WO2019215933A1 - ユーザ端末 - Google Patents

ユーザ端末 Download PDF

Info

Publication number
WO2019215933A1
WO2019215933A1 PCT/JP2018/018433 JP2018018433W WO2019215933A1 WO 2019215933 A1 WO2019215933 A1 WO 2019215933A1 JP 2018018433 W JP2018018433 W JP 2018018433W WO 2019215933 A1 WO2019215933 A1 WO 2019215933A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
user terminal
unit
shared channel
reception
Prior art date
Application number
PCT/JP2018/018433
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/018433 priority Critical patent/WO2019215933A1/ja
Priority to US17/054,373 priority patent/US20210219326A1/en
Priority to CN201880095518.4A priority patent/CN112385164A/zh
Publication of WO2019215933A1 publication Critical patent/WO2019215933A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies

Definitions

  • the present disclosure relates to a user terminal in a next generation mobile communication system.
  • LTE Long Term Evolution
  • Non-patent Document 1 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE Rel. 8, 9 LTE Advanced, LTE Rel. 10, 11, 12, 13
  • LTE successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), FX (Future generation radio access), LTE Also referred to as Rel.
  • DFT-s-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • a user terminal (UE: User Equipment) has a UL data channel (for example, PUSCH: Physical Uplink Shared Channel) and / or a UL control channel (for example, Uplink control information (UCI: Uplink Control Information) is transmitted using PUCCH: Physical Uplink Control Channel.
  • PUSCH Physical Uplink Shared Channel
  • UCI Uplink Control Information
  • the transmission of the UCI is controlled based on whether or not simultaneous transmission of PUSCH and PUCCH (simultaneous PUSCH and PUCCH transmission) is set (configure) and whether or not the PUSCH is scheduled in the TTI that transmits the UCI.
  • the UE transmits uplink data and UCI using the uplink shared channel (PUSCH). Transmitting UCI using PUSCH is also called UCI on PUSCH.
  • PUSCH uplink shared channel
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • downlink shared channels for example, PDSCH scheduled by DL assignment received after UL grant : Transmission bit (HARQ-ACK bit) for acknowledgment to Physical Downlink Shared Channel is also considered to be transmitted using uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) scheduled by the UL grant.
  • the UL grant is downlink control information (DCI: Donwlink Control Information) (first DCI) used for PUSCH scheduling.
  • the DL assignment is DCI (second DCI) used for PDSCH scheduling.
  • the HARQ-ACK bit corresponding to the DL assignment received after the UL grant is transmitted using the PUSCH scheduled by the UL grant. Is not expected. This is because in the existing LTE system, the timing of the HARQ-ACK bit corresponding to the DL assignment is fixedly determined, and it is not assumed that the timing is controlled.
  • the transmission of the HARQ-ACK bit corresponding to the DL assignment received after the UL grant may not be appropriately controlled. is there.
  • an object of the present disclosure is to provide a user terminal capable of appropriately controlling transmission of the HARQ-ACK bit corresponding to the DL assignment received after the UL grant.
  • the user terminal which concerns on 1 aspect of this indication receives the 2nd downlink control information (DCI) used for scheduling of a downlink shared channel after reception of the 1st downlink control information (DCI) used for scheduling of an uplink shared channel.
  • DCI downlink control information
  • the uplink Based on at least one of the receiving unit to receive, the number of delivery confirmation bits of the downlink shared channel, and the time from the reception of the second DCI to the transmission of the uplink shared channel, the uplink And a control unit that controls transmission of the delivery confirmation information using a shared channel.
  • FIG. 1 is a diagram illustrating an example of UCI on PUSCH control in existing LTE.
  • FIG. 2 is a diagram illustrating an example of UCI on PUSCH control assumed in the NR.
  • FIG. 3 is a diagram illustrating an example of HARQ-ACK transmission control according to aspect 3.1.
  • FIG. 4 is a diagram illustrating an example of HARQ-ACK transmission control according to aspect 3.2.
  • FIG. 5 is a diagram illustrating an example of HARQ-ACK transmission control according to aspect 3.3. It is a figure which shows an example of schematic structure of the radio
  • a scheduling unit of a data channel (including a DL data channel and / or a UL data channel, also simply referred to as data)
  • a time unit for example, a slot, a minislot, and a predetermined number of symbols
  • the use of at least one) is under consideration.
  • the slot is a unit of time based on the neurology (for example, subcarrier interval and / or symbol length) applied to transmission and / or reception by the UE.
  • the number of symbols per slot may be determined according to the subcarrier interval. For example, when the subcarrier interval is 15 kHz or 30 kHz, the number of symbols per slot may be 7 or 14 symbols. On the other hand, when the subcarrier interval is 60 kHz or more, the number of symbols per slot may be 14 symbols.
  • the subcarrier interval and the symbol length are inversely related. Therefore, if the symbols per slot are the same, the slot length becomes shorter as the subcarrier interval becomes higher (wider), and the slot length becomes longer as the subcarrier interval becomes lower (narrower).
  • the mini slot is a unit of time shorter than the slot.
  • a mini-slot may be composed of a smaller number of symbols (for example, 1 to (slot length-1) symbols, for example, 2 or 3 symbols).
  • the same neurology (eg, subcarrier spacing and / or symbol length) as the slot may be applied to the minislot within the slot, or a different neurology (eg, higher sub-slot than the slot).
  • a carrier interval and / or a symbol length shorter than a slot) may be applied.
  • scheduling in a first time unit for example, slot unit
  • scheduling in a second time unit for example, non-slot unit
  • the non-slot unit may be a mini-slot unit or a symbol unit.
  • the slot is composed of 7 symbols or 14 symbols
  • the mini-slot can be composed of 1 to (slot length-1) symbols.
  • the data transmission timing / transmission period in the time direction differs depending on the data scheduling unit. For example, when scheduling is performed in units of slots, one data may be assigned to one slot. On the other hand, when scheduling is performed in non-slot units (mini-slot units or symbol units), data is selectively allocated to a partial area of one slot. Therefore, when scheduling is performed in units of non-slots, a plurality of data can be allocated to one slot.
  • the transmission timing / transmission period of data etc. is scheduled (transmission) in order to control the scheduling of data etc. flexibly. ) Is assumed to be changeable every time.
  • data for example, PDSCH and / or PUSCH
  • UCI for example, A / N
  • the base station specifies the UCI transmission timing / transmission period to the UE using downlink control information and / or higher layer signaling.
  • the A / N feedback timing is flexibly set in a period after the downlink control information for notifying the transmission timing / transmission period of the A / N and / or the corresponding PDSCH.
  • UCI transmission and UL data (UL-SCH) transmission occur at the same timing, UCI and UL data are multiplexed and transmitted on PUSCH (UCI). piggyback on PUSCH and UCI on PUSCH).
  • FIG. 1 is a diagram illustrating an example of control of UCI on PUSCH in existing LTE.
  • a part with “DL” or “UL” indicates a predetermined resource (for example, time / frequency resource), and a period of each part is an arbitrary time unit (for example, one or a plurality of slots, a miniature, Slot, symbol, subframe, etc.). The same applies to the following examples.
  • the UE transmits ACK / NACK corresponding to the illustrated four DL resources using the UL resource indicated by a predetermined UL grant.
  • the UL grant is always notified at the last timing of the HARQ-ACK bundling window or after that timing.
  • the HARQ-ACK bundling window may be called a HARQ-ACK feedback window or simply a bundling window, and corresponds to a period in which A / N feedback is performed at the same timing.
  • the UE determines that a certain period is a bundling window from a DL resource indicated by a predetermined DL assignment, generates an A / N bit corresponding to the window, and controls feedback.
  • FIG. 2 is a diagram illustrating an example of UCI on PUSCH control assumed in the NR.
  • FIG. 2 is similar to FIG. 1 except that the DL data included in the bundling window is still scheduled after the UL grant notification. As described above, in NR, it is considered that the UL grant for HARQ-ACK transmission is notified before the last timing of the bundling window.
  • a bit (HARQ for confirming delivery) for a downlink shared channel for example, PDSCH: Physical Downlink Shared Channel
  • a downlink shared channel for example, PDSCH: Physical Downlink Shared Channel
  • -ACK bit is assumed to be transmitted using an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) scheduled by the UL grant.
  • the HARQ-ACK bit corresponding to the DL assignment received after the UL grant is scheduled by the UL grant. Transmission using PUSCH is not assumed.
  • the transmission of the HARQ-ACK bit corresponding to the DL assignment received after the UL grant may not be appropriately controlled. is there. Therefore, a method for appropriately controlling the transmission of the HARQ-ACK bit corresponding to the DL assignment received after the UL grant has been studied, and the present invention has been achieved.
  • UCI is a scheduling request (SR: Scheduling Request), DL data channel (for example, PDSCH (Physical Downlink Shared Channel)) acknowledgment information (HARQ-ACK: Hybrid Automatic Repeat reQuest-Acknowledge, ACK or NACK (Negative ACK) ) Or A / N), channel state information (CSI: Channel State Information), beam index information (BI: Beam Index), and buffer status report (BSR: Buffer Status Report).
  • HARQ-ACK may be replaced with UCI, or may be replaced with other types of UCI such as SR and CSI.
  • rate matching processing of data refers to controlling the number of encoded bits (encoded bits) in consideration of actually available radio resources. When the number of encoded bits is less than the number of bits that can be mapped to actually available radio resources, at least some of the encoded bits may be repeated. When the number of encoded bits is larger than the number of bits that can be mapped, a part of the encoded bits may be deleted.
  • rate matching processing By performing rate matching processing on UL data, in consideration of resources that can actually be used, encoding can be performed so that the coding rate is higher (with higher performance) than puncturing processing. Therefore, for example, when the rate matching process is applied instead of the puncture process when the payload size of the UCI is large, the UL signal can be generated with higher quality, and the communication quality can be improved.
  • the number of bits to be fed back may be limited for the HARQ-ACK of the DL assignment after the UL grant.
  • the user terminal may transmit X-bit HARQ-ACK corresponding to the DL assignment after the UL grant by puncturing the PUSCH UL data. Also, if the number of DL assignments received after the UL grant exceeds X, the user terminal may trigger an error event.
  • Aspect 2 is different from Aspect 1 in that the number of bits to be fed back is not limited for HARQ-ACK of DL assignment after UL grant.
  • the user terminal may generate an X-bit HARQ-ACK by bundling (eg, spatial bundling) at least one of the HARQ-ACKs of the DL assignment after the UL grant.
  • the user terminal may puncture the PUSCH UL data scheduled by the UL grant and transmit the X-bit HARQ-ACK. As a result, even when the number of HARQ-ACK bits of the DL assignment after the UL grant exceeds X bits, the HARQ-ACK can be fed back.
  • the user terminal uses the PUSCH scheduled by the UL grant,
  • the HARQ-ACK may be transmitted.
  • the user terminal may puncture the UL data of the PUSCH and transmit the X-bit HARQ-ACK.
  • the user terminal may stop transmitting (dropping) HARQ-ACK bits exceeding X bits. Good).
  • FIG. 3 is a diagram illustrating an example of controlling the transmission of HARQ-ACK according to aspect 3.1.
  • FIG. 3 shows an example in which the user terminal detects a predetermined number (here, four) DL assignments after the UL grant.
  • the rate matching resource and the puncturing resource may be provided separately in the frequency resource allocated to the PUSCH.
  • the user terminal may transmit X-bit HARQ-ACK after mapping it to a resource for rate matching.
  • the user terminal may control HARQ-ACK feedback corresponding to a DL assignment after the UL grant based on the UE terminal processing capability.
  • the processing capability of the user terminal may be, for example, the time (processing time) required from receiving the UL grant until transmitting the PUSCH corresponding to the UL grant.
  • HARQ-ACK feedback may be controlled.
  • the user terminal when the time difference is equal to or greater than a predetermined threshold N2 (or larger than the predetermined threshold N2), the user terminal transmits HARQ-ACK corresponding to a DL assignment after the UL grant using the UL grant. You may transmit using PUSCH to be scheduled. In this case, the user terminal may rate match the PUSCH UL data and transmit the X-bit HARQ-ACK.
  • the user terminal stops transmitting HARQ-ACK corresponding to the DL assignment after the UL grant. (You may drop).
  • the predetermined threshold N2 may be set or controlled by at least one of higher layer signaling and physical layer signaling.
  • the predetermined threshold N2 is. It may be a value set (controlled) based on the processing capability of the user terminal.
  • the user terminal may receive information indicating the predetermined threshold N2 from the radio base station.
  • the predetermined threshold may be a fixed value determined in advance by specifications.
  • upper layer signaling includes, for example, RRC (Radio Resource Control) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), MAC (Medium Access Control), etc. There may be at least one of (signaling).
  • the physical layer signaling may be, for example, downlink control information (DCI: Downlink Control Information).
  • FIG. 4 is a diagram illustrating an example of controlling transmission of HARQ-ACK according to aspect 3.2.
  • FIG. 4 shows an example in which the user terminal detects a predetermined number (here, four) DL assignments after the UL grant.
  • the user terminal determines that the time difference between the DL assignment timing after the UL grant and the PUSCH timing scheduled by the UL grant is greater than the processing time N2 (or more than the processing time N2). In this case, the user terminal may transmit HARQ-ACK corresponding to the DL assignment. On the other hand, when the time difference is equal to or shorter than the processing time N2 (or smaller than the processing time N2), the user terminal may stop transmitting the HARQ-ACK corresponding to the DL assignment.
  • the user terminal determines that the time difference is larger than the processing time N2 (or processing time).
  • the DL assignment HARQ-ACK (which is greater than or equal to N2) may be mapped to a resource for rate matching and transmitted.
  • the user terminal provides HARQ-ACK feedback corresponding to a DL assignment after the UL grant based on the UE processing capability of the user terminal. You may control.
  • the time difference between the DL assignment timing after the UL grant and the PUSCH transmission timing scheduled by the UL grant is less than the predetermined threshold N2 (or less than the predetermined threshold N2).
  • HARQ-ACK corresponding to a DL assignment after the UL grant is transmitted using PUSCH scheduled by the UL grant, which is different from aspect 3.2.
  • the user terminal when the time difference is less than the predetermined threshold value N2 (or less than or equal to the predetermined threshold value N2), the user terminal transmits HARQ-ACK corresponding to a DL assignment after the UL grant.
  • PUSCH UL data may be punctured and transmitted.
  • the user terminal bundles (eg, spatial bundling) at least one bit of the HARQ-ACK, and transmits the HARQ-ACK of X bits to the PUSCH.
  • the UL data may be punctured and transmitted.
  • FIG. 5 is a diagram illustrating an example of controlling the transmission of HARQ-ACK according to aspect 3.3.
  • FIG. 5 shows an example in which the user terminal detects a predetermined number (here, four) DL assignments after the UL grant. In FIG. 5, the difference from FIG. 4 will be mainly described.
  • the time difference between the DL assignment timing after the UL grant and the PUSCH timing scheduled by the UL grant is equal to or less than the processing time N2 (or smaller than the processing time N2).
  • a HARQ-ACK corresponding to the DL assignment may be transmitted.
  • the user terminal determines that the time difference is equal to or less than the processing time N2 (or processing The HARQ-ACK of DL assignment (less than time N2) may be mapped to a puncture resource and transmitted.
  • the user terminal receives at least one of the HARQ-ACKs Bundling may be performed to generate an X-bit HARQ-ACK, and the X-bit HARQ-ACK may be mapped to a puncture resource.
  • the time difference between the DL assignment timing after the UL grant and the PUSCH timing scheduled by the UL grant is equal to or less than a predetermined threshold N2 (or smaller than the processing time N2).
  • Assignment HARQ-ACK can be fed back. .
  • wireless communication system Wireless communication system
  • communication is performed using at least one combination of the plurality of aspects.
  • FIG. 6 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced 4G (4th generation mobile communication system), 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system that realizes these.
  • the radio communication system 1 includes a radio base station 11 that forms a macro cell C1 having a relatively wide coverage, and a radio base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. It is equipped with. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 at the same time using CA or DC. Moreover, the user terminal 20 may apply CA or DC using a plurality of cells (CC) (for example, 5 or less CCs, 6 or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD) and / or frequency division duplex (FDD) in each cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • a single neurology may be applied, or a plurality of different neurology may be applied.
  • Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, filtering process, windowing process, and the like.
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface, etc.) or wirelessly. May be.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal (mobile station) but also a fixed communication terminal (fixed station).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink, and single carrier-frequency division multiple access (SC-FDMA) is used for the uplink.
  • SC-FDMA single carrier-frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission in which the system bandwidth is divided into bands each composed of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Moreover, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channel is downlink control channel (PDCCH (Physical Downlink Control Channel) and / or EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) Including at least one of Downlink control information (DCI: Downlink Control Information) including PDSCH and / or PUSCH scheduling information is transmitted by the PDCCH.
  • PDCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • DCI Downlink Control Information
  • scheduling information may be notified by DCI.
  • DCI for scheduling DL data reception may be referred to as DL assignment
  • DCI for scheduling UL data transmission may be referred to as UL grant.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat reQuest) delivery confirmation information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) to the PUSCH.
  • HARQ Hybrid Automatic Repeat reQuest
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel (PUSCH) shared by each user terminal 20
  • an uplink control channel (PUCCH: Physical Uplink Control Channel)
  • a random access channel (PRACH: Physical Random Access Channel)
  • User data, higher layer control information, etc. are transmitted by PUSCH.
  • downlink radio link quality information CQI: Channel Quality Indicator
  • delivery confirmation information SR
  • scheduling request etc.
  • a random access preamble for establishing connection with the cell is transmitted by the PRACH.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a measurement reference signal SRS: Sounding Reference Signal
  • a demodulation reference signal DMRS
  • the DMRS may be referred to as a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • a synchronization signal for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal)
  • a broadcast channel PBCH: Physical Broadcast Channel
  • the synchronization signal and the PBCH may be transmitted in a synchronization signal block (SSB).
  • SSB synchronization signal block
  • FIG. 7 is a diagram illustrating an example of an overall configuration of a radio base station according to an embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may each be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, precoding processing, and other transmission processing
  • IFFT Inverse Fast Fourier Transform
  • precoding processing precoding processing, and other transmission processing
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processor 105 performs communication channel call processing (setting, release, etc.), status management of the radio base station 10, radio resource management, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from other radio base stations 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). May be.
  • CPRI Common Public Radio Interface
  • X2 interface May be.
  • the transmission / reception unit 103 transmits first downlink control information (DCI) used for scheduling of the uplink shared channel and second downlink control information (DCI) used for scheduling of the downlink shared channel. Further, the transmission / reception unit 103 receives HARQ-ACK for the downlink shared channel on the uplink shared channel.
  • DCI downlink control information
  • DCI downlink control information
  • FIG. 8 is a diagram illustrating an example of a functional configuration of the radio base station according to the embodiment.
  • the functional block of the characteristic part in one Embodiment is mainly shown, and it may be assumed that the radio base station 10 also has other functional blocks necessary for radio communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. These configurations may be included in the radio base station 10, and a part or all of the configurations may not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire radio base station 10.
  • the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal allocation in the mapping unit 303, and the like.
  • the control unit 301 also controls signal reception processing in the reception signal processing unit 304, signal measurement in the measurement unit 305, and the like.
  • the control unit 301 schedules system information, downlink data signals (for example, signals transmitted by PDSCH), downlink control signals (for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.) (for example, resource Control). In addition, the control unit 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is necessary for the uplink data signal.
  • downlink data signals for example, signals transmitted by PDSCH
  • downlink control signals for example, signals transmitted by PDCCH and / or EPDCCH, delivery confirmation information, etc.
  • resource Control for example, resource Control
  • the control unit 301 controls scheduling such as a synchronization signal (for example, PSS / SSS) and a downlink reference signal (for example, CRS, CSI-RS, DMRS).
  • a synchronization signal for example, PSS / SSS
  • a downlink reference signal for example, CRS, CSI-RS, DMRS
  • the control unit 301 uses the digital BF (for example, precoding) by the baseband signal processing unit 104 and / or the analog BF (for example, phase rotation) by the transmission / reception unit 103 to form a transmission beam and / or a reception beam. May be performed.
  • digital BF for example, precoding
  • analog BF for example, phase rotation
  • the control unit 301 applies the depuncture process and / or the rate dematching process to the received uplink data based on the reception timing at the user terminal 20 of the transmission instruction (for example, UL grant) of the uplink shared channel (for example, PUSCH). Control may be performed.
  • the transmission instruction for example, UL grant
  • the uplink shared channel for example, PUSCH
  • the control unit 301 uses the uplink shared channel based on at least one of the number of bits for confirming delivery of the downlink shared channel and the time from when the second DCI is received until the uplink shared channel is transmitted. Control receipt of acknowledgment information.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from the control unit 301, and outputs it to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates, for example, a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information based on an instruction from the control unit 301.
  • the DL assignment and UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to coding processing, modulation processing, and the like according to a coding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel State Information) from each user terminal 20.
  • CSI Channel State Information
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when receiving PUCCH including HARQ-ACK, HARQ-ACK is output to control section 301.
  • the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, and the like based on the received signal.
  • the measurement unit 305 includes received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 301.
  • FIG. 9 is a diagram illustrating an example of an overall configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmission / reception antenna 201, the amplifier unit 202, and the transmission / reception unit 203 may each be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information of downlink data may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission / reception units for retransmission control (for example, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like. 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 receives the second downlink control information (DCI) used for scheduling of the downlink shared channel after receiving the first downlink control information (DCI) used for scheduling of the uplink shared channel. Further, the transmission / reception unit 203 sets the uplink shared channel based on at least one of the number of bits for confirming delivery of the downlink shared channel and the time from when the second DCI is received until the uplink shared channel is transmitted. May be used to receive delivery confirmation information.
  • DCI downlink control information
  • DCI downlink control information
  • FIG. 10 is a diagram illustrating an example of a functional configuration of the user terminal according to the embodiment.
  • the functional block of the characteristic part in one Embodiment is mainly shown, and it may be assumed that the user terminal 20 also has another functional block required for radio
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal allocation in the mapping unit 403, and the like.
  • the control unit 401 also controls signal reception processing in the reception signal processing unit 404, signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of retransmission control for the downlink control signal and / or the downlink data signal.
  • the control unit 401 uses a digital BF (for example, precoding) by the baseband signal processing unit 204 and / or an analog BF (for example, phase rotation) by the transmission / reception unit 203 to form a transmission beam and / or a reception beam. May be performed.
  • a digital BF for example, precoding
  • an analog BF for example, phase rotation
  • the control unit 401 is based on at least one of the number of bits for confirming delivery of the downlink shared channel and the time from reception of the second DCI used for scheduling of the downlink shared channel to transmission of the uplink shared channel. Thus, transmission of delivery confirmation information using the uplink shared channel is controlled.
  • control unit 401 may puncture the uplink data transmitted on the uplink shared channel and transmit the delivery confirmation bits.
  • control unit 401 may stop transmission of the delivery confirmation bits exceeding the predetermined threshold.
  • control unit 401 rate-matches uplink data transmitted on the uplink shared channel when the time from reception of the second DCI to transmission of the uplink shared channel is equal to or longer than a predetermined threshold. Then, a delivery confirmation bit may be transmitted.
  • control unit 401 may stop the transmission of the delivery confirmation bit when the time from the reception of the second DCI to the transmission of the uplink shared channel is shorter than or less than a predetermined threshold.
  • control unit 401 punctures uplink data transmitted through the uplink shared channel.
  • the delivery confirmation bit may be transmitted.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from the control unit 401 and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured by a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. In addition, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station 10.
  • CSI channel state information
  • the mapping unit 403 maps the uplink signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs the radio signal to the transmission / reception unit 203.
  • the mapping unit 403 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure. Further, the reception signal processing unit 404 can constitute a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401.
  • the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • each functional block is realized using one device physically and / or logically coupled, or directly and / or two or more devices physically and / or logically separated. Alternatively, it may be realized indirectly by connecting (for example, using wired and / or wireless) and using these plural devices.
  • a radio base station, a user terminal, and the like in one embodiment may function as a computer that performs processing of each aspect of one embodiment.
  • FIG. 11 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to perform calculations by reading predetermined software (programs) on hardware such as the processor 1001 and the memory 1002, for example, via the communication device 1004. This is realized by controlling communication and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the embodiment.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • the slot may be a time unit based on the numerology.
  • the slot may include a plurality of mini slots. Each minislot may be configured with one or more symbols in the time domain. The minislot may also be called a subslot.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • the resource block may be configured by one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • the information, parameters, and the like described in this specification may be expressed using absolute values, may be expressed using relative values from a predetermined value, or other corresponding information may be used. May be represented.
  • the radio resource may be indicated by a predetermined index.
  • names used for parameters and the like are not limited names in any way.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limited in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory) or may be managed using a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not performing notification of the predetermined information or other information) May be performed).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group a base station
  • carrier a base station
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Remote Radio Head)) can also provide communication services.
  • a base station subsystem eg, a small indoor base station (RRH: Remote Radio Head)
  • RRH Remote Radio Head
  • the term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present disclosure may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the operation performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may include a base station and one or more network nodes other than the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in the present specification may be used alone, in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described in this specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation).
  • mobile communication system 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access) , GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered quotient
  • the present invention may be applied to systems using other appropriate wireless communication methods and / or next-generation systems extended based on these methods.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection is any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain can be considered “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and / or light (both visible and invisible) regions.

Abstract

ULグラント後に受信されるDLアサインメントに対応するHARQ-ACKビットの送信を適切に制御可能なユーザ端末を提供すること。本発明のユーザ端末は、上り共有チャネルのスケジューリングに用いられる第1の下り制御情報(DCI)の受信後に、下り共有チャネルのスケジューリングに用いられる第2の下り制御情報(DCI)を受信する受信部と、前記下り共有チャネルの送達確認用ビットの数、及び、前記第2のDCIを受信してから前記上り共有チャネルを送信するまでの時間の少なくとも一つに基づいて、前記上り共有チャネルを用いた前記送達確認情報の送信を制御する制御部と、を具備する。

Description

ユーザ端末
 本開示は、次世代移動通信システムにおけるユーザ端末に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
 LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-13)の上りリンク(UL)では、DFT拡散OFDM(DFT-s-OFDM:Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing)波形がサポートされている。DFT拡散OFDM波形は、シングルキャリア波形であるので、ピーク対平均電力比(PAPR:Peak to Average Power Ratio)の増大を防止できる。
 また、既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末(UE:User Equipment)は、ULデータチャネル(例えば、PUSCH:Physical Uplink Shared Channel)及び/又はUL制御チャネル(例えば、PUCCH:Physical Uplink Control Channel)を用いて、上りリンク制御情報(UCI:Uplink Control Information)を送信する。
 当該UCIの送信は、PUSCH及びPUCCHの同時送信(simultaneous PUSCH and PUCCH transmission)の設定(configure)有無と、当該UCIを送信するTTIにおけるPUSCHのスケジューリング有無と、に基づいて制御される。
 UEは、上りデータ(例えば、UL-SCH)の送信タイミングと、上り制御情報(UCI)の送信タイミングが重複する場合、上り共有チャネル(PUSCH)を用いて上りデータとUCIの送信を行う。PUSCHを利用してUCIを送信することをUCI on PUSCHとも呼ぶ。
 将来の無線通信システム(例えば、LTE Rel.16以降、5G、NRなど。以下、単にNRとも呼ぶ)では、ULグラントよりも後に受信されるDLアサインメントによりスケジューリングされる下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)に対する送達確認用のビット(HARQ-ACKビット)を、当該ULグラントによりスケジューリングされる上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)を用いて送信することも検討されている。ここで、ULグラントは、PUSCHのスケジューリングにもちいられる下り制御情報(DCI:Donwlink Control Information)(第1のDCI)である。また、DLアサインメントは、PDSCHのスケジューリングにもちいられるDCI(第2のDCI)である。
 しかしながら、既存のLTEシステム(例えば、LTE Rel.8-13)では、ULグラント後に受信されるDLアサインメントに対応するHARQ-ACKビットを、当該ULグラントによりスケジューリングされるPUSCHを用いて送信することは想定されない。これは、既存のLTEシステムでは、DLアサインメントに対応するHARQ-ACKビットのタイミングは、固定的に定められ、当該タイミングが制御されることは想定されないためである。
 したがって、上記将来の無線通信システムに既存のLTEシステムにおけるPUSCHを用いたUCIの送信を適用すると、ULグラント後に受信されるDLアサインメントに対応するHARQ-ACKビットの送信を適切に制御できない恐れがある。
 そこで、本開示は、ULグラント後に受信されるDLアサインメントに対応するHARQ-ACKビットの送信を適切に制御可能なユーザ端末を提供することを目的の1つとする。
 本開示の一態様に係るユーザ端末は、上り共有チャネルのスケジューリングに用いられる第1の下り制御情報(DCI)の受信後に、下り共有チャネルのスケジューリングに用いられる第2の下り制御情報(DCI)を受信する受信部と、前記下り共有チャネルの送達確認用ビットの数、及び、前記第2のDCIを受信してから前記上り共有チャネルを送信するまでの時間の少なくとも一つに基づいて、前記上り共有チャネルを用いた前記送達確認情報の送信を制御する制御部と、を具備することを特徴とする。
 本開示の一態様によれば、ULグラント後に受信されるDLアサインメントに対応するHARQ-ACKビットの送信を適切に制御できる。
図1は、既存のLTEにおけるUCI on PUSCHの制御の一例を示す図である。 図2は、NRにおいて想定されるUCI on PUSCHの制御の一例を示す図である。 図3は、態様3.1に係るHARQ-ACKの送信制御の一例を示す図である。 図4は、態様3.2に係るHARQ-ACKの送信制御の一例を示す図である。 図5は、態様3.3に係るHARQ-ACKの送信制御の一例を示す図である。 一実施の形態に係る無線通信システムの概略構成の一例を示す図である。 一実施の形態に係る無線基地局の全体構成の一例を示す図である。 一実施の形態に係る無線基地局の機能構成の一例を示す図である。 一実施の形態に係るユーザ端末の全体構成の一例を示す図である。 一実施の形態に係るユーザ端末の機能構成の一例を示す図である。 一実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 NRでは、データチャネル(DLデータチャネル及び/又はULデータチャネルを含む、単にデータ等ともいう)のスケジューリング単位として、時間長を変更可能な時間単位(例えば、スロット、ミニスロット及び所定数のシンボルの少なくとも1つ)を利用することが検討されている。
 ここで、スロットは、UEが送信及び/又は受信に適用するニューメロロジー(例えば、サブキャリア間隔及び/又はシンボル長)に基づく時間単位である。1スロットあたりのシンボル数は、サブキャリア間隔に応じて定められてもよい。例えば、サブキャリア間隔が15kHz又は30kHzである場合、当該1スロットあたりのシンボル数は、7又は14シンボルであってもよい。一方、サブキャリア間隔が60kHz以上の場合、1スロットあたりのシンボル数は、14シンボルであってもよい。
 サブキャリア間隔とシンボル長とは逆数の関係にある。このため、スロットあたりのシンボルが同一であれば、サブキャリア間隔が高く(広く)なるほどスロット長は短くなるし、サブキャリア間隔が低く(狭く)なるほどスロット長は長くなる。
 また、ミニスロットは、スロットよりも短い時間単位である。ミニスロットは、スロットよりも少ない数のシンボル(例えば、1~(スロット長-1)シンボル、一例として2又は3シンボル)で構成されてもよい。スロット内のミニスロットには、スロットと同一のニューメロロジー(例えば、サブキャリア間隔及び/又はシンボル長)が適用されてもよいし、スロットとは異なるニューメロロジー(例えば、スロットよりも高いサブキャリア間隔及び/又はスロットより短いシンボル長)が適用されてもよい。
 将来の無線通信システムでは、既存のLTEシステムと異なる時間単位の導入に伴い、データ等のスケジューリングに複数の時間単位を適用して信号及び/又はチャネルの送受信(又は、割当て等)を制御することが想定される。異なる時間単位を用いてデータ等のスケジューリングを行う場合、データの送信タイミング/送信期間等が複数生じることが考えられる。例えば、複数の時間単位をサポートするUEは、異なる時間単位でスケジューリングされるデータの送受信を行う。
 一例として、第1の時間単位(例えば、スロット単位)のスケジューリング(slot-based scheduling)と、第1の時間単位より短い第2の時間単位(例えば、非スロット単位)のスケジューリング(non-slot-based scheduling)を適用することが考えられる。非スロット単位は、ミニスロット単位又はシンボル単位としてもよい。なお、スロットは例えば7シンボル又は14シンボルで構成され、ミニスロットは1~(スロット長-1)シンボルで構成できる。
 この場合、データのスケジューリング単位に応じて、時間方向におけるデータの送信タイミング/送信期間が異なる。例えば、スロット単位でスケジューリングする場合、1スロットに1つのデータが割当てられてもよい。一方で、非スロット単位(ミニスロット単位又はシンボル単位)でスケジューリングする場合、1スロットの一部の領域に選択的にデータが割当てられる。そのため、非スロット単位でスケジューリングする場合、1スロットに複数のデータの割当てが可能となる。
 また、将来の無線通信システム(例えば、LTE Rel.16以降、5G、NRなど)では、データ等のスケジューリングを柔軟(フレキシブル)に制御するために、データ等の送信タイミング/送信期間をスケジューリング(送信)毎に変更可能とすることが想定される。例えば、非スロット単位スケジューリングでは、データ(例えば、PDSCH及び/又はPUSCH)はスケジューリング毎にいずれかのシンボルから割当て位置が開始され、所定数のシンボルに渡って配置されてもよい。
 送信タイミング/送信期間が可変に制御されるデータ(例えば、PDSCH及び/又はPUSCH)と同様に、当該データに対するUCI(例えば、A/N)も送信毎に送信タイミング/送信期間を変更可能な構成とすることが想定される。例えば、基地局が、下り制御情報及び/又は上位レイヤシグナリング等を利用してUCIの送信タイミング/送信期間をUEに指定する。この場合、A/Nフィードバックタイミングは、当該A/Nの送信タイミング/送信期間を通知する下り制御情報及び/又は対応するPDSCHより後の期間においてフレキシブルに設定される。
 このように、将来の無線通信システムでは、DLデータに対するA/Nの送信タイミング/送信期間と、PUSCHの送信タイミング/送信期間の一方又は両方を柔軟に設定することが想定される。一方で、UL伝送では、低いPAPR(Peak-to-Average Power Patio)及び/又は低い相互変調歪(IMD:inter-modulation distortion)を達成することも要求される。
 UL伝送において低PAPR及び/又は低IMDを達成する方法として、UCI送信とULデータ(UL-SCH)送信が同じタイミングで生じた場合、UCIとULデータをPUSCHに多重して送信する方法(UCI piggyback on PUSCH、UCI on PUSCHとも呼ぶ)がある。
 既存のLTEシステムでは、PUSCHを利用してULデータとUCI(例えば、A/N)を送信する場合、ULデータにパンクチャ(puncture)処理を行い、当該パンクチャ処理されたリソースにUCIを多重する。これは、既存のLTEシステムでは、PUSCHに多重されるUCIの容量(又は、割合)がそこまで多くならないこと、及び/又は、UEにおけるDL信号の検出ミスが生じた場合でも基地局における受信処理の複雑化を抑制するためである。
 データをパンクチャ処理するとは、データ用に割り当てられたリソースを使えることを想定して(又は、使用できないリソース量を考慮しないで)符号化を行うが、実際に利用できないリソース(例えば、UCI用リソース)に符号化シンボルをマッピングしない(リソースを空ける)ことをいう。受信側では、当該パンクチャされたリソースの符号化シンボルを復号に用いないようにすることで、パンクチャによる特性劣化を抑制することができる。
 図1は、既存のLTEにおけるUCI on PUSCHの制御の一例を示す図である。本例において「DL」又は「UL」が付された部分は所定のリソース(例えば、時間/周波数リソース)を示し、各部分の期間は任意の時間単位(例えば、1つ又は複数のスロット、ミニスロット、シンボル、サブフレームなど)に対応する。以降の例でも同様である。
 図1の場合、UEは、図示される4つのDLリソースに応じたACK/NACKを、所定のULグラントによって指示されるULリソースを用いて送信する。既存のLTEにおいては、当該ULグラントは常にHARQ-ACKバンドリングウィンドウの最後のタイミング又はこれ以降のタイミングで通知される。
 ここで、HARQ-ACKバンドリングウィンドウは、HARQ-ACKフィードバックウィンドウ、単にバンドリングウィンドウなどと呼ばれてもよく、同じタイミングでA/Nフィードバックを行う期間に該当する。例えば、UEは、所定のDLアサインメントによって指示されるDLリソースから一定の期間がバンドリングウィンドウであると判断し、当該ウィンドウに対応するA/Nビットを生成してフィードバックを制御する。
 将来の無線通信システムでも、既存のLTEシステムと同様にUCI on PUSCHを行うことが考えられる。
 図2は、NRにおいて想定されるUCI on PUSCHの制御の一例を示す図である。図2は図1と類似しているが、ULグラントの通知後に、まだバンドリングウィンドウに含まれるDLデータがスケジュールされている点が異なる。このように、NRにおいては、HARQ-ACK送信のためのULグラントが、バンドリングウィンドウの最後のタイミングより前に通知されることが検討されている。
 図2に示すように、将来の無線通信システムでは、ULグラントよりも後に受信されるDLアサインメントによりスケジューリングされる下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)に対する送達確認用のビット(HARQ-ACKビット)を、当該ULグラントによりスケジューリングされる上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)を用いて送信することが想定される。
 しかしながら、図1に示すように、既存のLTEシステム(例えば、LTE Rel.8-13)では、ULグラント後に受信されるDLアサインメントに対応するHARQ-ACKビットを、当該ULグラントによりスケジューリングされるPUSCHを用いて送信することは想定されない。
 したがって、上記将来の無線通信システムに既存のLTEシステムにおけるPUSCHを用いたUCIの送信を適用すると、ULグラント後に受信されるDLアサインメントに対応するHARQ-ACKビットの送信を適切に制御できない恐れがある。そこで、ULグラント後に受信されるDLアサインメントに対応するHARQ-ACKビットの送信を適切に制御する方法を検討し、本発明に至った。
 以下、本開示の実施形態について詳細に説明する。なお、UCIは、スケジューリング要求(SR:Scheduling Request)、DLデータチャネル(例えば、PDSCH(Physical Downlink Shared Channel))に対する送達確認情報(HARQ-ACK:Hybrid Automatic Repeat reQuest-Acknowledge、ACK又はNACK(Negative ACK)又はA/N等ともいう)、チャネル状態情報(CSI:Channel State Information)、ビームインデックス情報(BI:Beam Index)、バッファステータスレポート(BSR:Buffer Status Report)の少なくとも一つを含んでもよい。以下において、HARQ-ACKは、UCIで読み替えられてもよいし、SR、CSIなどの他のタイプのUCIで読み替えられてもよい。
 また、データをレートマッチング処理するとは、実際に利用可能な無線リソースを考慮して、符号化後のビット(符号化ビット)の数を制御することをいう。実際に利用可能な無線リソースにマッピング可能なビット数よりも符号化ビット数が少ない場合、符号化ビットの少なくとも一部が繰り返されてもよい。当該マッピング可能なビット数よりも符号化ビット数が多い場合、符号化ビットの一部が削除されてもよい。
 ULデータにレートマッチング処理を行うことにより、実際に利用可能となるリソースを考慮するため、パンクチャ処理と比較して符号化率が高くなるように(高い性能で)符号化を行うことができる。したがって、例えば、UCIのペイロードサイズが大きい場合にパンクチャ処理にかえてレートマッチング処理を適用することにより、より高い品質でUL信号の生成が可能となるため、通信品質を向上することができる。
(態様1)
 態様1では、ULグラントよりも後のDLアサインメントのHARQ-ACKについて、フィードバックするビット数が制限されてもよい。当該ビット数は、Xビット(例えば、X=2)に制限されてもよい。
 ユーザ端末は、ULグラントよりも後のDLアサインメントに対応するXビットのHARQ-ACKを、PUSCHのULデータをパンクチャして、送信してもよい。また、ULグラントよりも後に受信されるDLアサインメントの数がXを超える場合、ユーザ端末は、エラーイベントをトリガしてもよい。
(態様2)
 態様2では、ULグラントよりも後のDLアサインメントのHARQ-ACKについて、フィードバックするビット数が制限されない点で、態様1と異なる。
(態様2.1)
 ユーザ端末は、ULグラントよりも後のDLアサインメントのHARQ-ACKの少なくとも一つをバンドリング(例えば、空間バンドリング)して、XビットのHARQ-ACKを生成してもよい。ユーザ端末は、当該ULグラントによりスケジューリングされるPUSCHのULデータをパンクチャして、当該XビットのHARQ-ACKを送信してもよい。これにより、ULグラントよりも後のDLアサインメントのHARQ-ACKのビット数がXビットを超える場合でも、当該HARQ-ACKをフィードバックできる。
(態様2.2)
 ユーザ端末は、ULグラントよりも後のDLアサインメントのHARQ-ACKのビット数がXビットを超える(又は以上である)場合、当該ULグラントによりスケジューリングされるPUSCHをドロップし、当該Xビットを超えるHARQ-ACKをPUCCHを用いて送信してもよい。
 一方、ユーザ端末は、ULグラントよりも後のDLアサインメントのHARQ-ACKのビット数がXビット以下である(又は、Xビットより小さい)場合、当該ULグラントによりスケジューリングされるPUSCHを用いて、当該HARQ-ACKを送信してもよい。
(態様3)
 ULグラントよりも後に受信されるDLアサインメントによりスケジューリングされるPDSCHに対するHARQ-ACKのフィードバックの制御について更に説明する。
(態様3.1)
 ユーザ端末は、ULグラントよりも後のDLアサインメントに対するXビット(例えば、X=2)のHARQ-ACKを、当該ULグラントによりスケジューリングされるPUSCHを用いて送信してもよい。この場合、ユーザ端末は、PUSCHのULデータをパンクチャして、当該XビットのHARQ-ACKを送信してもよい。
 ULグラントよりも後のDLアサインメントに対するHARQ-ACKの実際のビット数がXビットを超える場合、ユーザ端末は、Xビットを超えるHARQ-ACKビットの送信を中止してもよい(ドロップしてもよい)。
 図3は、態様3.1に係るHARQ-ACKの送信を制御の一例を示す図である。図3では、ユーザ端末は、ULグラントの後に所定数(ここでは、4つ)のDLアサインメントを検出する例が示される。
 図3において、ユーザ端末は、ULグラントよりも後のDLアサインメントに対するXビット(例えば、X=2)のHARQ-ACKを、当該ULグラントによりスケジューリングされるPUSCHを用いて送信してもよい。図3に示すように、ユーザ端末は、PUSCHのULデータをパンクチャして、当該XビットのHARQ-ACKを送信してもよい。一方、ユーザ端末は、Xビットを超えるHARQ-ACKを送信しなくともよい。
 図3に示すように、PUSCHに割り当てられる周波数リソース内で、レートマッチング用のリソースと、パンクチャ用のリソースとは、別々に設けられてもよい。図3では、ユーザ端末は、XビットのHARQ-ACKをレートマッチング用のリソースにマッピングして、送信してもよい。
 態様3.1では、ULグラントよりも後のDLアサインメントのHARQ-ACKのビット数に基づいて当該HARQ-ACKの送信が制御されるので、ユーザ端末は、当該HARQ-ACKの送信を簡便に制御できる。
(態様3.2)
 ユーザ端末は、ユーザ端末の処理能力(UE processing capability)に基づいて、ULグラントよりも後のDLアサインメントに対応するHARQ-ACKのフィードバックを制御してもよい。ここで、ユーザ端末の処理能力は、例えば、ULグラントを受信してから、当該ULグラントに対応するPUSCHを送信までに要する時間(処理時間)であってもよい。
 具体的には、ULグラントよりも後のDLアサイメントのタイミング(受信タイミング、検出タイミング)と、当該ULグラントによりスケジューリングされるPUSCHの送信タイミングとの時間差に基づいて、当該DLアサインメントに対応するHARQ-ACKのフィードバックを制御してもよい。
 例えば、ユーザ端末は、上記時間差が所定の閾値N2以上である(又は、所定の閾値N2より大きい)場合、上記ULグラントよりも後のDLアサインメントに対応するHARQ-ACKを、当該ULグラントによりスケジューリングされるPUSCHを用いて送信してもよい。この場合、ユーザ端末は、PUSCHのULデータをレートマッチングして、当該XビットのHARQ-ACKを送信してもよい。
 一方、ユーザ端末は、上記時間差が所定の閾値N2未満である(又は、所定の閾値N2以下である)場合、上記ULグラントよりも後のDLアサインメントに対応するHARQ-ACKの送信を中止してもよい(ドロップしてもよい)。
 ここで、所定の閾値N2は、上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一つにより、設定又は制御されてもよい。例えば、所定の閾値N2は。ユーザ端末の処理能力に基づいて設定(制御)される値であってもよい。ユーザ端末は、当該所定の閾値N2を示す情報を無線基地局から受信してもよい。なお、所定の閾値は、仕様で予め定められる固定値であってもよい。
 また、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)の少なうとも一つであってもよい。また、物理レイヤシグナリングは、例えば、下り制御情報(DCI:Downlink Control Information))であってもよい。
 図4は、態様3.2に係るHARQ-ACKの送信を制御の一例を示す図である。図4では、ユーザ端末は、ULグラントの後に所定数(ここでは、4つ)のDLアサインメントを検出する例が示される。
 図4において、ユーザ端末は、ULグラントよりも後のDLアサインメントのタイミングと、当該ULグラントによりスケジューリングされるPUSCHのタイミングとの時間差が処理時間N2より大きい(又は、処理時間N2以上である)場合、ユーザ端末は、当該DLアサインメントに対応するHARQ-ACKを、送信してもよい。一方、ユーザ端末は、当該時間差が処理時間N2以下である(又は、処理時間N2より小さい)場合、当該当該DLアサインメントに対応するHARQ-ACKの送信を中止してもよい。
 図4に示すように、PUSCHに割り当てられる周波数リソース内で、レートマッチング用のリソースと、パンクチャ用のリソースとが分けられる場合、ユーザ端末は、上記時間差が処理時間N2より大きい(又は、処理時間N2以上である)DLアサインメントのHARQ-ACKをレートマッチング用のリソースにマッピングして、送信してもよい。
 態様3.2では、ULグラントよりも後のDLアサインメントのタイミングと、当該ULグラントによりスケジューリングされるPUSCHのタイミングとの時間差に基づいて、当該DLアサインメントのHARQ-ACKの送信を適切に制御できる。
(態様3.3)
 態様3.3では、態様3.2と同様に、ユーザ端末は、ユーザ端末の処理能力(UE processing capability)に基づいて、ULグラントよりも後のDLアサインメントに対応するHARQ-ACKのフィードバックを制御してもよい。
 態様3.3では、ULグラントよりも後のDLアサイメントのタイミングと、当該ULグラントによりスケジューリングされるPUSCHの送信タイミングとの時間差が所定の閾値N2未満である(又は、所定の閾値N2以下である)場合、上記ULグラントよりも後のDLアサインメントに対応するHARQ-ACKを、当該ULグラントによりスケジューリングされるPUSCHを用いて送信する点で、態様3.2と異なる。
 態様3.3において、上記時間差が所定の閾値N2未満である(又は、所定の閾値N2以下である)場合、ユーザ端末は、上記ULグラントよりも後のDLアサインメントに対応するHARQ-ACKを、PUSCHのULデータをパンクチャして送信してもよい。また、当該HARQ-ACKのビット数がXビットを超える場合、ユーザ端末は、当該HARQ-ACKの少なくとも一つのビットをバンドリング(例えば、空間バンドリング)し、XビットのHARQ-ACKを、PUSCHのULデータをパンクチャして送信してもよい。
 図5は、態様3.3に係るHARQ-ACKの送信を制御の一例を示す図である。図5では、ユーザ端末は、ULグラントの後に所定数(ここでは、4つ)のDLアサインメントを検出する例が示される。図5では、図4との相違点を中心に説明する。
 図5において、ユーザ端末は、ULグラントよりも後のDLアサインメントのタイミングと、当該ULグラントによりスケジューリングされるPUSCHのタイミングとの時間差がが処理時間N2以下である(又は、処理時間N2より小さい)場合であっても、当該当該DLアサインメントに対応するHARQ-ACKを送信してもよい。
 図5に示すように、PUSCHに割り当てられる周波数リソース内で、レートマッチング用のリソースと、パンクチャ用のリソースとが分けられる場合、ユーザ端末は、上記時間差が処理時間N2以下である(又は、処理時間N2より小さい)DLアサインメントのHARQ-ACKをパンクチャ用のリソースにマッピングして、送信してもよい。
 なお、当該時間差が処理時間N2以下である(又は、処理時間N2より小さい)DLアサインメントのHARQ-ACKのビット数がXビットを超える場合、ユーザ端末は、当該HARQ-ACKの少なくとも一つをバンドリングして、XビットのHARQ-ACKを生成して、当該XビットのHARQ-ACKをパンクチャ用のリソースにマッピングしてもよい。
 態様3.3では、ULグラントよりも後のDLアサインメントのタイミングと、当該ULグラントによりスケジューリングされるPUSCHのタイミングとの時間差が所定の閾値N2以下である(又は、処理時間N2より小さい)DLアサインメントのHARQ-ACKをフィードバックできる。。
(無線通信システム)
 以下、一実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記複数の態様の少なくとも一つの組み合わせを用いて通信が行われる。
 図6は、一実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、フィルタリング処理、ウィンドウイング処理などの少なくとも1つを示してもよい。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)及び/又はEPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)の少なくとも一つを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線リンク品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
 無線通信システム1では、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)などが伝送される。なお、同期信号及びPBCHは、同期信号ブロック(SSB:Synchronization Signal Block)において送信されてもよい。
<無線基地局>
 図7は、一実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 送受信部103は、上り共有チャネルのスケジューリングに用いられる第1の下り制御情報(DCI)、及び下り共有チャネルのスケジューリングに用いられる第2の下り制御情報(DCI)を送信する。また、送受信部103は、下り共有チャネルに対するHARQ-ACKを上り共有チャネルで受信する。
 図8は、一実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、一実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
 制御部301は、同期信号(例えば、PSS/SSS)、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 制御部301は、ベースバンド信号処理部104によるデジタルBF(例えば、プリコーディング)及び/又は送受信部103によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。
 制御部301は、上り共有チャネル(例えば、PUSCH)の送信指示(例えば、ULグラント)のユーザ端末20における受信タイミングに基づいて、受信した上りデータにデパンクチャ処理及び/又はレートデマッチング処理を適用する制御を行ってもよい。
 制御部301は、下り共有チャネルの送達確認用ビットの数、及び、第2のDCIを受信してから上り共有チャネルを送信するまでの時間の少なくとも一つに基づいて、上り共有チャネルを用いた送達確認情報の受信を制御する。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理などが行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
 図9は、一実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
 送受信部203は、上り共有チャネルのスケジューリングに用いられる第1の下り制御情報(DCI)の受信後に、下り共有チャネルのスケジューリングに用いられる第2の下り制御情報(DCI)を受信する。また、送受信部203は、下り共有チャネルの送達確認用ビットの数、及び、第2のDCIを受信してから上り共有チャネルを送信するまでの時間の少なくとも一つに基づいて、上り共有チャネルを用いて送達確認情報を受信してもよい。
 図10は、一実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、一実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 制御部401は、ベースバンド信号処理部204によるデジタルBF(例えば、プリコーディング)及び/又は送受信部203によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。
 制御部401は、下り共有チャネルの送達確認用ビットの数、及び、下り共有チャネルのスケジューリングに用いられる第2のDCIを受信してから上り共有チャネルを送信するまでの時間の少なくとも一つに基づいて、上り共有チャネルを用いた送達確認情報の送信を制御する。
 例えば、制御部401は、送達確認用ビットの数が所定の閾値以下である場合、上り共有チャネルで送信される上りデータをパンクチャして、送達確認用ビットを送信してもよい。また、制御部401は、送達確認用ビットの数が所定の閾値を超える場合、前記所定の閾値を超える前記送達確認用ビットの送信を中止してもよい。
 あるいは、制御部401は、第2のDCIを受信してから上り共有チャネルを送信するまでの時間が所定の閾値以上である又はより長い場合、上り共有チャネルで送信される上りデータをレートマッチングして、送達確認用ビットを送信してもよい。
 また、制御部401は、第2のDCIを受信してから上り共有チャネルを送信するまでの時間が所定の閾値より短い又は以下である場合、送達確認用ビットの送信を中止してもよい。また、制御部401は、第2のDCIを受信してから上り共有チャネルを送信するまでの時間が所定の閾値より短い又は以下である場合、上り共有チャネルで送信される上りデータをパンクチャして、送達確認用ビットを送信してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
<ハードウェア構成>
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
 例えば、一実施の形態における無線基地局、ユーザ端末などは、一実施の形態の各態様の処理を行うコンピュータとして機能してもよい。図11は、一実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書において説明した態様/実施の形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本開示の各態様/実施の形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書において説明した各態様/実施の形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施の形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において説明した各態様/実施の形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
 本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
 本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施の形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  上り共有チャネルのスケジューリングに用いられる第1の下り制御情報(DCI)の受信後に、下り共有チャネルのスケジューリングに用いられる第2の下り制御情報(DCI)を受信する受信部と、
     前記下り共有チャネルの送達確認用ビットの数、及び、前記第2のDCIを受信してから前記上り共有チャネルを送信するまでの時間の少なくとも一つに基づいて、前記上り共有チャネルを用いた前記送達確認情報の送信を制御する制御部と、
    を具備することを特徴とするユーザ端末。
  2.  前記制御部は、前記送達確認用ビットの数が所定の閾値以下である場合、前記上り共有チャネルで送信される上りデータをパンクチャして、前記送達確認用ビットを送信することを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、前記送達確認用ビットの数が所定の閾値を超える場合、前記所定の閾値を超える前記送達確認用ビットの送信を中止することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、前記第2のDCIを受信してから前記上り共有チャネルを送信するまでの時間が所定の閾値以上である又はより長い場合、前記上り共有チャネルで送信される上りデータをレートマッチングして、前記送達確認用ビットを送信することを特徴とする請求項1に記載のユーザ端末。
  5.  前記制御部は、前記第2のDCIを受信してから前記上り共有チャネルを送信するまでの時間が所定の閾値より短い又は以下である場合、前記送達確認用ビットの送信を中止することを特徴とする請求項1又は請求項4に記載のユーザ端末。
  6.  前記制御部は、前記第2のDCIを受信してから前記上り共有チャネルを送信するまでの時間が所定の閾値より短い又は以下である場合、前記上り共有チャネルで送信される上りデータをパンクチャして、前記送達確認用ビットを送信することを特徴とする請求項1、請求項5又は6のいずれかに記載のユーザ端末。
PCT/JP2018/018433 2018-05-11 2018-05-11 ユーザ端末 WO2019215933A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/018433 WO2019215933A1 (ja) 2018-05-11 2018-05-11 ユーザ端末
US17/054,373 US20210219326A1 (en) 2018-05-11 2018-05-11 User terminal
CN201880095518.4A CN112385164A (zh) 2018-05-11 2018-05-11 用户终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018433 WO2019215933A1 (ja) 2018-05-11 2018-05-11 ユーザ端末

Publications (1)

Publication Number Publication Date
WO2019215933A1 true WO2019215933A1 (ja) 2019-11-14

Family

ID=68466757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018433 WO2019215933A1 (ja) 2018-05-11 2018-05-11 ユーザ端末

Country Status (3)

Country Link
US (1) US20210219326A1 (ja)
CN (1) CN112385164A (ja)
WO (1) WO2019215933A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3925118A1 (en) * 2019-02-15 2021-12-22 Telefonaktiebolaget LM Ericsson (publ) Acknowledgement signaling for radio access networks
US20210219331A1 (en) * 2020-01-15 2021-07-15 Qualcomm Incorporated Feedback transmissions based on uplink grants

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621849B (zh) * 2008-06-30 2011-12-07 中兴通讯股份有限公司 一种下行数据接收状态的反馈方法
CN102088343B (zh) * 2009-12-03 2014-06-25 华为技术有限公司 载波聚合时反馈ack/nack信息的方法、基站和用户设备
US10075263B2 (en) * 2013-11-26 2018-09-11 Sharp Kabushiki Kaisha Terminal device, base station apparatus, communication method, and integrated circuit
JP6423524B2 (ja) * 2014-05-30 2018-11-14 華為技術有限公司Huawei Technologies Co.,Ltd. ダウンリンク制御情報送信方法及び装置、並びに、ダウンリンク制御情報受信方法及び装置
CN107241802B (zh) * 2016-03-29 2022-12-02 中兴通讯股份有限公司 上行控制信息uci的发送方法及装置
WO2017171299A1 (en) * 2016-04-01 2017-10-05 Samsung Electronics Co., Ltd. Method and apparatus for feeding back harq-ack information

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Discussion on UCI multiplexing", 3GPP TSG RAN WG1 #90B RL-1718342, vol. RAN WG1, 3 October 2017 (2017-10-03), XP051352967 *
HUAWEI ET AL.: "Remaining issues on UCI multiplexing", 3GPP TSG RAN WG1 #92B RL-1803646, vol. RAN WG1, April 2018 (2018-04-01), XP051412944 *
HUAWEI ET AL.: "UCI piggyback on PUSCH", 3GPP TSG RAN WG1 #90 RL-1712195, vol. RAN WG1, 20 August 2017 (2017-08-20), XP051315012 *
LG ELECTRONICS: "Remaining issues on UCI multiplexing", 3GPP TSG RAN WG1 #92B RL-1804556, vol. RAN WG1, 7 April 2018 (2018-04-07), XP051413978 *
SAMSUNG: "On UCI Multiplexing in PUSCH", 3GPP TSG RAN WG1 #90B RL-1717654, vol. RAN WG1, 3 October 2017 (2017-10-03), XP051352719 *

Also Published As

Publication number Publication date
US20210219326A1 (en) 2021-07-15
CN112385164A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2019097646A1 (ja) ユーザ端末及び無線通信方法
JP7059275B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7096258B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7013472B2 (ja) 端末、無線通信方法及びシステム
CN111788806B (zh) 用户终端以及无线通信方法
CN111492712B (zh) 用户终端以及无线通信方法
JP7046926B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018173237A1 (ja) ユーザ端末及び無線通信方法
WO2018207369A1 (ja) ユーザ端末及び無線通信方法
WO2019225689A1 (ja) ユーザ端末及び無線通信方法
JP6990698B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019155637A1 (ja) 送信装置、受信装置及び無線通信方法
WO2018207374A1 (ja) ユーザ端末及び無線通信方法
KR20230025031A (ko) 유저단말 및 무선 통신 방법
CN111279661B (zh) 终端、基站、系统以及无线通信方法
WO2019225655A1 (ja) ユーザ端末
WO2019215933A1 (ja) ユーザ端末
WO2019107548A1 (ja) ユーザ端末及び無線通信方法
WO2019175989A1 (ja) ユーザ端末及び無線通信方法
WO2019159295A1 (ja) ユーザ端末及び無線通信方法
JPWO2019059195A1 (ja) ユーザ端末及び無線通信方法
JPWO2019073966A1 (ja) ユーザ端末及び無線通信方法
WO2018225230A1 (ja) ユーザ端末及び無線通信方法
CN111247848B (zh) 终端、基站、系统以及无线通信方法
WO2018084212A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP