソース及び当該ロングPUCCHのリソースが少なくとも一部重複する場合、これらのPUCCHのうちいずれかのPUCCHをドロップする又はいずれかのPUCCHの重複するリソースをパンクチャする制御を行ってもよい。
 制御部401は、上記設定情報に基づいて、ショートPUCCH及びロングPUCCHを上記所定の期間内で多重しないと判断した場合、かつ、当該ショートPUCCH及び当該ロングPUCCHを上記所定の期間内で送信するように設定される場合、これらのPUCCHのうちいずれかのPUCCHをドロップする制御を行ってもよい。
 制御部401は、ショートPUCCH及びロングPUCCHを上記所定の期間内で多重する能力に関する能力情報(例えば、能力の有無に関する能力情報)を送信する制御を行ってもよい。この場合、上記判断に用いる設定情報は、例えば無線基地局10によって当該能力情報に基づいて決定されてもよい。
 制御部401は、ショートPUCCH及び/又はロングPUCCHで送信するUCIの生成及び/又はマッピングを制御してもよい。制御部401は、例えば、ショートPUCCH及びロングPUCCHで同じUCIタイプに該当するUCIを送信する制御を行ってもよいし、互いに異なる(別々の)UCIタイプに該当するUCIを送信する制御を行ってもよい。制御部401は、ショートPUCCH及び/又はロングPUCCHのPUCCHリソースを判断してもよい。
 また、制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、キャリア、キャリア周波数、サイト、ビームなどと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルで構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。

Claims (8)

  1.  時間長の短いショート上り制御チャネルと、当該ショート上り制御チャネルより時間長が長いロング上り制御チャネルと、を所定の期間内で多重するための設定情報を受信する受信部と、
     当該設定情報に基づいて、前記ショート上り制御チャネル及び前記ロング上り制御チャネルを前記所定の期間内で多重するか否かを判断する制御部と、を有することを特徴とするユーザ端末。
  2.  前記所定の期間は、1スロットであることを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、前記設定情報に基づいて、前記ショート上り制御チャネル及び前記ロング上り制御チャネルを前記所定の期間内で多重すると判断した場合、前記ショート上り制御チャネル及び前記ロング上り制御チャネルにおいて、それぞれ異なる上り制御情報のタイプに該当する上り制御情報を送信する制御を行うことを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、前記設定情報に基づいて、前記ショート上り制御チャネル及び前記ロング上り制御チャネルを前記所定の期間内で時分割多重すると判断した場合、かつ、前記ショート上り制御チャネルのリソース及び前記ロング上り制御チャネルのリソースが重複する場合、いずれかの上り制御チャネルをドロップする又はいずれかの上りチャネルの重複するリソースをパンクチャすることを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記制御部は、前記設定情報に基づいて、前記ショート上り制御チャネル及び前記ロング上り制御チャネルを前記所定の期間内で多重しないと判断した場合、かつ、前記ショート上り制御チャネル及び前記ロング上り制御チャネルを前記所定の期間内で送信するように設定される場合、いずれかの上り制御チャネルをドロップすることを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  前記制御部は、前記設定情報に基づいて、前記ショート上り制御チャネル及び前記ロング上り制御チャネルを前記所定の期間内で多重しないと判断した場合、かつ、前記ショート上り制御チャネル及び前記ロング上り制御チャネルを前記所定の期間内で送信するように設定される場合、いずれかの上り制御チャネルをドロップすることを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  7.  前記ショート上り制御チャネル及び前記ロング上り制御チャネルを前記所定の期間内で多重する能力の有無に関する能力情報を送信する送信部を有し、
     前記設定情報は、前記能力情報に基づいて決定されることを特徴とする請求項1から請求項5のいずれかに記載のユーザ端末。
  8.  ユーザ端末の無線通信方法であって、
     時間長の短いショート上り制御チャネルと、当該ショート上り制御チャネルより時間長が長いロング上り制御チャネルと、を所定の期間内で多重するための設定情報を受信する工程と、
     当該設定情報に基づいて、前記ショート上り制御チャネル及び前記ロング上り制御チャネルを前記所定の期間内で多重するか否かを判断する工程と、を有することを特徴とする無線通信方法。
     
PCT/JP2017/011892 2017-03-23 2017-03-23 ユーザ端末及び無線通信方法 WO2018173235A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2017/011892 WO2018173235A1 (ja) 2017-03-23 2017-03-23 ユーザ端末及び無線通信方法
EP17902154.8A EP3605981B1 (en) 2017-03-23 2017-03-23 User terminal and wireless communication method
JP2019506868A JP7269164B2 (ja) 2017-03-23 2017-03-23 端末、無線通信方法、基地局及びシステム
KR1020197029808A KR102423211B1 (ko) 2017-03-23 2017-03-23 유저단말 및 무선 통신 방법
CN201780091169.4A CN110663235B (zh) 2017-03-23 2017-03-23 终端、无线通信方法、基站及系统
US16/495,531 US11218268B2 (en) 2017-03-23 2017-03-23 User terminal and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011892 WO2018173235A1 (ja) 2017-03-23 2017-03-23 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2018173235A1 true WO2018173235A1 (ja) 2018-09-27

Family

ID=63586532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011892 WO2018173235A1 (ja) 2017-03-23 2017-03-23 ユーザ端末及び無線通信方法

Country Status (6)

Country Link
US (1) US11218268B2 (ja)
EP (1) EP3605981B1 (ja)
JP (1) JP7269164B2 (ja)
KR (1) KR102423211B1 (ja)
CN (1) CN110663235B (ja)
WO (1) WO2018173235A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020530234A (ja) * 2018-01-25 2020-10-15 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける物理アップリンク制御チャネルにおいて複数のアップリンク制御情報を送信する方法およびこのための装置
JP2022525732A (ja) * 2019-02-22 2022-05-19 オッポ広東移動通信有限公司 情報伝送方法、端末デバイス及びネットワークデバイス

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10123349B2 (en) 2015-07-09 2018-11-06 Qualcomm Incorporated Low latency physical uplink control channel with scheduling request and channel state information
US11696287B2 (en) * 2017-04-27 2023-07-04 Ntt Docomo, Inc. User terminal and radio communication method
US11374712B2 (en) * 2017-05-03 2022-06-28 Lg Electronics Inc. Method for receiving reference signal in wireless communication system and device therefor
US10959247B2 (en) * 2017-06-08 2021-03-23 Qualcomm Incorporated Transmission of uplink control information in new radio
RU2735924C1 (ru) * 2017-06-16 2020-11-10 Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. Способ и устройство для осуществления обратной связи HARQ, пользовательское оборудование и базовая станция
US10911189B2 (en) * 2017-08-11 2021-02-02 Qualcomm Incorporated Uplink control information (UCI) in short duration
US10798733B2 (en) * 2018-02-15 2020-10-06 Qualcomm Incorporated Long PUCCH design for slots with varying duration of uplink and for dynamic time division duplexing
KR102196727B1 (ko) * 2018-05-10 2020-12-30 엘지전자 주식회사 무선 통신 시스템에서 pucch 자원을 구성하는 방법 및 장치
US11006397B2 (en) * 2018-06-08 2021-05-11 Apple Inc. Multiplexing physical uplink control channels in a slot for a new radio (NR) system
US11324024B2 (en) 2019-05-02 2022-05-03 Qualcomm Incorporated Uplink channel transmission for multiple transmit receive points (TRPs)
US11664871B2 (en) * 2019-06-10 2023-05-30 Qualcomm Incorporated Methods and apparatus for UE initiated beam reporting
EP4173418A4 (en) * 2020-06-25 2024-03-20 Qualcomm Incorporated RULE FOR MULTIPLEXING UPLINK CONTROL INFORMATION FOR TRANSMISSION OF UPLINK CONTROL CHANNEL AND SIMULTANEOUS UPLINK SHARED CHANNEL
CN117063578A (zh) * 2021-04-01 2023-11-14 鸿颖创新有限公司 处理无线资源冲突的方法和用户设备
CN113099539A (zh) * 2021-04-12 2021-07-09 北京贝耀信科技有限公司 一种用于智慧矿山管理的大数据传输方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011166834A (ja) * 2011-05-17 2011-08-25 Ntt Docomo Inc 基地局装置
JP2013536643A (ja) * 2010-08-20 2013-09-19 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Pucchフォーマット3リソースを特定するための装置及び方法
WO2014020822A1 (ja) * 2012-08-02 2014-02-06 パナソニック株式会社 基地局装置、端末装置、リソース割当方法及び応答信号送信方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431374C (zh) * 2005-06-28 2008-11-05 上海原动力通信科技有限公司 高速下行分组接入业务用户终端在多载波小区的工作方法
CN101557645B (zh) * 2008-04-08 2011-04-20 大唐移动通信设备有限公司 终端能力信息的传输方法及系统
CN101588224B (zh) * 2009-05-19 2014-07-02 中兴通讯股份有限公司 一种发送正确/错误应答消息的方法及系统
TR201904391T4 (tr) * 2009-06-26 2019-05-21 Sun Patent Trust Radyo iletişim aparatları ve radyo iletişim yöntemi.
CN101998656A (zh) * 2009-08-11 2011-03-30 华为技术有限公司 一种上行控制信息反馈与接收的方法及基站和中继站
KR101656293B1 (ko) 2010-02-23 2016-09-23 삼성전자주식회사 무선통신시스템에서 비대칭 밴드 조합을 지원하기 위한 장치 및 방법
CN101924616A (zh) * 2010-08-16 2010-12-22 中兴通讯股份有限公司 正确错误应答在物理上行控制信道上的反馈方法及系统
CN102082636B (zh) * 2010-08-16 2013-05-08 电信科学技术研究院 一种信道状态信息csi反馈指示方法和基站及系统
CN102438281B (zh) * 2010-09-29 2015-08-19 电信科学技术研究院 一种多用户多输入多输出的配置方法和装置
EP2448167B1 (en) 2010-11-02 2019-08-21 LG Electronics Inc. Method and apparatus for transmitting control information in radio communication system
KR101216064B1 (ko) 2010-11-02 2012-12-26 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
CN103178926B (zh) * 2011-12-21 2016-01-06 华为技术有限公司 传输控制信息的方法、用户设备和基站
CN103636253B (zh) * 2012-07-06 2017-06-06 华为技术有限公司 虚拟载波聚合的方法、基站和用户设备
US9509483B2 (en) * 2012-11-12 2016-11-29 Qualcomm Incorporated Uplink control and data transmission in multiflow-enabled networks
JP5766834B2 (ja) * 2014-02-24 2015-08-19 株式会社Nttドコモ 無線基地局装置、移動端末装置、無線通信システムおよび無線通信方法
JP6105693B2 (ja) * 2015-09-03 2017-03-29 株式会社Nttドコモ 無線通信方法、無線通信システム及び無線基地局
CN107370683B (zh) * 2016-05-13 2020-06-26 电信科学技术研究院 一种数据传输方法、终端及基站
EP3504822B1 (en) * 2016-11-04 2022-05-18 Motorola Mobility LLC Identifying a resource for transmitting a first uplink channel
KR102275288B1 (ko) * 2017-01-03 2021-07-09 삼성전자 주식회사 V2X 통신을 위한 inter-carrier 방법
US10499424B2 (en) * 2017-02-03 2019-12-03 Nokia Solutions And Networks Oy Scheduling request arrangement for new radio

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536643A (ja) * 2010-08-20 2013-09-19 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Pucchフォーマット3リソースを特定するための装置及び方法
JP2011166834A (ja) * 2011-05-17 2011-08-25 Ntt Docomo Inc 基地局装置
WO2014020822A1 (ja) * 2012-08-02 2014-02-06 パナソニック株式会社 基地局装置、端末装置、リソース割当方法及び応答信号送信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8", 3GPP TS36.300 V8.12.0, April 2010 (2010-04-01)
"UE behavior for simultaneous transmission of P-CSI and HARQ-ACK/SR", 3GPP TSG-RAN WG1#83, R1-157231, 22 November 2015 (2015-11-22), pages 1 - 9, XP051003454 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020530234A (ja) * 2018-01-25 2020-10-15 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける物理アップリンク制御チャネルにおいて複数のアップリンク制御情報を送信する方法およびこのための装置
JP2022525732A (ja) * 2019-02-22 2022-05-19 オッポ広東移動通信有限公司 情報伝送方法、端末デバイス及びネットワークデバイス
US11647503B2 (en) 2019-02-22 2023-05-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information transmission method, terminal device, and network device
JP7412437B2 (ja) 2019-02-22 2024-01-12 オッポ広東移動通信有限公司 情報伝送方法、端末デバイス及びネットワークデバイス

Also Published As

Publication number Publication date
KR20190130598A (ko) 2019-11-22
KR102423211B1 (ko) 2022-07-20
JP7269164B2 (ja) 2023-05-08
EP3605981A4 (en) 2020-11-11
US20200014517A1 (en) 2020-01-09
JPWO2018173235A1 (ja) 2020-03-19
CN110663235A (zh) 2020-01-07
EP3605981A1 (en) 2020-02-05
US11218268B2 (en) 2022-01-04
CN110663235B (zh) 2023-09-26
EP3605981B1 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
JP7269164B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7022695B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2018084137A1 (ja) ユーザ端末及び無線通信方法
WO2018158924A1 (ja) ユーザ端末及び無線通信方法
WO2019087340A1 (ja) ユーザ端末及び無線通信方法
WO2019215934A1 (ja) ユーザ端末及び無線通信方法
JP7305557B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019215794A1 (ja) ユーザ端末及び無線通信方法
WO2018124029A1 (ja) ユーザ端末及び無線通信方法
CN111492685B (zh) 终端、无线通信方法、基站以及系统
WO2017217456A1 (ja) ユーザ端末及び無線通信方法
WO2019180886A1 (ja) ユーザ端末及び無線通信方法
WO2019159235A1 (ja) ユーザ端末及び無線通信方法
WO2018207369A1 (ja) ユーザ端末及び無線通信方法
WO2018173237A1 (ja) ユーザ端末及び無線通信方法
WO2019021473A1 (ja) 送信装置、受信装置及び無線通信方法
WO2019064569A1 (ja) ユーザ端末及び無線通信方法
WO2019159296A1 (ja) ユーザ端末及び無線通信方法
WO2019215935A1 (ja) ユーザ端末及び無線通信方法
WO2019215889A1 (ja) ユーザ端末及び無線通信方法
WO2019159295A1 (ja) ユーザ端末及び無線通信方法
WO2018203401A1 (ja) ユーザ端末及び無線通信方法
JP7264979B2 (ja) 端末、無線通信方法、基地局及び無線通信システム
WO2019215898A1 (ja) ユーザ端末及び無線通信方法
WO2019215933A1 (ja) ユーザ端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197029808

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017902154

Country of ref document: EP

Effective date: 20191023