JP7100113B2 - 端末、無線通信方法、基地局及びシステム - Google Patents

端末、無線通信方法、基地局及びシステム Download PDF

Info

Publication number
JP7100113B2
JP7100113B2 JP2020500244A JP2020500244A JP7100113B2 JP 7100113 B2 JP7100113 B2 JP 7100113B2 JP 2020500244 A JP2020500244 A JP 2020500244A JP 2020500244 A JP2020500244 A JP 2020500244A JP 7100113 B2 JP7100113 B2 JP 7100113B2
Authority
JP
Japan
Prior art keywords
bfr
search space
signal
unit
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020500244A
Other languages
English (en)
Other versions
JPWO2019159370A1 (ja
Inventor
一樹 武田
聡 永田
リフェ ワン
ギョウリン コウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of JPWO2019159370A1 publication Critical patent/JPWO2019159370A1/ja
Application granted granted Critical
Publication of JP7100113B2 publication Critical patent/JP7100113B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本開示は、次世代移動通信システムにおける端末、無線通信方法、基地局及びシステムに関する。
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8、9)の更なる大容量、高度化などを目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11、12、13)が仕様化された。
LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.14又は15以降などともいう)も検討されている。
既存のLTEシステム(LTE Rel.8-13)では、無線リンク品質のモニタリング(無線リンクモニタリング(RLM:Radio Link Monitoring))が行われる。RLMより無線リンク障害(RLF:Radio Link Failure)が検出されると、RRC(Radio Resource Control)コネクションの再確立(re-establishment)がユーザ端末(UE:User Equipment)に要求される。
NRでは、ビーム障害を検出して他のビームに切り替え手順(ビーム回復(BR:Beam Recovery)手順などと呼ばれてもよい)を実施することが検討されている。
また、NRにおいては、制御チャネルの割当て候補領域である制御リソースセット(CORESET:COntrol REsource SET)を用いてUEに下り制御情報を通知することが検討されている。CORESETには、所定のサーチスペース設定が関連付けられる。
ビーム回復手順中には、ビーム回復手順用のCORESETを用いることが検討されている。しかしながら、当該ビーム回復手順用のCORESETについてどのようなサーチスペースを用いるかということは、まだ検討が進んでいない。適切なサーチスペースを規定しなければ、ビーム回復手順を成功裏に完了できず、通信スループット、周波数利用効率などの劣化が生じるおそれがある。
そこで、本開示は、ビーム回復手順を好適に成功裏に完了できる端末、無線通信方法、基地局及びシステムを提供することを目的の1つとする。
本開示の一態様に係る端末は、ビーム障害回復(Beam Failure Recovery(BFR))手順用の制御リソースセット(COntrol REsource SET(CORESET))と関連付けられた前記BFR手順用のサーチスペースがRRC(Radio Resource Control)情報要素により設定される場合、前記RRC情報要素により設定された前記BFR手順用のサーチスペースにおいて、前記BFR手順中に下り制御チャネルのモニタを実施するように制御し前記BFR手順用のサーチスペースが前記RRC情報要素により設定されない場合、共通サーチスペースにおいて、前記BFR手順中に下り制御チャネルのモニタを実施するように制御する制御部と、前記BFR手順中に下り制御チャネルのモニタを実施する受信部と、を有する。
本開示の一態様によれば、ビーム回復手順を好適に成功裏に完了できる。
図1は、ビーム回復手順の一例を示す図である。 図2は、第2の実施形態に係るCF-BFRのランダムアクセス手順の一例を示す図である。 図3は、第3の実施形態に係るCB-BFRのランダムアクセス手順の一例を示す図である。 図4は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図5は、一実施形態に係る無線基地局の全体構成の一例を示す図である。 図6は、一実施形態に係る無線基地局の機能構成の一例を示す図である。 図7は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。 図8は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。 図9は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
NRでは、ビームフォーミング(BF:Beam Forming)を利用して通信を行うことが検討されている。例えば、UE及び/又は基地局(例えば、gNB(gNodeB))は、信号の送信に用いられるビーム(送信ビーム、Txビームなどともいう)、信号の受信に用いられるビーム(受信ビーム、Rxビームなどともいう)を用いてもよい。
BFを用いる環境では、障害物による妨害の影響を受けやすくなるため、無線リンク品質が悪化することが想定される。無線リンク品質の悪化によって、無線リンク障害(RLF:Radio Link Failure)が頻繁に発生するおそれがある。RLFが発生するとセルの再接続が必要となるため、頻繁なRLFの発生は、システムスループットの劣化を招く。
NRにおいては、RLFの発生を抑制するために、特定のビームの品質が悪化する場合、他のビームへの切り替え(ビーム回復(BR:Beam Recovery)、ビーム障害回復(BFR:Beam Failure Recovery)、L1/L2(Layer 1/Layer 2)ビームリカバリなどと呼ばれてもよい)手順を実施することが検討されている。なお、BFR手順は単にBFRと呼ばれてもよい。
図1は、ビーム回復手順の一例を示す図である。ビームの数などは一例であって、これに限られない。図1の初期状態(ステップS101)において、UEは、2つのビームを用いて送信される下り制御チャネル(PDCCH:Physical Downlink Control Channel)を受信している。
ステップS102において、基地局からの電波が妨害されたことによって、UEはPDCCHを検出できない。このような妨害は、例えばUE及び基地局間の障害物、フェージング、干渉などの影響によって発生し得る。
UEは、所定の条件が満たされると、ビーム障害を検出する。基地局は、UEからの通知がない場合、又はUEから所定の信号(ステップS104におけるビーム回復要求)を受信した場合に、当該UEがビーム障害を検出したと判断してもよい。
ステップS103において、UEはビーム回復のため、新たに通信に用いるための新候補ビーム(new candidate beam)のサーチを開始する。UEは、ビーム障害を検出すると、予め設定された下り信号(DL-RS(Reference Signal)などと呼ばれてもよい)リソースに基づく測定を実施し、望ましい(例えば品質の良い)1つ以上の新候補ビームを特定してもよい。本例の場合、1つのビームが新候補ビームとして特定されている。
DL-RSリソース(DL-RSリソース)は、同期信号ブロック(SSB:Synchronization Signal Block)又はチャネル状態測定用RS(CSI-RS:Channel State Information RS)のためのリソース及び/又はポートに関連付けられてもよい。なお、SSBは、SS/PBCH(Physical Broadcast Channel)ブロック等と呼ばれてもよい。
DL-RSは、プライマリ同期信号(PSS:Primary SS)、セカンダリ同期信号(SSS:Secondary SS)、モビリティ参照信号(MRS:Mobility RS)、SSBに含まれる信号、CSI-RS、復調用参照信号(DMRS:DeModulation Reference Signal)、ビーム固有信号などの少なくとも1つ、又はこれらを拡張及び/又は変更して構成される信号(例えば、密度及び/又は周期を変更して構成される信号)であってもよい。DL-RSは、新候補ビーム検出用信号と呼ばれてもよい。
ステップS104において、新候補ビームを特定したUEは、ビーム回復要求(BFRQ:Beam Failure Recovery reQuest)を送信する。ビーム回復要求は、ビーム回復要求信号、ビーム障害回復要求信号などと呼ばれてもよい。
ビーム回復要求は、例えば、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)、ULグラントフリーPUSCH(Physical Uplink Shared Channel)の少なくとも1つを用いて送信されてもよい。
ビーム回復要求は、ステップS103において特定された新候補ビームの情報を含んでもよい。ビーム回復要求のためのリソースが、当該新候補ビームに関連付けられてもよい。ビームの情報は、ビームインデックス(BI:Beam Index)、所定の参照信号のポート及び/又はリソースインデックス(例えば、CSI-RSリソース指標(CRI:CSI-RS Resource Indicator))などを用いて通知されてもよい。
ステップS105において、ビーム回復要求を検出した基地局は、UEからのビーム回復要求に対する応答信号を送信する。当該応答信号には、1つ又は複数のビームについての再構成情報(例えば、DL-RSリソースの構成情報)が含まれてもよい。当該応答信号は、例えばPDCCHのUE共通サーチスペースにおいて送信されてもよい。UEは、ビーム再構成情報に基づいて、使用する送信ビーム及び/又は受信ビームを判断してもよい。
ステップS106において、UEは、基地局に対してビーム再構成が完了した旨を示すメッセージを送信してもよい。当該メッセージは、例えば、PUCCHによって送信されてもよいし、PUSCHによって送信されてもよい。
ビーム回復成功(BR success)は、例えばステップS106まで到達した場合を表してもよい。一方で、ビーム回復失敗(BR failure)は、例えばステップS103において1つも候補ビームが特定できなかった場合を表してもよい。
なお、これらのステップの番号は説明のための番号に過ぎず、複数のステップがまとめられてもよいし、順番が入れ替わってもよい。また、BFRを実施するか否かは、上位レイヤシグナリングを用いてUEに設定されてもよい。
ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))、MAC PDU(Protocol Data Unit)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)、最低限のシステム情報(RMSI:Remaining Minimum System Information)、その他のシステム情報(OSI:Other System Information)などであってもよい。
NRでは、衝突型ランダムアクセス(RA:Random Access)手順に基づくBFRであるCB-BFR(Contention-Based BFR)及び非衝突型ランダムアクセス手順に基づくBFRであるCF-BFR(Contention-Free BFR)が検討されている。
CB-BFRでは、UEは、1つ又は複数のプリアンブル(RAプリアンブル、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)、RACHプリアンブルなどともいう)からランダムに選択したプリアンブルを送信してもよい。一方、CF-BFRでは、UEは、基地局からUE固有に割り当てられたプリアンブルを送信してもよい。CB-BFRでは、基地局は、複数UEに対して同一のプリアンブルを割り当ててもよい。CF-BFRでは、基地局は、UE個別にプリアンブルを割り当ててもよい。
CB-BFRでは、基地局は、ビーム回復要求としてあるプリアンブルを受信した場合に、そのプリアンブルがどのUEに送信されたかを特定できなくてもよい。基地局は、ビーム回復要求からビーム再構成完了までの間に衝突解決(contention resolution)を行うことによって、プリアンブルを送信したUEの識別子(例えば、セル-無線RNTI(C-RNTI:Cell-Radio RNTI))を特定することができる。
RA手順中にUEが送信する信号(例えば、プリアンブル)は、ビーム回復要求であると想定されてもよい。
CB-BFR、CF-BFRのいずれであっても、PRACHリソース(RAプリアンブル)に関する情報は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によって通知されてもよい。例えば、当該情報は、検出したDL-RS(ビーム)とPRACHリソースとの対応関係を示す情報を含んでもよく、DL-RSごとに異なるPRACHリソースが関連付けられてもよい。
ビーム障害の検出は、MACレイヤで行われてもよい。CB-BFRに関しては、UEが自身に関するC-RNTIに対応するPDCCHを受信した場合に、衝突解決(contention resolution)が成功したと判断されてもよい。
CB-BFR及びCF-BFRのRAパラメータは、同じパラメータセットから構成されてもよい。CB-BFR及びCF-BFRのRAパラメータは、それぞれ異なる値が設定されてもよい。
例えば、BFRQの後のビーム障害回復応答用CORESET内のgNB応答のモニタリング用の時間長を示すパラメータ(「ResponseWindowSize-BFR」と呼ばれてもよい)は、CF-BFRにのみ適用されてもよい。
ところで、NRにおいては、物理レイヤ制御信号(例えば、下り制御情報(DCI:Downlink Control Information))を、基地局からUEに対して送信するために、制御リソースセット(CORESET:COntrol REsource SET)が利用されることが検討されている。
CORESETは、制御チャネル(例えば、PDCCH(Physical Downlink Control Channel))の割当て候補領域である。UEは、CORESETの設定情報(CORESET設定(CORESET configuration)、coreset-Configと呼ばれてもよい)を、基地局から受信してもよい。UEは、自端末に設定されたCORESETをモニタすれば、物理レイヤ制御信号を検出できる。
CORESET設定は、例えば、上位レイヤシグナリングによって通知されてもよく、所定のRRC情報要素(「ControlResourceSet」と呼ばれてもよい)で表されてもよい。
CORESET設定は、主にPDCCHのリソース関連設定及びRS関連設定の情報を含み、例えば以下の少なくとも1つに関する情報を含んでもよい:
・CORESETの識別子(CORESET ID(Identifier))、
・PDCCH用の復調用参照信号(DMRS:DeModulation Reference Signal)のスクランブルID、
・時間長(time duration)(例えば、1、2又は3シンボル)、
・周波数領域のリソース割り当て(Frequency-domain Resource Allocation)、
・制御チャネル要素(CCE:Control Channel Element)とリソース要素グループ(REG:Resource Element Group)とのマッピング(インターリーブ、ノンインターリーブ)、
・REGバンドルサイズ、
・インターリーブの場合のシフト量のインデックス、
・PDCCH用の送信設定通知(TCI:Transmission Configuration Indication)状態、
・TCIフィールドの有効化/無効化。
一方で、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法は、サーチスペース(SS:Search Space)として定義される。UEは、サーチスペースの設定情報(サーチスペース設定(search space configuration)と呼ばれてもよい)を、基地局から受信してもよい。
サーチスペース設定は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によってUEに通知されてもよく、所定のRRC情報要素(「SearchSpace」と呼ばれてもよい)で表されてもよい。
サーチスペース設定は、主にPDCCHのモニタリング関連設定及び復号関連設定の情報を含み、例えば以下の少なくとも1つに関する情報を含んでもよい:
・サーチスペースの識別子(サーチスペースID)、
・当該サーチスペース設定が関連するCORESET ID、
・共通サーチスペース(C-SS:Common SS)かUE固有サーチスペース(UE-SS:UE-specific SS)かを示すフラグ、
・アグリゲーションレベルごとのPDCCH候補数、
・モニタリング周期、
・モニタリングオフセット、
・スロット内のモニタリングパターン(例えば14ビットのビットマップ)。
UEは、サーチスペース設定に基づいて、CORESETをモニタする。また、本開示の説明における「CORESETのモニタ」は、「CORESETに対応付けられたサーチスペース(PDCCH候補)のモニタ」、「下り制御チャネル(例えばPDCCH)のモニタ」、「下り制御チャネル(例えばPDCCH)のブラインド復号及び/又は検出」などで読み替えられてもよい。
UEは、上記サーチスペース設定に含まれるCORESET IDに基づいて、CORESETとサーチスペースとの対応関係を判断できる。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。
さて、図1で述べたステップS105におけるビーム回復要求に対する応答信号のモニタを、BFR用CORESETを用いて行うことが検討されている。当該BFR用CORESETは、所定のRRC情報要素(IE:Information Element)(「CORESET-BFR」と呼ばれてもよい)を用いてUEに設定されてもよい。
しかしながら、BFR用CORESETについてどのようなサーチスペースを用いるかということは、まだ検討が進んでいない。適切なサーチスペースを規定しなければ、通信スループット、周波数利用効率などの劣化が生じるおそれがある。
そこで、本発明者らは、BFR用CORESETに好適なサーチスペースの設定及び関連動作を着想した。
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(無線通信方法)
<第1の実施形態>
第1の実施形態では、UEは、BFRを設定される場合には、BFR用CORESET及びBFR用サーチスペースを上位レイヤシグナリングによって設定される。当該BFR用サーチスペースは、所定のRRC情報要素(「SearchSpace-BFR」と呼ばれてもよい)を用いてUEに設定されてもよい。
BFRの期間中(ビーム障害の発生からビーム回復成功まで)、UEは、BFR用CORESETの設定パラメータ(CORESET-BFRを用いて設定されたパラメータ)及びBFR用サーチスペースの設定パラメータ(SearchSpace-BFRを用いて設定されたパラメータ)に基づいて、PDCCHをモニタしてもよい。
CORESET-BFRは、CORESETの識別子(CORESET ID)を含んでもよい。当該CORESET ID(以下、「BFR-CORESET ID」とも呼ぶ)は、CORESET設定のいずれかに含まれるCORESET IDに対応してもよい。つまり、UEは、BFR-CORESET IDに対応するCORESET設定を、BFR用CORESETに用いると決定してもよい。
CORESET-BFRは、CORESET設定に含まれる上述のPDCCHのリソース関連設定、RS関連設定の情報などを含んでもよい。CORESET-BFRに含まれるパラメータが、BFR-CORESET IDに対応するCORESET設定に含まれるパラメータと重複して設定される場合には、CORESET-BFRに含まれるパラメータが優先的に用いられてもよい(つまり、パラメータがオーバライドして用いられてもよい)。
SearchSpace-BFRは、サーチスペースの識別子(サーチスペースID)を含んでもよい。当該サーチスペースID(以下、「BFR-サーチスペースID」とも呼ぶ)は、サーチスペース設定のいずれかに含まれるサーチスペースIDに対応してもよい。つまり、UEは、BFR-サーチスペースIDに対応するサーチスペース設定を、BFR用サーチスペースに用いると決定してもよい。
SearchSpace-BFRは、サーチスペース設定に含まれる上述のPDCCHのモニタリング関連設定、復号関連設定の情報などを含んでもよい。SearchSpace-BFRに含まれるパラメータが、BFR-サーチスペースIDに対応するサーチスペース設定に含まれるパラメータと重複して設定される場合には、SearchSpace-BFRに含まれるパラメータが優先的に用いられてもよい(つまり、パラメータがオーバライドして用いられてもよい)。
BFR-CORESET IDは、CORESET-BFRに含まれるCORESET IDを意味してもよいし、より一般的にBFR用CORESETのCORESET IDを意味してもよい。BFR-サーチスペースIDは、SearchSpace-BFRに含まれるCORESET IDを意味してもよいし、より一般的にBFR用サーチスペースのサーチスペースIDを意味してもよい。
UEは、SearchSpace-BFRが示すサーチスペース設定に基づいて、CORESET-BFRが示すCORESETをモニタする。なお、SearchSpace-BFRが示すサーチスペース設定に含まれるCORESET IDが、BFR-CORESET IDと異なる場合には、UEは、当該サーチスペース設定に含まれるCORESET ID以外のパラメータはそのまま用いて、CORESET IDのみをBFR-CORESET IDに読み替えてもよい。
なお、CORESET-BFRを用いない場合には、SearchSpace-BFRが、BFR-CORESET IDを含んでもよい。
CORESET-BFR、SearchSpace-BFR、CORESET設定又はサーチスペース設定は、モニタ対象のDCIフォーマット(例えば、DCIフォーマット0_0、0_1、1_0、1_1、2_Xなど)の情報を含んでもよい。UEは、当該情報に基づいて、BFR中にモニタするDCIフォーマットを決定してもよい。
CORESET-BFRが設定され、かつSearchSpace-BFRが上位レイヤシグナリングによって明示的に設定されない場合、UEは、当該CORESET-BFRが示すCORESET IDのCORESETに対応付けられたサーチスペース設定のうち、所定のサーチスペースを、SearchSpace-BFRと解釈してもよい。
例えば、CORESET-BFRがCORESET ID=0であり、かつCORESET ID=0と対応付けてモニタするサーチスペース設定がSearch Space ID=0、1及び2である(つまり、Search Space ID=0、1及び2のサーチスペース設定は、それぞれCORESET ID=0を含む)と想定する。この場合、UEは、CORESET ID=0に対応付けられたSearch Space ID=0、1及び2のいずれかをSearchSpace-BFRとして、ビーム回復手順の際に、PDCCHのモニタを行ってもよい。
SearchSpace-BFRが上位レイヤシグナリングによって明示的に設定されない場合にCORESET-BFRに対応付けられるサーチスペースIDの選択ルールは、仕様によって規定されてもよいし、上位レイヤシグナリングなどによって設定されてもよい。
例えば、UEは、以下の少なくとも1つのルールに基づいて、CORESET-BFRに対応するCORESETと対応付けられたサーチスペース設定のうち、CORESET-BFRに対応するサーチスペースの設定を特定してもよい:
・一番小さいID(例えば、サーチスペースID又はCORESET ID)を有するサーチスペース、
・一番大きいIDを有するサーチスペース、
・UE-SSとして設定されたサーチスペース、
・C-SSとして設定されたサーチスペース、
・特定のDCIフォーマット(例えばDCIフォーマット0_0、DCIフォーマット0_1など)をモニタするよう設定されたサーチスペース。
第1の実施形態によれば、BFR用CORESETに関してBFR用サーチスペースをUEに設定することができ、UEはBFR中のPDCCHを適切にモニタできる。
なお、以下の第2及び第3の実施形態において、RA手順中、UEは、BFR用CORESETの設定パラメータ(CORESET-BFRを用いて設定されたパラメータ)及びBFR用サーチスペースの設定パラメータ(SearchSpace-BFRを用いて設定されたパラメータ)に基づいて、C-SS及び/又はUE-SSにおけるPDCCHをモニタしてもよい。また、RA手順中、UEは、C-SSにおけるPDCCHをモニタしてもよい。
<第2の実施形態>
第2の実施形態は、CF-BFRに関する。図2は、第2の実施形態に係るCF-BFRのランダムアクセス手順の一例を示す図である。
CF-BFRの場合、UEのMACレイヤは、所定の条件に基づいて、物理レイヤ(PHYレイヤ(physical layer)、レイヤ1などと呼ばれてもよい)に対してプリアンブル送信をトリガしてもよい。PHYレイヤは、MACレイヤの指示に従ってプリアンブル送信を行ってもよい(ステップS201)。
例えば、UEは、上述したようなDL-RSが所定の閾値より大きい受信電力(例えば、RSRP(Reference Signal Received Power))を有する場合、当該DL-RS(又は当該DL-RSによって特定されるビーム)に関連するPRACHリソースを用いてプリアンブル送信を行う制御を行ってもよい。
当該所定の条件(例えば、上記所定の閾値など)に関する情報は、例えば上位レイヤシグナリング(RRCシグナリング、SIBなど)を用いてUEに設定されてもよい。
また、UEは、基地局からプリアンブル送信をトリガする情報(PDCCH order)を受信し、当該情報に基づいてプリアンブル送信を行う制御を行ってもよい。
UEは、所定の期間(モニタリングウィンドウと呼ばれてもよい)において、UEに対応するC-RNTIによって巡回冗長検査(CRC:Cyclic Redundancy Check)ビットがマスキング(スクランブル)されたPDCCHをモニタしてもよい(ステップS202)。UEは、当該PDCCHを成功裏に受信(復号)できた場合、BFRが成功裏に完了したと判断してもよいし、成功裏に完了したとみなしてもよい(consider)。
上記所定の期間に関する情報(時間長など)は、例えば上位レイヤシグナリング(RRCシグナリング、SIBなど)を用いてUEに設定されてもよい。上記所定の期間の開始は、例えば、BFRの開始と同じであってもよいし、RAプリアンブルの送信タイミングと同じであってもよいし、これらの少なくとも1つに基づいて決定されてもよい。
上記所定の期間においてモニタするPDCCHは、ULデータチャネル(例えば、PUSCH)スケジューリング用のDCI(「ULグラント」などと呼ばれてもよい)を含んでもよい。当該PDCCHは、CSI報告をUEに要求するためのCSI要求フィールド(CSI request field)を含んでもよい。
UEは、上記所定の期間においてULグラントをモニタし、ULグラントに含まれるCSI要求フィールドの値に基づいて、当該ULグラントでスケジューリングされたPUSCHを用いて、所定のCSIをフィードバックしてもよい。この場合、ビーム障害の発生後に迅速にCSIを報告できるため、ビーム調節が好適に制御できる。
例えば、当該PDCCHは、UE-SSにおいて送信されるDCI(例えば、DCIフォーマット0_1)を含んでもよいし、C-SS及び/又はUE-SSにおいて送信されるDCI(例えば、DCIフォーマット0_0)を含んでもよい。これらのDCIは、C-RNTIを用いてスクランブルされ、かつCSI要求フィールドを含むことから、UE-SSにおいて送信されることが好ましい。
なお、DCIフォーマット0_1は、ノンフォールバック用DCI、ノンフォールバック用ULグラントなどの文言で読み替えられてもよい。ノンフォールバックDCI(non-fallback DCI)は、例えば、UE-SSにおいて送信されるDCIであって、UE固有の上位レイヤシグナリング(RRCシグナリング)によって構成(内容、ペイロードなど)を設定可能なDCIであってもよい。
また、DCIフォーマット0_0は、フォールバック用DCI、フォールバック用ULグラントなどの文言で読み替えられてもよい。フォールバックDCI(fallback DCI)は、C-SSにおいて送信されるDCIであって、UE固有の上位レイヤシグナリングによって構成を設定できないDCIであってもよい。なお、フォールバックDCIについても、UE共通の上位レイヤシグナリング(例えば報知情報、システム情報など)によって構成(内容、ペイロードなど)が設定可能であってもよい。
DCIフォーマット0_1は、CSI要求フィールドを含む。当該CSI要求フィールドのサイズ(ビット数)は、上位レイヤシグナリング(例えば、RRCシグナリング)によって設定される、ビーム回復手順以外の場合にULデータスケジューリングに利用されるDCIフォーマット0_1に設定されるCSI要求フィールドのサイズ(「ReportTriggerSize」などと呼ばれてもよい)と同じであってもよい。
当該設定されるCSI要求フィールドのサイズは、DCIフォーマット0_1のためのCSI要求フィールドのサイズに対応してもよい。「ReportTriggerSize」は、例えば、任意のビット数(1、2、3、4、…)であってもよい。
DCIフォーマット0_0は、CSI要求フィールドを含んでもよいし、含まなくてもよい。つまり、第2の実施形態における上記PDCCHに含まれるDCIフォーマット0_0のCSI要求フィールドは、Xビットで固定であってもよいし、0ビットで固定であってもよい。
UEは、当該DCIフォーマット0_0と、報告に用いるCSI設定と、の対応関係に基づいて、当該DCIフォーマット0_0によってトリガされるCSI設定(CSI報告)を決定してもよい。当該対応関係は、仕様によって定められてもよいし、上位レイヤシグナリング(例えば、RRCシグナリング)によって設定されてもよい。
例えば、当該DCIフォーマット0_0のCSI要求フィールドが0又はXビットの場合、UEは、当該DCIフォーマット0_0(又はBFR)に関連して1つ設定されたCSI報告をトリガしてもよい。
当該DCIフォーマット0_0のCSI要求フィールドがXビットの場合、UEは、当該DCIフォーマット0_0(又はBFR)に関連して2個設定されたCSI報告のうち、CSI要求フィールドが指示する1つをトリガしてもよい。例えば、CSI要求フィールド=0は第1の設定ID、CSI要求フィールド=1は第2の設定ID、…、CSI要求フィールド=2-1は第Yの設定IDに対応してもよく、UEは指示された設定IDに対応するCSI報告をトリガしてもよい。
なお、もともとDCIフォーマット0_0に含まれるフィールド(例えば、HARQプロセス番号(HPN:HARQ Process Number)フィールド、冗長バージョン(RV:Redundancy Version)フィールド、新データ指示(NDI:New Data Indicator)フィールド、MCS(Modulation and Coding Scheme)フィールドなど)のうち、1つ又は複数のフィールドが、上記CSI要求フィールドとして解釈されてもよい。
第2の実施形態によれば、BFR用サーチスペースを用いて、CF-BFRを適切に実施できる。
<第3の実施形態>
第3の実施形態は、CB-BFRに関する。図3は、第3の実施形態に係るCB-BFRのランダムアクセス手順の一例を示す図である。
CB-BFRの場合、UEのMACレイヤは、所定の条件に基づいて、PHYレイヤに対してプリアンブル送信をトリガしてもよい。PHYレイヤは、MACレイヤの指示に従ってプリアンブル送信を行ってもよい(ステップS301)。
例えば、UEは、上述したようなDL-RSが所定の閾値より大きい受信電力(例えば、RSRP)を有する場合、当該DL-RSに関連するPRACHリソースを用いてプリアンブル送信を行う制御を行ってもよい。
当該所定の条件(例えば、上記所定の閾値など)に関する情報は、例えば上位レイヤシグナリング(RRCシグナリング、SIBなど)を用いてUEに設定されてもよい。
UEは、所定の期間(モニタリングウィンドウと呼ばれてもよい)において、ランダムアクセスRNTI(RA-RNTI:Random Access RNTI)によってCRCビットがマスキング(スクランブル)されたPDCCHをモニタしてもよい(ステップS302)。RA-RNTIは、PRACHリソースに基づいて決定されてもよい。
上記所定の期間に関する情報(時間長など)は、例えば上位レイヤシグナリング(RRCシグナリング、SIBなど)を用いてUEに設定されてもよい。上記所定の期間の開始は、例えば、BFRの開始と同じであってもよいし、RAプリアンブルの送信タイミングと同じであってもよいし、これらの少なくとも1つに基づいて決定されてもよい。
上記所定の期間においてモニタするPDCCHは、DLデータチャネルスケジューリング用のDCI(「DLアサインメント」などと呼ばれてもよい)を含んでもよい。例えば、当該DCIは、C-SSにおいて送信されるDCI(例えば、DCIフォーマット1_0)を含んでもよい。当該DCIは、RA手順におけるメッセージ2のPDSCHをスケジュールするために用いられてもよい。
メッセージ2のPDSCHは、RAレスポンスのためのMAC CEを含み、当該MAC CEはさらに、メッセージ3のPUSCHをスケジュールするためのULグラント(以下、メッセージ3グラントとも呼ぶ)を含んでもよい。UEは、メッセージ3グラントに基づいて(例えば、当該グラントが指示するリソースを用いて)、メッセージ3のPUSCHを送信する(ステップS303)。
メッセージ3グラントは、CSI要求フィールドを含んでもよいし、含まなくてもよい。つまり、第3の実施形態におけるメッセージ3グラントのCSI要求フィールドは、Yビットで固定であってもよいし、0ビットで固定であってもよい。
UEは、メッセージ3グラントと、報告に用いるCSI設定と、の対応関係に基づいて、メッセージ3グラントによってトリガされるCSI設定(CSI報告)を決定してもよい。当該対応関係は、仕様によって定められてもよいし、上位レイヤシグナリング(例えば、RRCシグナリング)によって設定されてもよい。
例えば、メッセージ3グラントのCSI要求フィールドが0又はYビットの場合、UEは、メッセージ3グラント(又はBFR)に関連して1つ設定されたCSI報告をトリガしてもよい。
メッセージ3グラントのCSI要求フィールドがYビットの場合、UEは、メッセージ3グラント(又はBFR)に関連して2個設定されたCSI報告のうち、CSI要求フィールドが指示する1つをトリガしてもよい。
メッセージ3のPUSCHは、UEに対応するC-RNTIを含んでもよい。メッセージ3のPUSCHは、メッセージ3グラントによって指示されたCSI報告を含んでもよい。
メッセージ3のPUSCHは、TC-RNTI(Temporary C-RNTI)によってCRCビットがマスキング(スクランブル)されたPDCCHに含まれるULグラントに基づいて、再送されてもよい。当該ULグラントは、C-SSにおいて送信されるDCI(例えば、DCIフォーマット0_0)であってもよい。
UEは、メッセージ3のPUSCHの送信後、C-RNTIによってCRCビットがマスキング(スクランブル)されたPDCCHをモニタしてもよい(ステップS304)。当該PDCCHは、C-SS及び/又はUE-SSにおいて送信されるDCI(例えば、DCIフォーマット1_0及び/又は1_1)を含んでもよい。
なお、DCIフォーマット1_1は、ノンフォールバック用DCI、ノンフォールバック用DLアサインメントなどの文言で読み替えられてもよい。また、DCIフォーマット1_0は、フォールバック用DCI、フォールバック用DLアサインメントなどの文言で読み替えられてもよい。
UEは、メッセージ3のPUSCHの送信後、C-RNTIによってCRCビットがマスキング(スクランブル)された上記PDCCHを成功裏に受信(復号)できた場合、BFRが成功裏に完了したと判断してもよい。UEは、上述の所定の期間内に上記PDCCHを成功裏に受信できた場合、BFRが成功裏に完了したと判断しても(又はみなしても)よいし、そうでない場合、BFRが失敗したと判断してもよい。
第3の実施形態によれば、BFR用サーチスペースを用いて、CB-BFRを適切に実施できる。
(無線通信システム)
以下、本開示の実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記実施形態に示す無線通信方法の少なくとも一つ又はこれらの組み合わせを用いて通信が行われる。
図4は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域で行う特定のフィルタリング処理、送受信機が時間領域で行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
例えば、ある物理チャネルについて、構成するOFDMシンボルのサブキャリア間隔が異なる場合及び/又はOFDMシンボル数が異なる場合には、ニューメロロジーが異なると称されてもよい。
無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
下りL1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)及び/又はEPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)の少なくとも一つを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線リンク品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
<無線基地局>
図5は、一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本開示に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ101は、例えばアレーアンテナにより構成することができる。また、送受信部103は、シングルBF、マルチBFを適用できるように構成されている。
送受信部103は、送信ビームを用いて信号を送信してもよいし、受信ビームを用いて信号を受信してもよい。送受信部103は、制御部301によって決定された所定のビームを用いて信号を送信及び/又は受信してもよい。
送受信部103は、上記各実施形態で述べた各種情報を、ユーザ端末20から受信及び/又はユーザ端末20に対して送信してもよい。
図6は、一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
制御部301は、同期信号(例えば、PSS/SSS)、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
制御部301は、ベースバンド信号処理部104によるデジタルBF(例えば、プリコーディング)及び/又は送受信部103によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。
制御部301は、無線リンク障害(RLF)及び/又はビーム回復(BR)に関する構成情報に基づいてRLF及び/又はBRの設定を制御してもよい。
制御部301は、ユーザ端末20のための無線リンクモニタリング(RLM)及び/又はビーム回復(BR:Beam Recovery)を制御してもよい。制御部301は、ビーム回復要求に応じてユーザ端末20に応答信号を送信する制御を行ってもよい。
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理などが行われる。
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
図7は、一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。
送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本開示に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ201は、例えばアレーアンテナにより構成することができる。また、送受信部203は、シングルBF、マルチBFを適用できるように構成されている。
送受信部203は、送信ビームを用いて信号を送信してもよいし、受信ビームを用いて信号を受信してもよい。送受信部203は、制御部401によって決定された所定のビームを用いて信号を送信及び/又は受信してもよい。
送受信部203は、上記各実施形態で述べた各種情報を無線基地局10から受信及び/又は無線基地局10に対して送信してもよい。例えば、送受信部203は、無線基地局10に対して、ビーム回復要求を送信してもよい。
図8は、一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
制御部401は、ベースバンド信号処理部204によるデジタルBF(例えば、プリコーディング)及び/又は送受信部203によるアナログBF(例えば、位相回転)を用いて、送信ビーム及び/又は受信ビームを形成する制御を行ってもよい。
制御部401は、測定部405の測定結果に基づいて、無線リンクモニタリング(RLM:Radio Link Monitoring)及び/又はビーム回復(BR:Beam Recovery)を制御してもよい。
制御部401は、MACレイヤ処理部及びPHYレイヤ処理部を含んでもよい。なお、MACレイヤ処理部及び/又はPHYレイヤ処理部は、制御部401、送信信号生成部402、マッピング部403、受信信号処理部404及び測定部405のいずれか、又はこれらの組み合わせによって実現されてもよい。
MACレイヤ処理部は、MACレイヤの処理を実施し、PHYレイヤ処理部は、PHYレイヤの処理を実施する。例えば、PHYレイヤ処理部から入力される下りリンクのユーザデータや報知情報などは、MACレイヤ処理部の処理を経てRLCレイヤ、PDCPレイヤなどの処理を行う上位レイヤ処理部に出力されてもよい。
PHYレイヤ処理部は、ビーム障害を検出してもよい。PHYレイヤ処理部は、検出したビーム障害に関する情報をMACレイヤ処理部に通知してもよい。
MACレイヤ処理部は、PHYレイヤ処理部におけるビーム回復要求の送信をトリガしてもよい。例えば、MACレイヤ処理部は、PHYレイヤ処理部から通知されたビーム障害に関する情報に基づいて、ビーム回復要求の送信をトリガしてもよい。
制御部401は、下り制御チャネル(PDCCH)で送信される下り制御情報(DCI)のフォーマットと、当該PDCCHのモニタを行うサーチスペースと、の対応関係を特定(判断)してもよい。当該サーチスペースは、上記モニタの対象であるBFR手順用の制御リソースセット(BFR用CORESET)と関連付けられたBFR手順用のサーチスペース(BFR用サーチスペース)として、ユーザ端末20に設定されてもよい。
制御部401は、BFR手順において当該ユーザ端末20に対応する識別子(例えば、C-RNTI)によって巡回冗長検査(CRC)ビットがスクランブルされた上記下り制御情報(DCI)を成功裏に復号すると、当該BFR手順が成功したとみなしてもよい。
制御部401は、BFR手順において、メッセージ3の送信後、当該ユーザ端末20に対応する識別子(例えば、C-RNTI)によって巡回冗長検査(CRC)ビットがスクランブルされた上記下り制御情報(DCI)を成功裏に復号すると、当該BFR手順が成功したとみなしてもよい。
なお、メッセージ3は、CB-BFRにおいて、メッセージ2のPDSCH(RAレスポンス用MAC CE)に含まれるULグラント(メッセージ3グラント)に基づいて、PUSCHを用いて送信される信号であってもよい。メッセージ3は、CB-BFRにおいて、TC-RNTI(Temporary C-RNTI)によってCRCスクランブルされたULグラントに基づいて、PUSCHを用いて再送される信号であってもよい。
また、制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
例えば、本開示の一実施形態における無線基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本明細書中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (4)

  1. ビーム障害回復(Beam Failure Recovery(BFR))手順用の制御リソースセット(COntrol REsource SET(CORESET))と関連付けられた前記BFR手順用のサーチスペースがRRC(Radio Resource Control)情報要素により設定される場合、前記RRC情報要素により設定された前記BFR手順用のサーチスペースにおいて、前記BFR手順中に下り制御チャネルのモニタを実施するように制御し
    前記BFR手順用のサーチスペースが前記RRC情報要素により設定されない場合、共通サーチスペースにおいて、前記BFR手順中に下り制御チャネルのモニタを実施するように制御する制御部と、
    前記BFR手順中に下り制御チャネルのモニタを実施する受信部と、を有することを特徴とする端末。
  2. ビーム障害回復(Beam Failure Recovery(BFR))手順用の制御リソースセット(COntrol REsource SET(CORESET))と関連付けられた前記BFR手順用のサーチスペースがRRC(Radio Resource Control)情報要素により設定される場合、前記RRC情報要素により設定された前記BFR手順用のサーチスペースにおいて、前記BFR手順中に下り制御チャネルのモニタを実施するように制御し
    前記BFR手順用のサーチスペースが前記RRC情報要素により設定されない場合、共通サーチスペースにおいて、前記BFR手順中に下り制御チャネルのモニタを実施するように制御する工程と、
    前記BFR手順中に下り制御チャネルのモニタを実施する工程と、を有することを特徴とする端末の無線通信方法。
  3. 端末のビーム障害回復(Beam Failure Recovery(BFR))手順用の制御リソースセット(COntrol REsource SET(CORESET))と関連付けられた前記BFR手順用のサーチスペースがRRC(Radio Resource Control)情報要素により端末に設定される場合、前記RRC情報要素により設定された前記BFR手順用のサーチスペースにおいて、前記BFR手順中に下り制御チャネル送信を実施するように制御し
    前記BFR手順用のサーチスペースが前記RRC情報要素により前記端末に設定されない場合、共通サーチスペースにおいて、前記BFR手順中に下り制御チャネルの送信を実施するように制御する制御部と、
    前記端末による前記BFR手順中に下り制御チャネルを介して下り制御情報を送信する送信部と、を有することを特徴とする基地局。
  4. 端末と基地局を有するシステムであって、
    前記端末は、
    ビーム障害回復(Beam Failure Recovery(BFR))手順用の制御リソースセット(COntrol REsource SET(CORESET))と関連付けられた前記BFR手順用のサーチスペースがRRC(Radio Resource Control)情報要素により設定される場合、前記RRC情報要素により設定された前記BFR手順用のサーチスペースにおいて、前記BFR手順中に下り制御チャネルのモニタを実施するように制御し
    前記BFR手順用のサーチスペースが前記RRC情報要素により設定されない場合、共通サーチスペースにおいて、前記BFR手順中に下り制御チャネルのモニタを実施するように制御する制御部と、
    前記BFR手順中に下り制御チャネルのモニタを実施する受信部と、を有し、
    前記基地局は、
    前記端末による前記BFR手順中に前記下り制御チャネルを送信する送信部を有することを特徴とするシステム。
JP2020500244A 2018-02-19 2018-02-19 端末、無線通信方法、基地局及びシステム Active JP7100113B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/005802 WO2019159370A1 (ja) 2018-02-19 2018-02-19 ユーザ端末及び無線通信方法

Publications (2)

Publication Number Publication Date
JPWO2019159370A1 JPWO2019159370A1 (ja) 2021-02-18
JP7100113B2 true JP7100113B2 (ja) 2022-07-12

Family

ID=67618599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020500244A Active JP7100113B2 (ja) 2018-02-19 2018-02-19 端末、無線通信方法、基地局及びシステム

Country Status (7)

Country Link
US (2) US20210084507A1 (ja)
EP (2) EP4203341A1 (ja)
JP (1) JP7100113B2 (ja)
CN (1) CN111742502B (ja)
BR (1) BR112020016843A2 (ja)
SG (1) SG11202007761UA (ja)
WO (1) WO2019159370A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019169918A (ja) * 2018-03-26 2019-10-03 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN110536419B (zh) * 2018-05-23 2023-04-18 中兴通讯股份有限公司 一种波束恢复方法和装置
ES2962807T3 (es) * 2018-09-28 2024-03-21 Apple Inc Configuración del supuesto espacial para la transmisión de enlace descendente de nueva radio (NR)
US11425745B2 (en) * 2019-03-28 2022-08-23 Beijing Xiaomi Mobile Software Co., Ltd. Activation indication of transmission configuration groups
CN117375652A (zh) * 2019-11-07 2024-01-09 松下电器(美国)知识产权公司 集成电路
WO2022082725A1 (en) * 2020-10-23 2022-04-28 Nokia Shanghai Bell Co., Ltd. Method, apparatus and computer program
KR20240037966A (ko) * 2021-07-21 2024-03-22 삼성전자주식회사 Pdcch 스킵 및 빔 실패 복구 시스템 및 방법
WO2023015306A1 (en) * 2021-08-05 2023-02-09 Qualcomm Incorporated Configuration of beam failure recovery search space set for physical downlink control channel repetition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811326B2 (en) * 2010-03-11 2014-08-19 Lg Electronics Inc. Method and device for allocating control channel
US9497737B2 (en) * 2011-10-31 2016-11-15 Lg Electronics Inc. Method and apparatus for searching for control channel in multi-node system
WO2013066083A2 (ko) * 2011-11-01 2013-05-10 엘지전자 주식회사 제어채널 모니터링 방법 및 무선기기
EP2936702B1 (en) * 2012-12-21 2021-08-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control channel by beamforming in a wireless communication system
ES2955591T3 (es) * 2016-07-01 2023-12-04 Asustek Comp Inc Procedimiento y aparato para gestionar la comunicación cuando un haz de servicio deja de ser válido en un sistema de comunicación inalámbrica
CN109565390B (zh) * 2016-07-21 2021-10-22 Lg 电子株式会社 在无线通信系统中发送或者接收下行链路控制信息的方法及其设备
CN107666342B (zh) * 2016-07-28 2021-01-15 华硕电脑股份有限公司 在无线通信系统中操作用户设备波束成形的方法和设备
CN107612602B (zh) * 2017-08-28 2020-04-21 清华大学 毫米波通信系统的波束恢复方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MediaTek Inc.,Clarifications on Beam Failure Recovery[online],3GPP TSG RAN WG1 Meeting AH1801 R1-1800160,2018年01月13日,インターネット<URL:https://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_AH/NR_AH_1801/Docs/R1-1800160.zip>
NTT DOCOMO,Remaining issues on beam recovery[online],3GPP TSG RAN WG1 Meeting #92 R1-1802472,2018年02月17日,インターネット<URL:https://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_92/Docs/R1-1802472.zip>
NTT DOCOMO,Remaining issues on beam recovery[online],3GPP TSG RAN WG1 Meeting AH 1801 R1-1800661,2018年01月13日,インターネット<URL:https://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_AH/NR_AH_1801/Docs/R1-1800661.zip>
Samsung,Issues on beam failure recovery[online],3GPP TSG RAN WG1 Meeting AH 1801 R1-1800434,2018年01月13日,インターネット<URL:https://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_AH/NR_AH_1801/Docs/R1-1800434.zip>

Also Published As

Publication number Publication date
WO2019159370A1 (ja) 2019-08-22
US20230007512A1 (en) 2023-01-05
US20210084507A1 (en) 2021-03-18
JPWO2019159370A1 (ja) 2021-02-18
SG11202007761UA (en) 2020-09-29
EP3758251A1 (en) 2020-12-30
EP4203341A1 (en) 2023-06-28
CN111742502A (zh) 2020-10-02
EP3758251A4 (en) 2021-09-15
CN111742502B (zh) 2024-06-25
BR112020016843A2 (pt) 2020-12-22

Similar Documents

Publication Publication Date Title
JP7157513B2 (ja) 端末、無線通信方法及びシステム
JP7227150B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7074766B2 (ja) 端末、無線通信方法及びシステム
CN111837440B (zh) 终端、基站、系统以及无线通信方法
JP7104067B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7100113B2 (ja) 端末、無線通信方法、基地局及びシステム
CN111919504B (zh) 用户终端以及无线通信方法
JP7284175B2 (ja) 端末、無線通信方法及びシステム
JP7366889B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7284174B2 (ja) 端末、無線通信方法及びシステム
JP7254784B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7201691B2 (ja) 端末、無線通信方法、基地局およびシステム
JPWO2019138531A1 (ja) ユーザ端末及び無線通信方法
WO2019087340A1 (ja) ユーザ端末及び無線通信方法
JP7074765B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2019203187A1 (ja) ユーザ端末及び無線通信方法
JP7082143B2 (ja) ユーザ端末及び無線通信方法
JP7100070B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7046926B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2019225689A1 (ja) ユーザ端末及び無線通信方法
WO2019092835A1 (ja) ユーザ端末及び無線通信方法
WO2018207374A1 (ja) ユーザ端末及び無線通信方法
JPWO2019049279A1 (ja) 端末、無線通信方法及び基地局
WO2019049347A1 (ja) ユーザ端末及び無線通信方法
JP6990698B2 (ja) 端末、無線通信方法、基地局及びシステム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220630

R150 Certificate of patent or registration of utility model

Ref document number: 7100113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150