WO2019215889A1 - ユーザ端末及び無線通信方法 - Google Patents
ユーザ端末及び無線通信方法 Download PDFInfo
- Publication number
- WO2019215889A1 WO2019215889A1 PCT/JP2018/018206 JP2018018206W WO2019215889A1 WO 2019215889 A1 WO2019215889 A1 WO 2019215889A1 JP 2018018206 W JP2018018206 W JP 2018018206W WO 2019215889 A1 WO2019215889 A1 WO 2019215889A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission
- signal
- shared channel
- reception
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1273—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0044—Arrangements for allocating sub-channels of the transmission path allocation of payload
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1263—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
- H04W72/1268—Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
Definitions
- the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
- LTE Long Term Evolution
- Non-patent Document 1 LTE Advanced, LTE Rel. 10, 11, 12, 13
- LTE Rel. 8, 9 LTE Advanced, LTE Rel. 10, 11, 12, 13
- LTE successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel.
- a 1 ms subframe (also referred to as a transmission time interval (TTI), etc.) is used for downlink (DL) and / or uplink. Communication of a link (UL: Uplink) is performed.
- the subframe is a transmission time unit of one channel-encoded data packet, and is a processing unit such as scheduling, link adaptation, retransmission control (HARQ: Hybrid Automatic Repeat reQuest).
- a radio base station for example, eNB (eNode B)
- eNB eNode B
- DCI downlink control information
- E-UTRA Evolved Universal Terrestrial Radio Access
- E-UTRAN Evolved Universal Terrestrial Radio Access Network
- the present disclosure aims to provide a user terminal and a wireless communication method capable of appropriately performing data transmission or reception even when data allocation to discontinuous time domain resources is supported.
- the user terminal includes the reception unit that receives a physical shared channel that is scheduled in symbol units or symbol group units, and the physical unit that is notified using at least one of downlink control information and higher layer signaling. And a control unit that controls reception of the physical shared channel based on an allocation type of the shared channel in the time direction.
- FIG. 1A and 1B are diagrams for explaining PUSCH mapping types.
- 2A and 2B are diagrams illustrating an example of data allocation to non-contiguous time domain resources.
- FIG. 3 is a diagram illustrating an example when a continuous resource allocation type and a non-continuous resource allocation type are used.
- FIGS. 4A to 4C are diagrams illustrating an example in the case of using the non-contiguous resource allocation type.
- FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
- FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
- FIG. 7 is a diagram illustrating an example of a functional configuration of a radio base station according to an embodiment of the present invention.
- FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
- FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
- FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
- NR future wireless communication systems
- transmission of data and the like is being considered using scheduling in units of minislots (for example, in units of symbols), not limited to slots.
- a slot is one of basic transmission units, and one slot is composed of a predetermined number of symbols.
- the slot period is composed of a first number of symbols (for example, 14 symbols), and in extended CP (extended CP), the slot period is composed of a second number of symbols (for example, 12 symbols). Is done.
- a mini-slot corresponds to a period composed of a number of symbols equal to or less than a predetermined value (for example, 14 symbols (or 12 symbols)).
- a predetermined value for example, 14 symbols (or 12 symbols)
- the minislot may be configured with a predetermined number (for example, the number of symbols of 2, 4, or 7).
- ⁇ Data mapping type Different resource allocation types (for example, type A and type B) may be applied as allocation of data (for example, physical shared channel).
- mapping types applied to the downlink shared channel (PDSCH) and the uplink shared channel (PUSCH) will be described.
- mapping type A is applied in DL (for example, PDSCH transmission).
- the PDSCH start position in the slot is selected from preset candidate symbols, and the number of PDSCH allocation symbols (PDSCH length) is selected from a range from a predetermined value (X) to 14.
- PDSCH length is selected from a range from a predetermined value (X) to 14.
- X may be 3, for example.
- mapping type B is applied in DL (for example, PDSCH transmission).
- the number of PDSCH allocation symbols (PDSCH length) is selected from a preset number of candidate symbols, and the PDSCH start position in the slot is set to any location (symbol) in the slot.
- the number of PDSCH-length candidate symbols corresponds to, for example, a predetermined number (2, 4, or 7 symbols). That is, the PDSCH start position is set flexibly.
- the base station may set PDSCH start symbol (S) and data length (L) indication information (SLIV: Start and length indicator value), PDSCH mapping type combination candidate, and slot offset in the UE.
- the slot offset corresponds to an offset between a slot in which DCI is transmitted and a PDSCH slot scheduled by the DCI.
- the base station may set a table (also referred to as a SLIV table or a PUSCH symbol allocation table) in which a plurality of combinations of slot offset, SLIV, and PDSCH mapping types are defined in the UE.
- a table also referred to as a SLIV table or a PUSCH symbol allocation table
- the SLIV table is defined by N rows, and each row defines a combination candidate index, a slot offset specified by the index, a PDSCH start symbol (S) and data length (L), and a mapping type combination candidate.
- the base station may notify the UE of the row number of the SLIV table of N rows using DCI for scheduling the PDSCH.
- mapping type A is applied in UL (for example, PUSCH transmission).
- the PUSCH start position in the slot is selected from a preset fixed symbol (for example, symbol index # 0), and the number of PUSCH allocation symbols (PUSCH length) is selected from a range from a predetermined value (Y) to 14 (See FIG. 1A).
- FIG. 1A shows a case where PUSCH is allocated from the first symbol of the slot to the fourth symbol (symbol # 0 to # 3).
- Y may be a value greater than 1 (Y> 1), or 1 or more. For example, Y may be 4.
- At least one of the demodulation reference signals (DM-RS) used for PUSCH demodulation may be arranged in a fixed symbol (for example, symbol # 0).
- the position of at least one DM-RS may also be determined based on the start position of the PUSCH.
- mapping type B is applied in UL (for example, PUSCH transmission).
- the number of PUSCH allocated symbols (PUSCH length) is selected from a preset number of candidate symbols (1 to 14 symbols), and the PUSCH start position in the slot is set to any location (symbol) in the slot. (See FIG. 1B).
- the start symbol (S) of PUSCH and the number of symbols (L) consecutive from the start symbol are notified from the base station to the UE.
- the number of symbols (L) consecutive from the start symbol is also called PUSCH length.
- the start position of the PUSCH is set flexibly.
- At least one DMRS used for PUSCH demodulation may be configured based on the PUSCH allocation position in the slot. Also, DMRS may be inserted at different positions depending on the mapping type.
- the base station may set the PUSCH start symbol (S) and data length (L) indication information (SLIV: Start and length indicator value), PUSCH mapping type combination candidate, and slot offset in the UE.
- the slot offset corresponds to an offset between a slot in which DCI is transmitted and a PUSCH slot scheduled by the DCI.
- the SLIV table may be set in the UE as in the case of PDSCH.
- time-domain resource allocation (time-domain resource allocation) is continuously set at a symbol level (for example, SLIV base) for a predetermined unit of data (for example, one transport block (TB)). . Also, data corresponding to 1 TB is allocated so as not to cross the slot boundary. That is, data is allocated to consecutive symbols in one slot.
- a symbol level for example, SLIV base
- a predetermined unit of data for example, one transport block (TB)
- CBG code block groups
- TB transport block
- a code block (CB) is a unit of information bits that can be input to an encoder (for example, a turbo encoder). If TBS is less than or equal to the encoder's corresponding size (maximum coding size), TB may be referred to as CB. Further, when TBS exceeds the corresponding size of the encoder, TB may be divided into a plurality of segments, and each segment may be referred to as CB. Further, a segment group obtained by grouping a plurality of segments (CB) smaller than the number of segments (CB) per TB may be referred to as a code block group.
- scheduling can be flexibly controlled by allowing allocation of each CBG to non-contiguous time resources and allocation across slot boundaries ( (See FIG. 2A).
- 1 TB allocation to non-contiguous time resources in the unlicensed band and allocation across slot boundaries may be allowed (see FIG. 2B). This makes it possible to transmit 1 TB using time resources (discontinuous time domain resources) before and after a period (listening period) in which LBT is required.
- the present inventors pay attention to the fact that, in future wireless communication systems, in addition to data allocation to continuous time resources, data allocation to non-continuous time domain resources is supported, the UE The idea is to control the data allocation by notifying information about the allocation of data.
- an arbitrary signal and channel may be read with a prefix of “NR ⁇ ” indicating that it is for NR.
- this Embodiment is applicable to both DL data (for example, PDSCH) and UL data (for example, PUSCH).
- DL data for example, PDSCH
- UL data for example, PUSCH
- the resource allocation type of the physical shared channel is notified to the UE using at least one of higher layer signaling and downlink control information.
- the physical shared channel (or data) may be read as PDSCH or PUSCH.
- the base station may set one of a plurality of time domain resource allocation types to the UE using higher layer signaling.
- the allocation types of the plurality of time domain resources may be (1) to (3) shown below. (1) Continuous resource allocation type only (Continuoous resource allocation type), (2) Non-continuous resource allocation type only, (3) Both continuous resource allocation type and non-continuous resource allocation type
- the UE When the resource allocation type of (1) is set from the base station, the UE assumes that data is allocated to continuous resources and controls transmission / reception processing assuming that the non-continuous resource allocation type is not applied. Good. Also, when the resource allocation type (2) is set from the base station, the UE assumes that data is allocated to non-contiguous resources, and controls transmission / reception processing assuming that the continuous resource allocation type is not applied. May be.
- the UE may control the transmission / reception process on the assumption that both the continuous resource allocation type and the non-continuous resource allocation type can be applied. Further, the UE may determine the resource allocation type applied to each data transmission (whether a continuous resource allocation type or a non-continuous resource allocation type is applied) based on DCI.
- the base station may include information on the resource allocation type of the data in a predetermined DCI (for example, DCI for scheduling data) (see FIG. 3).
- the UE when a continuous resource allocation type is instructed with a predetermined DCI, the UE performs at least one of PDSCH reception processing and PUSCH transmission processing on the assumption that data is scheduled for continuous resources.
- the UE performs at least one of PDSCH reception processing and PUSCH transmission processing on the assumption that data is scheduled in a non-contiguous resource when the non-continuous resource allocation type is instructed with a predetermined DCI.
- time domain resource granularity eg, allocation unit
- time resource granularity for the non-continuous resource allocation type may be defined.
- the granularity of the time domain resource may be defined at a symbol group level including X (for example, 1 ⁇ X ⁇ 14) consecutive symbols.
- the granularity of resource allocation in the time domain may be set by higher layer signaling or may be defined in advance by specifications.
- the granularity of the time domain resource for the continuous resource allocation type and the granularity of the time domain resource for the non-continuous resource allocation type may be set to be the same or may be set separately.
- the granularity of time domain resources may be defined jointly or distinctly from the frequency domain PRB group.
- the time domain resource allocation type may be set only for DL transmission (for example, PDSCH transmission / reception), or may be set for DL transmission and UL transmission (for example, PUSCH transmission / reception). .
- the user terminal when a non-continuous resource allocation type is used in reception of DL transmission, the user terminal performs different precoding between different resources when the time interval length in which allocation is not performed exceeds a predetermined value. Alternatively, the reception process may be performed assuming different channel states. Alternatively, when a non-continuous resource allocation type is used in transmission of UL transmission, the user terminal does not perform the same precoding process between different resources when the time interval length during which allocation is not performed exceeds a predetermined value Transmission processing may be performed as follows. By doing so, the terminal does not need to keep the phase during the reception or transmission process of the non-consecutive section, so that it is possible to reduce the terminal processing load or power consumption.
- non-continuous time domain resource allocation (for example, transmission division) is controlled using L1 signaling (for example, downlink control information).
- the base station When performing non-continuous time domain resource allocation for data, the base station notifies the UE of the transmission segmentation of the data.
- the data transmission section (or transmission section) corresponds to a time section in which data is scheduled or a time section in which data is allocated.
- Information regarding the data transmission classification may be notified from the base station to the UE using downlink control information.
- the base station may notify the UE of all data transmission sections using downlink control information.
- the base station may notify the UE of information related to the transmission section using a bitmap format. Or you may notify UE about the information regarding a transmission division similarly to DL resource allocation type 1 of the existing LTE system.
- the base station when allocating DL data (or PDSCH) to a non-contiguous time domain resource, the base station relates to a time interval in which the DL data is transmitted to DCI (for example, one DCI) that schedules the DL data.
- DCI for example, one DCI
- the UE Based on the DCI, the UE determines the PDSCH allocated to the discontinuous time domain resource and performs reception processing.
- the base station when allocating UL data (or PUSCH) to a non-continuous time domain resource, the base station relates to a time interval in which the UL data is transmitted to DCI (for example, one DCI) that schedules the UL data.
- DCI for example, one DCI
- the UE controls transmission by assigning PUSCH to non-contiguous time domain resources based on DCI.
- the base station may notify only a part of the transmission sections instead of notifying the UE of all data transmission sections.
- Some transmission segments may be the first transmission segment allocated to non-contiguous time domain resources, or several transmission segments including the first transmission segment (and the last transmission segment). .
- the remaining transmission sections not notified by DCI may be determined based on a predetermined rule.
- UE determines at least one of PDSCH reception and PUSCH transmission by determining non-sequentially allocated resources in the time direction based on information on some transmission sections included in DCI and predetermined rules. Note that the resource may be determined based only on a predetermined rule.
- the predetermined rule for example, the following three rules may be used. Any one of the rules # 1 to # 3 may be applied, a combination of two rules may be applied, or a combination of three rules may be applied. Further, the predetermined rule is not limited to the rules # 1- # 3.
- the UE When applying the first rule # 1, the UE performs reception processing assuming that non-contiguous time domain resources are allocated avoiding a predetermined symbol or symbol group (hereinafter also simply referred to as a predetermined symbol).
- the transmission process is controlled (see FIG. 4A).
- the predetermined symbol may be a time domain resource in which a cell-specific signal or channel (for example, SS / PBCH block) is fixedly set, or may be a time domain resource in which high interference occurs.
- FIG. 4A shows a case where data is scheduled in a discontinuous time domain resource while avoiding the time domain resource in which the cell specific signal is set.
- FIG. 4A shows a case where non-contiguous time domain resources are allocated for each symbol group composed of two symbols.
- the number of symbols constituting the symbol group is not limited to two.
- non-contiguous time domain resources may be allocated for each symbol.
- symbol groups may be replaced with symbols.
- FIG. 4A shows a case where synchronization signal blocks (also referred to as SS / PBCH blocks) are set in symbol groups # 2 and # 3.
- synchronization signal blocks also referred to as SS / PBCH blocks
- data transmission / reception using the symbol groups # 2 and # 3 is restricted. Therefore, the UE performs at least one of reception processing and transmission processing assuming that data is allocated to non-contiguous time domain resources while avoiding collision with the SS / PBCH block.
- FIG. 4B shows a case where non-continuous time domain resources are allocated for each symbol group composed of two symbols.
- the number of symbols constituting the symbol group is not limited to two. Further, non-contiguous time domain resources may be allocated for each symbol.
- symbol groups may be replaced with symbols.
- Parameters such as the position and length of gaps between data assigned to non-continuous time domains may be fixed in advance according to specifications.
- the gap parameter may be notified from the base station to the UE using at least one of higher layer signaling and downlink control information.
- FIG. 4B a case where a gap (here, two symbol groups) is set between the transmission sections set for symbol groups # 0 and # 1 and the transmission sections set for symbols # 4 and # 5. Show.
- a gap here, two symbol groups
- data can be distributed and arranged in non-continuous resources based on the gap.
- the UE performs at least one of reception processing and transmission processing by determining whether or not data is allocated (or scheduling) based on a DL signal in a predetermined area. For example, the UE performs data reception processing or transmission processing based on at least one of information (for example, bit value) included in the DL signal, the configuration of the DL signal (for example, a sequence), and whether or not the DL signal is detected. Controls the holding and resuming. Note that the discontinuous time domain resource allocation procedure using the DL signal may be referred to as hold-resume signaling.
- the DL signal may use at least one of UE-specific DCI, UE-common DCI, and a predetermined reference signal (which may be referred to as special RS).
- UE-specific DCI UE-specific DCI
- UE-common DCI UE-common DCI
- predetermined reference signal which may be referred to as special RS
- the predetermined area corresponds to an area (monitor area) where the UE monitors the DL signal.
- the monitoring area may be referred to as a monitoring occasion, a monitoring window, or a monitoring opportunity.
- a monitoring occasion for the downlink control channel (PDCCH) set for detecting DCI may be used as the monitor area.
- the monitoring occasion of the PDCCH may be determined based on at least one of a monitoring periodicity, a monitoring offset, and a monitoring pattern notified from the base station.
- the UE may determine a monitoring occasion based on a monitoring period, a monitoring offset, and a monitoring pattern set in a higher layer (for example, RRC signaling) from the base station.
- the monitoring occasion may be set for each DCI format.
- a monitor area may be set separately from the monitoring occasion of PDCCH.
- the monitoring of the DL signal for hold-resume signaling may be controlled using a preset default monitoring occasion.
- the default monitoring occasion may be per symbol or may be the minimum monitoring period that can be set.
- First signaling also referred to as hold signaling
- second signaling for notifying PDSCH reception processing restart and PUSCH transmission processing restart.
- signaling may be notified at the same time or separately.
- a DL signal for hold-resume signaling when a DL signal for hold-resume signaling is detected, it may be determined as resume signaling, and at least one of PDSCH reception processing and PUSCH transmission processing may be resumed.
- the monitoring occasion when the DL signal for hold-resume signaling is not detected, it is determined as hold signaling, and the PDSCH reception process and the PUSCH transmission process are stopped until the DL signal is detected in the next monitoring occasion. May be.
- the detected DL reference signal for hold-resume signaling applies the first sequence, it is determined as resume signaling, and when the second sequence is applied, hold-resume signaling is performed. You may judge.
- FIG. 4C shows an example of hold-resume signaling.
- FIG. 4C shows a case where non-contiguous time domain resources are allocated for each symbol group composed of two symbols.
- the number of symbols constituting the symbol group is not limited to two.
- non-contiguous time domain resources may be allocated for each symbol.
- symbol groups may be replaced with symbols.
- FIG. 4C shows a case where the monitoring occasion of the DL signal for hold-resume signaling is set every two symbol groups (or every two symbol group periods).
- resume signaling is notified by the monitoring occasion set by symbol groups # 0, # 2, # 8, and # 10, and hold is held by the monitoring occasion set by symbol groups # 4, # 6, # 8, and # 12. The case where signaling is notified is shown.
- the UE When the UE receives resume signaling in symbol group # 0, the UE resumes (or continues) at least one of PDSCH reception processing and PUSCH transmission processing scheduled in DCI.
- the PDSCH reception process or PUSCH transmission process may be applied from the symbol group # 0 that has received resume signaling to the symbol group # 1 before the next monitoring occasion.
- the period of PDSCH reception processing or PUSCH transmission processing performed based on resume signaling is not limited to this.
- PDSCH reception processing or PUSCH transmission processing may be performed from symbol group # 1 next to symbol group # 0 that has received resume signaling.
- the UE When the UE receives resume signaling in the symbol group # 2, the UE continues at least one of PDSCH reception processing and PUSCH transmission processing scheduled by DCI.
- the UE When the UE receives hold signaling in symbol group # 4, the UE stops PDSCH reception processing and PUSCH transmission processing scheduled in DCI. In this case, the UE may stop the PDSCH reception process and the PUSCH transmission process until the next resume signaling is detected.
- wireless communication system Wireless communication system
- communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
- FIG. 5 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
- carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
- DC dual connectivity
- the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
- the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
- the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
- CC cells
- Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
- a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
- the same carrier may be used.
- the configuration of the frequency band used by each radio base station is not limited to this.
- the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell.
- TDD time division duplex
- FDD frequency division duplex
- a single neurology may be applied, or a plurality of different neurology may be applied.
- the wireless base station 11 and the wireless base station 12 are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
- the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
- the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
- RNC radio network controller
- MME mobility management entity
- Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
- the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
- the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
- the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
- Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
- orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
- SC-FDMA single carrier-frequency division multiple access
- Frequency Division Multiple Access and / or OFDMA is applied.
- OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
- SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method.
- the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
- downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
- PDSCH downlink shared channel
- PBCH Physical Broadcast Channel
- SIB System Information Block
- MIB Master Information Block
- Downlink L1 / L2 control channels include PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), and the like.
- Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
- scheduling information may be notified by DCI.
- DCI for scheduling DL data reception may be referred to as DL assignment
- DCI for scheduling UL data transmission may be referred to as UL grant.
- the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
- the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
- HARQ Hybrid Automatic Repeat reQuest
- EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
- an uplink shared channel (PUSCH) shared by each user terminal 20
- an uplink control channel (PUCCH: Physical Uplink Control Channel)
- a random access channel (PRACH: Physical Random Access Channel)
- User data, higher layer control information, etc. are transmitted by PUSCH.
- downlink radio quality information CQI: Channel Quality Indicator
- delivery confirmation information SR
- scheduling request etc.
- a random access preamble for establishing connection with the cell is transmitted by the PRACH.
- a cell-specific reference signal CRS
- CSI-RS channel state information reference signal
- DMRS demodulation reference signal
- PRS Positioning Reference Signal
- a measurement reference signal SRS: Sounding Reference Signal
- a demodulation reference signal DMRS
- the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
- FIG. 6 is a diagram illustrating an example of the overall configuration of a radio base station according to an embodiment of the present invention.
- the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
- the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
- User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access
- Retransmission control for example, HARQ transmission processing
- scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
- IFFT Inverse Fast Fourier Transform
- precoding processing precoding processing, and other transmission processing
- the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
- the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
- the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
- the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device which is described based on common recognition in the technical field according to the present invention.
- the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
- the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
- the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
- the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
- the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
- FFT fast Fourier transform
- IDFT inverse discrete Fourier transform
- Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
- the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
- the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
- the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
- CPRI Common Public Radio Interface
- X2 interface May be.
- the transmission / reception unit 103 transmits a physical shared channel (for example, PDSCH) that is scheduled in symbol units or symbol group units.
- the transmission / reception unit 103 receives a physical shared channel (for example, PUSCH) that is scheduled in symbol units or symbol group units.
- the transmission / reception unit 103 may notify the allocation type of the physical shared channel in the time direction.
- the transmission / reception part 103 may notify the allocation resource (for example, SLIV) of a physical shared channel to UE.
- FIG. 7 is a diagram illustrating an example of a functional configuration of the radio base station according to the embodiment of the present invention.
- the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
- the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
- the control unit (scheduler) 301 controls the entire radio base station 10.
- the control part 301 can be comprised from the controller, the control circuit, or control apparatus demonstrated based on the common recognition in the technical field which concerns on this invention.
- the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like.
- the control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
- the control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control).
- the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
- the control unit 301 controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
- control unit 301 includes an uplink data signal (for example, a signal transmitted on PUSCH), an uplink control signal (for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.), a random access preamble (for example, Scheduling of the uplink reference signal and the like.
- uplink data signal for example, a signal transmitted on PUSCH
- uplink control signal for example, a signal transmitted on PUCCH and / or PUSCH, delivery confirmation information, etc.
- a random access preamble for example, Scheduling of the uplink reference signal and the like.
- control unit 301 performs control so as to select the allocation type in the time direction of the physical shared channel and set it in the UE.
- the control unit 301 may control the allocation of at least one of the PDSCH and the PUSCH based on the allocation type in the time direction applied to the physical shared channel.
- the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
- the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
- the transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
- the DL assignment and UL grant are both DCI and follow the DCI format.
- the downlink data signal is subjected to coding processing and modulation processing according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
- CSI Channel State Information
- the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
- the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
- the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
- the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
- the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention.
- the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
- the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
- the measurement unit 305 performs measurement on the received signal.
- the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
- the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
- the measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
- Signal strength for example, RSSI (Received Signal Strength Indicator)
- propagation path information for example, CSI
- the measurement result may be output to the control unit 301.
- FIG. 8 is a diagram illustrating an example of the overall configuration of a user terminal according to an embodiment of the present invention.
- the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
- the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
- the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
- the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
- the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
- the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention.
- the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
- the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
- the downlink user data is transferred to the application unit 205.
- the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
- uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
- the baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
- the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
- the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
- the transmission / reception unit 203 receives a physical shared channel (for example, PDSCH) that is scheduled in symbol units or symbol group units.
- the transmission / reception unit 203 transmits a physical shared channel (for example, PUSCH) that is scheduled in symbol units or symbol group units.
- the transmission / reception unit 203 may notify the allocation type of the physical shared channel in the time direction.
- the transmission / reception unit 103 may receive physical shared channel allocation resources (for example, SLIV).
- FIG. 9 is a diagram illustrating an example of a functional configuration of a user terminal according to an embodiment of the present invention.
- the functional block of the characteristic part in this embodiment is mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
- the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
- the control unit 401 controls the entire user terminal 20.
- the control unit 401 can be composed of a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
- the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like.
- the control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
- the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
- the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
- control unit 401 controls reception of a physical shared channel (for example, PDSCH) based on the allocation type of the physical shared channel in the time direction notified using at least one of downlink control information and higher layer signaling. .
- control unit 401 controls transmission of the physical shared channel (for example, PUSCH) based on the allocation type in the time direction of the physical shared channel notified using at least one of downlink control information and higher layer signaling. .
- the allocation type may include a type in which the physical shared channel is allocated to continuous time domain resources and a type to be allocated to non-contiguous time domain resources.
- control unit 401 may determine at least a part of the transmission segment of the physical shared channel based on downlink control information. In addition, when the physical shared channel is allocated to non-contiguous time domain resources, the control unit 401 may determine the transmission division of the physical shared channel excluding the predetermined area to which the predetermined signal is allocated.
- control unit 401 performs physical processing based on whether or not the predetermined DL signal detected in the predetermined monitoring occasion or the predetermined DL signal in the predetermined monitoring occasion is detected.
- the stop and restart of reception of the shared channel may be controlled.
- control unit 401 may control at least one of PDSCH reception processing and PUSCH transmission processing based on SLIV notified from the base station and the allocation type of the physical shared channel in the time direction.
- the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
- the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
- the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
- CSI channel state information
- the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
- the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
- the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
- the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
- the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
- the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
- the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
- the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
- the measurement unit 405 performs measurement on the received signal.
- the measurement part 405 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
- the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
- the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
- the measurement result may be output to the control unit 401.
- each functional block (components) are realized by any combination of hardware and / or software.
- the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one device physically and / or logically coupled, or directly and / or two or more devices physically and / or logically separated. Alternatively, it may be realized indirectly by connecting (for example, using wired and / or wireless) and using these plural devices.
- a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
- FIG. 10 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
- the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
- the term “apparatus” can be read as a circuit, a device, a unit, or the like.
- the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
- processor 1001 may be implemented by one or more chips.
- Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
- the processor 1001 controls the entire computer by operating an operating system, for example.
- the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
- CPU central processing unit
- the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
- the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
- programs program codes
- software modules software modules
- data data
- the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
- the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
- the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
- the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
- the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
- the storage 1003 may be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
- the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
- FDD frequency division duplex
- TDD time division duplex
- the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
- the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
- the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
- the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
- DSP digital signal processor
- ASIC Application Specific Integrated Circuit
- PLD Programmable Logic Device
- FPGA Field Programmable Gate Array
- the channel and / or symbol may be a signal (signaling).
- the signal may be a message.
- the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
- a component carrier CC: Component Carrier
- CC Component Carrier
- the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
- a subframe may be composed of one or more slots in the time domain.
- the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
- the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
- the slot may be a time unit based on the numerology.
- the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot.
- Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
- one subframe may be called a transmission time interval (TTI)
- TTI transmission time interval
- a plurality of consecutive subframes may be called a TTI
- TTI slot or one minislot
- a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
- TTI means, for example, a minimum time unit for scheduling in wireless communication.
- a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
- the definition of TTI is not limited to this.
- the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
- a time interval for example, the number of symbols
- a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
- one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
- a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
- a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
- One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
- the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
- RE Resource Element
- 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
- the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
- the information, parameters, and the like described in this specification may be expressed using absolute values, may be expressed using relative values from a predetermined value, or other corresponding information may be used. May be represented.
- the radio resource may be indicated by a predetermined index.
- names used for parameters and the like are not limited names in any way.
- various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
- information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
- the name is not limited in any way.
- information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
- Information, signals, and the like may be input / output via a plurality of network nodes.
- the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
- information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
- DCI downlink control information
- UCI uplink control information
- RRC Radio Resource Control
- MIB Master Information Block
- SIB System Information Block
- MAC Medium Access Control
- the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
- the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
- the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
- notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
- the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
- the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
- software, instructions, information, etc. may be transmitted / received via a transmission medium.
- software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
- system and “network” used in this specification are used interchangeably.
- base station BS
- radio base station eNB
- gNB gNodeB
- cell gNodeB
- cell group a base station
- carrier a base station
- a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
- the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
- RRH indoor small base station
- MS mobile station
- UE user equipment
- terminal may be used interchangeably.
- a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
- NodeB NodeB
- eNodeB eNodeB
- access point transmission point
- reception point femtocell
- small cell small cell
- a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
- the radio base station in this specification may be read by the user terminal.
- each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
- the user terminal 20 may have a function that the wireless base station 10 has.
- words such as “up” and “down” may be read as “side”.
- the uplink channel may be read as a side channel.
- a user terminal in this specification may be read by a radio base station.
- the wireless base station 10 may have a function that the user terminal 20 has.
- the operation performed by the base station may be performed by the upper node in some cases.
- various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- each aspect / embodiment described in this specification may be used alone, may be used in combination, or may be switched according to execution.
- the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
- the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
- Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark) ), A system using another appropriate wireless communication method, and / or a next generation system extended based on these methods.
- LTE Long Term Evolution
- LTE-A Long Term Evolution-Advanced
- the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
- determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
- “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
- connection is any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
- the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
- the radio frequency domain can be considered “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and / or light (both visible and invisible) regions.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
非連続の時間領域リソースに対するデータの割当てがサポートされる場合であってもデータの送信又は受信を適切に行うために、本開示のユーザ端末の一態様は、シンボル単位又はシンボルグループ単位でスケジューリングされる物理共有チャネルを受信する受信部と、下り制御情報及び上位レイヤシグナリングの少なくとも一つを用いて通知される前記物理共有チャネルの時間方向の割当てタイプに基づいて、前記物理共有チャネルの受信を制御する制御部と、を有する。
Description
本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
既存のLTEシステム(例えば、LTE Rel.8-13)において、1msのサブフレーム(伝送時間間隔(TTI:Transmission Time Interval)などともいう)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該サブフレームは、チャネル符号化された1データパケットの送信時間単位であり、スケジューリング、リンクアダプテーション、再送制御(HARQ:Hybrid Automatic Repeat reQuest)などの処理単位となる。
また、無線基地局(例えば、eNB(eNode B))は、ユーザ端末(UE:User Equipment)に対するデータの割当て(スケジューリング)を制御し、下り制御情報(DCI:Downlink Control Information)を用いてデータのスケジューリング指示をUEに通知する。
将来の無線通信システム(例えば、NR)においては、データ(例えば、物理共有チャネル等)の割当てを柔軟に制御することが検討されている。例えば、スロットに含まれる1以上のシンボル単位(例えば、ミニスロットとも呼ぶ)でデータの割当てを制御することも検討されている。また、物理共有チャネルを非連続の時間領域リソース(non-continuous time domain resource)に割当てて送信を制御することも想定される。
一方で、非連続の時間領域リソースへの割当てがサポートされる場合、当該データの送信(例えば、時間領域におけるリソース割当て等)をどのように制御するかについてまだ十分に検討が進んでいない。時間領域におけるリソース割当て等を適切に制御できない場合、スループットの低下又は通信品質の劣化等が生じるおそれがある。
そこで、本開示では、非連続の時間領域リソースに対するデータの割当てがサポートされる場合であってもデータの送信又は受信を適切に行うことができるユーザ端末及び無線通信方法を提供することを目的の1つとする。
本開示の一態様に係るユーザ端末は、シンボル単位又はシンボルグループ単位でスケジューリングされる物理共有チャネルを受信する受信部と、下り制御情報及び上位レイヤシグナリングの少なくとも一つを用いて通知される前記物理共有チャネルの時間方向の割当てタイプに基づいて、前記物理共有チャネルの受信を制御する制御部と、を有することを特徴とする。
本発明によれば、非連続の時間領域リソースに対するデータの割当てがサポートされる場合であってもデータの送信又は受信を適切に行うことが可能となる。
将来の無線通信システム(以下、NRともいう)においては、スロット単位に限られず、ミニスロット単位(例えば、シンボル単位)のスケジューリングを利用してデータ等の送信を行うことが検討されている。
スロットは、送信の基本単位(basic transmission unit)の1つであり、1スロットは所定数のシンボルで構成される。例えば、ノーマルCP(Normal CP)ではスロット期間が第1のシンボル数(例えば、14シンボル)で構成され、拡張CP(Extended CP)ではスロット期間が第2のシンボル数(例えば、12シンボル)で構成される。
ミニスロットは、所定値(例えば、14シンボル(又は、12シンボル))以下のシンボル数で構成される期間に相当する。一例として、DLの送信(例えば、PDSCH送信)において、ミニスロットは所定数(例えば、2、4又は7のシンボル数)で構成してもよい。
<データマッピングタイプ>
データ(例えば、物理共有チャネル)の割当てとして、異なるリソースの割当てタイプ(例えば、タイプAとタイプB)が適用される構成としてもよい。以下に、下り共有チャネル(PDSCH)と上り共有チャネル(PUSCH)に適用するマッピングタイプについて説明する。
データ(例えば、物理共有チャネル)の割当てとして、異なるリソースの割当てタイプ(例えば、タイプAとタイプB)が適用される構成としてもよい。以下に、下り共有チャネル(PDSCH)と上り共有チャネル(PUSCH)に適用するマッピングタイプについて説明する。
DL(例えば、PDSCH送信)において、マッピングタイプAを適用する場合を想定する。この場合、スロットにおけるPDSCHの開始位置は予め設定された候補シンボルから選択され、PDSCHの割当てシンボル数(PDSCH長)は所定値(X)から14までの範囲から選択される。開始位置の候補となる候補シンボルは、例えば、スロット内の所定シンボルインデックス(例えば、#0、#1、#2、#3)に相当する。Xは、例えば、3であってもよい。
DL(例えば、PDSCH送信)において、マッピングタイプBを適用する場合を想定する。この場合、PDSCHの割当てシンボル数(PDSCH長)は予め設定された候補シンボル数から選択され、スロットにおけるPDSCHの開始位置はスロットのいずれかの場所(シンボル)に設定する。PDSCH長の候補シンボル数は、例えば、所定数(2、4、又は7シンボル)に相当する。つまり、PDSCHの開始位置は柔軟に設定される。
基地局は、PDSCHの開始シンボル(S)とデータ長(L)の指示情報(SLIV:Start and length indicator value)、PDSCHのマッピングタイプの組み合わせ候補、スロットオフセットをUEに設定してもよい。スロットオフセットは、DCIが送信されるスロットと、当該DCIによりスケジューリングされるPDSCHのスロットのオフセットに相当する。
例えば、基地局は、スロットオフセット、SLIV、PDSCHのマッピングタイプの組み合わせ候補が複数定義されたテーブル(SLIVテーブル、又はPUSCHシンボル割当てテーブルとも呼ぶ)をUEに設定してもよい。
SLIVテーブルはN行で定義されており、各行には組み合わせ候補インデックスと、そのインデックスで指定されるスロットオフセット、PDSCHの開始シンボル(S)とデータ長(L)、マッピングタイプの組み合わせ候補が定義される。基地局は、上位レイヤシグナリングでテーブルを設定する場合、N行のSLIVテーブルの行番号をPDSCHをスケジューリングするDCIを利用してUEに通知すればよい。
UL(例えば、PUSCH送信)において、マッピングタイプAを適用する場合を想定する。この場合、スロットにおけるPUSCHの開始位置は予め設定された固定シンボル(例えば、シンボルインデックス#0)から選択され、PUSCHの割当てシンボル数(PUSCH長)は所定値(Y)から14までの範囲から選択される(図1A参照)。
図1Aでは、スロットの先頭シンボルから4シンボル目(シンボル#0-#3)までにPUSCHが割当てられる場合を示している。このようにPUSCHマッピングタイプAでは、PUSCHの開始位置は固定されるが、PUSCH長(ここでは、L=4)は柔軟に設定される。なお、Yは、1より大きい値(Y>1)であってもよいし、1以上としてもよい。例えば、Yは4であってもよい。
タイプAにおいて、PUSCHの復調に利用される復調用参照信号(DM-RS)の少なくとも一つは、固定シンボル(例えば、シンボル#0等)に配置されてもよい。タイプAでは、PUSCHが固定位置から開始されるため、少なくとも一つのDM-RSの位置も当該PUSCHの開始位置に基づいて決定されてもよい。
UL(例えば、PUSCH送信)において、マッピングタイプBを適用する場合を想定する。この場合、PUSCHの割当てシンボル数(PUSCH長)は予め設定された候補シンボル数(1~14シンボル数)から選択され、スロットにおけるPUSCHの開始位置はスロットのいずれかの場所(シンボル)に設定する(図1B参照)。
図1Bでは、PUSCHの開始シンボルが所定シンボル(ここでは、シンボル#3(S=3))であり、開始シンボルから連続して割当てられるシンボル数が4(L=4)である場合を示している。このようにPUSCHマッピングタイプBでは、PUSCHの開始シンボル(S)と、当該開始シンボルから連続するシンボル数(L)が基地局からUEに通知される。開始シンボルから連続するシンボル数(L)はPUSCH長とも呼ぶ。このように、PUSCHマッピングタイプBでは、PUSCHの開始位置は柔軟に設定される。
また、タイプBにおいて、PUSCHの復調に利用されるDMRSの少なくとも一つは、スロットにおけるPUSCHの割当て位置に基づいて設定される構成としてもよい。また、マッピングタイプに応じて、異なる位置にDMRSが挿入されるものとしてもよい。
基地局は、PUSCHの開始シンボル(S)とデータ長(L)の指示情報(SLIV:Start and length indicator value)、PUSCHのマッピングタイプの組み合わせ候補、スロットオフセットをUEに設定してもよい。スロットオフセットは、DCIが送信されるスロットと、当該DCIによりスケジューリングされるPUSCHのスロットのオフセットに相当する。なお、PDSCHの場合と同様にSLIVテーブルをUEに設定してもよい。
また、Rel.15では、所定単位のデータ(例えば、1トランスポートブロック(TB))に対して、時間領域リソースの割当て(time-domain resource allocation)がシンボルレベル(例えば、SLIVベース)で連続して設定される。また、1TBに対応するデータがスロット境界をまたがないように割当てられる。つまり、データは、1スロット内の連続するシンボルに対して割当てられる。
一方で、スケジューリングの柔軟性又はリソース利用効率の向上を考慮した場合、1TBに対して、非連続時間領域リソースの割当てをサポートすることも想定される。あるいは、1TBに対応するデータがスロット境界をまたぐ割当てがサポートされることも想定される。
例えば、コードブロックグループ(CBG)単位で送信が行われる場合、又はeMBB送信とURLLC送信の重複が許容される場合を想定する。CBGは、トランスポートブロック(TB)よりも小さい単位であるコードブロック(CB)をグループ化した単位に相当する。コードブロック(CB)とは、符号器(例えば、ターボ符号器)に入力可能な情報ビットの単位である。TBSが符号器の対応サイズ(最大符号化サイズ)以下である場合、TBは、CBと呼ばれてもよい。また、TBSが符号器の対応サイズを超える場合、TBを複数のセグメントに分割し、各セグメントがCBと呼ばれてもよい。また、1TBあたりのセグメント(CB)数より少ない複数のセグメント(CB)をグループ化したセグメントグループがコードブロックグループと呼ばれてもよい。
例えば、1TBをCBG#0-#3に分割して送信する場合、非連続の時間リソースへの各CBGの割当て、及びスロット境界をまたいだ割当てを許容することにより、スケジューリングを柔軟に制御できる(図2A参照)。
また、アンライセンスバンドにおいて非連続の時間リソースへの1TBの割当て、及びスロット境界をまたいだ割当てを許容してもよい(図2B参照)。これにより、LBTが必要となる期間(リスニング期間)の前後の時間リソース(非連続時間領域リソース)を利用して1TBを送信することも可能となる。
このように、データ送信において、非連続の時間領域リソースの割当て、及びスロット境界をまたぐ割当ての少なくとも一つをサポートすることにより、スケジューリングを柔軟に制御すると共にリソースの利用効率を向上することができる。
一方で、非連続の時間領域リソースへの割当てがサポートされる場合、当該データの送信(例えば、時間領域におけるリソース割当て等)をどのように制御するかについてまだ十分に検討が進んでいない。時間領域におけるリソース割当て等を適切に制御できない場合、スループットの低下又は通信品質の劣化等が生じるおそれがある。
本発明者等は、将来の無線通信システムにおいて、連続する時間リソースへのデータの割当てに加えて、非連続の時間領域リソースへのデータの割当てがサポートされる点に着目し、UEに時間方向の割当てに関する情報を通知してデータの割当てを制御することを着想した。
以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
なお、以下の実施形態では、任意の信号及びチャネルに関して、NR用であることを示す「NR-」の接頭語が付与されて読み替えられてもよい。また、本実施の形態は、DLデータ(例えば、PDSCH)及びULデータ(例えば、PUSCH)のいずれにも適用可能である。また、以下の説明では、データについて説明するが、他の信号又はチャネルに対しても同様に適用してもよい。
(第1の態様)
第1の態様では、上位レイヤシグナリング及び下り制御情報の少なくとも一つを利用して、物理共有チャネルのリソース割当てタイプをUEに通知する。なお、以下の説明において、物理共有チャネル(又は、データ)は、PDSCH又はPUSCHと読み替えてもよい。
第1の態様では、上位レイヤシグナリング及び下り制御情報の少なくとも一つを利用して、物理共有チャネルのリソース割当てタイプをUEに通知する。なお、以下の説明において、物理共有チャネル(又は、データ)は、PDSCH又はPUSCHと読み替えてもよい。
基地局は、上位レイヤシグナリングを用いて複数の時間領域リソースの割当てタイプのいずれかをUEに設定してもよい。複数の時間領域リソースの割当てタイプは、以下に示す(1)-(3)としてもよい。
(1)連続リソース割当てタイプ(Continuoous resource allocation type)のみ、(2)非連続リソース割当てタイプ(Non-continuoous resource allocation type)のみ、(3)連続リソース割当て対応及び非連続リソース割当てタイプの両方
(1)連続リソース割当てタイプ(Continuoous resource allocation type)のみ、(2)非連続リソース割当てタイプ(Non-continuoous resource allocation type)のみ、(3)連続リソース割当て対応及び非連続リソース割当てタイプの両方
基地局から(1)のリソース割当てタイプが設定された場合、UEは、連続するリソースにデータが割当てられると想定し、非連続リソース割当てタイプが適用されないと想定して送受信処理を制御してもよい。また、基地局から(2)のリソース割当てタイプが設定された場合、UEは、非連続のリソースにデータが割当てられると想定し、連続リソース割当てタイプが適用されないと想定して送受信処理を制御してもよい。
基地局から(3)のリソース割当てタイプが設定された場合、UEは、連続リソース割当てタイプと、非連続リソース割当てタイプの両方が適用され得ると想定して送受信処理を制御してもよい。また、UEは、各データ送信に対して適用されるリソース割当てタイプ(連続リソース割当てタイプ、又は非連続リソース割当てタイプのいずれが適用されるか)について、DCIに基づいて判断してもよい。例えば、基地局は、所定DCI(例えば、データをスケジューリングするDCI)に、当該データのリソース割当てタイプに関する情報を含めてもよい(図3参照)。
図3において、UEは、所定DCIで連続リソース割当てタイプが指示された場合には、連続するリソースにデータがスケジュールされると想定してPDSCHの受信処理及びPUSCHの送信処理の少なくとも一方を行う。UEは、所定DCIで非連続リソース割当てタイプが指示された場合には、非連続のリソースにデータがスケジュールされると想定してPDSCHの受信処理及びPUSCHの送信処理の少なくとも一方を行う。
連続リソース割当てタイプ用の時間領域リソースの粒度(例えば、割当て単位)、及び非連続リソース割当てタイプ用の時間リソースの粒度の一方又は両方を定義してもよい。例えば、時間領域リソースの粒度(X)をシンボルレベル(例えば、X=1)で定義してもよい。あるいは、時間領域リソースの粒度をX個(例えば、1<X≦14)の連続するシンボルを含むシンボルグループレベルで定義してもよい。
時間領域のリソース割当ての粒度は、上位レイヤシグナリングで設定してもよいし、仕様であらかじめ定義してもよい。連続リソース割当てタイプ用の時間領域リソースの粒度と、非連続リソース割当てタイプ用の時間領域リソースの粒度は同じに設定してもよいし、それぞれ別々に設定してもよい。また、時間領域リソースの粒度は、周波数領域のPRBグループとジョイント又は区別して定義されてもよい。
また、時間領域リソースの割当てタイプの設定は、DL伝送(例えば、PDSCHの送受信)のみに設定してもよいし、DL伝送とUL伝送(例えば、PUSCHの送受信)に対して設定してもよい。なお、DL伝送とUL伝送に時間領域リソースの割当てタイプを設定する場合、常に同じタイプを設定する構成としてもよいし、DL伝送とUL伝送に対してそれぞれ別々に割当てタイプを設定する構成としてもよい。
なお、ユーザ端末は、DL伝送の受信において非連続リソース割り当てタイプが用いられる場合に、割り当てが行われない時間区間長が所定値を上回る場合、異なるリソース間で、異なるプリコーディングが行われた、又は異なるチャネル状態であることを想定して受信処理を行ってもよい。あるいは、ユーザ端末は、UL伝送の送信において非連続リソース割り当てタイプが用いられる場合に、割り当てが行われない時間区間長が所定値を上回る場合、異なるリソース間で、同じプリコーディング処理を行わないものとして送信処理を行ってもよい。このようにすることで、端末は非連続区間の受信または送信処理を行う間、位相を保持し続ける必要がなくなるため、端末処理負担又は電力消費を軽減することが可能となる。
このように、上位レイヤシグナリング及び下り制御情報の少なくとも一つを利用して、連続リソース割当てタイプと、非連続リソース割当てタイプの設定を制御することにより、通信環境に応じてデータのスケジューリングを柔軟に制御できる。また、他の信号又はチャネル等の割当てを考慮してデータをスケジューリングすることにより、リソースの利用効率を向上することが可能となる。
(第2の態様)
第2の態様では、L1シグナリング(例えば、下り制御情報)を利用して、非連続の時間領域リソース割当て(例えば、送信区分)を制御する。
第2の態様では、L1シグナリング(例えば、下り制御情報)を利用して、非連続の時間領域リソース割当て(例えば、送信区分)を制御する。
基地局は、データに対して非連続の時間領域リソース割当てを行う場合、当該データの送信区分(transmission segmentation)をUEに通知する。データの送信区分(又は、送信区間)は、データがスケジューリングされる時間区間、又はデータが割当てられる時間区間に相当する。データの送信区分に関する情報は、下り制御情報を用いて基地局からUEに通知してもよい。
例えば、基地局は、非連続の時間領域リソース割当てを行う場合、下り制御情報を用いて全てのデータの送信区分をUEに通知してもよい。基地局は、送信区分に関する情報を、ビットマップ形式を用いてUEに通知してもよい。あるいは、送信区分に関する情報を、既存LTEシステムのDLリソース割当てタイプ1と同様にUEに通知してもよい。
例えば、DLデータ(又は、PDSCH)を非連続の時間領域リソースに割当てる場合、基地局は、当該DLデータをスケジューリングするDCI(例えば、1つのDCI)に当該DLデータが送信される時間区間に関する情報を含めてUEに通知する。UEは、DCIに基づいて、非連続の時間領域リソースに割当てられるPDSCHを判断して受信処理を行う。
また、ULデータ(又は、PUSCH)を非連続の時間領域リソースに割当てる場合、基地局は、当該ULデータをスケジューリングするDCI(例えば、1つのDCI)に当該ULデータが送信される時間区間に関する情報を含めてUEに通知する。UEは、DCIに基づいて、非連続の時間領域リソースにPUSCHを割当てて送信を制御する。
あるいは、基地局は、非連続の時間領域リソース割当てを行う場合、全てのデータの送信区分をUEに通知するのではなく、一部の送信区分のみ通知してもよい。一部の送信区分は、非連続の時間領域リソースに割当てられる最初の送信区分であってもよいし、最初の送信区分(及び最後の送信区分)を含むいくつかの送信区分であってもよい。DCIで通知されない残りの送信区分は、所定ルールに基づいて決定される構成としてもよい。
UEは、DCIに含まれる一部の送信区分に関する情報と、所定ルールに基づいて、時間方向に非連続に割当てられるリソースを決定して、PDSCHの受信及びPUSCHの送信の少なくとも一方を制御する。なお、所定ルールにのみ基づいてリソースの決定を行ってもよい。
所定ルールとして、例えば以下の3つのルールを利用してもよい。ルール#1-#3のうち、いずれか一つを適用する構成としてもよいし、2つのルールの組み合わせを適用する構成としてもよいし、3つのルールの組み合わせを適用する構成としてもよい。また、所定ルールは、ルール#1-#3に限られない。
<ルール#1>
第1のルール#1を適用する場合、UEは、所定のシンボル又はシンボルグループ(以下、単に所定シンボルとも記す)を避けて非連続の時間領域リソースの割当てが行われると想定して受信処理又は送信処理を制御する(図4A参照)。所定シンボルは、セル固有信号又はチャネル(例えば、SS/PBCHブロック等)が固定的に設定される時間領域リソースであってもよいし、高い干渉が生じる時間領域リソースであってもよい。
第1のルール#1を適用する場合、UEは、所定のシンボル又はシンボルグループ(以下、単に所定シンボルとも記す)を避けて非連続の時間領域リソースの割当てが行われると想定して受信処理又は送信処理を制御する(図4A参照)。所定シンボルは、セル固有信号又はチャネル(例えば、SS/PBCHブロック等)が固定的に設定される時間領域リソースであってもよいし、高い干渉が生じる時間領域リソースであってもよい。
図4Aに、セル固有信号が設定される時間領域リソースを避けて非連続の時間領域リソースにデータがスケジューリングされる場合を示す。図4Aでは、2シンボルで構成されるシンボルグループ毎に非連続の時間領域リソースの割当てを行う場合を示している。もちろん、シンボルグループを構成するシンボル数は2に限られない。また、シンボル毎に非連続の時間領域リソースの割当てを行ってもよい。以下の説明において、シンボルグループをシンボルに置き換えて適用してもよい。
図4Aでは、シンボルグループ#2、#3に同期信号ブロック(SS/PBCHブロックとも呼ぶ)が設定される場合を示している。この場合、当該シンボルグループ#2、#3を用いたデータの送受信が制限される。そのため、UEは、SS/PBCHブロックとの衝突を避けて、データが非連続の時間領域リソースに割当てられると想定して受信処理及び送信処理の少なくとも一方を行う。
このように、所定シンボルを避けてデータを非連続の時間領域リソースに割当てることにより、データと他の信号又はチャネルを衝突させずにデータの割当てを柔軟に制御することができる。
<ルール#2>
第2のルール#2を適用する場合、UEは、隣接する送信区分の間にギャップが設定されると想定して受信処理又は送信処理を制御する(図4B参照)。図4Bでは、2シンボルで構成されるシンボルグループ毎に非連続の時間領域リソースの割当てを行う場合を示している。もちろん、シンボルグループを構成するシンボル数は2に限られない。また、シンボル毎に非連続の時間領域リソースの割当てを行ってもよい。以下の説明において、シンボルグループをシンボルに置き換えて適用してもよい。
第2のルール#2を適用する場合、UEは、隣接する送信区分の間にギャップが設定されると想定して受信処理又は送信処理を制御する(図4B参照)。図4Bでは、2シンボルで構成されるシンボルグループ毎に非連続の時間領域リソースの割当てを行う場合を示している。もちろん、シンボルグループを構成するシンボル数は2に限られない。また、シンボル毎に非連続の時間領域リソースの割当てを行ってもよい。以下の説明において、シンボルグループをシンボルに置き換えて適用してもよい。
非連続の時間領域に割当てられるデータ間のギャップの位置及び長さ等のパラメータは、あらかじめ仕様で固定的に設定してもよい。あるいは、上位レイヤシグナリング及び下り制御情報の少なくとも一つを用いて基地局からUEにギャップのパラメータを通知してもよい。
図4Bでは、シンボルグループ#0、#1に設定される送信区分と、シンボル#4、#5に設定される送信区分の間に、ギャップ(ここでは、2シンボルグループ)が設定される場合を示している。このように、送信区分の間に所定ギャップを設けることにより、ギャップに基づいてデータを非連続のリソースに分散して配置することができる。
<ルール#3>
第3のルール#3を適用する場合、UEは、所定領域におけるDL信号に基づいて、データの割当て(又は、スケジューリング)有無を判断して受信処理及び送信処理の少なくとも一方を行う。例えば、UEは、DL信号に含まれる情報(例えば、ビット値)、DL信号の構成(例えば、系列等)、及びDL信号の検出有無の少なくとも一つに基づいて、データの受信処理又は送信処理の停止(hold)と再開(resume)を制御する。なお、DL信号を利用した非連続の時間領域リソース割当て手順は、hold-resumeシグナリングと呼ばれてもよい。
第3のルール#3を適用する場合、UEは、所定領域におけるDL信号に基づいて、データの割当て(又は、スケジューリング)有無を判断して受信処理及び送信処理の少なくとも一方を行う。例えば、UEは、DL信号に含まれる情報(例えば、ビット値)、DL信号の構成(例えば、系列等)、及びDL信号の検出有無の少なくとも一つに基づいて、データの受信処理又は送信処理の停止(hold)と再開(resume)を制御する。なお、DL信号を利用した非連続の時間領域リソース割当て手順は、hold-resumeシグナリングと呼ばれてもよい。
DL信号は、UE固有(UE-specific)DCI、UE共通(UE-common)DCI、及び所定の参照信号(special RSと呼んでもよい)の少なくとも一つを利用してもよい。
所定領域は、UEがDL信号をモニタする領域(モニタ領域)に相当する。モニタ領域は、モニタリングオケージョン(monitoring occasion)、モニタリングウィンドウ、又はモニタリング機会と呼ばれてもよい。
なお、モニタ領域として、DCIを検出するために設定される下り制御チャネル(PDCCH)用のモニタリングオケージョンを利用してもよい。PDCCHのモニタリングオケージョンは、基地局から通知されるモニタリング周期(monitoring periodicity)、モニタリングオフセット(monitoring offset)、及びモニタリングパターン(monitoring pattern)の少なくとも一つに基づいて決定されてもよい。
例えば、UEは、基地局から上位レイヤ(例えば、RRCシグナリング)で設定されるモニタリング周期、モニタリングオフセット及びモニタリングパターンに基づいてモニタリングオケージョンを決定してもよい。モニタリングオケージョンは、DCIフォーマット毎に設定されてもよい。もちろん、PDCCHのモニタリングオケージョンとは別にモニタ領域を設定してもよい。
モニタリングオケージョンが上位レイヤで設定されない場合、あらかじめ設定されたデフォルトのモニタリングオケージョンを利用して、hold-resumeシグナリング用のDL信号のモニタを制御してもよい。デフォルトのモニタリングオケージョンは、シンボル毎であってもよいし、設定され得る最小のモニタリング周期としてもよい。
PDSCHの受信処理の停止及びPUSCHの送信処理の停止を通知する第1のシグナリング(holdシグナリングとも呼ぶ)と、PDSCHの受信処理の再開及びPUSCHの送信処理の再開を通知する第2のシグナリング(resumeシグナリングとも呼ぶ)は、同時に通知してもよいし、別々に通知してもよい。
あるいは、モニタリングオケージョンにおいて、hold-resumeシグナリング用のDL信号を検出した場合にresumeシグナリングと判断して、PDSCHの受信処理及びPUSCHの送信処理の少なくとも一方を再開してもよい。一方で、モニタリングオケージョンにおいて、hold-resumeシグナリング用のDL信号を検出しない場合にholdシグナリングと判断して、次のモニタリングオケージョンでDL信号を検出するまでPDSCHの受信処理及びPUSCHの送信処理を停止してもよい。
あるいは、モニタリングオケージョンにおいて、検出したhold-resumeシグナリング用のDL参照信号が第1の系列を適用している場合にresumeシグナリングと判断し、第2の系列を適用している場合にhold-resumeシグナリングと判断してもよい。
図4Cは、hold-resumeシグナリングの一例を示している。図4Cでは、2シンボルで構成されるシンボルグループ毎に非連続の時間領域リソースの割当てを行う場合を示している。もちろん、シンボルグループを構成するシンボル数は2に限られない。また、シンボル毎に非連続の時間領域リソースの割当てを行ってもよい。以下の説明において、シンボルグループをシンボルに置き換えて適用してもよい。
また、図4Cでは、2シンボルグループ毎(又は、2シンボルグループ周期)でhold-resumeシグナリング用のDL信号のモニタリングオケージョンが設定される場合を示している。
ここでは、シンボルグループ#0、#2、#8、#10で設定されるモニタリングオケージョンでresumeシグナリングが通知され、シンボルグループ#4、#6、#8、#12で設定されるモニタリングオケージョンでholdシグナリングが通知される場合を示している。
UEは、シンボルグループ#0でresumeシグナリングを受信した場合、DCIでスケジューリングされているPDSCHの受信処理及びPUSCHの送信処理の少なくとも一方を再開(又は、継続)する。PDSCHの受信処理又はPUSCHの送信処理は、resumeシグナリングを受信したシンボルグループ#0から、次のモニタリングオケージョン前のシンボルグループ#1まで適用してもよい。
もちろん、resumeシグナリングに基づいて行うPDSCHの受信処理又はPUSCHの送信処理の期間はこれに限られない。例えば、resumeシグナリングを受信したシンボルグループ#0の次のシンボルグループ#1からPDSCHの受信処理又はPUSCHの送信処理を行ってもよい。
UEは、シンボルグループ#2でresumeシグナリングを受信した場合、DCIでスケジューリングされているPDSCHの受信処理及びPUSCHの送信処理の少なくとも一方を継続する。
UEは、シンボルグループ#4でholdシグナリングを受信した場合、DCIでスケジューリングされているPDSCHの受信処理及びPUSCHの送信処理を停止する。この場合、UEは、次にresumeシグナリングを検出するまでPDSCHの受信処理及びPUSCHの送信処理を停止してもよい。
このように、モニタリングオケージョンに設定されるDL信号を利用してPDSCHの受信処理及びPUSCHの送信処理の適用を制御することにより、非連続の時間領域リソース割当てを柔軟に制御することが可能となる。これにより、データのスケジューリングを柔軟に制御すると共に、リソースの利用効率を向上することができる。
(無線通信システム)
以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図5は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
図6は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
図6は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
また、送受信部103は、シンボル単位又はシンボルグループ単位でスケジューリングされる物理共有チャネル(例えば、PDSCH)を送信する。あるいは、送受信部103は、シンボル単位又はシンボルグループ単位でスケジューリングされる物理共有チャネル(例えば、PUSCH)を受信する。また、送受信部103は、物理共有チャネルの時間方向の割当てタイプを通知してもよい。また、送受信部103は、物理共有チャネルの割当てリソース(例えば、SLIV)をUEに通知してもよい。
図7は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
また、制御部301は、物理共有チャネルの時間方向の割当てタイプを選択してUEに設定するように制御する。制御部301は、物理共有チャネルに適用する時間方向の割当てタイプに基づいて、PDSCH及びPUSCHの少なくとも一方の割当てを制御してもよい。
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
図8は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
図8は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
また、送受信部203は、シンボル単位又はシンボルグループ単位でスケジューリングされる物理共有チャネル(例えば、PDSCH)を受信する。あるいは、送受信部203は、シンボル単位又はシンボルグループ単位でスケジューリングされる物理共有チャネル(例えば、PUSCH)を送信する。また、送受信部203は、物理共有チャネルの時間方向の割当てタイプを通知してもよい。また、送受信部103は、物理共有チャネルの割当てリソース(例えば、SLIV)を受信してもよい。
図9は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
また、制御部401は、下り制御情報及び上位レイヤシグナリングの少なくとも一つを用いて通知される物理共有チャネルの時間方向の割当てタイプに基づいて、物理共有チャネル(例えば、PDSCH)の受信を制御する。あるいは、制御部401は、下り制御情報及び上位レイヤシグナリングの少なくとも一つを用いて通知される物理共有チャネルの時間方向の割当てタイプに基づいて、物理共有チャネル(例えば、PUSCH)の送信を制御する。
割当てタイプは、物理共有チャネルが連続する時間領域リソースに割当てられるタイプと、非連続の時間領域リソースに割当てられるタイプを含んでいてもよい。
また、制御部401は、物理共有チャネルが非連続の時間領域リソースに割当てられる場合、下り制御情報に基づいて少なくとも物理共有チャネルの送信区分の一部を決定してもよい。また、制御部401は、物理共有チャネルが非連続の時間領域リソースに割当てられる場合、所定信号が割当てられる所定領域をのぞいて物理共有チャネルの送信区分を決定してもよい。
また、制御部401は、物理共有チャネルが非連続の時間領域リソースに割当てられる場合、所定のモニタリングオケージョンにおいて検出した所定DL信号、又は所定のモニタリングオケージョンにおける所定DL信号の検出有無に基づいて、物理共有チャネルの受信の停止及び再開を制御してもよい。
また、制御部401は、基地局から通知されるSLIVと、物理共有チャネルの時間方向の割当てタイプに基づいて、PDSCHの受信処理及びPUSCHの送信処理の少なくとも一方を制御してもよい。
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。
Claims (6)
- シンボル単位又はシンボルグループ単位でスケジューリングされる物理共有チャネルを受信する受信部と、
下り制御情報及び上位レイヤシグナリングの少なくとも一つを用いて通知される前記物理共有チャネルの時間方向の割当てタイプに基づいて、前記物理共有チャネルの受信を制御する制御部と、を有することを特徴とするユーザ端末。 - 前記割当てタイプは、前記物理共有チャネルが連続する時間領域リソースに割当てられるタイプと、非連続の時間領域リソースに割当てられるタイプを含むことを特徴とする請求項1に記載のユーザ端末。
- 前記制御部は、前記物理共有チャネルが非連続の時間領域リソースに割当てられる場合、前記下り制御情報に基づいて少なくとも前記物理共有チャネルの送信区分の一部を決定することを特徴とする請求項1又は請求項2に記載のユーザ端末。
- 前記制御部は、前記物理共有チャネルが非連続の時間領域リソースに割当てられる場合、所定信号が割当てられる所定領域をのぞいて前記物理共有チャネルの送信区分を決定することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
- 前記制御部は、前記物理共有チャネルが非連続の時間領域リソースに割当てられる場合、所定のモニタリングオケージョンにおいて検出した所定DL信号、又は所定のモニタリングオケージョンにおける所定DL信号の検出有無に基づいて、前記物理共有チャネルの受信の停止及び再開を制御することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
- シンボル単位又はシンボルグループ単位でスケジューリングされる物理共有チャネルを受信する工程と、
下り制御情報及び上位レイヤシグナリングの少なくとも一つを用いて通知される前記物理共有チャネルの時間方向の割当てタイプに基づいて、前記物理共有チャネルの受信を制御する工程と、を有することを特徴とするユーザ端末の無線通信方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880095253.8A CN112369096A (zh) | 2018-05-10 | 2018-05-10 | 用户终端以及无线通信方法 |
PCT/JP2018/018206 WO2019215889A1 (ja) | 2018-05-10 | 2018-05-10 | ユーザ端末及び無線通信方法 |
EP18917630.8A EP3793298A4 (en) | 2018-05-10 | 2018-05-10 | USER TERMINAL, AND WIRELESS COMMUNICATION PROCESS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/018206 WO2019215889A1 (ja) | 2018-05-10 | 2018-05-10 | ユーザ端末及び無線通信方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019215889A1 true WO2019215889A1 (ja) | 2019-11-14 |
Family
ID=68467058
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/018206 WO2019215889A1 (ja) | 2018-05-10 | 2018-05-10 | ユーザ端末及び無線通信方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3793298A4 (ja) |
CN (1) | CN112369096A (ja) |
WO (1) | WO2019215889A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112612424A (zh) * | 2020-12-29 | 2021-04-06 | 江苏国科微电子有限公司 | 一种NVMe提交队列控制装置及方法 |
CN115136638A (zh) * | 2020-02-20 | 2022-09-30 | 株式会社Ntt都科摩 | 终端、无线通信方法以及基站 |
US20220361209A1 (en) * | 2019-08-08 | 2022-11-10 | Lenovo (Beijing) Limited | Indicating a slot offset corresponding to a downlink control channel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114499768B (zh) * | 2022-04-15 | 2022-06-10 | 成都爱瑞无线科技有限公司 | Pdsch信道的数据处理方法、装置及存储介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013038525A1 (ja) * | 2011-09-14 | 2013-03-21 | 富士通株式会社 | 無線端末および基地局 |
WO2017135297A1 (ja) * | 2016-02-04 | 2017-08-10 | シャープ株式会社 | 端末装置、基地局装置および通信方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6886919B2 (ja) * | 2015-09-02 | 2021-06-16 | 株式会社Nttドコモ | 端末及び無線通信方法 |
CN107950052B (zh) * | 2015-09-02 | 2022-03-08 | 株式会社Ntt都科摩 | 用户终端、无线基站、无线通信方法以及无线通信系统 |
JP6105693B2 (ja) * | 2015-09-03 | 2017-03-29 | 株式会社Nttドコモ | 無線通信方法、無線通信システム及び無線基地局 |
US20180049164A1 (en) * | 2016-01-11 | 2018-02-15 | Mediatek Singapore Pte. Ltd. | Transmission method based on physical downlink channel, user equipment, and base station |
EP3955687B1 (en) * | 2016-07-13 | 2023-06-21 | Samsung Electronics Co., Ltd. | Terminal, base station and corresponding methods |
WO2018080217A1 (ko) * | 2016-10-27 | 2018-05-03 | 주식회사 케이티 | 차세대 무선망에서 상향 링크 신호 및 하향링크 데이터 채널을 스케줄링하는 방법 및 장치 |
ES2955133T3 (es) * | 2016-10-31 | 2023-11-28 | Kt Corp | Método y dispositivo para asignar un recurso de canal de datos para una red de acceso inalámbrico de próxima generación |
CN106793127B (zh) * | 2017-02-17 | 2020-11-10 | 宇龙计算机通信科技(深圳)有限公司 | 微时隙的指示方法及装置 |
EP3684131A1 (en) * | 2017-06-16 | 2020-07-22 | Telefonaktiebolaget LM Ericsson (publ) | Pre-emption indication message |
GB2565369A (en) * | 2017-08-11 | 2019-02-13 | Tcl Communication Ltd | Multiplexing data over control resources in new radio |
GB2565344B (en) * | 2017-08-11 | 2022-05-04 | Tcl Communication Ltd | Slot aggregation |
-
2018
- 2018-05-10 WO PCT/JP2018/018206 patent/WO2019215889A1/ja active Application Filing
- 2018-05-10 EP EP18917630.8A patent/EP3793298A4/en not_active Withdrawn
- 2018-05-10 CN CN201880095253.8A patent/CN112369096A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013038525A1 (ja) * | 2011-09-14 | 2013-03-21 | 富士通株式会社 | 無線端末および基地局 |
WO2017135297A1 (ja) * | 2016-02-04 | 2017-08-10 | シャープ株式会社 | 端末装置、基地局装置および通信方法 |
Non-Patent Citations (3)
Title |
---|
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01) |
CMCC: "Discussion on remaining issues for time domain resource allocation", 3GPP TSG RAN WG1 MEETING #92 R1-1802043, 26 February 2018 (2018-02-26), XP051397139 * |
See also references of EP3793298A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220361209A1 (en) * | 2019-08-08 | 2022-11-10 | Lenovo (Beijing) Limited | Indicating a slot offset corresponding to a downlink control channel |
CN115136638A (zh) * | 2020-02-20 | 2022-09-30 | 株式会社Ntt都科摩 | 终端、无线通信方法以及基站 |
CN112612424A (zh) * | 2020-12-29 | 2021-04-06 | 江苏国科微电子有限公司 | 一种NVMe提交队列控制装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3793298A1 (en) | 2021-03-17 |
EP3793298A4 (en) | 2021-12-22 |
CN112369096A (zh) | 2021-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018203396A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019193688A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2018173235A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019171518A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019087340A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019215794A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019224875A1 (ja) | ユーザ端末 | |
WO2018193594A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2018229951A1 (ja) | ユーザ端末及び無線通信方法 | |
JP6928007B2 (ja) | 端末、無線通信方法及び基地局 | |
WO2018158923A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2018203408A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019176032A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019215934A1 (ja) | ユーザ端末及び無線通信方法 | |
JP6938625B2 (ja) | 端末、無線通信方法、基地局及びシステム | |
WO2019171519A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019159235A1 (ja) | ユーザ端末及び無線通信方法 | |
JPWO2020053942A1 (ja) | 端末、無線通信方法、基地局及びシステム | |
JP7163320B2 (ja) | 端末、無線通信方法、基地局およびシステム | |
WO2019215876A1 (ja) | ユーザ端末 | |
WO2019215921A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2018143388A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2018203404A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019234929A1 (ja) | ユーザ端末及び無線通信方法 | |
WO2019180886A1 (ja) | ユーザ端末及び無線通信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18917630 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018917630 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2018917630 Country of ref document: EP Effective date: 20201210 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |