WO2019142330A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2019142330A1
WO2019142330A1 PCT/JP2018/001647 JP2018001647W WO2019142330A1 WO 2019142330 A1 WO2019142330 A1 WO 2019142330A1 JP 2018001647 W JP2018001647 W JP 2018001647W WO 2019142330 A1 WO2019142330 A1 WO 2019142330A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
pucch resource
harq
signal
ack
Prior art date
Application number
PCT/JP2018/001647
Other languages
English (en)
French (fr)
Inventor
一樹 武田
祐輝 松村
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to MX2020007648A priority Critical patent/MX2020007648A/es
Priority to JP2019565663A priority patent/JP7293134B2/ja
Priority to AU2018403639A priority patent/AU2018403639B2/en
Priority to CN201880088294.4A priority patent/CN111670593A/zh
Priority to PCT/JP2018/001647 priority patent/WO2019142330A1/ja
Priority to US16/962,965 priority patent/US11528696B2/en
Priority to EP18900629.9A priority patent/EP3742792A4/en
Priority to BR112020014608-0A priority patent/BR112020014608A2/pt
Publication of WO2019142330A1 publication Critical patent/WO2019142330A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( Also referred to as New RAT), LTE Rel. 14, 15 and so on.
  • downlink Downlink
  • uplink are performed using subframes of 1 ms (also referred to as Transmission Time Interval (TTI) or the like).
  • TTI Transmission Time Interval
  • UL Uplink
  • the subframe is a transmission time unit of one channel-coded data packet, and is a processing unit such as scheduling, link adaptation, and retransmission control (HARQ: Hybrid Automatic Repeat reQuest).
  • HARQ Hybrid Automatic Repeat reQuest
  • the user terminal can use an uplink control channel (for example, PUCCH: Physical Uplink Control Channel) or an uplink data channel (for example, PUSCH: Physical Uplink Shared Channel).
  • the uplink control information (UCI: Uplink Control Information) is transmitted using this.
  • the configuration (format) of the uplink control channel is called PUCCH format (PF: PUCCH Format) or the like.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • the user terminal can make the size of the delivery acknowledgment signal (also called HARQ-ACK, ACK / NACK or A / N) semi-static or dynamic. It is considered to determine (dynamic) to control feedback of the delivery confirmation signal.
  • the size of the HARQ-ACK is also referred to as codebook, codebook size or bit string size.
  • the UE fixedly determines the HARQ-ACK bit to be fed back based on the information notified by higher layer signaling. For example, the UE performs transmission in a codebook corresponding to HARQ-ACK for all DL transmissions (for example, PDSCH) that may be scheduled in a predetermined range. In this case, the UE feeds back as NACK for PDSCHs not scheduled in a predetermined range.
  • a codebook corresponding to HARQ-ACK for all DL transmissions (for example, PDSCH) that may be scheduled in a predetermined range.
  • the UE feeds back as NACK for PDSCHs not scheduled in a predetermined range.
  • the UE when determining the HARQ-ACK codebook regardless of the number of DL transmissions scheduled, there are always many even when the number of DL transmissions actually scheduled is small (for example, one or two).
  • the number of HARQ-ACK bits needs to be transmitted.
  • the UE needs to generate a large number of HARQ-ACKs regardless of the number of DL transmissions scheduled, which may increase the processing load on the UE and may reduce throughput and / or communication quality. .
  • the present disclosure aims to provide a user terminal and a wireless communication method capable of suppressing an increase in processing load of the UE even when the HARQ-ACK codebook is set in order and statically.
  • a transmitter configured to transmit a delivery confirmation signal for downlink transmission and a mode for determining a codebook of the delivery confirmation signal based on information notified by higher layer signaling are set.
  • a first PUCCH resource configured for a delivery confirmation signal to be transmitted based on the codebook based on the number of bits of the delivery confirmation signal or the number of bits of the delivery confirmation signal and the cell type in which the downlink transmission is performed.
  • a controller configured to control transmission of a delivery confirmation signal using one of a set and a second PUCCH resource set that is set for a delivery confirmation signal having a bit number equal to or less than a predetermined value.
  • FIG. 16 is a diagram illustrating another example of feedback control of HARQ-ACK in a mode in which a HARQ-ACK codebook is determined quasi-statically.
  • FIG. 16 is a diagram illustrating another example of feedback control of HARQ-ACK in a mode in which a HARQ-ACK codebook is determined quasi-statically.
  • FIG. 16 is a diagram illustrating another example of feedback control of HARQ-ACK in a mode in which a HARQ-ACK codebook is determined quasi-statically.
  • FIG. 16 is a diagram illustrating another example of feedback control of HARQ-ACK in a mode in which a HARQ-ACK codebook is determined quasi-statically.
  • the user terminal decides HARQ-ACK size (HARQ-ACK codebook) to be semi-static or dynamic and performs HARQ-ACK transmission using PUCCH. ing.
  • the base station notifies the UE of the determination method of the HARQ-ACK codebook by higher layer signaling.
  • the UE determines the number of bits and the like of HARQ-ACK based on the configuration set in higher layer signaling when the mode for semi-statically determining the HARQ-ACK codebook is set.
  • the higher-layer configuration configured in higher layer signaling may be, for example, the maximum number of DL transmissions (eg, PDSCH) scheduled over the range associated with the HARQ-ACK feedback timing.
  • the range associated with the HARQ-ACK feedback timing corresponds to at least one (eg, all) of space, time (time) and frequency (freq). Also, the range associated with the feedback timing of HARQ-ACK is also referred to as HARQ-ACK bundling window, HARQ-ACK feedback window, bundling window or feedback window.
  • the DL assignment index (DAI: Downlink Assignment Indicator (Index)
  • the number of HARQ-ACK bits and the like are determined based on the bits designated by.
  • PUCCH format used for UCI transmission less than a predetermined number of bits and PUCCH format used for UCI transmission larger than a predetermined number of bits as uplink control channel configuration (PUCCH format) used for HARQ-ACK transmission Is supported.
  • a PUCCH format used for UCI transmission of a predetermined number of bits or less (for example, up to 2 bits) may be referred to as PUCCH format 0 or PUCCH format 1.
  • a PUCCH format used for UCI transmission larger than a predetermined number of bits (for example, more than 2 bits) may be referred to as PUCCH format 3-5.
  • FIG. 1 is a diagram illustrating an example of feedback control of HARQ-ACK using a PUCCH.
  • the portions to which “DL” or “UL” are attached indicate predetermined resources (for example, time / frequency resources), and the duration of each portion is an arbitrary time unit (for example, one or more slots, mini, etc.) Corresponding to slots, symbols, or subframes). The same applies to the following examples.
  • the UE performs predetermined uplink control of A / N according to PDSCH (here, four DL resources) scheduled in a predetermined range (banding window) associated with feedback of HARQ-ACK. Transmit using channel resources (PUCCH resources).
  • the feedback timing of HARQ-ACK for each PDSCH may be specified to the UE by downlink control information (DL assignment) for scheduling each PDSCH.
  • the UE may use the number of bits considering HARQ-ACK for all PDSCHs that may be scheduled in a predetermined range (bundling window). Perform HARQ-ACK feedback. That is, the UE controls HARQ-ACK feedback based on a codebook size calculated in advance according to upper layer parameters regardless of the number of PDSCHs scheduled or the number of DCI scheduling PDSCHs.
  • the UE generates HARQ-ACK bits for all PDSCHs, assuming that all PDSCHs included in the bundling window are scheduled.
  • the UE generates HARQ-ACK bits for all PDSCHs, assuming that all PDSCHs included in the bundling window are scheduled.
  • FIG. 2 shows an example of quasi-static determination of the codebook of HARQ-ACK to be multiplexed on PUCCH.
  • FIG. 2 shows a case where two CCs (or cells) are set in the UE, and a bundling window corresponding to PUCCH transmission is configured in four time units (for example, four slots).
  • the bundling window may be configured based on the HARQ-ACK timing indicated by the downlink control information.
  • the number of CCs and the duration of the bundling window are not limited to this.
  • FIG. 2 shows a case where one spatial direction (for example, one transport block) is set in each CC, the present invention is not limited to this.
  • the base station notifies the information on the total number (here, eight) of DL data included in the bundling window to the UE as an upper layer parameter.
  • the UE determines the codebook size according to upper layer parameters regardless of the number of PDSCHs scheduled (four in FIG. 2) or the number of DCI scheduling PDSCHs.
  • the UE feeds back as NACK for PDSCHs not scheduled in the bundling window.
  • the processing load on the UE may increase, which may lead to a decrease in throughput and / or a deterioration in communication quality.
  • the present inventors pay attention to a predetermined PUCCH format (for example, PUCCH format 0/1) supported for transmission of HARQ-ACK having a predetermined number of bits or less, and the HARQ-ACK codebook is semi-statically set. Even in the case where the number of HARQ-ACK bits is less than a predetermined value, it was conceived to control HARQ-ACK transmission using a predetermined PUCCH format.
  • a predetermined PUCCH format for example, PUCCH format 0/1
  • PUCCH format 0/1 for example, PUCCH format 0/1
  • the HARQ-ACK codebook is semi-statically set. Even in the case where the number of HARQ-ACK bits is less than a predetermined value, it was conceived to control HARQ-ACK transmission using a predetermined PUCCH format.
  • HARQ-ACK is transmitted with the number of bits less than a predetermined value.
  • transmitting HARQ-ACK in a predetermined PUCCH format with a number of bits less than or equal to a predetermined value is also referred to as fallback PUCCH transmission.
  • the application of the fallback PUCCH transmission may be determined based on the number of bits of HARQ-ACK to be fed back (or the number of PDSCH transmissions that are the source of HARQ-ACK). Alternatively, in addition to the number of HARQ-ACK bits, determination is made based on the type of cell and / or transmission conditions (eg, search space type of DCI for scheduling PDSCH, etc.) in which DL data that is the source of HARQ-ACK is transmitted. You may
  • a PUCCH resource set to be used for HARQ-ACK transmission of the size of the codebook is set.
  • the PUCCH resource set includes a plurality of PUCCH resources (also referred to as PUCCH resource candidates), and transmits a PUCCH using a predetermined PUCCH resource selected from the plurality of PUCCH resources.
  • PUCCH resources included in the PUCCH resource set may be configured in the UE by higher layer signaling. Also, selection of a predetermined PUCCH resource may be performed using a predetermined field included in DCI (or another parameter such as predetermined field DCI + RRC or the like included in DCI) or the like.
  • the present inventors have proposed that, in a case where the fallback PUCCH is supported, the HARQ- that has a predetermined value or less, separately from the PUCCH resource set used for HARQ-ACK transmission of the codebook size set quasi-statically. It was conceived to separately set a PUCCH resource set for ACK transmission.
  • PUCCH resource set (or PUCCH resource) for HARQ-ACK transmission below a predetermined value
  • UE-specific upper layer signaling UE-specific RRC signaling
  • UE common upper layer signaling UE-common RRC signaling
  • HARQ-ACK may be read in UCI, read in other types of UCI such as scheduling request (SR: Scheduling Request), channel state information (CSI: Channel State Information), etc. It is also good. Also, “two bits” may be read as "a predetermined number of bits”. In the present specification, “data”, “data channel (for example, PUSCH)”, “resource of data channel”, and the like may be read mutually.
  • HARQ-ACK transmission will be described in a case where fallback PUCCH transmission is supported in a configuration in which the HARQ-ACK codebook is set to be semistatic.
  • the applicable mode is not limited to this.
  • the base station When setting the mode in which the HARQ-ACK codebook is determined to be statically static in the UE, the base station also sets a PUCCH resource set (first PUCCH resource set) corresponding to the HARQ-ACK codebook.
  • the base station may separately perform HARQ-A below the predetermined value separately from the first PUCCH resource set.
  • a PUCCH resource set (second PUCCH resource set) for ACK transmission is separately set.
  • the bundling window may be the number of PDCCHs or PDSCHs that may be included in a space, time, or frequency section derived from quasi-static parameters such as RRC signaling, or may be quasi-static such as RRC signaling. In addition to the parameters, it may be the number of PDCCHs or the number of PDSCHs that can be included in the space, time, and frequency intervals derived based on dynamic signaling such as DCI.
  • the UE transmits a HARQ-ACK having a predetermined number of bits (eg, 2 bits) or less using a second PUCCH resource set using a predetermined PUCCH format (see FIG. 3).
  • FIG. 3 illustrates a case where two CCs (or cells) are configured in the UE, and a bundling window corresponding to PUCCH transmission is configured in four time units (for example, four slots).
  • the number of CCs and the duration of the bundling window are not limited to this.
  • one space direction for example, a transport block is 1
  • the UE controls transmission of HARQ-ACK using a predetermined PUCCH format and a second PUCCH resource set.
  • a predetermined PUCCH format for example, PUCCH format 0/1) or the like used for transmission of a predetermined number of bits or less may be used.
  • the UE controls transmission of HARQ-ACK by selecting a predetermined PUCCH resource from among a plurality of PUCCH resource candidates included in the second PUCCH resource set.
  • the selection of a predetermined PUCCH resource may be performed based on a predetermined field included in DCI (or a predetermined field included in DCI + another parameter such as RRC).
  • the second PUCCH resource set may be configured in the UE using at least one of UE-specific upper layer signaling (UE-specific RRC signaling) and / or UE common upper layer signaling (UE-common RRC signaling). .
  • UE-specific RRC signaling UE-specific RRC signaling
  • UE common RRC signaling UE common RRC signaling
  • the UE applies the second PUCCH resource set configured in the UE-specific upper layer signaling. That is, even when the second PUCCH resource set is configured in the UE-common upper layer signaling, the second PUCCH resource set configured in the UE-specific upper layer signaling may be preferentially applied.
  • the UE may apply the second PUCCH resource set configured by UE common upper layer signaling when the second PUCCH resource set is not configured by UE-specific upper layer signaling.
  • the UE common upper layer signaling may be, for example, upper layer signaling for notifying system information.
  • the UE determines the second PUCCH resource set based on system information notified by higher layer signaling.
  • the system information notified by upper layer signaling may be minimum system information (RMSI: Remaining Minimum System Information), may be SIB1 and / or SIB2, or other system information (OSI: It may be Other System Information).
  • the system information includes information on a PUCCH resource set that uses PUCCH format 0/1.
  • the PUCCH resource set included in the system information is a PUCCH resource set to be used for HARQ-ACK (HARQ-ACK before RRC connection setup (RRC connection setup)) for message 4 (Msg. 4) in the random access procedure. It is also good. That is, the UE may apply, as the second PUCCH resource set, the PUCCH resource set used for HARQ-ACK before RRC connection setup.
  • the second PUCCH resource set is configured in UE-specific upper layer signaling and the second PUCCH resource set is configured in UE-common upper layer signaling.
  • the method of selecting a PUCCH resource to be actually transmitted may be different. That is, the UE may perform the second operation in the case where the second PUCCH resource set is configured in the UE-specific upper layer signaling and the case where the second PUCCH resource set is configured in the UE common upper layer signaling.
  • Different rules may, for example, select PUCCH resources based on predetermined fields included in DCI in one case while selecting PUCCH resources without using fields included in DCI in the other case. be able to.
  • Different rules or, in one case, the HARQ-ACK transmitting on the PUCCH chooses based on the index of the resource element (CCE) of the PDCCH that the corresponding PDSCH is scheduled to the corresponding CSCH in the other case
  • the PUCCH resource may be selected without using the index.
  • the PUCCH resource set configured in UE common upper layer signaling as the second PUCCH resource set, the PUCCH resource set is not configured in UE specific upper layer signaling Even in this case, HARQ-ACK transmission with a predetermined number of bits or less can be performed. Thereby, since fallback PUCCH transmission can be performed appropriately, the increase in the processing load of UE can be suppressed.
  • the number of bits of HARQ-ACK (or the number of PDSCH to receive or the number of PDCCHs requiring transmission of HARQ-ACK), the type of CC (or cell) to which PDSCH is transmitted, and
  • the case of controlling the application of fallback PUCCH transmission based on at least one of PDSCH / DCI transmission conditions will be described.
  • the transmission condition of PDSCH and / or DCI indicates, for example, a search space type or the like applied to transmission of DCI for scheduling PDSCH.
  • An application example of fallback PUCCH transmission will be described below.
  • Application Example 1 controls the application of fallback PUCCH transmission based on the number of PDSCHs (number of bits of HARQ-ACK) in the bundling window.
  • the UE applies fallback PUCCH transmission when one PDSCH is transmitted in only one serving cell (or when feeding back one HARQ-ACK for the PDSCH) (see FIG. 3).
  • the UE transmits a HARQ-ACK by selecting a predetermined PUCCH resource from the second PUCCH resource set configured for HARQ-ACK transmission of a predetermined number of bits (for example, 2 bits or less).
  • the UE may determine a predetermined PUCCH resource from the second PUCCH resource set based on information included in DCI scheduling PDSCH. For example, the UE may determine the predetermined PUCCH resource based on at least one of an ARI field (ARI field) included in the DCI and a HARQ-ACK timing indicator field.
  • the ARI field may be a TPC command field.
  • the UE determines a predetermined PUCCH resource using other parameters (for example, implicit information) in addition to the information (for example, predetermined fields) included in the DCI. It is also good.
  • Other parameters include a CCE index corresponding to DCI for scheduling PDSCH, a control resource set index used for DCI transmission, and the like.
  • FIG. 3 shows the case where the fallback PUCCH transmission is applied when the number of PDSCHs (the number of HARQ-ACK bits) in the bundling window is one, the present invention is not limited to this.
  • fallback PUCCH transmission may be applied when the number of PDSCHs (number of HARQ-ACK bits) in the bundling window is 2 or less.
  • the UE may apply fallback PUCCH transmission when one or two PDSCHs are transmitted in one or two serving cells (or when feeding back one or two HARQ-ACKs for the PDSCH). (Refer FIG. 4, FIG. 5).
  • FIG. 4 illustrates a case where two PDSCHs (PDSCHs transmitted in different slots) are transmitted in one serving cell (here, CC # 1) in the bundling window.
  • FIG. 5 illustrates a case where one PDSCH is transmitted in each of two serving cells (here, CC # 1 and CC # 2) in the bundling window.
  • the UE applies fallback PUCCH transmission to feed back HARQ-ACK for two PDSCHs for the bundling window.
  • the UE selects a predetermined PUCCH resource from the second PUCCH resource set and transmits HARQ-ACKs for two PDSCHs.
  • the UE determines a predetermined PUCCH resource from the second PUCCH resource set based on the information included in the DCI that schedules PDSCH. Also, when DCI scheduling two PDSCHs are respectively transmitted, the UE is information included in one DCI (for example, DCI transmitted by CC with a small index and / or DCI transmitted earlier in the time direction) You may use Alternatively, information may be included to specify the same PUCCH resource for each DCI.
  • the fallback PUCCH transmission can be performed regardless of the CC type to which the PDSCH is transmitted by controlling the presence or absence of the fallback PUCCH transmission based on the PDSCH number (the number of bits of HARQ-ACK) in the bundling window. Applicable
  • Application Example 2 In the application example 2, in addition to the number of PDSCHs (number of bits of HARQ-ACK) in the bundling window, the application of fallback PUCCH transmission is controlled based on the type of CC (or cell).
  • the UE applies fallback PUCCH transmission when one PDSCH is transmitted in only one specific cell (or when feeding back HARQ-ACK for the PDSCH) (see FIG. 3).
  • One specific cell (CC # 1 in FIG. 3) may be, for example, a primary cell (or PSCell, PUCCH SCell). Fallback control can be made more robust by restricting the application of fallback PUCCH transmission to PDSCH transmission of the primary cell. This is because, among the cells connected by the UE, the primary cell is an important cell for connection security.
  • the method of selecting a predetermined PUCCH resource from the second PUCCH resource set may be performed in the same manner as in the first application example.
  • FIG. 3 shows a case where fallback PUCCH transmission is applied when the number of PDSCHs (or the number of HARQ-ACK bits for the PDSCH) transmitted in one specific cell in the bundling window is one. It is not restricted to this. For example, fallback PUCCH transmission may be applied when the number of PDSCHs transmitted in one specific cell is 2 or less (see FIG. 4).
  • FIG. 4 shows a case where two PDSCHs are transmitted in one specific cell (here, CC # 1) in the bundling window.
  • the UE applies fallback PUCCH transmission to feed back only the HARQ-ACK for the two PDSCHs transmitted in a particular cell.
  • the UE transmits HARQ-ACKs for two PDSCHs using a predetermined PUCCH resource selected from the second PUCCH resource set.
  • the application status of fallback PUCCH transmission is determined based on the PDSCH and / or DCI transmission conditions. Control.
  • UE applies fallback PUCCH transmission, when one PDSCH scheduled by DCI (or PDCCH) using a specific search space type is transmitted in only one specific cell.
  • One specific cell (CC # 1 in FIG. 3) may be, for example, a primary cell (or PSCell, PUCCH SCell).
  • the specific search space may be a common search space (CSS).
  • the fallback control can be performed more appropriately.
  • the radio base station may schedule the PDSCH using the common search space only when it is desired to fall back the PUCCH of the UE.
  • the method of selecting a predetermined PUCCH resource from the second PUCCH resource set may be performed in the same manner as in the first application example.
  • FIG. 3 shows a case where fallback PUCCH transmission is applied when one PDSCH scheduled by DCI (or PDCCH) using a specific search space type is transmitted in only one specific cell.
  • fallback PUCCH transmission may be applied when the number of PDSCHs scheduled by DCI (or PDCCH) using a specific search space type is 2 or less (see FIG. 4).
  • FIG. 4 illustrates a case where two PDSCHs scheduled for PDCCH transmitted in a common search space are transmitted in one specific cell (here, CC # 1) in a bundling window.
  • the UE applies fallback PUCCH transmission to feed back only the HARQ-ACK for the two PDSCHs transmitted in a particular cell.
  • the UE transmits HARQ-ACKs for two PDSCHs using a predetermined PUCCH resource selected from the second PUCCH resource set.
  • the fallback control can be more appropriately performed by controlling the application status of the fallback PUCCH transmission in consideration of the search space type used for PDCCH (or DCI) transmission that schedules PDSCH.
  • the radio base station may schedule the PDSCH using the common search space only when it is desired to fall back the PUCCH of the UE.
  • fallback PUCCH transmission may be controlled based on the type of control resource set (CORESET) or the like.
  • CORESET control resource set
  • wireless communication system Wireless communication system
  • communication is performed using any one or a combination of the wireless communication methods according to the above embodiments of the present invention.
  • FIG. 6 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • the radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do.
  • CA carrier aggregation
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. It may be called (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology) or the like, or may be called a system for realizing these.
  • the radio communication system 1 includes a radio base station 11 forming a macrocell C1 with a relatively wide coverage, and radio base stations 12 (12a to 12c) disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. And. Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 simultaneously uses the macro cell C1 and the small cell C2 by CA or DC. Also, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, 5 or less CCs, 6 or more CCs).
  • CCs cells
  • Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth carrier (also called an existing carrier, legacy carrier, etc.).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • a wired connection for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.
  • a wireless connection for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.
  • CPRI Common Public Radio Interface
  • X2 interface X2 interface
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • orthogonal frequency division multiple access (OFDMA) is applied to the downlink as a radio access scheme, and single carrier frequency division multiple access (SC-FDMA: single carrier) to the uplink.
  • SC-FDMA single carrier frequency division multiple access
  • Frequency Division Multiple Access and / or OFDMA is applied.
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication.
  • SC-FDMA is a single carrier transmission scheme in which system bandwidth is divided into bands having one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between the terminals. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, etc. are used as downlink channels. Used. User data, upper layer control information, SIB (System Information Block) and the like are transmitted by the PDSCH. Also, a MIB (Master Information Block) is transmitted by the PBCH.
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • the downlink L1 / L2 control channel includes PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel) and the like.
  • Downlink control information (DCI) including scheduling information of PDSCH and / or PUSCH is transmitted by PDCCH.
  • scheduling information may be notified by DCI.
  • DCI scheduling DL data reception may be referred to as DL assignment
  • DCI scheduling UL data transmission may be referred to as UL grant.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • Delivery confirmation information (for example, also referred to as retransmission control information, HARQ-ACK, or ACK / NACK) of HARQ (Hybrid Automatic Repeat reQuest) for the PUSCH is transmitted by the PHICH.
  • the EPDCCH is frequency division multiplexed with a PDSCH (downlink shared data channel), and is used for transmission such as DCI, similarly to the PDCCH.
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • User data, upper layer control information, etc. are transmitted by PUSCH.
  • downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR: Scheduling Request), etc. are transmitted by the PUCCH.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a cell-specific reference signal (CRS: Cell-specific Reference Signal), a channel state information reference signal (CSI-RS: Channel State Information-Reference Signal), a demodulation reference signal (DMRS: DeModulation Reference Signal, positioning reference signal (PRS), etc.
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • DMRS DeModulation Reference Signal
  • PRS positioning reference signal
  • SRS Sounding Reference Signal
  • DMRS demodulation reference signal
  • PRS positioning reference signal
  • DMRS Demodulation reference signal
  • PRS positioning reference signal
  • FIG. 7 is a diagram showing an example of the entire configuration of a radio base station according to an embodiment of the present invention.
  • the radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data.
  • Control Transmission processing such as retransmission control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc. It is transferred to 103. Further, transmission processing such as channel coding and inverse fast Fourier transform is also performed on the downlink control signal and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
  • the transmission / reception unit 103 can be configured of a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting and receiving unit 103 receives the upstream signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on user data included in the input upstream signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of the communication channel, state management of the radio base station 10, management of radio resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the other wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). May be
  • an inter-base station interface for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface.
  • the transmission / reception unit 103 notifies the UE, using upper layer signaling or the like, as to which of a mode of determining the codebook of HARQ-ACK semi-statically and a mode of determining dynamically. Also, the transmitting / receiving unit 103 receives HARQ-ACK (HARQ-ACK based on a codebook and HARQ-ACK to which fallback PUCCH transmission is applied) transmitted from the UE.
  • HARQ-ACK HARQ-ACK based on a codebook and HARQ-ACK to which fallback PUCCH transmission is applied
  • the transmitting / receiving unit 103 performs upper layer signaling on PUCCH resource sets corresponding to HARQ-ACKs transmitted based on the HARQ-ACK codebook and information on PUCCH resource sets used for HARQ-ACK transmissions having a predetermined number of bits or less. Etc. to notify the UE.
  • the transmission / reception unit 103 may transmit, as downlink control information or the like, information specifying a predetermined PUCCH resource from a plurality of PUCCH resource candidates included in the PUCCH resource set.
  • FIG. 8 is a diagram showing an example of a functional configuration of a wireless base station according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and the wireless base station 10 also has another functional block required for wireless communication.
  • the baseband signal processing unit 104 at least includes a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the wireless base station 10, and some or all of the configurations may not be included in the baseband signal processing unit 104.
  • a control unit (scheduler) 301 performs control of the entire radio base station 10.
  • the control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the control unit 301 controls, for example, generation of a signal by the transmission signal generation unit 302, assignment of a signal by the mapping unit 303, and the like. Further, the control unit 301 controls reception processing of a signal by the reception signal processing unit 304, measurement of a signal by the measurement unit 305, and the like.
  • the control unit 301 schedules (for example, resources) system information, downlink data signals (for example, signals transmitted on PDSCH), downlink control signals (for example, signals transmitted on PDCCH and / or EPDCCH, delivery confirmation information, etc.) Control allocation). Further, the control unit 301 controls generation of the downlink control signal, the downlink data signal, and the like based on the result of determining whether the retransmission control for the uplink data signal is necessary or not. The control unit 301 also controls scheduling of synchronization signals (for example, PSS (Primary Synchronization Signal) / SSS (Secondary Synchronization Signal), downlink reference signals (for example, CRS, CSI-RS, DMRS) and the like.
  • PSS Primary Synchronization Signal
  • SSS Synchronization Signal
  • control unit 301 performs the first PUCCH resource set corresponding to the HARQ-ACK transmitted based on the HARQ-ACK codebook, and the second PUCCH resource set used for the HARQ-ACK transmission with a predetermined number of bits or less.
  • Control settings For example, the control unit 301 sets, as the second PUCCH resource set, at least one of a PUCCH resource set specifically set to UE by higher layer signaling and a PUCCH resource set commonly set to UE by higher layer signaling. Control.
  • the transmission signal generation unit 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal or the like) based on an instruction from the control unit 301, and outputs the downlink signal to the mapping unit 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates, for example, DL assignment for notifying downlink data allocation information and / or UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301.
  • DL assignment and UL grant are both DCI and follow DCI format.
  • coding processing and modulation processing are performed on the downlink data signal according to a coding rate, a modulation method, and the like determined based on channel state information (CSI: Channel State Information) and the like from each user terminal 20.
  • CSI Channel State Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the mapped downlink signal to transmission / reception section 103.
  • the mapping unit 303 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 103.
  • the reception signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the received signal processing unit 304 can be configured from a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 outputs the information decoded by the reception process to the control unit 301. For example, when the PUCCH including the HARQ-ACK is received, the HARQ-ACK is output to the control unit 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measuring unit 305 can be configured from a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 305 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, and the like based on the received signal.
  • the measurement unit 305 may use received power (for example, RSRP (Reference Signal Received Power)), received quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio)), signal strength (for example, RSSI (for example). Received Signal Strength Indicator), propagation path information (eg, CSI), etc. may be measured.
  • the measurement result may be output to the control unit 301.
  • FIG. 9 is a diagram showing an example of the entire configuration of a user terminal according to an embodiment of the present invention.
  • the user terminal 20 includes a plurality of transmitting and receiving antennas 201, an amplifier unit 202, a transmitting and receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • each of the transmitting and receiving antenna 201, the amplifier unit 202, and the transmitting and receiving unit 203 may be configured to include one or more.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier unit 202.
  • the transmitting and receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
  • the transmission / reception unit 203 can be configured of a transmitter / receiver, a transmission / reception circuit or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs reception processing of FFT processing, error correction decoding, retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing on a layer higher than the physical layer and the MAC layer. Moreover, broadcast information may also be transferred to the application unit 205 among downlink data.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission processing of retransmission control (for example, transmission processing of HARQ), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, etc. It is transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
  • the transmitting / receiving unit 203 receives, via upper layer signaling or the like, the UE which of the mode in which the codebook of HARQ-ACK is determined semistatically and the mode in which the codebook is dynamically determined is used. Also, the transmission / reception unit 203 transmits HARQ-ACK (HARQ-ACK based on a codebook and HARQ-ACK to which fallback PUCCH transmission is applied) transmitted from the UE.
  • HARQ-ACK HARQ-ACK based on a codebook and HARQ-ACK to which fallback PUCCH transmission is applied
  • the transmitting / receiving unit 103 receives PUCCH resource sets corresponding to HARQ-ACKs transmitted based on the HARQ-ACK codebook, and information on PUCCH resource sets used for HARQ-ACK transmission with a predetermined number of bits or less. Also, the transmission / reception unit 103 may receive information specifying a predetermined PUCCH resource from a plurality of PUCCH resource candidates included in the PUCCH resource set.
  • FIG. 10 is a diagram showing an example of a functional configuration of a user terminal according to an embodiment of the present invention.
  • the functional block of the characteristic part in this embodiment is mainly shown, and it is assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 at least includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations may be included in the user terminal 20, and some or all of the configurations may not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402, assignment of signals by the mapping unit 403, and the like. Further, the control unit 401 controls reception processing of a signal by the reception signal processing unit 404, measurement of a signal by the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the radio base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls the generation of the uplink control signal and / or the uplink data signal based on the result of determining the necessity of the retransmission control for the downlink control signal and / or the downlink data signal.
  • the control unit 401 sets the number of bits of the delivery confirmation signal or the number of bits of the delivery confirmation signal.
  • the first PUCCH resource set to be set for the delivery confirmation signal to be sent based on the codebook, and the delivery confirmation signal for the number of bits less than or equal to a predetermined value is set based on the cell type in which the downlink transmission is performed. Control transmission of the acknowledgment signal using one of the second PUCCH resource sets.
  • the control unit 401 uses, as the second PUCCH resource set, one of a PUCCH resource set specifically set to UE in upper layer signaling and a PUCCH resource set commonly set to UE in upper layer signaling. Control transmission of delivery confirmation signal.
  • the control unit 401 may perform control to use the PUCCH resource set commonly configured for the UE when the PUCCH resource set unique to the UE is not configured.
  • the control unit 401 may determine the PUCCH resource set commonly set for the UE based on the system information.
  • control section 401 uses the second PUCCH resource set to deliver for downlink transmission. Control may be performed to transmit a confirmation signal.
  • the transmission signal generation unit 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal or the like) based on an instruction from the control unit 401, and outputs the uplink signal to the mapping unit 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 generates, for example, an uplink control signal related to delivery confirmation information, channel state information (CSI), and the like based on an instruction from the control unit 401. Further, the transmission signal generation unit 402 generates an uplink data signal based on an instruction from the control unit 401. For example, when the downlink control signal notified from the radio base station 10 includes a UL grant, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the uplink signal to transmission / reception section 203.
  • the mapping unit 403 may be configured of a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, and the like) on the reception signal input from the transmission / reception unit 203.
  • the reception signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, or the like) transmitted from the radio base station 10.
  • the received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
  • the reception signal processing unit 404 outputs the information decoded by the reception process to the control unit 401.
  • the received signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after reception processing to the measurement unit 405.
  • the measurement unit 405 performs measurement on the received signal.
  • the measuring unit 405 can be configured of a measuring device, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR), signal strength (for example, RSSI), channel information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 401.
  • each functional block is realized using one physically and / or logically coupled device, or directly and / or two or more physically and / or logically separated devices. Or it may connect indirectly (for example, using a wire communication and / or radio), and it may be realized using a plurality of these devices.
  • a wireless base station, a user terminal, and the like in an embodiment of the present invention may function as a computer that performs the processing of the wireless communication method of the present invention.
  • FIG. 11 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is calculated by causing the processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication device 1004 is performed. This is realized by controlling communication, and controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, or may be realized similarly for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may be configured by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by The storage 1003 may be called an auxiliary storage device.
  • a computer readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be configured by
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • Hardware may be included, and part or all of each functional block may be realized using the hardware.
  • processor 1001 may be implemented using at least one of these hardware.
  • the channels and / or symbols may be signaling.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • the radio frame may be configured by one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
  • the slot may be configured by one or more symbols in the time domain (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.).
  • the slot may be a time unit based on the neurology.
  • the slot may include a plurality of minislots. Each minislot may be configured by one or more symbols in the time domain. Minislots may also be referred to as subslots.
  • a radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal.
  • subframes, slots, minislots and symbols other names corresponding to each may be used.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot or one minislot may be referred to as a TTI.
  • TTI transmission time interval
  • the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the radio base station performs scheduling to assign radio resources (frequency bandwidth usable in each user terminal, transmission power, etc.) to each user terminal in TTI units.
  • radio resources frequency bandwidth usable in each user terminal, transmission power, etc.
  • the TTI may be a transmission time unit of a channel encoded data packet (transport block), a code block, and / or a codeword, or may be a processing unit such as scheduling and link adaptation. Note that, when a TTI is given, the time interval (eg, the number of symbols) in which the transport block, the code block, and / or the codeword is actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit of scheduling.
  • the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, or the like.
  • a long TTI for example, a normal TTI, a subframe, etc.
  • a short TTI eg, a shortened TTI, etc.
  • a resource block is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be respectively configured by one or more resource blocks. Note that one or more RBs may be a physical resource block (PRB: Physical RB), a subcarrier group (SCG: Sub-Carrier Group), a resource element group (REG: Resource Element Group), a PRB pair, an RB pair, etc. It may be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • a resource block may be configured by one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be one subcarrier and one symbol radio resource region.
  • the above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB
  • the number of subcarriers, as well as the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be variously changed.
  • the information, parameters, etc. described in the present specification may be expressed using absolute values, may be expressed using relative values from predetermined values, or other corresponding information. May be represented.
  • radio resources may be indicated by a predetermined index.
  • the names used for parameters and the like in the present specification are not limited names in any respect.
  • various channels PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.
  • information elements can be identified by any suitable names, various assignments are made to these various channels and information elements.
  • the name is not limited in any way.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed using a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
  • notification of information is not limited to the aspects / embodiments described herein, and may be performed using other methods.
  • notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to explicit notification, but implicitly (for example, by not notifying the predetermined information or other information Notification may be performed).
  • the determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” as used herein are used interchangeably.
  • base station Base Station
  • radio base station eNB
  • gNB gigad Generation
  • cell cell
  • cell group cell group
  • carrier carrier
  • carrier may be used interchangeably.
  • a base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
  • a base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication service can also be provided by Remote Radio Head).
  • RRH Communication service can also be provided by Remote Radio Head.
  • the terms "cell” or “sector” refer to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • a base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
  • Node station Node station
  • NodeB NodeB
  • eNodeB eNodeB
  • access point access point
  • transmission point reception point
  • femtocell small cell, and so on.
  • the mobile station may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, by those skilled in the art. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client or some other suitable term.
  • the radio base station in the present specification may be replaced with a user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the above-described radio base station 10 has.
  • the wordings such as "up” and “down” may be read as "side".
  • the upstream channel may be read as a side channel.
  • a user terminal herein may be read at a radio base station.
  • the radio base station 10 may have a function that the above-described user terminal 20 has.
  • the operation supposed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark) And / or systems based on other suitable wireless communication methods and / or extended next generation systems based on these.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • any reference to an element using the designation "first”, “second” and the like as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
  • determining may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as “determining”. Also, “determination” may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as “determining” (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, “determination” may be considered as “determining” some action.
  • connection refers to any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements “connected” or “connected” to each other.
  • the coupling or connection between elements may be physical, logical or a combination thereof. For example, “connection” may be read as "access”.
  • the radio frequency domain It can be considered as “connected” or “coupled” with one another using electromagnetic energy or the like having wavelengths in the microwave region and / or the light (both visible and invisible) regions.
  • a and B are different may mean “A and B are different from each other”.
  • the terms “leave”, “combined” and the like may be interpreted similarly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

HARQ-ACKコードブックが順静的に設定される場合であってもUEの処理負荷の増大を抑制するために、本開示のユーザ端末の一態様は、下り送信に対する送達確認信号を送信する送信部と、上位レイヤシグナリングで通知される情報に基づいて送達確認信号のコードブックを決定するモードが設定される場合、送達確認信号のビット数、又は、送達確認信号のビット数及び前記下り送信が行われるセル種別に基づいて、前記コードブックに基づいて送信される送達確認信号用に設定される第1のPUCCHリソースセット、及び所定値以下のビット数の送達確認信号用に設定される第2のPUCCHリソースセットの一方を利用して送達確認信号の送信を制御する制御部と、を有する。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT)、LTE Rel.14、15~、などともいう)も検討されている。
 既存のLTEシステム(例えば、LTE Rel.8-13)では、1msのサブフレーム(伝送時間間隔(TTI:Transmission Time Interval)等ともいう)を用いて、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該サブフレームは、チャネル符号化された1データパケットの送信時間単位であり、スケジューリング、リンクアダプテーション、再送制御(HARQ:Hybrid Automatic Repeat reQuest)などの処理単位となる。
 また、既存のLTEシステム(例えば、LTE Rel.8-13)では、ユーザ端末は、上り制御チャネル(例えば、PUCCH:Physical Uplink Control Channel)又は上りデータチャネル(例えば、PUSCH:Physical Uplink Shared Channel)を用いて、上りリンク制御情報(UCI:Uplink Control Information)を送信する。当該上り制御チャネルの構成(フォーマット)は、PUCCHフォーマット(PF:PUCCH Format)等と呼ばれる。
 将来の無線通信システム(以下、単にNRとも記す)では、ユーザ端末が送達確認信号(HARQ-ACK、ACK/NACK又はA/Nとも呼ぶ)のサイズを準静的(semi-static)又は動的(dynamic)に決定して送達確認信号のフィードバックを制御することが検討されている。HARQ-ACKのサイズは、コードブック、コードブックサイズ又はビット列サイズとも呼ばれる。
 HARQ-ACKコードブックを順静的に決定するモードが設定された場合、UEは、上位レイヤシグナリングで通知される情報に基づいてフィードバックするHARQ-ACKビットを固定的に決定する。例えば、UEは、所定範囲でスケジューリングされる可能性がある全てのDL送信(例えば、PDSCH)に対するHARQ-ACKに相当するコードブックで送信を行う。この場合、UEは、所定範囲においてスケジューリングされないPDSCHに対してはNACKとしてフィードバックする。
 このように、スケジューリングされるDL送信数に関わらずHARQ-ACKコードブックを決定する場合、実際にスケジューリングされるDL送信の数が少ない場合(例えば、1又は2つ)であっても、常に多くのHARQ-ACKビット数を送信する必要がある。これにより、スケジューリングされるDL送信数に関わらずUEは多くのHARQ-ACKを生成する必要があるため、UEの処理負荷が増加するし、スループットの低下及び/又は通信品質が劣化するおそれがある。
 そこで、本開示は、HARQ-ACKコードブックが順静的に設定される場合であってもUEの処理負荷の増大を抑制できるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本発明のユーザ端末の一態様は、下り送信に対する送達確認信号を送信する送信部と、上位レイヤシグナリングで通知される情報に基づいて送達確認信号のコードブックを決定するモードが設定される場合、送達確認信号のビット数、又は、送達確認信号のビット数及び前記下り送信が行われるセル種別に基づいて、前記コードブックに基づいて送信される送達確認信号用に設定される第1のPUCCHリソースセット、及び所定値以下のビット数の送達確認信号用に設定される第2のPUCCHリソースセットの一方を利用して送達確認信号の送信を制御する制御部と、を有することを特徴とする。
 本開示の一態様によれば、HARQ-ACKコードブックが順静的に設定される場合であってもUEの処理負荷の増大を抑制できる。
HARQ-ACKのフィードバック制御の一例を示す図である。 HARQ-ACKコードブックを準静的に決定するモードにおけるHARQ-ACKのフィードバック制御の一例を示す図である。 HARQ-ACKコードブックを準静的に決定するモードにおけるHARQ-ACKのフィードバック制御の他の例を示す図である。 HARQ-ACKコードブックを準静的に決定するモードにおけるHARQ-ACKのフィードバック制御の他の例を示す図である。 HARQ-ACKコードブックを準静的に決定するモードにおけるHARQ-ACKのフィードバック制御の他の例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 NRでは、ユーザ端末がHARQ-ACKサイズ(HARQ-ACKコードブック)を準静的(semi-static)又は動的(dynamic)に決定してPUCCHを利用したHARQ-ACK送信を行うことが検討されている。例えば、基地局がUEに対して、HARQ-ACKコードブックの決定方法を上位レイヤシグナリングで通知する。
 UEは、HARQ-ACKコードブックを準静的に決定するモードが設定された場合、上位レイヤシグナリングで設定される構成に基づいてHARQ-ACKのビット数等を決定する。上位レイヤシグナリングで設定される構成(higher-layer configuration)は、例えば、HARQ-ACKのフィードバックタイミングに関連付けられた範囲にわたってスケジューリングされるDL送信(例えば、PDSCH)の最大数であってもよい。
 HARQ-ACKのフィードバックタイミングに関連付けられた範囲は、空間(space)、時間(time)及び周波数(freq)の少なくとも一つ(例えば、全部)に相当する。また、HARQ-ACKのフィードバックタイミングに関連付けられた範囲は、HARQ-ACKバンドリングウィンドウ、HARQ-ACKフィードバックウィンドウ、バンドリングウィンドウ又はフィードバックウィンドウとも呼ばれる。
 一方で、UEは、HARQ-ACKコードブックを動的に決定するモードが設定された場合、下り制御情報(例えば、DL assignment)に含まれるDL割当てインデックス(DAI:Downlink Assignment Indicator(Index))フィールドで指定されるビットに基づいてHARQ-ACKビット数等を決定する。
 また、NRでは、HARQ-ACKの送信に利用する上り制御チャネル構成(PUCCHフォーマット)として、所定ビット数以下のUCI送信に利用するPUCCHフォーマットと、所定ビット数より大きいUCIの送信に利用するPUCCHフォーマットがサポートされる。所定ビット数以下(例えば、2ビット以下(up to 2bits))のUCI送信に利用するPUCCHフォーマットは、PUCCHフォーマット0又はPUCCHフォーマット1と呼ばれてもよい。所定ビット数より大きい(例えば、2ビットより大きい(more than 2bits))UCIの送信に利用するPUCCHフォーマットは、PUCCHフォーマット3-5と呼ばれてもよい。
 図1は、PUCCHを利用したHARQ-ACKのフィードバック制御の一例を示す図である。本例において「DL」又は「UL」が付された部分は所定のリソース(例えば、時間/周波数リソース)を示し、各部分の期間は任意の時間単位(例えば、1つ又は複数のスロット、ミニスロット、シンボル、又はサブフレームなど)に対応する。以降の例でも同様である。
 図1の場合、UEは、HARQ-ACKのフィードバックに関連づけられた所定範囲(バンドリングウィンドウ)においてスケジューリングされるPDSCH(ここでは、4つのDLリソース)に応じたA/Nを、所定の上り制御チャネルのリソース(PUCCHリソース)を用いて送信する。各PDSCHに対するHARQ-ACKのフィードバックタイミングは、各PDSCHをスケジューリングする下り制御情報(DLアサイメント)でUEに指定する構成としてもよい。
 HARQ-ACKコードブックを順静的に決定するモードが設定された場合、UEは、所定範囲(バンドリングウィンドウ)でスケジューリングされる可能性がある全てのPDSCHに対するHARQ-ACKを考慮したビット数でHARQ-ACKのフィードバックを行う。つまり、UEは、スケジューリングされるPDSCHの数又はPDSCHをスケジューリングするDCIの数に関わらず、上位レイヤパラメータに従ってあらかじめ計算されたコードブックサイズに基づいてHARQ-ACKフィードバックを制御する。
 具体的には、UEは、バンドリングウィンドウに含まれるPDSCHが全てスケジューリングされたと仮定し、すべてのPDSCHに対するHARQ-ACKビットを生成する。これにより、スケジューリングされるPDSCHの数又はPDSCHをスケジューリングするDCIの数に寄らずHARQ-ACKコードブックを準静的に設定することができる。
 図2に、PUCCHに多重するHARQ-ACKのコードブックを準静的に決定する場合の一例を示す。なお、図2では、UEに2個のCC(又は、セル)が設定され、PUCCH送信に対応するバンドリングウィンドウが4つの時間単位(例えば、4スロット)で構成される場合を示す。バンドリングウィンドウは、下り制御情報で指示されるHARQ-ACKタイミングに基づいて構成してもよい。なお、CC数及びバンドリングウィンドウの期間はこれに限られない。また、図2では、各CCにおいて空間方向を1つ(例えば、トランスポートブロックを1)とする場合を示すが、これに限られない。
 図2では、1スロット目においてCC#1及びCC#2にPDSCHがスケジューリングされる。また、2スロット目においてCC#1にPDSCHがスケジューリングされ、3スロット目においてPDSCHがスケジューリングされず、4スロット目においてCC#2にPDSCHがスケジューリングされる。つまり、バンドリングウィンドウの範囲(ここでは、総数8=2CC×4スロット)において4個のDLデータが実際にスケジューリングされる場合に相当する。
 基地局は、バンドリングウィンドウに含まれるDLデータの総数(ここでは、8個)に関する情報を、上位レイヤパラメータとしてUEに通知する。UEは、スケジューリングされるPDSCHの数(図2では4個)又はPDSCHをスケジューリングするDCIの数に関わらず、上位レイヤパラメータに従ってコードブックサイズを決定する。UEは、バンドリングウィンドウにおいてスケジューリングされないPDSCHに対してはNACKとしてフィードバックする。
 このように、スケジューリングされるDL送信数に関わらずHARQ-ACKコードブックを決定する場合、実際にスケジューリングされるDL送信の数が少ない場合(例えば、1又は2つ)であっても、常に多くのHARQ-ACKビット数を送信する必要がある。これにより、UEの処理負荷が増大し、スループットの低下及び/又は通信品質の劣化が生じるおそれがある。
 そこで、本発明者等は、所定ビット数以下のHARQ-ACKの送信用にサポートされる所定PUCCHフォーマット(例えば、PUCCHフォーマット0/1)に着目し、HARQ-ACKコードブックが準静的に設定される場合であっても、HARQ-ACKのビット数が所定値以下の際には所定PUCCHフォーマットを利用してHARQ-ACK送信を制御することを着想した。
 つまり、UEは、HARQ-ACKコードブックが準静的に設定される場合であっても、HARQ-ACKのビット数が所定値以下であれば上位レイヤパラメータにより決定されるHARQ-ACKビット数ではなく、所定値以下のビット数でHARQ-ACKを送信する。このように、所定値以下のビット数でHARQ-ACKを所定PUCCHフォーマットで送信することを、フォールバックPUCCH送信(fallback PUCCH transmission)とも呼ぶ。
 フォールバックPUCCH送信の適用は、フィードバックするHARQ-ACKのビット数(又は、HARQ-ACKの元となるPDSCH送信数)に基づいて判断してもよい。あるいは、HARQ-ACKのビット数に加えてHARQ-ACKの元となるDLデータが送信されるセルの種別及び/又は送信条件(例えば、PDSCHをスケジューリングするDCIのサーチスペース種別等)に基づいて判断してもよい。
 また、HARQ-ACKコードブック(例えば、所定値より大きいビット数)が準静的に設定される場合、当該コードブックのサイズのHARQ-ACK送信に利用するPUCCHリソースセットが設定される。PUCCHリソースセットは、複数のPUCCHリソース(PUCCHリソース候補とも呼ぶ)を含み、当該複数のPUCCHリソースから選択された所定のPUCCHリソースを用いてPUCCHを送信する。
 PUCCHリソースセットに含まれる複数のPUCCHリソースは、上位レイヤシグナリングでUEに設定されてもよい。また、所定のPUCCHリソースの選択は、DCIに含まれる所定のフィールド(又は、に含まれる所定のフィールドDCI+RRC等の他のパラメータ)等を利用して行ってもよい。
 そこで、本発明者等は、フォールバックPUCCHがサポートされる場合に、準静的に設定されるコードブックのサイズのHARQ-ACK送信に利用するPUCCHリソースセットとは別に、所定値以下のHARQ-ACK送信用のPUCCHリソースセットを別途設定することを着想した。
 また、所定値以下のHARQ-ACK送信用のPUCCHリソースセット(又は、PUCCHリソース)を、UE固有の上位レイヤシグナリング(UE-specific RRC signalling)、及びUE共通の上位レイヤシグナリング(UE-common RRC signalling)の少なくとも一方を利用して設定することを着想した。
 以下、本開示の実施形態について詳細に説明する。以下の態様はそれぞれ単独で適用してもよいし、組み合わせて適用してもよい。以下の各実施の態様は単独で適用してもよいし、組み合わせて適用してもよい。
 以下の実施形態において、HARQ-ACKは、UCIで読み替えられてもよいし、スケジューリング要求(SR:Scheduling Request)、チャネル状態情報(CSI:Channel State Information)などの他のタイプのUCIで読み替えられてもよい。また、「2ビット」は「所定数のビット」で読み替えられてもよい。なお、本明細書において、「データ」、「データチャネル(例えばPUSCH)」、「データチャネルのリソース」などは、相互に読み替えられてもよい。
(第1の態様)
 第1の態様では、HARQ-ACKコードブックが準静的に設定される構成において、フォールバックPUCCH送信がサポートされる場合のHARQ-ACK送信について説明する。以下の説明では、UEが基地局からHARQ-ACKコードブックを準静的に決定するモードが設定された場合について説明するが、適用可能なモードはこれに限られない。
 基地局は、HARQ-ACKコードブックを準静的に決定するモードをUEに設定する場合、当該HARQ-ACKコードブックに対応するPUCCHリソースセット(第1のPUCCHリソースセット)も設定する。また、基地局は、UEに設定するHARQ-ACKコードブックが所定値(例えば、2)以上のHARQ-ACKビット数である場合、第1のPUCCHリソースセットとは別に、所定値以下のHARQ-ACK送信用のPUCCHリソースセット(第2のPUCCHリソースセット)を別途設定する。
 UEは、バンドリングウィンドウにおけるHARQ-ACKのビット数(又は、受信したPDSCH数あるいはHARQ-ACKの送信を必要とするPDCCHを受信した数)が所定値より大きい場合、HARQ-ACKコードブックに基づいて生成したHARQ-ACKを第1のPUCCHリソースセットを利用して送信する(図2参照)。なお、バンドリングウィンドウは、RRCシグナリング等の準静的なパラメータから導かれる空間、時間、周波数の区間に含まれ得るPDCCH数やPDSCH数であってもよいし、RRCシグナリング等の準静的なパラメータに加え、DCI等の動的なシグナリングをもとに導かれる空間、時間、周波数の区間に含まれ得るPDCCH数やPDSCH数であってもよい。
 一方で、UEは、バンドリングウィンドウにおけるHARQ-ACKのビット数(又は、受信したPDSCH数あるいはHARQ-ACKの送信を必要とするPDCCHを受信した数)が所定値以下の場合、フォールバックPUCCH送信を行う。例えば、UEは、所定のPUCCHフォーマットを利用して、所定ビット数(例えば、2ビット)以下のHARQ-ACKを第2のPUCCHリソースセットを利用して送信する(図3参照)。
 図3では、UEに2個のCC(又は、セル)が設定され、PUCCH送信に対応するバンドリングウィンドウが4つの時間単位(例えば、4スロット)で構成される場合を示す。なお、CC数及びバンドリングウィンドウの期間はこれに限られない。また、以下の説明では、各CCにおいて空間方向を1つ(例えば、トランスポートブロックを1)とする場合を示すが、これに限られない。
 図3では、2スロット目においてCC#1でPDSCHがスケジューリングされ、1スロット目、3スロット目、4スロット目ではPDSCHがスケジューリングされない。つまり、バンドリングウィンドウの範囲(ここでは、総数8=2CC×4スロット)において1つのDLデータ(PDSCH)が実際にスケジューリングされる場合に相当する。
 UEは、バンドリングウィンドウにおいて1つのPDSCHに対するHARQ-ACKフィードバックを行う場合、所定のPUCCHフォーマット及び第2のPUCCHリソースセットを利用してHARQ-ACKの送信を制御する。所定のPUCCHフォーマットとしては、所定のビット数以下の送信に利用されるPUCCHフォーマット(例えば、PUCCHフォーマット0/1)等を利用すればよい。
 このように、フィードバックするHARQ-ACKが所定ビット数以下の場合にフォールバックPUCCH送信を適用することにより、バンドリングウィンドウに対応する全てのHARQ-ACKを生成する必要がないため、UEの処理負荷を低減できる。
 また、UEは、第2のPUCCHリソースセットに含まれる複数のPUCCHリソース候補の中から所定のPUCCHリソースを選択してHARQ-ACKの送信を制御する。所定のPUCCHリソースの選択は、DCIに含まれる所定のフィールド(又はDCIに含まれる所定のフィールド+RRC等の他のパラメータ)に基づいて行ってもよい。
 第2のPUCCHリソースセットは、UE固有の上位レイヤシグナリング(UE-specific RRC signalling)、及びUE共通の上位レイヤシグナリング(UE-common RRC signalling)の少なくとも一方を利用してUEに設定してもよい。
 例えば、UEは、UE固有の上位レイヤシグナリングで第2のPUCCHリソースセットが設定されている場合には、当該UE固有の上位レイヤシグナリングで設定された第2のPUCCHリソースセットを適用する。つまり、UE共通の上位レイヤシグナリングで第2のPUCCHリソースセットが設定されている場合でも、UE固有の上位レイヤシグナリングで設定された第2のPUCCHリソースセットを優先して適用してもよい。
 この場合、UEは、UE固有の上位レイヤシグナリングで第2のPUCCHリソースセットが設定されていない場合には、UE共通の上位レイヤシグナリングで設定された第2のPUCCHリソースセットを適用すればよい。
 UE共通の上位レイヤシグナリングは、例えば、システム情報を通知する上位レイヤシグナリングであってもよい。この場合、UEは、上位レイヤシグナリングで通知されるシステム情報に基づいて第2のPUCCHリソースセットを判断する。上位レイヤシグナリングで通知されるシステム情報は、最低限のシステム情報(RMSI:Remaining Minimum System Information)であってもよいし、SIB1及び/又はSIB2であってもよいし、他のシステム情報(OSI:Other System Information)であってもよい。
 システム情報には、PUCCHフォーマット0/1を利用するPUCCHリソースセットに関する情報が含まれる。システム情報に含まれるPUCCHリソースセットは、ランダムアクセス手順におけるメッセージ4(Msg.4)に対するHARQ-ACK(RRC接続の設定前(RRC connection setup)のHARQ-ACK)に利用するPUCCHリソースセットであってもよい。つまり、UEは、第2のPUCCHリソースセットとして、RRC接続の設定前のHARQ-ACKに利用するPUCCHリソースセットを適用してもよい。
 なお、UE固有の上位レイヤシグナリングで第2のPUCCHリソースセットが設定されている場合と、UE共通の上位レイヤシグナリングで第2のPUCCHリソースセットが設定されている場合とで、PUCCHリソースセットの中から実際に送信するPUCCHリソースを選択する方法が異なっていてもよい。すなわち、UEは、UE固有の上位レイヤシグナリングで第2のPUCCHリソースセットが設定されている場合と、UE共通の上位レイヤシグナリングで第2のPUCCHリソースセットが設定されている場合とで、第2のPUCCHリソースセットを適用した場合に、異なるルールに基づいて送信するPUCCHリソースを選択することができる。
 異なるルールは、例えば、一方のケースではDCIに含まれる所定フィールドに基づいてPUCCHリソースを選択するのに対してもう一方のケースではDCIに含まれるフィールドは用いずにPUCCHリソースを選択する、とすることができる。異なるルールは、または、一方のケースでは当該PUCCHで送信するHARQ-ACKが対応するPDSCHをスケジューリングするPDCCHのリソース要素(CCE)のインデックスに基づいて選択するのに対してもう一方のケースではCCEのインデックスは用いずにPUCCHリソースを選択する、としてもよい。
 このように、UE共通の上位レイヤシグナリングで設定されたPUCCHリソースセットを第2のPUCCHリソースセットとして利用することを許容することにより、UE固有の上位レイヤシグナリングでPUCCHリソースセットが設定されていない場合であっても、所定ビット数以下のHARQ-ACK送信を行うことができる。これにより、フォールバックPUCCH送信を適切に行うことができるため、UEの処理負荷の増大を抑制することができる。
(第2の態様)
 第2の態様では、HARQ-ACKのビット数(又は、受信するPDSCH数あるいはHARQ-ACKの送信を必要とするPDCCHを受信した数)、PDSCHが送信されるCC(又はセル)の種別、及びPDSCH/DCIの送信条件の少なくとも一つに基づいて、フォールバックPUCCH送信の適用を制御する場合について説明する。PDSCH及び/又はDCIの送信条件は、例えば、PDSCHをスケジューリングするDCIの送信に適用されるサーチスペース種別等を指す。以下に、フォールバックPUCCH送信の適用例について説明する。
<適用例1>
 適用例1は、バンドリングウィンドウにおけるPDSCH数(HARQ-ACKのビット数)に基づいて、フォールバックPUCCH送信の適用有無を制御する。
 例えば、UEは、1つのサービングセルのみにおいて1つのPDSCHが送信される場合(又は、当該PDSCHに対する1つのHARQ-ACKをフィードバックする場合)に、フォールバックPUCCH送信を適用する(図3参照)。この場合、UEは、所定ビット数(例えば、2ビット以下)のHARQ-ACK送信用に設定される第2のPUCCHリソースセットから所定のPUCCHリソースを選択してHARQ-ACKを送信する。
 UEは、PDSCHをスケジューリングするDCIに含まれる情報に基づいて、第2のPUCCHリソースセットから所定のPUCCHリソースを決定してもよい。例えば、UEは、DCIに含まれるARIフィールド(ARI field)、及びHARQ-ACKのタイミング通知フィールド(HARQ-ACK timing indicator field)の少なくとも一つに基づいて所定のPUCCHリソースを決定してもよい。ARIフィールドは、TPCコマンドフィールドであってもよい。
 また、UEは、DCIに含まれる情報(例えば、所定フィールド)に加えて、他のパラメータ(例えば、暗示的に通知される情報(implicit information))を利用して所定のPUCCHリソースを決定してもよい。他のパラメータとしては、PDSCHをスケジューリングするDCIに対応するCCEインデックス、DCIの送信に利用される制御リソースセットインデックス等がある。
 図3では、バンドリングウィンドウにおけるPDSCH数(HARQ-ACKのビット数)が1つの場合にフォールバックPUCCH送信を適用する場合を示しているが、これに限られない。例えば、バンドリングウィンドウにおけるPDSCH数(HARQ-ACKのビット数)が2以下の場合にフォールバックPUCCH送信を適用する構成としてもよい。
 例えば、UEは、1又は2つのサービングセルにおいて1又は2つのPDSCHが送信される場合(又は、当該PDSCHに対する1又は2つのHARQ-ACKをフィードバックする場合)にフォールバックPUCCH送信を適用してもよい(図4、図5参照)。
 図4では、バンドリングウィンドウにおいて、1つのサービングセル(ここでは、CC#1)で2つのPDSCH(異なるスロットで送信されるPDSCH)が送信される場合を示している。図5では、バンドリングウィンドウにおいて、2つのサービングセル(ここでは、CC#1、CC#2)でそれぞれ1つずつのPDSCHが送信される場合を示している。
 図4、5では、バンドリングウィンドウに対してUEは2つのPDSCHに対するHARQ-ACKをフィードバックするため、フォールバックPUCCH送信を適用する。UEは、第2のPUCCHリソースセットから所定のPUCCHリソースを選択して2つのPDSCHに対するHARQ-ACKを送信する。
 UEは、PDSCHをスケジューリングするDCIに含まれる情報に基づいて、第2のPUCCHリソースセットから所定のPUCCHリソースを決定する。また、2つのPDSCHをスケジューリングするDCIがそれぞれ送信される場合、UEは一方のDCI(例えば、インデックスが小さいCCで送信されるDCI、及び/又は時間方向に早く送信されるDCI)に含まれる情報を利用してもよい。あるいは、各DCIに対して同じPUCCHリソースを指定する情報をそれぞれ含める構成としてもよい。
 このように、バンドリングウィンドウにおけるPDSCH数(HARQ-ACKのビット数)に基づいて、フォールバックPUCCH送信の適用有無を制御することにより、PDSCHが送信されるCC種別に関わらずフォールバックPUCCH送信を適用できる。
<適用例2>
 適用例2は、バンドリングウィンドウにおけるPDSCH数(HARQ-ACKのビット数)に加えて、CC(又は、セル)種別に基づいてフォールバックPUCCH送信の適用有無を制御する。
 例えば、UEは、1つの特定セルのみにおいて1つのPDSCHが送信される場合(又は、当該PDSCHに対するHARQ-ACKをフィードバックする場合)、フォールバックPUCCH送信を適用する(図3参照)。1つの特定セル(図3におけるCC#1)は、例えば、プライマリセル(又は、PSCell、PUCCH SCell)であってもよい。フォールバックPUCCH送信の適用をプライマリセルのPDSCH送信に制限することにより、フォールバック制御をよりロバストなものとすることができる。これは、UEが接続するセルのうち、プライマリセルが接続担保に重要なセルであるためである。
 第2のPUCCHリソースセットから所定のPUCCHリソースを選択する方法は上記適用例1と同様に行えばよい。
 図3では、バンドリングウィンドウにおいて1つの特定セルで送信されるPDSCH数(又は、当該PDSCHに対するHARQ-ACKのビット数)が1つの場合にフォールバックPUCCH送信を適用する場合を示しているが、これに限られない。例えば、1つの特定セルで送信されるPDSCH数が2以下の場合にフォールバックPUCCH送信を適用する構成としてもよい(図4参照)。
 図4では、バンドリングウィンドウにおいて、1つの特定セル(ここでは、CC#1)で2つのPDSCHが送信される場合を示している。この場合、UEは、特定のセルで送信される2つのPDSCHに対するHARQ-ACKのみをフィードバックするため、フォールバックPUCCH送信を適用する。UEは、第2のPUCCHリソースセットから選択される所定のPUCCHリソースを利用して2つのPDSCHに対するHARQ-ACKを送信する。
 このように、PDSCHが送信されるCC(又は、セル)種別も考慮してフォールバックPUCCH送信の適用有無を制御することにより、PDSCHが送信されるCC種別に応じてフォールバックPUCCH送信を制御できる。
<適用例3>
 適用例3は、バンドリングウィンドウにおけるPDSCH数(HARQ-ACKのビット数)及びCC(又は、セル)種別に加えて、PDSCH及び/又はDCIの送信条件に基づいてフォールバックPUCCH送信の適用有無を制御する。
 例えば、UEは、1つの特定セルのみにおいて、特定のサーチスペース種別を利用するDCI(又は、PDCCH)によりスケジューリングされるPDSCHが1つ送信される場合、フォールバックPUCCH送信を適用する。1つの特定セル(図3におけるCC#1)は、例えば、プライマリセル(又は、PSCell、PUCCH SCell)であってもよい。特定サーチスペースは、共通サーチスペース(CSS:Common Search Space)であってもよい。
 フォールバックPUCCH送信の適用を共通サーチスペースに配置されるPDCCH(DCI)でスケジューリングされるPDSCH送信のHARQ-ACKに制限することにより、フォールバック制御をより適切に行うことができる。無線基地局は、当該UEのPUCCHをフォールバックさせたい時のみ、共通サーチスペースを用いてPDSCHをスケジューリングすればよい。
 第2のPUCCHリソースセットから所定のPUCCHリソースを選択する方法は上記適用例1と同様に行えばよい。
 図3では、1つの特定セルのみにおいて、特定のサーチスペース種別を利用するDCI(又は、PDCCH)によりスケジューリングされるPDSCHが1つ送信される場合にフォールバックPUCCH送信を適用する場合を示しているが、これに限られない。例えば、特定のサーチスペース種別を利用するDCI(又は、PDCCH)によりスケジューリングされるPDSCH数が2以下の場合にフォールバックPUCCH送信を適用する構成としてもよい(図4参照)。
 図4では、バンドリングウィンドウにおいて、1つの特定セル(ここでは、CC#1)において、共通サーチスペースで送信されるPDCCHにスケジューリングされるPDSCHが2つ送信される場合を示している。この場合、UEは、特定のセルで送信される2つのPDSCHに対するHARQ-ACKのみをフィードバックするため、フォールバックPUCCH送信を適用する。UEは、第2のPUCCHリソースセットから選択される所定のPUCCHリソースを利用して2つのPDSCHに対するHARQ-ACKを送信する。
 このように、PDSCHをスケジューリングするPDCCH(又は、DCI)の送信に利用するサーチスペース種別も考慮してフォールバックPUCCH送信の適用有無を制御することにより、フォールバック制御をより適切に行うことができる。無線基地局は、当該UEのPUCCHをフォールバックさせたい時のみ、共通サーチスペースを用いてPDSCHをスケジューリングすればよい。
 なお、適用例3では、特定のサーチスペース種別を考慮してフォールバックPUCCH送信の適用を制御する場合を示したが、これに限られない。サーチスペース種別の代わりに、制御リソースセット(CORESET)の種別等に基づいてフォールバックPUCCH送信を制御してもよい。
(無線通信システム)
 以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図6は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示すものに限られない。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成であってもよい。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックを有する帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
 PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
<無線基地局>
 図7は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 また、送受信部103は、HARQ-ACKのコードブックを準静的に決定するモードと、動的に決定するモードのいずれを利用するかをUEに上位レイヤシグナリング等で通知する。また、送受信部103は、UEから送信されるHARQ-ACK(コードブックに基づくHARQ-ACKと、フォールバックPUCCH送信が適用されたHARQ-ACK)を受信する。
 また、送受信部103は、HARQ-ACKコードブックに基づいて送信されるHARQ-ACKに対応するPUCCHリソースセットと、所定ビット数以下のHARQ-ACK送信に利用するPUCCHリソースセットに関する情報を上位レイヤシグナリング等でUEに通知する。また、送受信部103は、PUCCHリソースセットに含まれる複数のPUCCHリソース候補から所定のPUCCHリソースを指定する情報を下り制御情報等で送信してもよい。
 図8は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302による信号の生成、マッピング部303による信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304による信号の受信処理、測定部305による信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
 また、制御部301は、HARQ-ACKコードブックに基づいて送信されるHARQ-ACKに対応する第1のPUCCHリソースセットと、所定ビット数以下のHARQ-ACK送信に利用する第2のPUCCHリソースセットの設定を制御する。例えば、制御部301は、第2のPUCCHリソースセットとして、上位レイヤシグナリングでUE固有に設定されるPUCCHリソースセット、及び上位レイヤシグナリングでUE共通に設定されるPUCCHリソースセットの少なくとも一方を設定するように制御する。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
 図9は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 また、送受信部203は、HARQ-ACKのコードブックを準静的に決定するモードと、動的に決定するモードのいずれを利用するかをUEに上位レイヤシグナリング等で受信する。また、送受信部203は、UEから送信されるHARQ-ACK(コードブックに基づくHARQ-ACKと、フォールバックPUCCH送信が適用されたHARQ-ACK)を送信する。
 また、送受信部103は、HARQ-ACKコードブックに基づいて送信されるHARQ-ACKに対応するPUCCHリソースセットと、所定ビット数以下のHARQ-ACK送信に利用するPUCCHリソースセットに関する情報を受信する。また、送受信部103は、PUCCHリソースセットに含まれる複数のPUCCHリソース候補から所定のPUCCHリソースを指定する情報を受信してもよい。
 図10は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402による信号の生成、マッピング部403による信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404による信号の受信処理、測定部405による信号の測定などを制御する。
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 また、制御部401は、上位レイヤシグナリングで通知される情報に基づいて送達確認信号のコードブックを決定するモードが設定される場合、送達確認信号のビット数、又は、送達確認信号のビット数と前記下り送信が行われるセル種別に基づいて、コードブックに基づいて送信される送達確認信号用に設定される第1のPUCCHリソースセット、及び所定値以下のビット数の送達確認信号用に設定される第2のPUCCHリソースセットの一方を利用して送達確認信号の送信を制御する。
 例えば、制御部401は、第2のPUCCHリソースセットとして、上位レイヤシグナリングでUE固有に設定されるPUCCHリソースセット、及び上位レイヤシグナリングでUE共通に設定されるPUCCHリソースセットの一方を利用して前記送達確認信号の送信を制御する。制御部401は、UE固有に設定されるPUCCHリソースセットが設定されない場合に、UE共通に設定されるPUCCHリソースセットを利用するように制御してもよい。制御部401は、UE共通に設定されるPUCCHリソースセットをシステム情報に基づいて決定してもよい。
 また、制御部401は、下り信号がプライマリセルで送信される場合、又は、下り信号が共通サーチスペースの下り制御チャネルでスケジューリングされる場合、第2のPUCCHリソースセットを利用して下り送信に対する送達確認信号を送信するように制御してもよい。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
 例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
 さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
 本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
 本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
 本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  下り送信に対する送達確認信号を送信する送信部と、
     上位レイヤシグナリングで通知される情報に基づいて送達確認信号のコードブックを決定するモードが設定される場合、送達確認信号のビット数、又は、送達確認信号のビット数及び前記下り送信が行われるセル種別に基づいて、前記コードブックに基づいて送信される送達確認信号用に設定される第1のPUCCHリソースセット、及び所定値以下のビット数の送達確認信号用に設定される第2のPUCCHリソースセットの一方を利用して送達確認信号の送信を制御する制御部と、を有することを特徴とするユーザ端末。
  2.  前記制御部は、前記第2のPUCCHリソースセットとして、上位レイヤシグナリングでUE固有に設定されるPUCCHリソースセット、及び上位レイヤシグナリングでUE共通に設定されるPUCCHリソースセットの一方を利用して前記送達確認信号の送信を制御することを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、前記UE固有に設定されるPUCCHリソースセットが設定されない場合に、前記UE共通に設定されるPUCCHリソースセットを利用するように制御することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、前記UE共通に設定されるPUCCHリソースセットをシステム情報に基づいて決定することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記制御部は、前記下り信号がプライマリセルで送信される場合、又は、前記下り信号が共通サーチスペースの下り制御チャネルでスケジューリングされる場合、前記第2のPUCCHリソースセットを利用して前記下り送信に対する送達確認信号を送信するように制御することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  下り送信に対する送達確認信号を送信する工程と、
     上位レイヤシグナリングで通知される情報に基づいて送達確認信号のコードブックを決定するモードが設定される場合、送達確認信号のビット数、又は、送達確認信号のビット数及び前記下り送信が行われるセル種別に基づいて、前記コードブックに基づいて送信される送達確認信号用に設定される第1のPUCCHリソースセット、及び所定値以下のビット数の送達確認信号用に設定される第2のPUCCHリソースセットの一方を利用して送達確認信号の送信を制御する工程と、を有することを特徴とするユーザ端末の無線通信方法。
PCT/JP2018/001647 2018-01-19 2018-01-19 ユーザ端末及び無線通信方法 WO2019142330A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2020007648A MX2020007648A (es) 2018-01-19 2018-01-19 Terminal de usuario y metodo de comunicacion inalambrica.
JP2019565663A JP7293134B2 (ja) 2018-01-19 2018-01-19 端末、無線通信方法、基地局及びシステム
AU2018403639A AU2018403639B2 (en) 2018-01-19 2018-01-19 User terminal and radio communication method
CN201880088294.4A CN111670593A (zh) 2018-01-19 2018-01-19 用户终端以及无线通信方法
PCT/JP2018/001647 WO2019142330A1 (ja) 2018-01-19 2018-01-19 ユーザ端末及び無線通信方法
US16/962,965 US11528696B2 (en) 2018-01-19 2018-01-19 User terminal and radio communication method
EP18900629.9A EP3742792A4 (en) 2018-01-19 2018-01-19 USER TERMINAL AND WIRELESS COMMUNICATION PROCESS
BR112020014608-0A BR112020014608A2 (pt) 2018-01-19 2018-01-19 Terminal de usuário e método de radiocomunicação

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/001647 WO2019142330A1 (ja) 2018-01-19 2018-01-19 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2019142330A1 true WO2019142330A1 (ja) 2019-07-25

Family

ID=67302105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001647 WO2019142330A1 (ja) 2018-01-19 2018-01-19 ユーザ端末及び無線通信方法

Country Status (8)

Country Link
US (1) US11528696B2 (ja)
EP (1) EP3742792A4 (ja)
JP (1) JP7293134B2 (ja)
CN (1) CN111670593A (ja)
AU (1) AU2018403639B2 (ja)
BR (1) BR112020014608A2 (ja)
MX (1) MX2020007648A (ja)
WO (1) WO2019142330A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11452105B2 (en) * 2018-04-06 2022-09-20 Nokia Technologies Oy HARQ-ACK codebook supporting UEs with parallel PDSCH reception capability

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282881B (zh) * 2017-01-06 2020-12-15 华为技术有限公司 一种资源配置方法及装置
CN111147217B (zh) * 2018-02-13 2021-03-05 华为技术有限公司 传输反馈信息的方法、通信装置和计算机可读存储介质
US20220182188A1 (en) * 2020-12-09 2022-06-09 Samsung Electronics Co., Ltd. Method and device to transmit and receive hybrid automatic retransmission request acknowledgement information

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
JP2015065621A (ja) * 2013-09-26 2015-04-09 株式会社Nttドコモ ユーザ端末、基地局及び無線通信方法
JP2015139106A (ja) * 2014-01-22 2015-07-30 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US10455550B2 (en) * 2014-01-30 2019-10-22 Sharp Kabushiki Kaisha Terminal device operating with a special subframe including three regions, base station device operating with a special subframe including three regions, and communication method operating with a special subframe including three regions
JP6615617B2 (ja) * 2014-01-30 2019-12-04 シャープ株式会社 端末装置、基地局装置、および、通信方法
JP6478304B2 (ja) * 2015-01-30 2019-03-06 華為技術有限公司Huawei Technologies Co.,Ltd. 通信システムおよび装置におけるフィードバック情報伝送方法
JP6100829B2 (ja) * 2015-05-14 2017-03-22 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
GB2540628A (en) * 2015-07-24 2017-01-25 Fujitsu Ltd Control messages in wireless communication
KR102511925B1 (ko) * 2015-11-06 2023-03-20 주식회사 아이티엘 반송파 집성을 지원하는 무선통신 시스템에서 harq 동작을 수행하는 장치 및 방법
EP3451768B1 (en) 2016-04-26 2022-05-04 Sharp Kabushiki Kaisha Terminal device, base station device, communication method and integrated circuit
CN109891988B (zh) * 2016-10-27 2022-08-09 株式会社Kt 用于在下一代无线网络中调度上行链路信号和下行链路数据信道的方法和设备
CN116405165A (zh) * 2017-01-09 2023-07-07 北京三星通信技术研究有限公司 发送harq-ack/nack的方法和设备及下行传输方法和设备
CN108289015B (zh) * 2017-01-09 2023-04-07 北京三星通信技术研究有限公司 发送harq-ack/nack的方法和设备及下行传输方法和设备
KR101975341B1 (ko) * 2017-06-15 2019-05-07 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 확인 응답 정보를 송수신하는 방법 및 이를 지원하는 장치
US10855403B2 (en) * 2018-02-13 2020-12-01 Mediatek Singapore Pte. Ltd. Method and apparatus for reducing uplink overhead in mobile communications
WO2019157658A1 (en) * 2018-02-13 2019-08-22 Lenovo (Beijing) Limited Method and apparatus for fallback operation for semi-static harq-ack codebook determination
CN110351022A (zh) * 2018-04-03 2019-10-18 北京展讯高科通信技术有限公司 动态harq-ack码本的长度确定方法及装置、存储介质、终端
US11303419B2 (en) * 2018-04-06 2022-04-12 Qualcomm Incorporated Semi-static HARQ-ACK codebook with multiple PDSCH transmissions per slot
CN110519027B (zh) * 2018-05-21 2020-12-22 华为技术有限公司 上行控制信息的传输方法及设备
CN110830174B (zh) * 2018-08-10 2020-11-27 北京紫光展锐通信技术有限公司 半静态harq-ack码本的生成方法、用户终端、可读存储介质
CN111294186B (zh) * 2019-04-30 2022-03-22 北京紫光展锐通信技术有限公司 Harq-ack码本反馈方法及用户终端、计算机可读存储介质
US20220311556A1 (en) * 2019-06-19 2022-09-29 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for semi-persistent scheduling
US11611983B2 (en) * 2020-02-20 2023-03-21 Qualcomm Incorporated Acknowledgement feedback for multi-component carrier scheduling
CN113676291B (zh) * 2020-05-15 2023-03-10 华为技术有限公司 一种信息发送的方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "DL/UL scheduling and HARQ management", 3GPP TSG RAN WG1 MEETING AH 1801 RL-1800676, 13 January 2018 (2018-01-13), XP051384998 *
OPPO: "Summary of RAN1#91 Tdocs on PUCCH resource allocation", 3GPP TSG RAN WG1 MEETING #91 RL-1721360, 28 November 2017 (2017-11-28), XP051363848 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11452105B2 (en) * 2018-04-06 2022-09-20 Nokia Technologies Oy HARQ-ACK codebook supporting UEs with parallel PDSCH reception capability

Also Published As

Publication number Publication date
US20200344737A1 (en) 2020-10-29
MX2020007648A (es) 2020-09-18
AU2018403639B2 (en) 2023-10-05
US11528696B2 (en) 2022-12-13
CN111670593A (zh) 2020-09-15
JPWO2019142330A1 (ja) 2021-01-07
AU2018403639A1 (en) 2020-08-20
EP3742792A4 (en) 2021-08-18
BR112020014608A2 (pt) 2020-12-08
JP7293134B2 (ja) 2023-06-19
EP3742792A1 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
WO2019097646A1 (ja) ユーザ端末及び無線通信方法
WO2019049282A1 (ja) ユーザ端末及び無線通信方法
WO2019026157A1 (ja) ユーザ端末及び無線通信方法
WO2019087340A1 (ja) ユーザ端末及び無線通信方法
WO2019142341A1 (ja) ユーザ端末及び無線通信方法
JPWO2019193700A1 (ja) ユーザ端末及び無線基地局
WO2019215934A1 (ja) ユーザ端末及び無線通信方法
WO2019138555A1 (ja) ユーザ端末及び無線通信方法
WO2019038832A1 (ja) ユーザ端末及び無線通信方法
WO2019130506A1 (ja) ユーザ端末及び無線通信方法
WO2019138524A1 (ja) ユーザ端末及び無線通信方法
WO2019016953A1 (ja) ユーザ端末及び無線通信方法
WO2019064569A1 (ja) ユーザ端末及び無線通信方法
WO2019092856A1 (ja) ユーザ端末及び無線通信方法
WO2019107239A1 (ja) ユーザ端末及び無線通信方法
WO2019021473A1 (ja) 送信装置、受信装置及び無線通信方法
WO2019082244A1 (ja) ユーザ端末及び無線通信方法
WO2019138510A1 (ja) ユーザ端末及び無線通信方法
WO2019135287A1 (ja) ユーザ端末及び無線通信方法
WO2019069464A1 (ja) ユーザ端末及び無線通信方法
JP7293134B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019035213A1 (ja) ユーザ端末及び無線通信方法
WO2019135288A1 (ja) ユーザ端末及び無線通信方法
WO2018203401A1 (ja) ユーザ端末及び無線通信方法
WO2018207374A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018403639

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2018403639

Country of ref document: AU

Date of ref document: 20180119

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018900629

Country of ref document: EP

Effective date: 20200819

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020014608

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020014608

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200717