WO2018084212A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2018084212A1
WO2018084212A1 PCT/JP2017/039627 JP2017039627W WO2018084212A1 WO 2018084212 A1 WO2018084212 A1 WO 2018084212A1 JP 2017039627 W JP2017039627 W JP 2017039627W WO 2018084212 A1 WO2018084212 A1 WO 2018084212A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
user terminal
signal
tti
subframe
Prior art date
Application number
PCT/JP2017/039627
Other languages
English (en)
French (fr)
Inventor
一樹 武田
聡 永田
リフェ ワン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP17866784.6A priority Critical patent/EP3537821A4/en
Priority to JP2018549066A priority patent/JP7043413B2/ja
Priority to CN201780080720.5A priority patent/CN110115091B/zh
Priority to US16/347,379 priority patent/US11317390B2/en
Publication of WO2018084212A1 publication Critical patent/WO2018084212A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( New RAT) and LTE Rel.14, 15 ⁇ ) are also being considered.
  • CA Carrier Aggregation
  • CC Component Carrier
  • UE User Equipment
  • DC Dual Connectivity
  • CG Cell Group
  • CC Cell Center
  • TTI Transmission Time Interval
  • DL Downlink
  • UL Uplink
  • the 1 ms TTI is a transmission time unit of one channel-coded data packet, and is a processing unit such as scheduling, link adaptation, retransmission control (HARQ: Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest
  • the existing LTE system (for example, LTE Rel. 8-13) supports frequency division duplex (FDD) and time division duplex (TDD) as duplex schemes.
  • FDD is a method of assigning different frequencies between DL and UL, and is called a frame structure (FS) type 1 or the like.
  • TDD is a method of switching the same frequency in time between DL and UL, and is called frame structure type 2 or the like.
  • communication is performed based on a UL / DL configuration (UL / DL configuration) that defines a configuration of a UL subframe and a DL subframe in a radio frame.
  • the transmission timing reference value is fixed to 4 ms in consideration of the signal processing time in the user terminal and / or the radio base station.
  • retransmission control information for example, ACK (Acknowledge) or NACK (Negative ACK), A / N, HARQ-ACK, etc. for a DL shared channel (for example, PDSCH: Physical Downlink Shared Channel), hereinafter referred to as PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • the PDSCH processing time in the user terminal is assumed to be 4 ms, and the PDSCH A / N is transmitted (feedback) in subframe # n + 4.
  • the A / N of the PDSCH is a UL subframe after subframe # n + 4. Sent.
  • a / N transmission timing (UL HARQ timing, etc.) for a UL shared channel for example, PUSCH: Physical Uplink Shared Channel, hereinafter referred to as PUSCH.
  • PUSCH Physical Uplink Shared Channel
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Future wireless communication systems for example, LTE Rel. 14, 15-5G, NR, etc. are required to reduce latency (Latency reduction) in order to provide communication services with strict requirements for delay such as URLLC.
  • the delay includes a delay due to the signal propagation time (propagation delay) and a delay due to the signal processing time (processing delay).
  • communication control for example, a TTI shorter than a 1 ms subframe (TTI) (also called a short TTI, a partial subframe, or a mini subframe) is newly introduced.
  • TTI subframe
  • Scheduling or / and retransmission control itself is supposed to be shortened.
  • a transmission timing reference value is set short (for example, shorter than 4 ms) in order to reduce delay, and the radio base station and / or user terminal It is assumed that signal processing time or the like (which may be a parameter related to processing time or processing time) is controlled.
  • communication for example, CA and / or DC
  • a plurality of cells CC
  • the present invention has been made in view of such a point, and when performing communication using a plurality of cells (CC) in DL and / or UL transmission, appropriately use the shortened TTI and / or the shortened processing time.
  • An object is to provide a user terminal and a wireless communication method capable of controlling communication.
  • One aspect of the user terminal of the present invention is a user terminal that performs communication using a plurality of cells for DL transmission and / or UL transmission, and includes a receiving unit that receives a DL signal, and a UL based on the DL signal. And a control unit that controls signal transmission at a predetermined timing, wherein the control unit controls the predetermined timing based on at least the number of cells used for UL transmission.
  • communication when communication is performed using a plurality of cells (CC) in DL and / or UL transmission, communication can be controlled by appropriately using the shortened TTI and / or the shortened processing time.
  • CC cells
  • FIG. 3A and 3B are diagrams illustrating an example of A / N transmission timing of TDD.
  • 4A and 4B are diagrams illustrating an example of A / N transmission timing according to the first aspect.
  • 5A and 5B are diagrams illustrating an example of transmission timing of UL data according to the first aspect.
  • 6A and 6B are diagrams illustrating an example of A / N transmission timing according to the second mode.
  • 7A and 7B are diagrams illustrating another example of A / N transmission timing according to the second mode.
  • HARQ Hybrid Automatic Repeat reQuest
  • the user terminal transmits the A / N of PDSCH using PUSCH or PUCCH based on the PDSCH reception result.
  • the radio base station controls PDSCH transmission (including initial transmission and / or retransmission) based on the A / N from the user terminal.
  • the user terminal transmits PUSCH scheduled by the UL grant from the radio base station. Based on the PUSCH reception result, the radio base station transmits the PUSCH A / N using a retransmission control channel (for example, PHICH: Physical Hybrid-ARQ Indicator Channel).
  • a retransmission control channel for example, PHICH: Physical Hybrid-ARQ Indicator Channel.
  • the user terminal controls PUSCH transmission (including initial transmission and / or retransmission) based on A / N from the radio base station.
  • DL / UL In DL and / or UL (hereinafter referred to as DL / UL) of an existing LTE system, A / N transmission timing (DL) after a predetermined time from a subframe in which data is transmitted / received based on a predefined reference value of transmission timing.
  • DL / UL also referred to as HARQ timing.
  • the A / N transmission timing of the PDSCH is controlled after a predetermined time from the subframe in which the PDSCH is received. For example, in FDD, the A / N of the PDSCH is transmitted in a subframe 4 ms after the PDSCH reception subframe.
  • FIG. 1 is a diagram illustrating an example of A / N transmission timing of FDD.
  • the user terminal when receiving a PDSCH in subframe #n, the user terminal transmits the A / N of the PDSCH to the radio base station in subframe # n + 4 after 4 ms.
  • the radio base station generally performs retransmission or initial transmission of the HARQ process after subframe # n + 8 after 4 ms from A / N received in subframe # n + 4 (may be before subframe # n + 8).
  • HARQ retransmission control of data (transport block (TB) or code block (CB)) is performed using a process (HARQ process) as a processing unit.
  • HARQ process a process having the same number (HARQ process number (HPN))
  • HPN HARQ process number
  • one HARQ process is used in one subframe.
  • the HARQ process number (HPN) used for transmitting the PDSCH in subframe #n can be reused in subframe # n + 8 after 8 ms.
  • the time until the same HPN can be reused is the round trip time (RTT: Also called Round Trip Time (HARQ RTT).
  • the HARQ RTT is 8 subframes (8 ms).
  • the maximum number of HARQ processes (also referred to as the number of HARQ processes) is 8.
  • the A / N of the PDSCH is transmitted in the UL subframe after 4 ms of the PDSCH reception subframe. Is done.
  • a / N transmission timing is determined based on the UL / DL configuration of TDD.
  • FIG. 2 is a diagram showing an example of the UL / DL configuration.
  • FIG. 2 in the TDD of the existing LTE system, seven frame configurations of UL / DL configurations 0 to 6 having different ratios between UL subframes and DL subframes are defined. Subframes # 0 and # 5 are assigned to the downlink, and subframe # 2 is assigned to the uplink.
  • the period of change from the DL subframe to the UL subframe is 5 ms.
  • the UL / DL configurations 3 4, and 5, the DL subframe is changed to the UL subframe.
  • the change point period is 10 ms.
  • the special subframe is a subframe for switching between DL and UL, and can be used mainly for DL communication.
  • the DL subframe and / or the special subframe is referred to as a DL / special subframe.
  • FIG. 3 is a diagram showing an example of TDD A / N transmission timing.
  • FIG. 3A shows a relationship between a DL / special subframe that receives a PDSCH and a UL subframe that transmits an A / N for the PDSCH in each UL / DL configuration.
  • FIG. 3A shows in which DL / special subframe the A / N of PDSCH received in UL subframe #n (0 ⁇ n ⁇ 9) of each UL / DL configuration is transmitted.
  • the PDSCH A / N received in the DL / special subframe # n ⁇ k before the k subframe is transmitted. The value of k is shown.
  • UL subframe # 7 For example, according to the value of k defined in UL / DL configuration 1 in FIG. 3A, as shown in FIG. 3B, in UL subframe # 7, DL subframe # 0 and special subframes 7 and 6 subframes before The A / N for the PDSCH received in # 1 is transmitted. Also, in UL subframe # 8, A / N for PDSCH received in DL subframe # 4 four subframes before is transmitted. In the UL subframe # 2, the A / N for the PDSCH received in the DL subframe # 5 and the special subframe # 6 before the 7th and 6th subframes is transmitted. In UL subframe # 3, the A / N for PDSCH received in DL subframe 9 four subframes before is transmitted.
  • the value of k is set so that the PDSCH is transmitted in UL subframes after the 4th subframe from the PDSCH reception subframe.
  • the PDSCH A / N received in one or more DL / special subframes may be transmitted in a single UL subframe that is bundled.
  • the maximum number of HARQ RTT and HARQ processes is set to a value according to the UL / DL configuration, not a fixed value (8) like FDD.
  • the A / N of PDSCH in DL subframe # 0 is transmitted in UL subframe # 7
  • the UL subframe # is based on the A / N. 7 is retransmitted in the special subframe # 1 after 4 ms.
  • HARQ RTT is 11 subframes.
  • HARQ RTT can be said to be equal to the maximum value of k in each UL / DL configuration (7 in the case of UL / DL configuration 1) +4 subframes.
  • the maximum number of HARQ processes is equal to the number of DL / special subframes in the HARQ RTT, and in the UL / DL configuration 1, the maximum number of HARQ processes is 7 as shown in FIGS. 3A and 3B.
  • the number of HARQ RTT and HARQ processes of other UL / DL configurations is also set.
  • the A / N transmission timing is controlled with a fixed value based on 4 ms (as a reference value).
  • the delay includes a delay due to the signal propagation time (propagation delay) and a delay due to the signal processing time (processing delay).
  • TTI short TTI
  • TTI 1 ms subframe
  • the TTI in 8-12 (hereinafter referred to as “normal TTI”) has a time length of 1 ms.
  • a normal TTI is also called a subframe and is composed of two time slots.
  • TTI is a transmission time unit of one channel-coded data packet (transport block), and is a processing unit such as scheduling and link adaptation.
  • the normal TTI is configured to include 14 OFDM (Orthogonal Frequency Division Multiplexing) symbols (7 OFDM symbols per slot).
  • Each OFDM symbol has a time length (symbol length) of 66.7 ⁇ s, and a normal CP of 4.76 ⁇ s is added. Since the symbol length and the subcarrier interval are inverse to each other, when the symbol length is 66.7 ⁇ s, the subcarrier interval is 15 kHz.
  • the normal TTI is configured to include 14 SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols (7 SC-FDMA symbols per slot).
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Each SC-FDMA symbol has a time length (symbol length) of 66.7 ⁇ s, and a normal CP of 4.76 ⁇ s is added. Since the symbol length and the subcarrier interval are inverse to each other, when the symbol length is 66.7 ⁇ s, the subcarrier interval is 15 kHz.
  • the normal TTI may be configured to include 12 OFDM symbols (or 12SC-FDMA symbols).
  • each OFDM symbol or each SC-FDMA symbol
  • wireless interfaces suitable for high frequency bands such as tens of GHz, IoT (Internet of Things), MTC (Machine Type Communication), M2M (Machine To Machine), D2D (Device To Device) ), A wireless interface that minimizes delay is desired for V2V (Vehicular To Vehicular) service.
  • IoT Internet of Things
  • MTC Machine Type Communication
  • M2M Machine To Machine
  • D2D Device To Device
  • a shortened TTI also referred to as a short TTI or short TTI
  • a shortened TTI a shortened TTI having the same or different TTI length
  • it is conceivable to change the subcarrier interval from the subcarrier of the normal TTI for example, increase the subcarrier interval).
  • shortened TTI When using a TTI having a time length shorter than a normal TTI (hereinafter referred to as “shortened TTI”), a time margin for processing (for example, encoding, decoding, etc.) in a user terminal or a radio base station increases, and therefore processing delay Can be reduced. Further, when the shortened TTI is used, the number of user terminals that can be accommodated per unit time (for example, 1 ms) can be increased.
  • communication for example, CA and / or DC
  • a plurality of cells may be performed as in the existing LTE system.
  • communication is performed by setting a plurality of cells for one of DL transmission and UL transmission (for example, only DL transmission) (DL-CA and UL-non-ca), the number of cells used for DL transmission, A mode in which the number of cells used for UL transmission is set differently is also conceivable.
  • the present inventors transmit signals and / or based on at least the number of cells used (set) for UL transmission and / or the presence / absence of use of a plurality of cells in UL transmission (for example, presence / absence of CA application).
  • the idea was to control the reception timing. Specifically, a cell to which the shortened TTI and / or the shortened processing time is applied is controlled based on whether or not CA is applied at least in UL transmission.
  • HARQ-ACK acknowledgment signal
  • DL signal eg, DL data channel
  • uplink data transmission for a DL signal eg, UL transmission instruction, UL grant
  • this embodiment is applicable to FDD and / or TDD.
  • FDD will be described as an example, but the same applies to TDD.
  • control may be performed so that communication is performed using a table corresponding to a reference value (k) set when the shortened processing time is applied.
  • the cell to which the shortening processing time is applied is controlled based on at least the number of cells used for UL transmission or the presence / absence of use of a plurality of cells in UL transmission (CA and / or DC application).
  • the user terminal to which the shortening processing time is applied controls the reference value (k) calculated based on the signal processing time in the user terminal and / or the radio base station to be shorter than the existing 4 ms, and based on the reference value A / N transmission timing and / or UL scheduling timing is controlled. Note that k may be referred to as a shortening processing time or the like.
  • DL-CA carrier aggregation
  • UL-non-CA carrier aggregation
  • the user terminal may apply the shortened processing time to all DL carriers and UL carriers set in the user terminal. That is, the user terminal does not have to assume that the shortening processing time is set only for the UL carrier. Further, the user terminal does not have to assume that the shortening processing time is set only for some of the plurality of DL carriers.
  • HARQ-ACK transmission timing when DL data is scheduled by DL assignment in a certain subframe and UL data transmission timing when UL data is scheduled by UL grant in the same subframe, It can be controlled identically. Also, the HARQ-ACK transmission timing and the UL data transmission timing can be controlled to be the same regardless of which DL-CC schedules the DL data. This eliminates the need for the user terminal to implement both the case of DL assignment only and the case of both DL assignment and UL grant for HARQ-ACK feedback control, thereby reducing the circuit scale.
  • the user terminal When a shortening processing time (for example, a reference value k less than 4) is set for all DL carriers and UL carriers, the user terminal, based on the shortening processing time k, the transmission timing of A / N, and / Or control the scheduling (transmission) timing of the UL signal.
  • the A / N transmission timing may include A / N transmission timing for DL signals and / or A / N transmission timing for UL signals.
  • FIG. 4 is a diagram illustrating a control example of the first case according to the first aspect.
  • FIG. 4A shows an example of A / N transmission timing control for a DL signal (for example, PDSCH).
  • FIG. 4B shows an example of scheduling timing control for UL signals (for example, PUSCH).
  • 4A and 4B show a case where a plurality of DL carriers (DL CC) 1 to 3 are set in DL transmission and a single UL carrier (UL CC) 1 is set in UL transmission.
  • DL CC DL carriers
  • UL CC UL carrier
  • CA is performed using DL carriers (DL CC) 1 to 3
  • CA is not performed on UL carriers.
  • the number of DL carriers to be CA is not limited to this.
  • the same shortening processing time k may be set for all DL carriers and UL carriers.
  • the A / N transmission timing for the PUSCH in the radio base station may be similarly controlled.
  • the carrier 1 transmits PUSCH.
  • the HARQ-ACK transmission timing in this case can be controlled in the same manner as the UL data transmission timing when UL data is scheduled by the UL grant in the same subframe. Also, the HARQ-ACK transmission timing and the UL data transmission timing can be controlled to be the same regardless of which DL-CC schedules the DL data. This eliminates the need for the user terminal to implement both the case of only DL assignment and the case of both DL assignment and UL grant for HARQ-ACK feedback control, and can suppress an increase in circuit scale.
  • DL-CA CA of a plurality of DL carriers
  • UL-CA CA of a UL carrier
  • this corresponds to a case where a plurality of cells (also referred to as CCs or carriers) are set in DL transmission and a plurality of cells are set in UL transmission.
  • the number of cells set in DL transmission may be different from the number of cells set in UL transmission (for example, the number of cells for DL transmission is set to be larger than the number of cells for UL transmission).
  • the user terminal may apply the shortened processing time to at least one UL carrier, or at least one DL carrier and at least one UL carrier.
  • the shortening processing time can be applied only to some UL-CCs among the plurality of UL-CCs.
  • the data transmission / reception processing time of the user terminal is shortened. Therefore, the maximum value of timing advance (TA) control applicable to the user terminal in the uplink is shorter than that in the case of the normal processing time.
  • TA timing advance
  • the user terminal may assume that the shortening processing time is set for only some UL carriers or only some DL carriers and / or UL carriers.
  • the shortening processing time when the shortening processing time is set only for some DL carriers and / or UL carriers, the DL carrier and the UL carrier to which the shortening processing time is applied have the same index (for example, cell index, CC index).
  • the user terminal can control communication assuming that the shortening processing time is applied to the DL carrier and the UL carrier having the same cell index.
  • higher layer signaling or physical layer signaling
  • the user terminal sets the shortening processing time based on the cell index or CC index in which the signaling is set.
  • the shortening processing time when the shortening processing time is set for a plurality of UL carriers, the plurality of UL carriers may belong to the same cell group (CG) and / or the same timing advance group (TAG).
  • higher layer signaling (or physical layer signaling) for setting the shortening processing time in the user terminal shall be signaling for setting the shortening processing time by specifying the CG index (MCG or SCG) or the TAG index. Can do.
  • the user terminal sets the shortening processing time based on the CG index or the TAG index in which the signaling is set.
  • the user terminal controls the A / N transmission timing and / or the UL signal scheduling timing in each DL carrier and each UL carrier based on the processing time k set for each DL carrier and each UL carrier.
  • the A / N transmission timing may include A / N transmission timing for DL signals and / or A / N transmission timing for UL signals.
  • FIG. 5 is a diagram illustrating a control example of the second case according to the first aspect.
  • FIG. 5A shows an example of A / N transmission timing control for a DL signal (for example, PDSCH).
  • FIG. 5B shows an example of scheduling timing control of UL signals (for example, PUSCH).
  • the CA of DL carriers (DL CC) 1 to 3 and the CA of UL carriers (UL CC) 1 to 3 are performed.
  • the number of carriers is not limited to this.
  • cell (CC) indexes of DL carriers and UL carriers (for example, DL carriers 1 and 2 and UL carriers 1 and 2 and DL carrier 3 in FIGS. 5A and 5B) in which the same shortening processing time k is set.
  • the UL carrier 3) may correspond.
  • the shortening processing time can be applied only to some UL-CCs.
  • the data transmission / reception processing time of the user terminal is shortened. Therefore, the maximum value of timing advance (TA) control applicable to the user terminal in the uplink is shorter than that in the case of the normal processing time.
  • TA timing advance
  • a cell to which the shortened TTI is applied is controlled based on at least the number of cells used for UL transmission or the presence / absence of use of a plurality of cells in UL transmission (CA and / or DC application).
  • a user terminal to which a shortened TTI is applied controls A / N transmission timing and / or UL scheduling timing based on a shortened TTI having a TTI length shorter than a 1 ms TTI (usually also referred to as TTI).
  • DL-CA carrier aggregation
  • UL-non-CA carrier aggregation
  • the user terminal may apply the shortened TTI to at least one DL carrier.
  • the user terminal may assume that the shortening processing time is set only for some DL carriers. Accordingly, it is possible to obtain a delay reduction effect without limiting the uplink coverage and the maximum value of timing advance (TA) that are greatly affected by the TTI length.
  • TA timing advance
  • the user terminal controls the reception of DL data (for example, reception timing) for the DL carrier based on the shortened TTI.
  • DL data for example, reception timing
  • the A / N transmission timing and / or UL signal scheduling (transmission) timing for DL data transmitted by the shortened TTI is controlled.
  • the user terminal can feed back a UL signal (HARQ-ACK, UL data, etc.) for the DL signal after 4 ⁇ shortened TTI.
  • FIG. 6 shows an example of the control example of the first case according to the second mode.
  • FIG. 6 shows a case where a plurality of cells (CC1 to CC3) are set in DL transmission and a single cell (CC1) is set in UL transmission. Further, a case is shown in which a shortened TTI is applied in UL CC1, DL CC2, and 3, and a normal TTI is applied in DL CC1.
  • the user terminal can feed back the UL signal (HARQ-ACK, UL data, etc.) for the DL signal transmitted with the shortened TTI by the shortened TTI # m + 4 after the 4 ⁇ shortened TTI (see FIG. 6A).
  • FIG. 6A shows a case where an A / N for a DL signal transmitted with a shortened TTI of DL CCs 2 and 3 (here, #m) is fed back with a shortened TTI # m + 4.
  • the user terminal can receive the DL signal based on the A / N after 4 ⁇ shortened TTI.
  • the feedback timing is 4 ⁇ shortened TTI is shown, but the feedback timing is not limited to this (the same applies to the following description).
  • the user terminal feeds back a UL signal corresponding to a DL signal transmitted by normal TTI after 4 ⁇ normal TTI. Further, the user terminal can receive the DL signal based on the A / N after 4 ⁇ normal TTI.
  • the user terminal feeds back the UL signal for the DL signal transmitted in the normal TTI after 4 ⁇ shortened TTI, and the DL signal based on the A / N corresponds to the normal TTI corresponding to the 4 ⁇ normal TTI. It is good also as a structure which receives (here # n + 6) (refer FIG. 6B). In this case, the delay reduction effect can be further enhanced by scheduling data in the DL-CC in which the shortened TTI is set.
  • FIG. 7 shows another example of the control example of the first case according to the second aspect.
  • FIG. 7 shows a case where a plurality of cells (CC1 to CC3) are set in DL transmission and a single cell (CC1) is set in UL transmission. Further, a case is shown in which a shortened TTI is applied in DL CCs 2 and 3 and a normal TTI is applied in UL CC1 and DL CC1.
  • the user terminal can feed back the UL signal (HARQ-ACK, UL data, etc.) for the DL signal transmitted with the shortened TTI with the normal TTI after 4 ⁇ normal TTI (same as the existing system) ( (See FIG. 7A).
  • FIG. 7A shows a case where A / N for a DL signal transmitted with a shortened TTI of DL CCs 2 and 3 (here, #m) is fed back with normal TTI # n + 4. Further, the user terminal can receive the DL signal based on the A / N after 4 ⁇ shortened TTI.
  • the user terminal may feed back the UL signal (HARQ-ACK, UL data, etc.) for the DL signal transmitted with the shortened TTI with the corresponding normal TTI after the 4 ⁇ shortened TTI (see FIG. 7B).
  • FIG. 7B shows a case where an A / N for a DL signal transmitted with a shortened TTI of DL CCs 2 and 3 (here, #m) is fed back with a normal TTI # n + 2 corresponding to the shortened TTI # m + 4.
  • the user terminal can receive the DL signal based on the A / N after 4 ⁇ shortened TTI (here, shortened TTI # m + 8).
  • DL-CA CA of a plurality of DL carriers
  • UL-CA CA of a UL carrier
  • this corresponds to a case where a plurality of cells (also referred to as CCs or carriers) are set in DL transmission and a plurality of cells are set in UL transmission.
  • the number of cells set in DL transmission may be different from the number of cells set in UL transmission (for example, the number of cells for DL transmission is set to be larger than the number of cells for UL transmission).
  • the user terminal applies the shortened TTI for any number of combinations of DL carriers and UL carriers.
  • the user terminal selects a combination of a predetermined DL carrier and a UL carrier based on a predetermined condition, and controls transmission and reception (see FIG. 8).
  • FIG. 8 shows a case where the shortened TTI is applied to a predetermined DL carrier (here, DL CCs 2 and 3) and UL carrier (UL CCs 2 and 3).
  • the higher layer signaling (or physical layer signaling) for setting the shortened TTI for the user terminal may be a signal for setting the shortened TTI by specifying DL-CC and / or UL-CC.
  • the user terminal sets the shortened TTI based on the DL-CC and / or UL-CC index for which the signaling is set.
  • the predetermined condition can be determined based on the cell index of the DL carrier and / or UL carrier.
  • the shortened TTI can be applied to DL carriers and UL carriers having the same cell index.
  • the user terminal can set the shortened TTI only for the DL carrier for a certain index cell (CC), but it may be controlled not to set the shortened TTI only for the UL carrier.
  • CC index cell
  • index 0 can be used as an index.
  • the shortening processing time is set for a plurality of UL carriers
  • the plurality of UL carriers may belong to the same cell group (CG) and / or the same timing advance group (TAG).
  • TAG timing advance group
  • the user terminal can control transmission / reception of signals on the assumption that UL CCs 2 and 3 belong to the same CG and / or TAG.
  • the delay reduction effect by the shortened TTI and the high frequency utilization efficiency by the normal TTI can be realized flexibly.
  • wireless communication system Wireless communication system
  • the radio communication method according to each of the above aspects is applied.
  • wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 9 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation in which a plurality of basic frequency blocks (component carriers (CC)) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated and / or one or more Dual connectivity (DC) using a plurality of cell groups (CG) including CC can be applied.
  • the wireless communication system 1 is called SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New Radio Access Technology), etc. Also good.
  • the radio communication system 1 shown in FIG. 9 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. .
  • the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, two or more CCs). Further, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells.
  • CC cells
  • the user terminal 20 can perform communication using time division duplex (TDD) or frequency division duplex (FDD) in each cell.
  • TDD time division duplex
  • FDD frequency division duplex
  • the TDD cell and the FDD cell may be referred to as a TDD carrier (frame configuration type 2), an FDD carrier (frame configuration type 1), and the like, respectively.
  • each cell a single neurology may be applied, or a plurality of different neurology may be applied.
  • the neurology is a parameter in the frequency direction and the time direction, such as a subcarrier interval, a symbol length, a cyclic prefix length, and a subframe length.
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.
  • the same carrier as that between the base station 11 and the base station 11 may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal. Further, the user terminal 20 can perform inter-terminal communication (D2D) with other user terminals 20.
  • D2D inter-terminal communication
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the UL.
  • a DL shared channel (PDSCH: Physical Downlink Shared Channel, also referred to as DL data channel) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), L1 / L2 A control channel or the like is used.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • L1 / L2 control channels include DL control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. .
  • Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the EPDCCH is frequency-division multiplexed with the PDSCH, and is used for transmission of DCI and the like as with the PDCCH.
  • Retransmission control information for example, at least one of A / N, NDI, HPN, and redundant version (RV)
  • the UL signal for example, PUSCH
  • Retransmission control information for example, at least one of A / N, NDI, HPN, and redundant version (RV)
  • PUSCH Retransmission control information
  • PHICH Physical Downlink Control Channel
  • PDCCH Physical Downlink Control Channel
  • a UL shared channel (PUSCH: Physical Uplink Shared Channel, also referred to as a UL data channel) shared by each user terminal 20, a UL control channel (PUCCH: Physical Uplink Control Channel), random An access channel (PRACH: Physical Random Access Channel) or the like is used.
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of retransmission control information (eg, A / N), channel state information (CSI), and scheduling request (SR) of a DL signal (eg, PDSCH) is PUSCH. Or it is transmitted by PUCCH.
  • the PRACH can transmit a random access preamble for establishing a connection with a cell.
  • FIG. 10 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • each of the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the DL control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmitter / receiver, the transmission / reception circuit, or the transmission / reception device can be configured based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the UL signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, error correction on UL data included in the input UL signal. Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives (backhaul signaling) signals to and from the adjacent radio base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). Also good.
  • CPRI Common Public Radio Interface
  • X2 interface also good.
  • the transmission / reception unit 103 transmits DL DCI (also referred to as DL assignment or the like) for scheduling a DL shared channel (for example, PDSCH) and the DL shared channel.
  • the transmission / reception unit 103 includes at least information indicating the transmission timing reference value k of the radio base station 10 and / or the user terminal 20, information on the shortened TTI, and information on cells (DL CC, UL CC) used for communication One (or combination) may be transmitted.
  • FIG. 11 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment.
  • FIG. 11 mainly shows functional blocks of characteristic portions in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
  • the control unit 301 controls the entire radio base station 10.
  • the control unit 301 includes, for example, DL signal generation by the transmission signal generation unit 302, DL signal mapping by the mapping unit 303, UL signal reception processing (for example, demodulation) by the reception signal processing unit 304, and measurement unit 305. Control the measurement.
  • control unit 301 schedules the user terminal 20.
  • control unit 301 performs PUSCH and / or PDSCH scheduling for the user terminal 20.
  • control unit 301 determines the signal transmission / reception timing (predetermined timing) based on at least the number of cells used (set) for UL transmission or the presence / absence of use of multiple cells (application of CA and / or DC) in UL transmission. Control.
  • control unit 301 sets a plurality of cells for DL transmission (applies carrier aggregation (CA)) and sets a single cell for UL transmission (does not apply CA), DL 301 and UL transmission
  • CA carrier aggregation
  • the shortening processing time can be applied to all the cells used for (see FIG. 4).
  • the control unit 301 may apply the shortened processing time in at least one DL transmission cell and at least one UL transmission cell. (See FIG. 5).
  • the control unit 301 when using a plurality of cells for DL transmission (CA is applied) and a single cell is used for UL transmission (CA is not applied), the control unit 301 shortens the TTI in at least one DL transmission cell. Can be applied (see FIGS. 6 and 7). In addition, when a plurality of cells are used for DL transmission and UL transmission (CA is applied), the control unit 301 can apply a shortened processing time to a predetermined combination of DL transmission cells and UL transmission cells. (See FIG. 8).
  • control unit 301 may control PDSCH retransmission based on retransmission control information from the user terminal 20.
  • the control unit 301 may control the PDSCH retransmission timing based on the reference value k and the shortened TTI.
  • the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • transmission signal generation unit 302 Based on an instruction from control unit 301, transmission signal generation unit 302 generates a DL signal (including DL data, DCI, UL data retransmission control information, and higher layer control information) and outputs the DL signal to mapping unit 303. .
  • the transmission signal generation unit 302 can be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 stores the DL signal generated by the transmission signal generation unit 302 (for example, DL data, DCI, UL data retransmission control information, higher layer control information, etc.) in a predetermined manner. And is output to the transceiver 103.
  • the mapping unit 303 can be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the UL signal (for example, UL data, UCI, etc.) transmitted from the user terminal 20. Specifically, the reception signal processing unit 304 performs UL signal reception processing based on the neurology set in the user terminal 20. The reception signal processing unit 304 may output a reception signal or a signal after reception processing to the measurement unit 305. Reception signal processing section 304 performs reception processing on the A / N of the DL signal and outputs ACK or NACK to control section 301.
  • reception processing for example, demapping, demodulation, decoding, etc.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement part 305 can be comprised from the measuring device, measurement circuit, or measurement apparatus demonstrated based on common recognition in the technical field which concerns on this invention.
  • the measurement unit 305 measures the UL channel quality based on, for example, the reception power (for example, RSRP (Reference Signal Received Power)) and / or the reception quality (for example, RSRQ (Reference Signal Received Quality)) of the UL reference signal. May be.
  • the measurement result may be output to the control unit 301.
  • FIG. 12 is a diagram illustrating an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
  • Each transmitting / receiving unit 203 receives the DL signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • the DL data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Broadcast information is also transferred to the application unit 205.
  • UL data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, rate matching, puncturing, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Are transferred to each transmitting / receiving unit 203.
  • UCI (for example, at least one of DL retransmission control information, CSI, and SR) is also subjected to channel coding, rate matching, puncturing, DFT processing, IFFT processing, and the like, and transferred to each transmitting / receiving section 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 receives DL DCI (also referred to as DL assignment or the like) for scheduling a DL shared channel (for example, PDSCH) and the DL shared channel. Further, the transmission / reception unit 203 transmits retransmission control information of the DL shared channel according to an instruction from the control unit 401.
  • DL DCI also referred to as DL assignment or the like
  • PDSCH DL shared channel
  • the transmission / reception unit 203 transmits retransmission control information of the DL shared channel according to an instruction from the control unit 401.
  • the transmission / reception unit 203 receives DL DCI (also referred to as DL assignment or the like) for scheduling a DL shared channel (for example, PDSCH) and the DL shared channel. Further, the transmission / reception unit transmits UL signal transmission at a predetermined timing based on the DL signal. Further, the transmission / reception unit 203 includes at least information indicating the transmission timing reference value k of the radio base station 10 and / or the user terminal 20, information regarding the shortened TTI, and information regarding cells (DL CC, UL CC) used for communication. One (or combination) may be received.
  • DL DCI also referred to as DL assignment or the like
  • DL shared channel for example, PDSCH
  • the transmission / reception unit 203 includes at least information indicating the transmission timing reference value k of the radio base station 10 and / or the user terminal 20, information regarding the shortened TTI, and information regarding
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention. Further, the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • FIG. 13 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 13 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As illustrated in FIG. 13, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. I have.
  • the control unit 401 controls the entire user terminal 20. For example, the control unit 401 controls generation of the UL signal by the transmission signal generation unit 402, mapping of the UL signal by the mapping unit 403, reception processing of the DL signal by the reception signal processing unit 404, and measurement by the measurement unit 405.
  • control unit 401 determines the signal transmission / reception timing (predetermined timing) based on at least the number of cells used (set) for UL transmission or the presence / absence of use of a plurality of cells in UL transmission (CA and / or DC application). Control.
  • the control unit 401 when a plurality of cells are set for DL transmission (carrier aggregation (CA) is applied) and a single cell is set for UL transmission (CA is not applied), the control unit 401 performs DL transmission and UL transmission.
  • the shortening processing time can be applied to all the cells used for (see FIG. 4).
  • the control unit 401 may apply the shortened processing time in at least one DL transmission cell and at least one UL transmission cell. (See FIG. 5).
  • control unit 401 uses a plurality of cells for DL transmission (CA is applied) and uses a single cell for UL transmission (does not apply CA), the control unit 401 shortens the TTI in at least one DL transmission cell. Can be applied (see FIGS. 6 and 7).
  • the control unit 401 can apply a shortened processing time to a predetermined combination of DL transmission cells and UL transmission cells. (See FIG. 8).
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates a UL signal (including UL data, UCI, UL reference signal, etc.) based on an instruction from the control unit 401 (for example, encoding, rate matching, puncturing, modulation, etc.). And output to the mapping unit 403.
  • the transmission signal generation unit 402 may be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 403 maps the UL signal generated by the transmission signal generation unit 402 to a radio resource based on an instruction from the control unit 401, and outputs it to the transmission / reception unit 203.
  • the mapping unit 403 may be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the DL signal (DL data, DCI, higher layer control information, etc.).
  • the reception signal processing unit 404 outputs information received from the radio base station 10 to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, higher layer control information by higher layer signaling such as RRC signaling, physical layer control information (L1 / L2 control information), and the like to the control unit 401.
  • the received signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the measurement unit 405 measures the channel state based on a reference signal (for example, CRS or / and CSI-RS) from the radio base station 10 and outputs the measurement result to the control unit 401.
  • a reference signal for example, CRS or / and CSI-RS
  • the measuring unit 405 can be composed of a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device which are explained based on common recognition in the technical field according to the present invention.
  • each functional block may be realized by one device physically and / or logically coupled, and two or more devices physically and / or logically separated may be directly and / or indirectly. (For example, wired and / or wireless) and may be realized by these plural devices.
  • a radio base station, a user terminal, etc. in an embodiment of the present invention may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • processor 1001 may be implemented by one or more chips.
  • each function in the radio base station 10 and the user terminal 20 reads predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation and communication by the communication device 1004. It is realized by controlling the reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data
  • the like data
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically EPROM), a RAM (Random Access Memory), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store programs (program codes), software modules, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM)), a digital versatile disk, Blu-ray® disk), removable disk, hard disk drive, smart card, flash memory device (eg, card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium It may be constituted by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to realize frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured including hardware, and a part or all of each functional block may be realized by the hardware. For example, the processor 1001 may be implemented by at least one of these hardware.
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like depending on an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on the neurology.
  • the slot may be configured with one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain). Further, the slot may be a time unit based on the numerology.
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot.
  • Radio frame, subframe, slot, minislot, and symbol all represent time units when transmitting signals. Different names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be called a TTI
  • TTI slot or one minislot
  • a unit representing TTI may be called a slot, a minislot, or the like instead of a subframe.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling for assigning radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-encoded data packet (transport block), a code block, and / or a code word, or may be a processing unit such as scheduling or link adaptation.
  • a time interval for example, the number of symbols
  • a transport block, a code block, and / or a code word is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling unit. Further, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, or a long subframe.
  • a TTI shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (eg, shortened TTI) is less than the TTI length of the long TTI and 1 ms. It may be replaced with a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • One or more RBs include physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, minislot, symbol, etc. is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in the slot, the number of symbols and RBs included in the slot or minislot, and the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and the like can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • mathematical formulas and the like using these parameters may differ from those explicitly disclosed herein.
  • PUCCH Physical Uplink Control Channel
  • PDCCH Physical Downlink Control Channel
  • information elements can be identified by any suitable name, so the various channels and information elements assigned to them.
  • the name is not limiting in any way.
  • information, signals, etc. can be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, and the like may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, a memory), or may be managed by a management table. Input / output information, signals, and the like can be overwritten, updated, or added. The output information, signals, etc. may be deleted. Input information, signals, and the like may be transmitted to other devices.
  • information notification includes physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling), It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicitly performed, but implicitly (for example, by not performing notification of the predetermined information or another (By notification of information).
  • the determination may be performed by a value represented by 1 bit (0 or 1), or may be performed by a boolean value represented by true or false.
  • the comparison may be performed by numerical comparison (for example, comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software can use websites, servers using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) , Or other remote sources, these wired and / or wireless technologies are included within the definition of transmission media.
  • system and “network” used in this specification are used interchangeably.
  • base station BS
  • radio base station eNB
  • gNB gNodeB
  • cell gNodeB
  • cell group a base station
  • carrier a base station
  • component carrier a base station
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • the base station can accommodate one or a plurality of (for example, three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, an indoor small base station (RRH: The term “cell” or “sector” refers to part or all of the coverage area of a base station and / or base station subsystem that provides communication service in this coverage. Point to.
  • RRH indoor small base station
  • MS mobile station
  • UE user equipment
  • terminal may be used interchangeably.
  • a base station may also be called in terms such as a fixed station, NodeB, eNodeB (eNB), access point, transmission point, reception point, femtocell, and small cell.
  • NodeB NodeB
  • eNodeB eNodeB
  • access point transmission point
  • reception point femtocell
  • small cell small cell
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called terminal, remote terminal, handset, user agent, mobile client, client or some other suitable terminology.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • the specific operation assumed to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be performed by one or more network nodes other than the base station and the base station (for example, It is obvious that this can be done by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc., but not limited thereto) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect / embodiment described in this specification may be used alone, in combination, or may be switched according to execution.
  • the order of the processing procedures, sequences, flowcharts, and the like of each aspect / embodiment described in this specification may be changed as long as there is no contradiction.
  • the methods described herein present the elements of the various steps in an exemplary order and are not limited to the specific order presented.
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-WideBand), Bluetooth (registered trademark), The present invention may be applied to a system using other appropriate wireless communication methods and / or a next generation system extended based on these.
  • the phrase “based on” does not mean “based only on”, unless expressly specified otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using designations such as “first”, “second”, etc. as used herein does not generally limit the amount or order of those elements. These designations can be used herein as a convenient way to distinguish between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be employed or that the first element must precede the second element in some way.
  • determining may encompass a wide variety of actions. For example, “determination” means calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data). It may be considered to “judge” (search in structure), ascertaining, etc.
  • “determination (decision)” includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access ( accessing) (e.g., accessing data in memory), etc. may be considered to be “determining”. Also, “determination” is considered to be “determination (resolving)”, “selecting”, “choosing”, “establishing”, “comparing”, etc. Also good. That is, “determination (determination)” may be regarded as “determination (determination)” of some operation.
  • connection refers to any direct or indirect connection between two or more elements or By coupling, it can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • the two elements are radio frequency by using one or more wires, cables and / or printed electrical connections, and as some non-limiting and non-inclusive examples It can be considered to be “connected” or “coupled” to each other, such as by using electromagnetic energy having wavelengths in the region, microwave region, and / or light (both visible and invisible) region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

DL及び/又はUL伝送において複数のセル(CC)を用いて通信を行う場合に、短縮TTI及び/又は短縮処理時間を適切に利用して通信を制御すること。DL伝送及び/又はUL伝送に複数のセルを利用して通信を行うユーザ端末であって、DL信号を受信する受信部と、前記DL信号に基づいてUL信号の送信を所定タイミングで制御する制御部と、を有し、前記制御部は、少なくともUL伝送に利用するセル数に基づいて、前記所定のタイミングを制御する。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT)、LTE Rel.14、15~、などともいう)も検討されている。
 LTE Rel.10/11では、広帯域化を図るために、複数のコンポーネントキャリア(CC:Component Carrier)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各CCは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の無線基地局(eNB:eNodeB)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 一方、LTE Rel.12では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がユーザ端末に設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのセル(CC)で構成される。DCでは、異なる無線基地局の複数のCCが統合されるため、DCは、Inter-eNB CAなどとも呼ばれる。
 既存のLTEシステム(例えば、LTE Rel.8-13)では、1msの伝送時間間隔(TTI:Transmission Time Interval)(サブフレーム等ともいう)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該1msのTTIは、チャネル符号化された1データ・パケットの送信時間単位であり、スケジューリング、リンクアダプテーション、再送制御(HARQ:Hybrid Automatic Repeat reQuest)などの処理単位となる。
 また、既存のLTEシステム(例えば、LTE Rel.8-13)では、複信方式として、周波数分割複信(FDD:Frequency Division Duplex)と、時間分割複信(TDD:Time Division Duplex)とがサポートされている。FDDは、DLとULとで異なる周波数を割り当てる方式であり、フレーム構造(FS:Frame Structure)タイプ1等と呼ばれる。TDDは、同一の周波数をDLとULとで時間的に切り替える方式であり、フレーム構造タイプ2等と呼ばれる。TDDでは、無線フレーム内のULサブフレームとDLサブフレームとの構成を定めるUL/DL構成(UL/DL configuration)に基づいて通信が行われる。
 また、既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末及び/又は無線基地局における信号の処理時間(processing time)等を考慮して、送信タイミングの基準値を固定の4msと想定して、DL共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)、以下、PDSCHという)に対する再送制御情報(例えば、ACK(Acknowledge)又はNACK(Negative ACK)、A/N、HARQ-ACK等、以下、A/Nという)の送信タイミング(DL HARQタイミング等ともいう)が制御される。
 例えば、既存のLTEシステム(例えば、LTE Rel.8-13)のFDDでは、サブフレーム#nでPDSCHが受信される場合、ユーザ端末におけるPDSCHの処理時間等を4msと想定して、当該PDSCHのA/Nがサブフレーム#n+4で送信(フィードバック)される。また、TDDでは、DLサブフレーム#nでPDSCHが受信される場合、ユーザ端末におけるPDSCHの処理時間等を4msと想定して、当該PDSCHのA/Nがサブフレーム#n+4以降のULサブフレームで送信される。
 同様に、既存のLTEシステム(例えば、LTE Rel.8-13)では、UL共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)、以下、PUSCHという)に対するA/Nの送信タイミング(UL HARQタイミング等ともいう)も、ユーザ端末及び/又は無線基地局における信号の送信タイミングの基準値を固定の4msとして、制御される。
 将来の無線通信システム(例えば、LTE Rel.14、15~、5G、NRなど)では、URLLCなどの遅延に対する要求要件が厳しい通信サービスを提供するため、遅延の削減(Latency reduction)が求められている。ここで、遅延には、信号の伝搬時間による遅延(伝搬遅延)と、信号の処理時間による遅延(処理遅延)とが含まれる。
 このような遅延の削減方法としては、1msのサブフレーム(TTI)よりも短いTTI(ショートTTI、部分(Partial)サブフレーム、又はミニサブフレーム等とも呼ばれる)を新たに同導入して通信制御(例えば、スケジューリング又は/及び再送制御)の処理単位そのものを短縮する方法が想定される。
 一方で、1msのサブフレームを通信制御の処理単位として維持する場合にも、遅延を削減することが望まれる。1msのサブフレームを通信制御の処理単位として維持する場合、遅延を削減するために、送信タイミングの基準値を短く設定し(例えば、4msよりも短縮する)、無線基地局及び/又はユーザ端末における信号の処理時間等(処理時間、処理時間に関するパラメータであってもよい)を制御することが想定される。
 また、短縮TTI又は短縮処理時間を導入する将来の無線通信システムにおいても、既存のLTEシステムと同様に、複数のセル(CC)を利用した通信(例えば、CA及び/又はDC)を行うことが想定される。このようにDL伝送及び/又はUL伝送に複数のセル(CC)を利用して通信を行う場合に、短縮TTI及び/又は短縮処理時間をどのように適用して通信を制御するかが問題となる。
 本発明はかかる点に鑑みてなされたものであり、DL及び/又はUL伝送において複数のセル(CC)を用いて通信を行う場合に、短縮TTI及び/又は短縮処理時間を適切に利用して通信を制御できるユーザ端末及び無線通信方法を提供することを目的の一つとする。
 本発明のユーザ端末の一態様は、DL伝送及び/又はUL伝送に複数のセルを利用して通信を行うユーザ端末であって、DL信号を受信する受信部と、前記DL信号に基づいてUL信号の送信を所定タイミングで制御する制御部と、を有し、前記制御部は、少なくともUL伝送に利用するセル数に基づいて、前記所定のタイミングを制御することを特徴とする。
 本発明によれば、DL及び/又はUL伝送において複数のセル(CC)を用いて通信を行う場合に、短縮TTI及び/又は短縮処理時間を適切に利用して通信を制御できる。
FDDのA/Nの送信タイミングの一例を示す図である。 UL/DL構成の一例を示す図である。 図3A及び図3Bは、TDDのA/Nの送信タイミングの一例を示す図である。 図4A及び図4Bは、第1の態様に係るA/Nの送信タイミングの一例を示す図である。 図5A及び図5Bは、第1の態様に係るULデータの送信タイミングの一例を示す図である。 図6A及び図6Bは、第2の態様に係るA/Nの送信タイミングの一例を示す図である。 図7A及び図7Bは、第2の態様に係るA/Nの送信タイミングの他の例を示す図である。 第2の態様に係る短縮TTIの設定例の一例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 既存のLTEシステム(LTE Rel.8~13)では、ユーザ端末(UE:User Equipment)と無線基地局(eNB:eNodeB)間の通信品質の劣化を抑制するために、ハイブリッド自動再送要求(HARQ:Hybrid Automatic Repeat reQuest)がサポートされている。
 例えば、既存のLTEシステムのDLでは、ユーザ端末は、PDSCHの受信結果に基づいて、PUSCH又はPUCCHを用いて、PDSCHのA/Nを送信する。無線基地局は、ユーザ端末からのA/Nに基づいて、PDSCHの送信(初回送信及び/又は再送信を含む)を制御する。
 また、既存のLTEシステムのULでは、ユーザ端末は、無線基地局からのULグラントによりスケジューリングされるPUSCHを送信する。無線基地局は、PUSCHの受信結果に基づいて、再送制御チャネル(例えば、PHICH:Physical Hybrid-ARQ Indicator Channel)を用いて、PUSCHのA/Nを送信する。ユーザ端末は、無線基地局からのA/Nに基づいて、PUSCHの送信(初回送信及び/又は再送信を含む)を制御する。
 既存のLTEシステムのDL及び/又はUL(以下、DL/UL)では、予め定義された送信タイミングの基準値に基づいて、データを送受信したサブフレームから所定時間後にA/Nの送信タイミング(DL/UL HARQタイミング等ともいう)が制御される。
 また、既存のLTEシステムのDLでは、PDSCHを受信したサブフレームから所定時間後に、当該PDSCHのA/Nの送信タイミングが制御される。例えば、FDDでは、PDSCHの受信サブフレームの4ms後のサブフレームで、当該PDSCHのA/Nが送信される。
 図1は、FDDのA/Nの送信タイミングの一例を示す図である。図1に示すように、FDDでは、ユーザ端末は、サブフレーム#nでPDSCHを受信する場合、4ms後のサブフレーム#n+4で当該PDSCHのA/Nを無線基地局に送信する。無線基地局は、一般に、サブフレーム#n+4で受信するA/Nから4ms後のサブフレーム#n+8以降で当該HARQプロセスの再送又は初回送信を行う(サブフレーム#n+8以前であってもよい)。
 また、HARQでは、プロセス(HARQプロセス)を処理単位としてデータ(トランスポートブロック(TB)又はコードブロック(CB))の再送制御が行われる。同一の番号(HARQプロセス番号(HPN))のHARQプロセスでは、ACKが受信されるまで、同一のデータが再送される。また、一つのサブフレームでは、一つのHARQプロセスが用いられる。複数のHARQプロセスを独立に並列処理することで、前のHARQプロセスのA/Nを待たずに、次のHARQプロセスのデータを送信できるので、遅延時間が軽減される。
 例えば、図1では、サブフレーム#nのPDSCHの送信に用いられるHARQプロセス番号(HPN)は、8ms後のサブフレーム#n+8で再利用可能となる。このように、同一のHPNを再利用できるまでの時間(すなわち、データの送信から当該データの受信結果に基づいて再送信又は初回送信が可能となるまでの時間)は、ラウンドトリップ時間(RTT:Round Trip Time)(HARQ RTT)とも呼ばれる。
 図1に示すように、既存のLTEシステムのFDDでは、HARQ RTTは、8サブフレーム(8ms)である。また、HARQ RTT内には、8個のサブフレームが含まれるため、HARQプロセスの最大数(HARQプロセスの数ともいう)は、8個である。
 一方、既存のLTEシステムのTDDでは、ユーザ端末におけるPDSCHの処理時間をFDDと同等であると想定して、PDSCHの受信サブフレームの4ms以降のULサブフレームで、当該PDSCHのA/Nが送信される。TDDでは、A/Nの送信タイミングは、TDDのUL/DL構成に基づいて定められる。
 図2は、UL/DL構成の一例を示す図である。図2に示すように、既存のLTEシステムのTDDでは、ULサブフレームとDLサブフレームとの間の比率が異なるUL/DL構成0~6の7つのフレーム構成が規定されている。サブフレーム#0と#5は下りリンクに割当てられ、サブフレーム#2は上りリンクに割当てられる。また、UL/DL構成0、1、2、6では、DLサブフレームからULサブフレームへの変更点の周期が5ms、UL/DL構成3、4、5では、DLサブフレームからULサブフレームへの変更点の周期が10msとなっている。
 図2のUL/DL構成2、3、4、5では、ULサブフレームに対するDLサブフレームの割合が相対的に大きく設定されている(DL重視である)。なお、特別サブフレームとは、DLとULとの切り替え用のサブフレームであり、主にDL通信に利用できる。以下では、DLサブフレーム及び/又は特別サブフレームをDL/特別サブフレームと呼ぶ。
 図3は、TDDのA/Nの送信タイミングの一例を示す図である。図3Aでは、各UL/DL構成における、PDSCHを受信するDL/特別サブフレームと、当該PDSCHに対するA/Nを送信するULサブフレームとの関係が示される。
 具体的には、図3Aでは、各UL/DL構成のULサブフレーム#n(0≦n≦9)においてどのDL/特別サブフレームで受信したPDSCHのA/Nを送信するかが示される。図3Aでは、各UL/DL構成のULサブフレーム#n(0≦n≦9)において、kサブフレーム前のDL/特別サブフレーム#n-kで受信したPDSCHのA/Nを送信する場合のkの値が示される。
 例えば、図3AのUL/DL構成1で規定されるkの値によると、図3Bに示すように、ULサブフレーム#7では、7及び6サブフレーム前のDLサブフレーム#0及び特別サブフレーム#1で受信されたPDSCHに対するA/Nが送信される。また、ULサブフレーム#8では、4サブフレーム前のDLサブフレーム#4で受信されたPDSCHにするA/Nが送信される。ULサブフレーム#2では、7及び6サブフレーム前のDLサブフレーム#5及び特別サブフレーム#6に受信されたPDSCHに対するA/Nが送信される。ULサブフレーム#3では、4サブフレーム前のDLサブフレーム9で受信されたPDSCHにするA/Nが送信される。
 このように、TDDでは、PDSCHを受信するDL/特別サブフレーム#nの4ms後がULサブフレームとは限らない。このため、上記テーブルでは、kの値が、PDSCHの受信サブフレームから4サブフレーム以降のULサブフレームで、当該PDSCHが送信されるように設定される。また、一以上のDL/特別サブフレームで受信されたPDSCHのA/Nがバンドリングされた単一のULサブフレームで送信され得る。
 また、TDDでは、HARQ RTT及びHARQプロセスの最大数は、FDDのような固定値(8)ではなく、UL/DL構成に応じた値に設定される。例えば、図3Bに示すように、UL/DL構成1では、DLサブフレーム#0のPDSCHのA/Nは、ULサブフレーム#7で送信され、当該A/Nに基づいて当該ULサブフレーム#7の4ms後の特別サブフレーム#1で当該PDSCHの再送が行われる。
 図3Bの場合、DLサブフレーム#0の11サブフレーム後の特別サブフレーム#1で同一のHPNが再利用可能となるので、HARQ RTTは、11サブフレームである。このように、TDDでは、HARQ RTTは、各UL/DL構成のkの最大値(UL/DL構成1の場合は7)+4サブフレームと等しいといえる。また、HARQプロセスの最大数は、HARQ RTT内のDL/特別サブフレームの数と等しく、図3A及び3Bに示すように、UL/DL構成1では、HARQプロセスの最大数は、7となる。同様に、他のUL/DL構成のHARQ RTT及びHARQプロセスの数も設定される。
 以上のように、既存のLTEシステム(Rel.13以前)では、A/Nの送信タイミングは、4msを基準に(基準値として)固定の値で制御される。
 ところで、将来の無線通信システム(例えば、LTE Rel.14、15~、5G、NRなど)では、URLLCなどの遅延に対する要求要件が厳しい通信サービスを提供するため、遅延の削減が求められている。ここで、遅延には、信号の伝搬時間による遅延(伝搬遅延)と、信号の処理時間による遅延(処理遅延)とが含まれる。
 このような遅延の削減方法としては、1msのサブフレーム(TTI)よりも短いTTI(ショートTTI)を新たに同導入して通信制御(例えば、スケジューリング又は/及び再送制御)の処理単位そのものを短縮する方法が想定される。
 LTE Rel.8-12におけるTTI(以下、「通常TTI」という)は、1msの時間長を有する。通常TTIは、サブフレームとも呼ばれ、2つの時間スロットで構成される。TTIは、チャネル符号化された1データ・パケット(トランスポートブロック)の送信時間単位であり、スケジューリング、リンクアダプテーション(Link Adaptation)などの処理単位となる。
 既存のLTEシステムでは、下りリンク(DL)において通常サイクリックプリフィクス(CP)の場合、通常TTIは、14OFDM(Orthogonal Frequency Division Multiplexing)シンボル(スロットあたり7OFDMシンボル)を含んで構成される。各OFDMシンボルは、66.7μsの時間長(シンボル長)を有し、4.76μsの通常CPが付加される。シンボル長とサブキャリア間隔は互いに逆数の関係にあるため、シンボル長66.7μsの場合、サブキャリア間隔は、15kHzである。
 また、上りリンク(UL)において通常サイクリックプリフィクス(CP)の場合、通常TTIは、14SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル(スロットあたり7SC-FDMAシンボル)を含んで構成される。各SC-FDMAシンボルは、66.7μsの時間長(シンボル長)を有し、4.76μsの通常CPが付加される。シンボル長とサブキャリア間隔は互いに逆数の関係にあるため、シンボル長66.7μsの場合、サブキャリア間隔は、15kHzである。
 なお、拡張CPの場合、通常TTIは、12OFDMシンボル(又は12SC-FDMAシンボル)を含んで構成されてもよい。この場合、各OFDMシンボル(又は各SC-FDMAシンボル)は、66.7μsの時間長を有し、16.67μsの拡張CPが付加される。
 一方、将来の無線通信システムでは、数十GHzなどの高周波数帯に適した無線インターフェースや、IoT(Internet of Things)、MTC(Machine Type Communication)、M2M(Machine To Machine)、D2D(Device To Device)、V2V(Vehicular To Vehicular)サービス向けに、遅延を最小化する無線インターフェースが望まれている。
 そのため、将来の通信システムでは、TTIを1msより短縮した短縮TTI(ショートTTI、short TTIとも呼ぶ)を利用して通信を行うことが考えられる。例えば、一部のセルにおいて通常TTI(1ms)を適用し、他のセルにおいて短縮TTIを適用して通信を行うことが考えられる。あるいは、全てのセルにおいて短縮TTI(TTI長が同じ又は異なる短縮TTI)を適用して通信を行うことが考えられる。短縮TTIを利用する場合、サブキャリア間隔を通常TTIのサブキャリアから変更(例えば、サブキャリア間隔を拡大)することが考えられる。
 通常TTIよりも短い時間長のTTI(以下、「短縮TTI」という)を用いる場合、ユーザ端末や無線基地局における処理(例えば、符号化、復号など)に対する時間的マージンが増加するため、処理遅延を低減できる。また、短縮TTIを用いる場合、単位時間(例えば、1ms)当たりに収容可能なユーザ端末数を増加させることができる。
 一方で、1msのサブフレームを通信制御の処理単位として維持する場合にも、遅延を削減することが望まれる。通信制御の処理単位を維持する場合、既存のチャネル構成(例えば、PDSCH、DL制御チャネル(PDCCH:Physical Downlink Control Channel又はEPDCCH:Enhanced Physical Downlink Control Channel、PUSCH、PUCCHなど)を再利用できるためである。
 1msのサブフレームを通信制御の処理単位として維持する場合、遅延を削減するために、無線基地局及び/又はユーザ端末における信号の処理時間を短縮(短縮処理時間を適用)することが考えられる。
 また、短縮TTI又は短縮処理時間を導入する将来の無線通信システムにおいても、既存のLTEシステムと同様に、複数のセル(CC)を利用した通信(例えば、CA及び/又はDC)を行うことが想定される。この場合、DL送信及びUL送信の一方(例えば、DL送信のみ)に複数セルを設定して通信を行う形態(DL-CA、且つUL-non-ca)や、DL伝送に利用するセル数とUL伝送に利用するセル数が異なって設定される形態も考えられる。このようにDL伝送及び/又はUL伝送に対して複数のセル(CC)を利用して通信を行う場合に、短縮TTI及び/又は短縮処理時間をどのように適用して通信を制御するかが問題となる。
 そこで、本発明者らは、少なくともUL伝送に利用する(設定される)セル数、及び/又はUL伝送における複数セルの利用有無(例えば、CA適用有無)に基づいて、信号の送信及び/又は受信タイミングを制御することを着想した。具体的には、少なくともUL伝送においてCAの適用有無に基づいて、短縮TTI及び/又は短縮処理時間を適用するセルを制御する。
 以下、本実施の形態について詳細に説明する。以下の説明では、DL信号(例えば、DLデータチャネル)に対する送達確認信号(HARQ-ACK)の送信と、DL信号(例えば、UL送信指示、ULグラント)に対する上りデータの送信を例に挙げて説明するが、適用可能な信号/チャネルはこれに限られない。本実施の形態は、所定タイミングで送信及び/又は受信を制御する信号(又は、チャネル)に対して適用することができる。
 また、本実施の形態は、FDD及び/又はTDDに適用可能である。以下の説明では、FDDを例に挙げて説明するが、TDDについても同様に適用することができる。TDDでは、短縮処理時間及び/又は短縮TTIを設定するセルにおいて、短縮処理時間を適用する場合に設定される基準値(k)に対応するテーブルを利用して通信を行うよう制御すればよい。
(第1の態様)
 第1の態様では、少なくともUL伝送に利用するセル数、又はUL伝送における複数セルの利用(CA及び/又はDC適用)有無に基づいて、短縮処理時間を適用するセルを制御する。短縮処理時間を適用するユーザ端末は、当該ユーザ端末及び/又は無線基地局における信号の処理時間に基づいて算出される基準値(k)を既存の4msより短く制御し、当該基準値に基づいてA/Nの送信タイミング及び/又はULのスケジューリングタイミングを制御する。なお、当該kは、短縮処理時間等と呼ばれてもよい。
<第1のケース>
 第1のケースでは、複数のDLキャリアのキャリアアグリゲーション(DL-CA)が行われるが、ULキャリアのCAが行われない場合(UL-non-CA)を想定する。例えば、DL伝送において複数のセル(CC、又はキャリアとも呼ぶ)が設定され、UL伝送において単一のセルが設定される場合に相当する。
 この場合、ユーザ端末は、当該ユーザ端末に設定された全てのDLキャリア及びULキャリアに対して、短縮処理時間を適用してもよい。すなわち、ユーザ端末は、ULキャリアだけに短縮処理時間が設定されることを想定しなくともよい。また、ユーザ端末は、当該複数のDLキャリアの一部のみに短縮処理時間が設定されることを想定しなくともよい。
 また、ユーザ端末に対して短縮処理時間の設定を上位レイヤシグナリング(または物理レイヤシグナリング)で指定する場合、ユーザ端末は当該シグナリングを受信・識別した場合、前述のように、すべてのDLキャリア及びULキャリアに対して、短縮処理時間を適用してもよい。これにより、例えば、あるサブフレームにおいてDLアサインメントによりDLデータがスケジューリングされた場合のHARQ-ACK送信タイミングと、同じサブフレームにおいてULグラントによりULデータがスケジューリングされた場合のULデータ送信タイミングと、を同一に制御することができる。また、いずれのDL-CCでDLデータがスケジューリングされたかに関わらず、前記HARQ-ACK送信タイミング及びULデータ送信タイミングを同一に制御することができる。これにより、ユーザ端末は、HARQ-ACKフィードバック制御について、DLアサインメントのみの場合とDLアサインメントとULグラントの両方がある場合の両方を実装する必要がなくなるため、回路規模を削減できる。
 ユーザ端末は、全てのDLキャリア及びULキャリアに対して短縮処理時間(例えば、4未満の基準値k)が設定される場合、当該短縮処理時間kに基づいて、A/Nの送信タイミング、及び/又は、UL信号のスケジューリング(送信)タイミングを制御する。A/Nの送信タイミングは、DL信号に対するA/N及び/又はUL信号に対するA/Nの送信タイミングを含んでもよい。
 図4は、第1の態様に係る第1のケースの制御例を示す図である。例えば、図4Aでは、DL信号(例えば、PDSCH)に対するA/Nの送信タイミングの制御例が示される。図4Bでは、UL信号(例えば、PUSCH)のスケジューリングタイミングの制御例が示される。
 図4A及び図4Bでは、DL伝送において複数のDLキャリア(DL CC)1~3が設定され、UL伝送において単一のULキャリア(UL CC)1が設定される場合を示している。この場合、DLキャリア(DL CC)1~3を用いてCAが行われ、ULキャリアではCAが行わない。なお、CAされるDLキャリア数はこれに限られない。また、図4A及び図4Bでは、短縮処理時間k=2に設定されるものとするが、kの値は、例えば、1又は3など、4msより短い値であればよい。
 図4A及び図4Bに示すように、ULキャリアのCAが行われない場合、全てのDLキャリア及びULキャリアに、同一の短縮処理時間kが設定されてもよい。例えば、図4Aでは、ユーザ端末は、DLキャリア1~3のPDSCHをサブフレーム#nで受信する場合、k=2に基づいて、2ms後のサブフレーム#n+2において、DLキャリア1~3のA/Nを送信する。なお、図示しないが、無線基地局におけるPUSCHに対するA/Nの送信タイミングも同様に制御されてもよい。
 また、図4Bでは、ユーザ端末は、DLキャリア1のサブフレーム#nでULキャリア1のPUSCHをスケジューリングするULグラントを受信し、k=2に基づいて、2ms後のサブフレーム#n+2において、ULキャリア1でPUSCHを送信する。
 このように、ケース1の場合にユーザ端末に設定された全てのDLキャリア及びULキャリアに対して、短縮処理時間を適用することにより、例えば、あるサブフレームにおいてDLアサインメントによりDLデータがスケジューリングされた場合のHARQ-ACK送信タイミングと、同じサブフレームにおいてULグラントによりULデータがスケジューリングされた場合のULデータ送信タイミングと、を同一に制御することができる。また、いずれのDL-CCでDLデータがスケジューリングされたかに関わらず、前記HARQ-ACK送信タイミング及びULデータ送信タイミングを同一に制御することができる。これにより、ユーザ端末は、HARQ-ACKフィードバック制御について、DLアサインメントのみの場合とDLアサインメントとULグラントの両方がある場合の両方を実装する必要がなくなるため、回路規模増大を抑圧できる。
<第2のケース>
 第2のケースでは、複数のDLキャリアのCA(DL-CA)が行われると共に、ULキャリアのCA(UL-CA)も行われる場合を想定する。例えば、DL伝送において複数のセル(CC、又はキャリアとも呼ぶ)が設定され、UL伝送においても複数のセルが設定される場合に相当する。なお、DL伝送において設定されるセル数と、UL伝送において設定されるセル数は異なっていてもよい(例えば、DL伝送のセル数がUL伝送のセル数より多く設定される)。
 この場合、ユーザ端末は、少なくとも一つのULキャリア、または少なくとも一つのDLキャリア及び少なくとも一つのULキャリアに対して、短縮処理時間を適用してもよい。これにより、複数あるUL-CCのうち、一部のUL-CCに対してのみ短縮処理時間を適用できる。短縮処理時間が設定された場合、ユーザ端末のデータ送受信処理時間が短くなることから、上りリンクにおいてユーザ端末が適用できるタイミングアドバンス(TA)制御の最大値が、通常処理時間の場合に比べて短くなることが想定される。このような場合であっても、短縮処理時間の適用を一部のUL-CCまたは一部のULおよびDL-CCに限定することで、短縮処理時間が適用されない少なくとも一部のUL-CCについては、タイミングアドバンス制御の最大値を通常処理時間と同じ値にすることができる。この結果、通信可能距離の削減を回避することができる。例えば、ユーザ端末は、一部のULキャリアだけ、または一部のDLキャリア及び/又はULキャリアだけに短縮処理時間が設定されることを想定してもよい。
 第2のケースにおいて、一部のDLキャリア及び/又はULキャリアだけに短縮処理時間が設定される場合、短縮処理時間が適用されるDLキャリア及びULキャリアは、同一のインデックス(例えば、セルインデックス、CCインデックス)を有してもよい。この場合、ユーザ端末は、同一セルインデックスを有するDLキャリアとULキャリアに短縮処理時間が適用されると想定して通信を制御することができる。また、かかる場合、ユーザ端末に短縮処理時間を設定する上位レイヤシグナリング(または物理レイヤシグナリング)は、セルインデックスまたはCCインデックスを指定して短縮処理時間を設定するシグナリングとすることができる。ユーザ端末は、当該シグナリングが設定されたセルのインデックスまたはCCのインデックスに基づいて、短縮処理時間を設定する。
 また、複数のULキャリアに短縮処理時間が設定される場合、当該複数のULキャリアは同一のセルグループ(CG)及び/又は同じタイミングアドバンスグループ(TAG)に属するものとしてもよい。また、かかる場合、ユーザ端末に短縮処理時間を設定する上位レイヤシグナリング(または物理レイヤシグナリング)は、CGインデックス(MCGかSCGか)またはTAGインデックスを指定して短縮処理時間を設定するシグナリングとすることができる。ユーザ端末は、当該シグナリングが設定されたCGのインデックスまたはTAGのインデックスに基づいて、短縮処理時間を設定する。
 ユーザ端末は、DLキャリア毎及びULキャリア毎に設定された処理時間kに基づいて、各DLキャリア及び各ULキャリアにおけるA/Nの送信タイミング、及び/又は、UL信号のスケジューリングタイミングを制御する。なお、A/Nの送信タイミングは、DL信号に対するA/N及び/又はUL信号に対するA/Nの送信タイミングを含んでもよい。
 図5は、第1の態様に係る第2のケースの制御例を示す図である。例えば、図5Aでは、DL信号(例えば、PDSCH)に対するA/Nの送信タイミングの制御例が示される。図5Bでは、UL信号(例えば、PUSCH)のスケジューリングタイミングの制御例が示される。
 なお、図5A及び図5Bでは、DLキャリア(DL CC)1~3のCAと、ULキャリア(UL CC)1~3のCAとが行われるものとするが、CAされるDLキャリア数及びULキャリア数はこれに限られない。
 図5A及び図5Bに示すように、ULキャリアのCAが行われる場合、少なくとも一つのDLキャリア(ここでは、DLキャリア1及び2)及び少なくとも一つのULキャリア(ここでは、ULキャリア1及び2)に、短縮処理時間kが設定されてもよい。なお、図5A及び図5Bでは、k=2に設定されるものとするが、kの値は、例えば、1又は3など、4msより短い値であればよい。
 例えば、図5Aでは、ユーザ端末は、DLキャリア1及び2のPDSCHをサブフレーム#nで受信する場合、k=2に基づいて、2ms後のサブフレーム#n+2において、DLキャリア1及び2のA/Nを送信する。また、ユーザ端末は、DLキャリア3のPDSCHをサブフレーム#n+8で受信する場合、k=4に基づいて、4ms後のサブフレーム#n+12において、DLキャリア3のA/Nを送信してもよい。なお、図示しないが、無線基地局におけるPUSCHに対するA/Nの送信タイミングも同様に制御されてもよい。
 また、図5Bでは、ユーザ端末は、DLキャリア1及び2のサブフレーム#nでULキャリア1及び2のPUSCHをスケジューリングするULグラントを受信し、k=2に基づいて、2ms後のサブフレーム#n+2において、ULキャリア1及び2でPUSCHを送信する。また、ユーザ端末は、DLキャリア3のサブフレーム#n+8でULキャリア3のPUSCHをスケジューリングするULグラントを受信し、k=4に基づいて、4ms後のサブフレーム#n+12において、ULキャリア3でPUSCHを送信する。
 このように、同一の短縮処理時間kが設定されるDLキャリア及びULキャリアのセル(CC)インデックス(例えば、図5A及び図5BのDLキャリア1及び2とULキャリア1及び2、DLキャリア3とULキャリア3)は、対応していてもよい。また、同一の短縮処理時間kが設定される複数のULキャリア(例えば、図5A及び図5BのULキャリア1及び2)は、同一のCG及び/又はTAGに属してもよい。なお、図5A及び図5Bでは、短縮処理時間k=2のみが用いられるが、キャリア毎に異なる短縮処理時間が設定されてもよい。
 このように、ケース2の場合にユーザ端末に設定された少なくとも一つのULキャリア、または少なくとも一つのDLキャリア及びULキャリアに対して、短縮処理時間を適用することにより、複数あるUL-CCのうち、一部のUL-CCに対してのみ短縮処理時間を適用できる。短縮処理時間が設定された場合、ユーザ端末のデータ送受信処理時間が短くなることから、上りリンクにおいてユーザ端末が適用できるタイミングアドバンス(TA)制御の最大値が、通常処理時間の場合に比べて短くなることが想定される。このような場合であっても、短縮処理時間の適用を一部のUL-CCまたは一部のULおよびDL-CCに限定することで、短縮処理時間が適用されない少なくとも一部のUL-CCについては、タイミングアドバンス制御の最大値を通常処理時間と同じ値にすることができる。この結果、通信可能距離の削減を回避することができる。
(第2の態様)
 第2の態様では、少なくともUL伝送に利用するセル数、又はUL伝送における複数セルの利用(CA及び/又はDC適用)有無に基づいて、短縮TTIを適用するセルを制御する。短縮TTIを適用するユーザ端末は、1msのTTI(通常TTIとも呼ぶ)より短いTTI長を有する短縮TTIに基づいて、A/Nの送信タイミング及び/又はULのスケジューリングタイミングを制御する。
<第1のケース>
 第1のケースでは、複数のDLキャリアのキャリアアグリゲーション(DL-CA)が行われるが、ULキャリアのCAが行われない場合(UL-non-CA)を想定する。例えば、DL伝送において複数のセル(CC、又はキャリアとも呼ぶ)が設定され、UL伝送において単一のセルが設定される場合に相当する。
 この場合、ユーザ端末は、少なくとも一つのDLキャリアに対して、短縮TTIを適用してもよい。例えば、ユーザ端末は、一部のDLキャリアだけに短縮処理時間が設定されることを想定してもよい。これにより、TTI長によって大きな影響を受ける上りリンクのカバレッジやタイミングアドバンス(TA)の最大値を制限せずに、遅延削減効果を得ることができる。
 ユーザ端末は、一部のDLキャリアに短縮TTIが設定される場合、当該DLキャリアについて短縮TTIに基づいてDLデータの受信(例えば、受信タイミング等)を制御する。また、ULキャリアに短縮TTIが設定される場合、短縮TTIで送信したDLデータに対するA/Nの送信タイミング、及び/又は、UL信号のスケジューリング(送信)タイミングを制御する。例えば、ユーザ端末は、DL信号に対するUL信号(HARQ-ACK、ULデータ等)を、4×短縮TTI後にフィードバックすることができる。
 図6に第2の態様に係る第1のケースの制御例の一例を示す。図6では、DL伝送において複数のセル(CC1~3)が設定され、UL伝送において単一のセル(CC1)が設定される場合を示している。また、UL CC1、DL CC2、3で短縮TTIを適用し、DL CC1で通常TTIを適用する場合を示している。
 この場合、ユーザ端末は、短縮TTIで送信されたDL信号に対するUL信号(HARQ-ACK、ULデータ等)を、4×短縮TTI後の短縮TTI#m+4でフィードバックすることができる(図6A参照)。図6Aでは、DL CC2、3の短縮TTI(ここでは、#m)で送信されたDL信号に対するA/Nを短縮TTI#m+4でフィードバックする場合を示している。また、ユーザ端末は、当該A/Nに基づくDL信号は、4×短縮TTI後に受信することができる。なお、本実施の形態では、フィードバックタイミングを4×短縮TTIとする場合を示したがフィードバックタイミングはこれに限られない(以下の説明でも同様である)。
 ユーザ端末は、通常TTIで送信されたDL信号に対するUL信号を、4×通常TTI後にフィードバックする。また、ユーザ端末は、当該A/Nに基づくDL信号は、4×通常TTI後に受信することができる。
 あるいは、ユーザ端末は、ユーザ端末は、通常TTIで送信されたDL信号に対するUL信号を、4×短縮TTI後にフィードバックし、当該A/Nに基づくDL信号は、4×通常TTI後に対応する通常TTI(ここでは#n+6)受信する構成としてもよい(図6B参照)。この場合、短縮TTIが設定されたDL-CCにデータをスケジューリングすることで、より遅延削減効果を高めることができる。
 ULキャリアに短縮TTIが設定されない場合、通常TTIを適用してULデータ送信を制御する。図7に第2の態様に係る第1のケースの制御例の他の一例を示す。図7では、DL伝送において複数のセル(CC1~3)が設定され、UL伝送において単一のセル(CC1)が設定される場合を示している。また、DL CC2、3で短縮TTIを適用し、UL CC1、DL CC1で通常TTIを適用する場合を示している。
 この場合、ユーザ端末は、短縮TTIで送信されたDL信号に対するUL信号(HARQ-ACK、ULデータ等)を、4×通常TTI後の通常TTI(既存システムと同じ)でフィードバックすることができる(図7A参照)。図7Aでは、DL CC2、3の短縮TTI(ここでは、#m)で送信されたDL信号に対するA/Nを通常TTI#n+4でフィードバックする場合を示している。また、ユーザ端末は、当該A/Nに基づくDL信号は、4×短縮TTI後に受信することができる。
 あるいは、ユーザ端末は、短縮TTIで送信されたDL信号に対するUL信号(HARQ-ACK、ULデータ等)を、4×短縮TTI後に対応する通常TTIでフィードバックしてもよい(図7B参照)。図7Bでは、DL CC2、3の短縮TTI(ここでは、#m)で送信されたDL信号に対するA/Nを、短縮TTI#m+4に対応する通常TTI#n+2でフィードバックする場合を示している。また、ユーザ端末は、当該A/Nに基づくDL信号は、4×短縮TTI後(ここでは、短縮TTI#m+8に受信することができる。
 このように、ケース1の場合にユーザ端末に設定された少なくとも一つのDLキャリアに対して、短縮処理時間を適用することにより、TTI長によって大きな影響を受ける上りリンクのカバレッジやタイミングアドバンス(TA)の最大値を制限せずに、遅延削減効果を得ることができる。
<第2のケース>
 第2のケースでは、複数のDLキャリアのCA(DL-CA)が行われると共に、ULキャリアのCA(UL-CA)も行われる場合を想定する。例えば、DL伝送において複数のセル(CC、又はキャリアとも呼ぶ)が設定され、UL伝送においても複数のセルが設定される場合に相当する。なお、DL伝送において設定されるセル数と、UL伝送において設定されるセル数は異なっていてもよい(例えば、DL伝送のセル数がUL伝送のセル数より多く設定される)。
 この場合、ユーザ端末は、DLキャリアとULキャリアの任意の個数の組み合わせについて短縮TTIを適用する。例えば、ユーザ端末は、所定のDLキャリアとULキャリアの組み合わせを所定条件に基づいて選択し、送受信を制御する(図8参照)。図8では、所定のDLキャリア(ここでは、DL CC2、3)とULキャリア(UL CC2、3)に短縮TTIを適用する場合を示している。かかる場合、ユーザ端末に短縮TTIを設定する上位レイヤシグナリング(または物理レイヤシグナリング)は、DL-CC及び/又はUL-CCを指定して短縮TTIを設定するシグナリングとすることができる。ユーザ端末は、当該シグナリングが設定されたDL-CC及び/又はUL-CCのインデックスに基づいて、短縮TTIを設定する。
 所定条件は、DLキャリア及び/又はULキャリアのセルインデックス等に基づいて決定することができる。例えば、セルインデックスが同じDLキャリアとULキャリアに対して短縮TTIを適用することができる。あるいは、無線基地局から送信される情報に基づいて短縮TTIを適用するDLキャリアとULキャリアの組み合わせを決定してもよい。
 また、ユーザ端末は、あるインデックスのセル(CC)について、DLキャリアのみに短縮TTIを設定できるが、ULキャリアのみには短縮TTIは設定しないように制御してもよい。あるインデックスとしては、例えば、インデックス0等とすることができる。
 また、複数のULキャリアに短縮処理時間が設定される場合、当該複数のULキャリアは同一のセルグループ(CG)及び/又は同じタイミングアドバンスグループ(TAG)に属するものとしてもよい。図8では、ユーザ端末は、UL CC2、3が同一CG及び/又はTAGに属すると想定して信号の送受信を制御することができる。
 このように、ケース2の場合にユーザ端末に設定された所定のDLキャリアとULキャリアの組み合わせに対して、短縮TTIを適用することにより、短縮TTIによる遅延削減効果と通常TTIによる高い周波数利用効率を柔軟に実現することができる。
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図9は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア(CC))を一体としたキャリアアグリゲーション(CA)及び/又は、一以上のCCを含むセルグループ(CG)複数を用いたデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New RAT:New Radio Access Technology)などと呼ばれても良い。
 図9に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間及び/又はセル内で異なるニューメロロジーが適用される構成としてもよい。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、2個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。TDDのセル、FDDのセルは、それぞれ、TDDキャリア(フレーム構成タイプ2)、FDDキャリア(フレーム構成タイプ1)等と呼ばれてもよい。
 また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。ここで、ニューメロロジーは、サブキャリア間隔、シンボル長、サイクリックプリフィクス長、サブフレーム長など、周波数方向及び時間方向のパラメータである。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHz、30~70GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。また、ユーザ端末20は、他のユーザ端末20との間で端末間通信(D2D)を行うことができる。
 無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。
 無線通信システム1では、DLチャネルとして、各ユーザ端末20で共有されるDL共有チャネル(PDSCH:Physical Downlink Shared Channel、DLデータチャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 L1/L2制御チャネルは、DL制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。PHICH、PDCCH、EPDCCHの少なくとも一つにより、UL信号(例えば、PUSCH)の再送制御情報(例えば、A/N、NDI、HPN、冗長バージョン(RV)の少なくとも一つ)を伝送できる。
 無線通信システム1では、ULチャネルとして、各ユーザ端末20で共有されるUL共有チャネル(PUSCH:Physical Uplink Shared Channel、ULデータチャネル等ともいう)、UL制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。DL信号(例えば、PDSCH)の再送制御情報(例えば、A/N)、チャネル状態情報(CSI)、スケジューリング要求(SR)の少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルを伝送できる。
<無線基地局>
 図10は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されてもよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、DL制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、UL信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力されたUL信号に含まれるULデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 また、送受信部103は、DL共有チャネル(例えば、PDSCH)をスケジューリングするDL DCI(DLアサインメント等ともいう)と、当該DL共有チャネルを送信する。また、送受信部103は、無線基地局10及び/又はユーザ端末20の送信タイミングの基準値kを示す情報、短縮TTIに関する情報、及び通信に利用するセル(DL CC、UL CC)に関する情報の少なくとも一つ(又は、組み合わせ)を送信してもよい。
 図11は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、図11は、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図11に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305とを備えている。
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、例えば、送信信号生成部302によるDL信号の生成や、マッピング部303によるDL信号のマッピング、受信信号処理部304によるUL信号の受信処理(例えば、復調など)、測定部305による測定を制御する。
 具体的には、制御部301は、ユーザ端末20のスケジューリングを行う。例えば、制御部301は、ユーザ端末20に対するPUSCH及び/又はPDSCHのスケジューリングを行う。
 また、制御部301は、少なくともUL伝送に利用(設定)するセル数、又はUL伝送における複数セルの利用(CA及び/又はDC適用)有無に基づいて、信号の送受信タイミング(所定のタイミング)を制御する。
 例えば、制御部301は、DL伝送に複数のセルを設定し(キャリアアグリゲーション(CA)を適用し)且つUL伝送に単一のセルを設定する(CAを適用しない)場合、DL伝送及びUL伝送に利用する全てのセルにおいて短縮処理時間を適用することができる(図4参照)。また、制御部301は、DL伝送及びUL伝送に複数のセルを利用する(CAを適用する)場合、少なくとも一つのDL伝送セルと少なくとも一つのUL伝送セルにおいて短縮処理時間を適用してもよい(図5参照)。
 また、制御部301は、DL伝送に複数のセルを利用し(CAを適用し)且つUL伝送に単一のセルを利用する(CAを適用しない)場合、少なくとも一つのDL伝送セルにおいて短縮TTIを適用することができる(図6、図7参照)。また、制御部301は、DL伝送及びUL伝送に複数のセルを利用する(CAを適用する)場合、所定のDL伝送セルとUL伝送セルの組み合わせに対して短縮処理時間を適用することができる(図8参照)。
 また、制御部301は、ユーザ端末20からの再送制御情報に基づいて、PDSCHの再送を制御してもよい。また、制御部301は、上記基準値k、短縮TTIに基づいて、PDSCHの再送タイミングを制御してもよい。
 制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(DLデータ、DCI、ULデータの再送制御情報、上位レイヤ制御情報を含む)を生成して、マッピング部303に出力する。
 送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号(例えば、DLデータ、DCI、ULデータの再送制御情報、上位レイヤ制御情報など)を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部304は、ユーザ端末20から送信されるUL信号(例えば、ULデータ、UCIなど)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。具体的には、受信信号処理部304は、ユーザ端末20に設定されたニューメロロジーに基づいて、UL信号の受信処理を行う。また、受信信号処理部304は、受信信号や、受信処理後の信号を、測定部305に出力してもよい。また、受信信号処理部304は、DL信号のA/Nに対して受信処理を行い、ACK又はNACKを制御部301に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 測定部305は、例えば、UL参照信号の受信電力(例えば、RSRP(Reference Signal Received Power))及び/又は受信品質(例えば、RSRQ(Reference Signal Received Quality))に基づいて、ULのチャネル品質を測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
 図12は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。DLデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、ブロードキャスト情報もアプリケーション部205に転送される。
 一方、ULデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、レートマッチング、パンクチャ、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。UCI(例えば、DLの再送制御情報、CSI、SRの少なくとも一つ)についても、チャネル符号化、レートマッチング、パンクチャ、DFT処理、IFFT処理などが行われて各送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 また、送受信部203は、DL共有チャネル(例えば、PDSCH)をスケジューリングするDL DCI(DLアサインメント等ともいう)と、当該DL共有チャネルを受信する。また、送受信部203は、制御部401の指示に従って、当該DL共有チャネルの再送制御情報を送信する。
 また、送受信部203は、DL共有チャネル(例えば、PDSCH)をスケジューリングするDL DCI(DLアサインメント等ともいう)と、当該DL共有チャネルを受信する。また、送受信部は、DL信号に基づいてUL信号の送信を所定タイミングで送信する。また、送受信部203は、無線基地局10及び/又はユーザ端末20の送信タイミングの基準値kを示す情報、短縮TTIに関する情報、及び通信に利用するセル(DL CC、UL CC)に関する情報の少なくとも一つ(又は、組み合わせ)を受信してもよい。
 送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。また、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 図13は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、図13においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図13に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、例えば、送信信号生成部402によるUL信号の生成や、マッピング部403によるUL信号のマッピング、受信信号処理部404によるDL信号の受信処理、測定部405による測定を制御する。
 また、制御部401は、少なくともUL伝送に利用(設定)するセル数、又はUL伝送における複数セルの利用(CA及び/又はDC適用)有無に基づいて、信号の送受信タイミング(所定のタイミング)を制御する。
 例えば、制御部401は、DL伝送に複数のセルを設定し(キャリアアグリゲーション(CA)を適用し)且つUL伝送に単一のセルを設定する(CAを適用しない)場合、DL伝送及びUL伝送に利用する全てのセルにおいて短縮処理時間を適用することができる(図4参照)。また、制御部401は、DL伝送及びUL伝送に複数のセルを利用する(CAを適用する)場合、少なくとも一つのDL伝送セルと少なくとも一つのUL伝送セルにおいて短縮処理時間を適用してもよい(図5参照)。
 また、制御部401は、DL伝送に複数のセルを利用し(CAを適用し)且つUL伝送に単一のセルを利用する(CAを適用しない)場合、少なくとも一つのDL伝送セルにおいて短縮TTIを適用することができる(図6、図7参照)。また、制御部401は、DL伝送及びUL伝送に複数のセルを利用する(CAを適用する)場合、所定のDL伝送セルとUL伝送セルの組み合わせに対して短縮処理時間を適用することができる(図8参照)。
 制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号(ULデータ、UCI、UL参照信号などを含む)を生成(例えば、符号化、レートマッチング、パンクチャ、変調など)して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部404は、DL信号(DLデータ、DCI、上位レイヤ制御情報など)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリングなどの上位レイヤシグナリングによる上位レイヤ制御情報、物理レイヤ制御情報(L1/L2制御情報)などを、制御部401に出力する。
 受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 測定部405は、無線基地局10からの参照信号(例えば、CRS又は/及びCSI-RS)に基づいて、チャネル状態を測定し、測定結果を制御部401に出力する。
 測定部405は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルで構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを使用することにより、互いに「接続」又は「結合」されると考えることができる。
 本明細書又は特許請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2016年11月4日出願の特願2016-216718に基づく。この内容は、全てここに含めておく。

Claims (6)

  1.  DL伝送及び/又はUL伝送に複数のセルを利用して通信を行うユーザ端末であって、
     DL信号を受信する受信部と、
     前記DL信号に基づいてUL信号の送信を所定タイミングで制御する制御部と、を有し、
     前記制御部は、少なくともUL伝送に利用するセル数に基づいて、前記所定のタイミングを制御することを特徴とするユーザ端末。
  2.  前記制御部は、DL伝送に複数のセルを利用し且つUL伝送に単一のセルを利用する場合、DL伝送及びUL伝送に利用する全てのセルにおいて短縮処理時間を適用することを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、DL伝送及びUL伝送に複数のセルを利用する場合、少なくとも一つのDL伝送セルと少なくとも一つのUL伝送セルにおいて短縮処理時間を適用することを特徴とする請求項1に記載のユーザ端末。
  4.  前記制御部は、DL伝送に複数のセルを利用し且つUL伝送に単一のセルを利用する場合、少なくとも一つのDL伝送セルにおいて短縮TTIを適用することを特徴とする請求項1に記載のユーザ端末。
  5.  前記制御部は、DL伝送及びUL伝送に複数のセルを利用する場合、所定のDL伝送セルとUL伝送セルの組み合わせに対して短縮処理時間を適用することを特徴とする請求項1に記載のユーザ端末。
  6.  DL伝送及び/又はUL伝送に複数のセルを利用して通信を行うユーザ端末の無線通信方法であって、
     DL信号を受信する工程と、
     前記DL信号に基づいてUL信号の送信を所定タイミングで送信する工程と、を有し、
     少なくともUL伝送に利用するセル数に基づいて、前記所定のタイミングを制御することを特徴とする無線通信方法。
     
PCT/JP2017/039627 2016-11-04 2017-11-01 ユーザ端末及び無線通信方法 WO2018084212A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17866784.6A EP3537821A4 (en) 2016-11-04 2017-11-01 USER TERMINAL, AND RADIOCOMMUNICATIONS PROCESS
JP2018549066A JP7043413B2 (ja) 2016-11-04 2017-11-01 端末、無線通信方法、基地局及びシステム
CN201780080720.5A CN110115091B (zh) 2016-11-04 2017-11-01 用户终端以及无线通信方法
US16/347,379 US11317390B2 (en) 2016-11-04 2017-11-01 User terminal and radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016216718 2016-11-04
JP2016-216718 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018084212A1 true WO2018084212A1 (ja) 2018-05-11

Family

ID=62076442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039627 WO2018084212A1 (ja) 2016-11-04 2017-11-01 ユーザ端末及び無線通信方法

Country Status (5)

Country Link
US (1) US11317390B2 (ja)
EP (1) EP3537821A4 (ja)
JP (1) JP7043413B2 (ja)
CN (1) CN110115091B (ja)
WO (1) WO2018084212A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640376A (zh) * 2018-07-06 2021-04-09 株式会社Ntt都科摩 用户终端

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216718A (ja) 2015-05-21 2016-12-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶媒体およびそれを含む液晶ディスプレイ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6161377B2 (ja) 2013-04-12 2017-07-12 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
HUE056324T2 (hu) 2015-02-20 2022-02-28 Ntt Docomo Inc Felhasználói készülék, és továbbítást igazoló információ átviteli eljárás
US20180124829A1 (en) 2015-04-30 2018-05-03 Lg Electronics Inc. Method and apparatus for configuring random access channel in short tti or contention based uplink transmission in wireless communication system
US10623155B2 (en) * 2015-12-07 2020-04-14 Lg Electronics Inc. Uplink channel transmitting method and user device, and uplink channel receiving method and base station
WO2017183912A1 (en) 2016-04-19 2017-10-26 Lg Electronics Inc. Ways for supporting multiple ttis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216718A (ja) 2015-05-21 2016-12-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 液晶媒体およびそれを含む液晶ディスプレイ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Views on processing time reduction and related procedures", 3GPP TSG-RANWG1 MEETING #86BIS RL-1610049, 14 October 2016 (2016-10-14), XP051150074 *
HUAWEI ET AL.: "Discussion on CA issues for shortened TTI operation", 3GPP TSG-RAN WG1 MEETING #86BIS RL-1608653, 14 October 2016 (2016-10-14), XP051159009 *
See also references of EP3537821A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112640376A (zh) * 2018-07-06 2021-04-09 株式会社Ntt都科摩 用户终端

Also Published As

Publication number Publication date
EP3537821A4 (en) 2020-07-22
US11317390B2 (en) 2022-04-26
CN110115091A (zh) 2019-08-09
EP3537821A1 (en) 2019-09-11
US20200267695A1 (en) 2020-08-20
JP7043413B2 (ja) 2022-03-29
CN110115091B (zh) 2023-02-28
JPWO2018084212A1 (ja) 2019-09-26

Similar Documents

Publication Publication Date Title
JP7269164B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018084137A1 (ja) ユーザ端末及び無線通信方法
WO2018203409A1 (ja) ユーザ端末及び無線通信方法
WO2018110618A1 (ja) ユーザ端末及び無線通信方法
WO2019030925A1 (ja) ユーザ端末及び無線通信方法
EP3691387B1 (en) User terminal and radio communication method
JP7305557B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7152477B2 (ja) 端末、無線通信方法及びシステム
JP7163320B2 (ja) 端末、無線通信方法、基地局およびシステム
WO2018128183A1 (ja) ユーザ端末及び無線通信方法
CN112514476A (zh) 用户终端以及无线通信方法基站
WO2019159292A1 (ja) ユーザ端末及び無線通信方法
US20200244390A1 (en) User terminal and radio communication method
WO2018207369A1 (ja) ユーザ端末及び無線通信方法
JP7324004B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018173237A1 (ja) ユーザ端末及び無線通信方法
WO2019021473A1 (ja) 送信装置、受信装置及び無線通信方法
WO2018229878A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JPWO2019021487A1 (ja) ユーザ端末及び無線通信方法
WO2019168051A1 (ja) ユーザ端末及び無線通信方法
US11564211B2 (en) User terminal and radio communication method
WO2019159296A1 (ja) ユーザ端末及び無線通信方法
WO2018062461A1 (ja) ユーザ端末及び無線通信方法
WO2018203401A1 (ja) ユーザ端末及び無線通信方法
WO2019215935A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018549066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866784

Country of ref document: EP

Effective date: 20190604