WO2019047938A1 - 一种振镜矫正系统及方法 - Google Patents

一种振镜矫正系统及方法 Download PDF

Info

Publication number
WO2019047938A1
WO2019047938A1 PCT/CN2018/104693 CN2018104693W WO2019047938A1 WO 2019047938 A1 WO2019047938 A1 WO 2019047938A1 CN 2018104693 W CN2018104693 W CN 2018104693W WO 2019047938 A1 WO2019047938 A1 WO 2019047938A1
Authority
WO
WIPO (PCT)
Prior art keywords
galvanometer
spot
horizontal direction
field
scanning system
Prior art date
Application number
PCT/CN2018/104693
Other languages
English (en)
French (fr)
Inventor
唐江锋
刘志宇
朱振朋
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Priority to JP2020510520A priority Critical patent/JP6967140B2/ja
Priority to KR1020207010221A priority patent/KR102392452B1/ko
Publication of WO2019047938A1 publication Critical patent/WO2019047938A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Definitions

  • the invention belongs to the field of scanning devices and relates to a galvanometer correction system and method.
  • the galvanometer needs to be corrected before use and after installation, and then a certain amount of compensation data is obtained, so that it can be scanned more accurately when used.
  • the manual correction is used in the existing correction method, so that the error in the manual correction process is liable to occur, and the correction effect is poor.
  • the present invention provides a galvanometer correction system, including a galvanometer scanning system, a galvanometer controller, a gantry, a focusing device, a detection sampling system, and a spot position measuring device
  • the galvanometer scanning system includes a galvo mirror for focusing a light beam emitted through the galvanometer, the detection sampling system for achieving alignment between the spot position measuring device and the galvanometer, the galvanometer a controller for controlling movement of the galvanometer to form a plurality of spots in a field corresponding to the galvanometer, the galvanometer scanning system being movable in the first horizontal direction along the gantry, and capable of following the gantry Move in the vertical direction.
  • the galvanometer correction system further comprises a water cooling system, configured to perform water cooling and cooling on the galvanometer scanning system.
  • the spot position measuring device is a profiler.
  • the galvanometer correction system further includes a workpiece table, wherein the workpiece table is movable in a horizontal second direction, wherein the second horizontal direction is perpendicular to the first horizontal direction, and the spot position measuring device is connected On the upper or side of the workpiece table.
  • the workpiece stage is configured to drive the spot position measuring device to move to achieve measurement of a spot position.
  • the gantry is provided with a plurality of the galvanometer scanning systems.
  • the galvanometer correction system further comprises a laser device for providing an incident light beam to the galvanometer scanning system.
  • the focusing device is an F-theta mirror.
  • the present invention also provides a galvanometer correction method using the above galvanometer correction system, comprising the following steps:
  • S3 calculating an error amount of the galvanometer field to be compensated according to an error parameter in the current galvanometer field, where the error amount in the galvanometer field includes a first horizontal direction error amount and a second horizontal direction error amount;
  • S4 correcting, by the galvanometer controller, the galvanometer scanning system according to the first horizontal direction error amount and the second horizontal direction error amount obtained in S3, and controlling the corrected galvanometer scanning
  • the system re-scans and re-forms a plurality of spots, and detects and accurately determines the re-formed plurality of spots. If the accuracy is not satisfied, repeats S1 to S3; if the accuracy is satisfied, the steps are stopped to complete the error correction in the field.
  • the in-situ engraving model in the S2 is as follows:
  • ⁇ x, ⁇ y deviation of the spot from the actual imaging position and the nominal position in the first horizontal direction and the second horizontal direction;
  • x, y the nominal position of the spot set by the galvanometer controller
  • Tx, Ty translation of the actual imaging position and the nominal position of the spot in the galvanometer field in the first horizontal direction and the second horizontal direction;
  • Mx, My the actual imaging size of the spot in the galvanometer field relative to the nominal imaging size of the spot in the first horizontal direction and the second horizontal direction;
  • Rx, Ry the actual imaging position of the spot in the galvanometer field and the rotation of the nominal position in the first horizontal direction and the second horizontal direction;
  • the first horizontal direction error amount and the second horizontal direction error amount in the S3 include a compensation amount of the optical axis of the galvanometer at a nominal position of each spot, expressed as:
  • the galvanometer scanning system performs multiple spot position measurement at each specific measurement position, and takes an average value of the plurality of spot position data for calculation in S3.
  • the galvanometer correction method further includes the following steps:
  • S7 The nominal position of the spot in S6 is the same as the nominal position in S5, which are respectively x_nom i , y_nom i , S5 and S6, and the galvanometer scanning system performs m exposures at each position, and each The average of the sampled data of a spot is:
  • S8 correcting, by the galvanometer controller, the galvanometer scanning system according to the galvanometer mounting rotation amount obtained in S7, and controlling the corrected galvanometer scanning system to re-scan and re-form a plurality of spots, and The plurality of spotes that are reformed are detected and the accuracy is judged. If the accuracy is not satisfied, S5 to S7 are repeated, and if the accuracy is satisfied, the repeating step is stopped, and the installation rotation correction is completed.
  • the present invention provides a galvanometer correction system and method.
  • a galvanometer correction system and method When performing correction, by oscillating the scanning system at a specific measurement position (determined by the optical axis position of the galvanometer, it can be understood as a nominal position) using a deflection angle of the galvanometer to form a plurality of spots in a field corresponding to the measurement position, calculating a relationship between the measured position and the nominal position of the plurality of spots, thereby obtaining a galvanometer scanning system
  • the amount of error compensation in the field, and after the compensation amount is calculated, to verify the correctness of the compensation amount the present invention also uses a similar measurement, calculation, and accounting process to correct the installation rotation error of the galvanometer, so that The error existing in the correction is eliminated, and the accuracy of the compensation amount can be ensured after verification, and the utility is strong.
  • Figure 1 is a schematic view of a correction method in the present invention
  • FIG. 2 is a schematic illustration of a calibration system in accordance with the present invention.
  • Figure 3 is a schematic diagram of compensation amount feedback in the present invention.
  • Figure 4 is a schematic view of the galvanometer scanning system in S1 of the present invention.
  • Figure 5 is a schematic view of the galvanometer scanning system in S5 and S6 of the present invention.
  • Figure 6 is a structural view showing the position of the spot position measuring device in the side of the workpiece stage in the present invention.
  • Figure 7 is a calculated theoretical value of the deviation of the spot position in the x-direction and the y-direction in the embodiment of the present invention.
  • Figure 10 is a schematic view showing the structure of a plurality of galvanometer scanning systems connected to the gantry.
  • the galvanometer is one of the common components in the laser processing process and can be used in conjunction with laser equipment, F-theta mirrors, etc. to achieve laser scanning of the workpiece to be machined.
  • the galvanometer usually has a planar surface and can oscillate with respect to its central axis over a range of angles, the galvanometer acting, for example, to reciprocate the laser beam emitted by the laser device in a predetermined path.
  • the galvanometer may not meet the desired requirements, so it is necessary to correct the galvanometer.
  • the present invention provides a galvanometer correction system and method.
  • a galvanometer used in a laser processing process is taken as an example, and thus the light source device is described as a laser device in the following embodiments.
  • the focusing device is described as an F-theta mirror.
  • other light source devices and/or other focusing devices may also be used to implement the correction of the galvanometer, and the invention should not be limited thereto.
  • the galvanometer correction system includes a galvanometer scanning system 1, a galvanometer controller 2, a laser device 3, a gantry 4, an F-theta mirror 5, and a detection sampling system 6 And a spot position measuring device 7 for focusing the light beam emitted from the galvanometer scanning system 1, the detection sampling system 6 for effecting between the spot position measuring device 7 and the galvanometer scanning system 1
  • the position of the alignment mark on the substrate carried by the workpiece table 9 can be sampled by the sampling system 6 to obtain a first positional relationship of the spot position measuring device 7 with respect to the substrate, and then according to the detection sampling system 6
  • the second positional relationship (which is a known amount) of the galvanometer scanning system 1 results in a positional relationship of the spot position measuring device 7 with respect to the galvanometer scanning system 1, thereby achieving alignment.
  • the galvanometer controller 2 controls the galvanometer scanning system 1 to perform scanning so that the galvanometer in the galvanometer scanning system 1 is determined at one or more specific measurement positions (determined by the optical axis position of the galvanometer, which can be understood as a nominal position) Using the deflection angle of the light source and the galvanometer emitted by the laser device 3 to form one or more spots, the galvanometer scanning system 1 is mounted on the gantry 4 and can be moved in the x direction along the gantry 4, or with the gantry The frame 4 is moved in the z direction, where z is the vertical direction.
  • the galvanometer is mounted on the gantry 4, for example, in such a manner that the central axis extends in the y direction, wherein the x-direction and the y-direction are two directions perpendicular to each other in the horizontal plane.
  • the galvanometer correction includes galvanometer field error correction and galvanometer mounting rotation correction.
  • the oscillating angle of the galvanometer of the galvanometer scanning system 1 is such that the optical axis of the galvanometer (ie, the optical axis of the light emitted through the galvanometer) is sequentially struck in the x-direction and the y-direction, that is, the optical axis of the galvanometer forms an intersection with the xy plane.
  • a plurality of spots are formed in the field corresponding to the galvanometer, and the spot position measuring device 7 measures and records the positions of all the spots generated by the galvanometer scanning system 1. As shown in FIG. 4, several numbers are obtained in the x-direction scanning. a calibration spot 10, a plurality of second correction spots 11 are obtained in the y-direction scan;
  • the galvanometer controller 2 compensates the galvanometer scanning system 1 according to the x-direction and y-direction compensation amount obtained in S3, and re-scans and forms a spot by using the compensated galvanometer scanning system 1 (ie, repeating S1) And the detection of the re-formed spot and the accuracy judgment (ie, repeating S2), if the accuracy is not satisfied, the compensation amount is calculated again (ie, repeat S3).
  • the above S1 to S3 may be repeated a plurality of times until the accuracy satisfies the requirement, then the repeating step is stopped to complete the intra-field error correction.
  • ⁇ x, ⁇ y the deviation of the spot from the actual imaging position (ie, the position measured by the position measuring device 7) and the nominal position (ie, the position set by the galvanometer controller 2) in the x-direction and the y-direction;
  • x, y the nominal position of the spot set by the galvanometer controller
  • Tx, Ty the translation of the actual imaging position of the spot in the galvanometer field relative to the nominal position in the x and y directions;
  • Mx, My the actual imaging size of the spot in the galvanometer field relative to the nominal imaging size of the spot in the x and y directions;
  • Rx, Ry the actual imaging position of the spot in the galvanometer field relative to the nominal position in the x and y directions;
  • the galvanometer compensation amount in S3 is as follows, that is, the compensation amount of the optical axis of the galvanometer scanning system at each x, y position is:
  • the galvanometer scanning system 1 successively forms a plurality of spots at each measurement position in the x direction and the y direction, and takes the average value of the position data of the plurality of spots for the calculation in S3.
  • the galvanometer installation rotation correction includes the following steps:
  • the position x i,j ,y i,j in the coordinate system, where i 1,2,...,n is the number of exposure marks, and the spot projection can be repeated multiple times at each measurement position, thereby utilizing the spot position
  • a plurality of third correction spots 12 on the same horizontal line are obtained in the x-direction dot;
  • S7 The nominal position of the spot in S6 is the same as the nominal position in S5, which are respectively x_nom i , y_nom i , S5 and S6, and the galvanometer scanning system 1 performs m spot projection at each measurement position, and The average of the sampled data of each spot is:
  • FIG. 7 the calibration deviation curve of the theoretical calculation of the galvanometer system in the x-direction and the y-direction is shown in FIG. 8, wherein FIG. 8 is a step of substituting the known F-theta deviation value into the calculation.
  • the theoretical calibration deviation curve of the y direction, and FIG. 9 is the actual deviation diagram of the spot in the present embodiment. It can be seen from the figure that the spot can achieve a certain precision in both the x direction and the y direction after the correction adjustment is performed. The actual accuracy needs to be set and calibrated according to the actual situation.
  • the spot position measuring device 7 is a profiler; further comprising a water cooling system 8 for performing water cooling and cooling on the galvanometer scanning system 1, the water cooling temperature of the water cooling system 8 is 20 ° C - 24 ° C This embodiment is preferably 22 °C.
  • the galvanometer correction system of this embodiment further includes a workpiece stage 9, which moves in the y direction, and can achieve relative motion of the galvanometer scanning system 1 relative to the workpiece on the workpiece stage 9 in the y direction.
  • the spot position measuring device 7 is selectively connectable to the upper portion or the side portion of the workpiece table 9. When the spot position measuring device 7 is located at the side of the workpiece table 9, as shown in FIG. 6, the correcting galvanometer can be realized.
  • the system does not affect the galvanometer calibration system. After the galvanometer scanning system 1 performs laser processing on the workpiece on the workpiece table 9, the utility model has strong practicability.
  • a plurality of galvanometer scanning systems 1 can also be disposed on the gantry 4, as shown in FIG. 10, so that processing of multiple sets of galvanometer scanning systems 1 can be performed simultaneously, and several galvanometer scanning systems 1 can be identical
  • a laser device 3 is connected, and may also be respectively connected to the laser device 3.
  • different galvanometer scanning systems 1 may be connected to the same galvanometer controller 2, or may be respectively connected to different galvanometer controllers 2, according to Adjust the actual situation.
  • one of each type of galvanometer system can be selected for correction and compensated data, and then the compensation data is obtained and fed back to the galvanometer controller 2, Other galvanometer systems in the same class can be directly verified, so that the labor intensity and correction time of the calibrated galvanometer can be greatly reduced during the actual operation.
  • the present invention provides a galvanometer correction system and method for correcting a galvanometer scanning system.
  • the galvanometer in the galvanometer scanning system is emitted by a laser device at one or more specific measurement locations.
  • the deflection angle of the light source and the galvanometer forms a first correction spot and a second correction spot, and calculates a position between the formed spot and the nominal position, thereby forming an actual compensation relationship between the actual spot position and the nominal position.
  • the error in the manual correction and adjustment process is eliminated, the adjustment effect is good, and since each spot is obtained by averaging several spots, the accidental error is also reduced, so that the number of compensation amounts can be
  • the actual spot position is made closer to the nominal position; the compensation amount is the compensation amount of the overall galvanometer scanning system, and the compensation rotation of the lens is also calculated by the third correction spot and the fourth correction spot.
  • the better compensation amount the same reason for the lens deflection compensation calculation is also the position of m spots into After averaging and then calculating between the nominal position, it is also possible to reduce accidental errors.
  • the galvanometer scanning system will increase the temperature, which will easily cause the temperature to drift, which will cause the spot position measuring device, that is, the profiler to sense the spot, so that the water-cooling system can cool the galvanometer scanning system after water cooling.
  • the galvanometer scanning system maintains a temperature suitable for induction. In this embodiment, 22 ° C is taken. Under the premise of constant temperature, the error caused by temperature drift can be minimized, so that the calculation of the compensation amount can be more accurate.
  • test device used in the embodiment corresponds to the device portion disclosed in the embodiment
  • description of the test device involved therein is relatively simple, and the relevant portion can be referred to the description of the device.

Abstract

本发明提供了一种振镜矫正系统及方法,通过以下步骤实现:S1:通过改变振镜扫描系统中的振镜的摆动角度,使得所述振镜的光轴分别沿第一水平方向和第二水平方向移动,实现在振镜对应的场内形成多个光斑,光斑位置测量装置对所述多个光斑的位置进行测量并记录;S2:将所述光斑位置测量装置测量得到的数据代入场内套刻模型得到当前振镜场内误差参数;S3:根据当前振镜场内误差参数计算得到待补偿的振镜场内误差量,所述振镜场内误差量包括第一水平方向误差量和第二水平方向误差量;S4:通过振镜控制器,根据S3中得出的所述第一水平方向误差量和所述第二水平方向误差量对所述振镜扫描系统进行校正,控制校正后的所述振镜扫描系统进行重新扫描并重新形成多个光斑,并对重新形成的多个光斑进行检测以及精度判断,如精度不满足则重复S1至S3;如精度满足则停止重复步骤,完成场内误差矫正。

Description

一种振镜矫正系统及方法 技术领域
本发明属于扫描装置领域,涉及一种振镜矫正系统及方法。
背景技术
振镜在使用前以及安装完成之后均需要经过一定的矫正,然后得到一定的补偿量数据,从而在使用的时候能够更为精准的进行扫描。
现有的矫正方法中使用的是手动校正,如此就容易出现手动校正过程中的误差,校正的效果较差。
发明内容
本发明的目的在于提供一种振镜矫正系统及方法,旨在解决矫正效果差的问题。
为解决上述技术问题,本发明提供了一种振镜矫正系统,包括振镜扫描系统、振镜控制器、龙门架、聚焦装置、检测采样系统以及光斑位置测量装置,所述振镜扫描系统包括振镜,所述聚焦装置用于对经由所述振镜出射的光束进行聚焦,所述检测采样系统用于实现所述光斑位置测量装置与所述振镜之间的对准,所述振镜控制器用于控制所述振镜的运动以实现在振镜对应的场内形成多个光斑,所述振镜扫描系统能够沿所述龙门架在第一水平方向运动,且能够跟随所述龙门架在竖直方向上运动。
可选的,所述振镜矫正系统还包括水冷系统,所述冷水系统用于对所述振镜扫描系统进行水冷降温。
可选的,所述光斑位置测量装置为轮廓仪。
可选的,所述振镜矫正系统还包括工件台,所述工件台能够沿水平第二方向运动,其中所述第二水平方向与所述第一水平方向垂直,所述光斑位置测量装置连接于所述工件台的上部或侧部。
可选的,所述工件台用于带动所述光斑位置测量装置移动从而实现对光斑位置的测量。
可选的,所述龙门架上设置有多个所述振镜扫描系统。
可选的,所述振镜矫正系统还包括激光器设备,用于向所述振镜扫描系统提供入射光束。
可选的,所述聚焦装置为F-theta镜。
为解决上述技术问题,本发明还提供一种采用上述振镜矫正系统的振镜矫正方法,包括如下步骤:
S1:通过改变振镜扫描系统中的振镜的摆动角度,使得所述振镜的光轴分别沿第一水平方向和第二水平方向移动,实现在振镜对应的场内形成多个光斑,光斑位置测量装置对所述多个光斑的位置进行测量并记录;
S2:将所述光斑位置测量装置测量得到的数据代入场内套刻模型得到当前振镜场内误差参数;
S3:根据当前振镜场内误差参数计算得到待补偿的振镜场内误差量,所述振镜场内误差量包括第一水平方向误差量和第二水平方向误差量;
S4:通过振镜控制器,根据S3中得出的所述第一水平方向误差量和所述第二水平方向误差量对所述振镜扫描系统进行校正,控制校正后的所述振镜扫描系统进行重新扫描并重新形成多个光斑,并对重新形成的多个光斑进行检测以及精度判断,如精度不满足则重复S1至S3;如精度满足则停止重复步骤,完成场内误差矫正。
可选的,所述S2中的场内套刻模型如下:
Δx=Mx·x-Ry·y+Tx
Δy=My·y+Rx·x+Ty
其中,
Δx、Δy:光斑在水平向实际成像位置与名义位置在所述第一水平方向和所述第二水平方向的偏差;
x、y:由所述振镜控制器所设定的光斑的名义位置;
Tx、Ty:振镜场内光斑的实际成像位置与名义位置在所述第一水平方向和所述第二水平方向的平移;
Mx、My:振镜场内光斑的实际成像大小相对于光斑的名义成像大小在所述第一水平方向和所述第二水平方向的倍率;
Rx、Ry:振镜场内光斑的实际成像位置与名义位置在所述第一水平方向和所述第二水平方向的旋转;
测试中共测量n=M×N个光斑,其中M、N是自然数,对于n个光斑,将所述场内套刻模型变换为矩阵形式:
Figure PCTCN2018104693-appb-000001
利用最小二乘法拟合,得到当前振镜场内误差Tx,Ty,Mx,My,Rx,Ry。
可选的,所述S3中的第一水平方向误差量和第二水平方向误差量包括所述振镜的光轴在每个光斑的名义位置处的补偿量,表示为:
DeltaX(y)=Δx-Tx-0.5·(Rx+Ry)·y
DeltaY(x)=Δy-Ty-0.5·(Rx+Ry)·x。
可选的,所述振镜扫描系统在每一特定测量位置均进行多次光斑位置测量,并对多个光斑位置数据取均值,用于S3中的计算。
可选的,所述振镜矫正方法还包括以下步骤:
S5:保持所述振镜扫描系统的振镜的光轴的场内位置不变,所述振镜扫描系统在所述龙门架上进行所述第一水平方向运动,每步进一次,由所述振镜扫描系统投射多次光斑,并利用所述光斑位置测量装置测量各个步进位置下各次投射的光斑在所述龙门架的零位坐标系下的位置x i,j,y i,j,其中i=1,2,...,n为步进的次数,j=1,2,…,m为每个步进位置处投射光斑的次数;
S6:保持所述振镜扫描系统的位置不变,使所述振镜的光轴沿所述第一水平方向,在各个测量位置进行场内光斑投射,利用所述光斑位置测量装置测量各个测量位置下投射的各个光斑在所述龙门架的零位坐标系下的水平向位置x′ i,j,y′ i,j,其中i=1,2,...,n为测量位置的个数,j=1,2,…,m为在每个测量位置 处投射的光斑的个数;
S7:S6中光斑的名义位置与S5中的名义位置相同,均分别为x_nom i,y_nom i,S5和S6中对所述振镜扫描系统在每个位置处均进行m次曝光,并对每一处的光斑的采样数据求均值:
Figure PCTCN2018104693-appb-000002
Figure PCTCN2018104693-appb-000003
Figure PCTCN2018104693-appb-000004
Figure PCTCN2018104693-appb-000005
将以上的采样数据代入以下公式进行最小二乘拟合,得到振镜安装旋转量为k:
Figure PCTCN2018104693-appb-000006
其中,b为常数;
S8:通过振镜控制器,根据S7中得出的振镜安装旋转量对所述振镜扫描系统进行校正,控制矫正后的所述振镜扫描系统进行重新扫描并重新形成多个光斑,并对重新形成的多个光斑进行检测以及精度判断,如精度不满足则重复S5至S7,如精度满足则停止重复步骤,完成安装旋转矫正。
与现有技术相比,本发明提供了一种振镜矫正系统及方法,在进行矫正的时候,通过对振镜扫描系统在特定的测量位置(由振镜的光轴位置决定,可理解为名义位置)利用振镜的偏转角度在所述测量位置对应的场内形成多个光斑,对所述多个光斑的实测位置与名义位置之间的关系进行计算,从而获得对振镜扫描系统的场内误差补偿量,并且在计算出补偿量之后代回核算,从而验证补偿量的正确性,本发明还利用类似的测量、计算、核算过程来对振镜的安装旋转误差进行校正,如此不仅杜绝了矫正时候存在的误差, 同时通过验证之后还能够保证补偿量的准确性,实用性强。
附图说明
图1是本发明中的矫正方法示意图;
图2是本发明中的校正系统的示意图;
图3是本发明中补偿量反馈的示意图;
图4是本发明中振镜扫描系统在S1中的打点示意图;
图5是本发明中振镜扫描系统在S5和S6的打点示意图;
图6是本发明中光斑位置测量装置位于工件台侧部时候的结构图;
图7是本发明实施例中光斑位置在x向和y向的偏差的计算理论值;
图8是本发明实施例中将F-theta计算数值导入到补偿量中之后实测所得到的光斑畸变量;
图9是本发明实施例中光斑位置经过校准后实际畸变曲线;
图10是在龙门架上连接有多个振镜扫描系统的结构示意图。
其中,1、振镜扫描系统;2、振镜控制器;3、激光器设备;4、龙门架;5、F-theta镜;6、检测采样系统;7、光斑位置测量装置;8、水冷系统;9、工件台;10、第一校正光斑;11、第二校正光斑;12、第三校正光斑;13、第四校正光斑。
具体实施方式
以下结合附图和具体实施例对本发明提出的一种振镜矫正系统及方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
振镜是激光加工工艺中的常用部件之一,可以与激光器设备、F-theta镜等联合使用以实现对待加工工件的激光扫描。振镜通常具有平面表面且能关于其中心轴在一定角度范围内摆动,振镜的作用例如是使激光器设备发出的激光束按照预定的路径进行往复运动。然而,由于工作环境、安装精度等因素,可能导致振镜的实际工作性能未能达到期望的要求,因而有必要对振镜 进行矫正。
为此,本发明提出一种振镜矫正系统及方法,在一具体实施例中,以用于激光加工工艺中的振镜为例进行说明,因而在下述实施例中将光源设备描述为激光器设备,将聚焦装置描述为F-theta镜。然而本领域技术人员应当理解,也可以采用其它的光源设备和/或其它的聚焦装置来实现振镜的矫正,本发明不应以此为限。
如图1至图3所示,根据一具体实施例的振镜矫正系统包括振镜扫描系统1、振镜控制器2、激光器设备3、龙门架4、F-theta镜5、检测采样系统6以及光斑位置测量装置7,所述F-theta镜5用于对振镜扫描系统1出射的光束聚焦,所述检测采样系统6用于实现光斑位置测量装置7与振镜扫描系统1之间的对准,例如可通过检测采样系统6对工件台9所承载的基板上的对准标记的位置进行采样,获得光斑位置测量装置7相对于基板的第一位置关系,再根据检测采样系统6相对于振镜扫描系统1的第二位置关系(其为已知量)得出光斑位置测量装置7相对于振镜扫描系统1的位置关系,从而实现对准。所述振镜控制器2控制振镜扫描系统1进行扫描,使得振镜扫描系统1中的振镜在一个或多个特定的测量位置(由振镜的光轴位置决定,可理解为名义位置)利用激光器设备3发出的光源和振镜的偏转角度形成一个或多个光斑,所述振镜扫描系统1安装在龙门架4上,且可沿龙门架4进行x方向运动,也可随龙门架4进行z方向运动,其中z是竖直方向。振镜例如以中心轴沿y向延伸的方式安装在龙门架4上,其中,x向和y向是水平面内相互垂直的两个方向。
振镜校正包括振镜场内误差校正和振镜安装旋转校正。
振镜场内误差校正,包括以下步骤:
S1:振镜扫描系统1的振镜的摆动角度使得振镜光轴(即通过振镜出射的光线的光轴)在x向和y向依次打点,即振镜光轴与xy平面形成交点,实现在振镜对应的场内形成多个光斑,光斑位置测量装置7对振镜扫描系统1产生的所有光斑的位置进行测量并记录,其中如图4所示,在x向扫描得到若干个第一校正光斑10,在y向扫描得到若干个第二校正光斑11;
S2:将位置测量装置7测量得到的第一校正光斑10和第二校正光斑11 的位置数据代入场内套刻模型得到当前振镜的场内误差参数;
S3:计算得到所述振镜的x向和y向补偿量,以补偿振镜的场内误差;
S4:振镜控制器2根据S3中得出的x向和y向补偿量对所述振镜扫描系统1进行补偿,并采用补偿后的振镜扫描系统1重新扫描并形成光斑(即重复S1),并对重新形成的光斑进行检测以及精度判断(即重复S2),如精度不满足,则再次计算补偿量(即重复S3)。上述S1至S3可多次重复,直至精度满足要求,则停止重复步骤,完成场内误差矫正。
其中,所述S2中的场内套刻模型如下:
Figure PCTCN2018104693-appb-000007
上式中,
Δx、Δy:光斑在水平向实际成像位置(即位置测量装置7测量得到的位置)与名义位置(即振镜控制器2设定的位置)在x向和y向的偏差;
x、y:由振镜控制器所设定的光斑的名义位置;
Tx、Ty:振镜场内光斑的实际成像位置相对于名义位置在x向和y向的平移;
Mx、My:振镜场内光斑的实际成像大小相对于光斑的名义成像大小在x向和y向的放大倍率;
Rx、Ry:振镜场内光斑的实际成像位置相对于名义位置在x向和y向的旋转;
测试中共测量n=M×N个光斑,其中M、N是自然数,对于n个光斑,将(2-1)变换为矩阵形式:
Figure PCTCN2018104693-appb-000008
利用最小二乘法拟合,得到当前振镜的场内误差Tx,Ty,Mx,My,Rx,Ry。
所述S3中的振镜补偿量如下,即振镜扫描系统的光轴在每个x,y位置处的补偿量为:
Figure PCTCN2018104693-appb-000009
所述振镜扫描系统1在x向和y向上每一个测量位置处均先后形成若干个光斑,并对若干个光斑的位置数据取均值,用于S3中的计算。
振镜安装旋转校正,包括以下步骤:
S5:保持振镜扫描系统1的光轴的场内位置不变,即通过使得振镜保持在一个固定的摆动角度使得振镜的光轴与xy平面的夹角保持不变,振镜扫描系统1在龙门架4上进行x向运动,每步进一次,振镜扫描系统1投射一次光斑,并利用光斑位置测量装置7测量单个测量位置下单次投射所产生的光斑在龙门架4零位坐标系下的位置x i,j,y i,j,其中i=1,2,...,n为曝光标记的个数,在每个测量位置可多次重复光斑投射,从而利用光斑位置测量装置7获得该测量位置处的多个测量值,以j表示测量次数,j=1,2,…,m。其中如图5所示,在x向打点得到若干个处于同一条水平线上的第三校正光斑12;
S6:再保持振镜扫描系统1的位置不变,通过振镜的摆动实现振镜的光轴沿x方向扫描,从而在x方向上形成多个光斑,利用光斑位置测量装置7测量振镜扫描系统1在上述摆动过程中形成的每个光斑在龙门架4零位坐标系下的水平向位置x′ i,j,y′ i,j,其中i为振镜形成不同位置的光斑的个数,j为在每个光斑位置下利用光斑位置测量装置7的测量次数,得到若干个第四校正 光斑13;
S7:S6中光斑的名义位置与S5中的名义位置相同,均分别为x_nom i,y_nom i,S5和S6中对振镜扫描系统1在每个测量位置处均进行m次光斑投射,并对每一处的光斑的采样数据求均值:
Figure PCTCN2018104693-appb-000010
将以上的采样数据代入以下公式进行最小二乘拟合,得到振镜安装旋转量为k:
Figure PCTCN2018104693-appb-000011
其中,b是常数。
S8:将S7中得出的振镜安装旋转量代回到振镜控制器2中,用于控制所述振镜扫描系统进行重新扫描并形成光斑,并对重新形成的光斑进行检测以及精度判断,如精度不满足,重复S5至S7,满足则停止,完成安装旋转矫正。
如图7所示,为本实施例中振镜系统在x向和y向的理论计算校准偏差曲线图,其中图8为将已知的F-theta偏差值代入进行计算之后,在x向和y向的理论校准偏差曲线图,而图9则为本实施例中的光斑的实际偏差图,从图中能够看出,在进行校正调节之后光斑在x向和y向均可以达到一定的精度,而实际精度就需要根据实际情况进行设定和校准。
优选的,所述光斑位置测量装置7为轮廓仪;还包括水冷系统8,所述水冷系统用于对振镜扫描系统1进行水冷降温,所述水冷系统8的水冷温度为20℃-24℃,本实施例优选为22℃。
本实施例所述的振镜矫正系统还包括有工件台9,所述工件台9在y向运 动,可以实现振镜扫描系统1相对于工件台9上的工件在y方向的相对运动。所述光斑位置测量装置7可选择的连接于所述工件台9的上部或侧部,当光斑位置测量装置7位于工件台9侧部的时候,如图6所示,既能实现校正振镜系统又不影响到振镜校正后振镜扫描系统1对工件台9上的工件进行激光加工,实用性强。
所述龙门架4上还可以设置若干个振镜扫描系统1,如图10所示,如此就能够同时进行多组振镜扫描系统1的加工,其中若干个振镜扫描系统1可以是与同一个激光器设备3连接,也可以分别与激光器设备3进行连接,同样,不同的振镜扫描系统1可以与同一个振镜控制器2连接,也可以分别与不同的振镜控制器2连接,根据实际情况进行调节。
在对不同类的振镜系统进行校正的时候,可以在每一类振镜系统中选择其中之一进行校正并得到补偿数据,然后再得到补偿数据并反馈到振镜控制器2中之后,对同一类中的其它振镜系统直接进行验证即可,如此就能够在实际操作过程中大大的减小校正振镜的劳动强度以及校正时间。
综上所述,本发明提供的一种振镜矫正系统及方法,在对振镜扫描系统进行矫正的时候,振镜扫描系统中的振镜在一个或多个特定的测量位置利用激光器设备发出的光源和振镜的偏转角度形成第一校正光斑和第二校正光斑,并将形成的光斑的位置与名义位置之间进行计算,从而对实际光斑位置与名义位置之间形成一个实际的补偿关系,这样就杜绝了人手矫正以及调节过程中存在的误差,调节效果好,并且由于每个光斑都是通过若干个光斑求平均值后得到的,这样还减少了偶然误差,使得补偿量的数字能够使得实际光斑位置更加接近名义位置;该补偿量是总体的振镜扫描系统的补偿量,而同样通过第三校正光斑和第四校正光斑对镜片的安装旋转也进行了补偿计算之后,就能够得到更佳的补偿量,同理由于镜片偏转的补偿计算中也是将m个光斑的位置进行了平均化之后再与名义位置之间进行计算,如此也能够减少偶然误差。
振镜扫描系统在工作的过程中会温度升高,从而容易引起温飘而导致光斑位置测量装置即轮廓仪对光斑的感应不准,如此通过水冷系统对振镜扫描系统进行水冷之后就能够较好的使得振镜扫描系统保持一个较为合适感应的 温度,本实施例取22℃,在温度恒定的前提下,温飘带来的误差可以减小到最小,如此使得补偿量的计算就能够更为准确。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的测试方法而言,由于其采用的测试装置与实施例公开的装置部分相对应,所以对其中涉及的测试装置描述的比较简单,相关之处参见装置部分说明即可。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (13)

  1. 一种振镜矫正系统,其特征在于,包括振镜扫描系统、振镜控制器、龙门架、聚焦装置、检测采样系统以及光斑位置测量装置,所述振镜扫描系统包括振镜,所述聚焦装置用于对经由所述振镜出射的光束进行聚焦,所述检测采样系统用于实现所述光斑位置测量装置与所述振镜之间的对准,所述振镜控制器用于控制所述振镜的运动以实现在振镜对应的场内形成多个光斑,所述振镜扫描系统能够沿所述龙门架在第一水平方向运动,且能够跟随所述龙门架在竖直方向上运动。
  2. 根据权利要求1所述的振镜矫正系统,其特征在于,还包括水冷系统,所述冷水系统用于对所述振镜扫描系统进行水冷降温。
  3. 根据权利要求1所述的振镜矫正系统,其特征在于,所述光斑位置测量装置为轮廓仪。
  4. 根据权利要求1所述的振镜矫正系统,其特征在于,还包括工件台,所述工件台能够沿水平第二方向运动,其中所述第二水平方向与所述第一水平方向垂直,所述光斑位置测量装置连接于所述工件台的上部或侧部。
  5. 根据权利要求4所述的振镜矫正系统,其特征在于,所述工件台用于带动所述光斑位置测量装置移动从而实现对光斑位置的测量。
  6. 根据权利要求1所述的振镜矫正系统,其特征在于,所述龙门架上设置有多个所述振镜扫描系统。
  7. 根据权利要求1所述的振镜矫正系统,其特征在于,还包括激光器设备,用于向所述振镜扫描系统提供入射光束。
  8. 根据权利要求1所述的振镜矫正系统,其特征在于,所述聚焦装置为F-theta镜。
  9. 一种采用如权利要求1至8中任一项所述的振镜矫正系统的振镜矫正方法,其特征在于,包括如下步骤:
    S1:通过改变振镜扫描系统中的振镜的摆动角度,使得所述振镜的光轴分别沿第一水平方向和第二水平方向移动,实现在振镜对应的场内形成多个光斑,光斑位置测量装置对所述多个光斑的位置进行测量并记录;
    S2:将所述光斑位置测量装置测量得到的数据代入场内套刻模型得到当前振镜场内误差参数;
    S3:根据当前振镜场内误差参数计算得到待补偿的振镜场内误差量,所述振镜场内误差量包括第一水平方向误差量和第二水平方向误差量;
    S4:通过振镜控制器,根据S3中得出的所述第一水平方向误差量和所述第二水平方向误差量对所述振镜扫描系统进行校正,控制校正后的所述振镜扫描系统进行重新扫描并重新形成多个光斑,并对重新形成的多个光斑进行检测以及精度判断,如精度不满足则重复S1至S3;如精度满足则停止重复步骤,完成场内误差矫正。
  10. 根据权利要求9所述的振镜矫正方法,其特征在于,所述S2中的场内套刻模型如下:
    Δx=Mx·x-Ry·y+Tx
    Δy=My·y+Rx·x+Ty
    其中,
    Δx、Δy:光斑在水平向实际成像位置与名义位置在所述第一水平方向和所述第二水平方向的偏差;
    x、y:由所述振镜控制器所设定的光斑的名义位置;
    Tx、Ty:振镜场内光斑的实际成像位置与名义位置在所述第一水平方向和所述第二水平方向的平移;
    Mx、My:振镜场内光斑的实际成像大小相对于光斑的名义成像大小在所述第一水平方向和所述第二水平方向的倍率;
    Rx、Ry:振镜场内光斑的实际成像位置与名义位置在所述第一水平方向和所述第二水平方向的旋转;
    测试中共测量n=M×N个光斑,其中M、N是自然数,对于n个光斑,将所述场内套刻模型变换为矩阵形式:
    Figure PCTCN2018104693-appb-100001
    利用最小二乘法拟合,得到当前振镜场内误差Tx,Ty,Mx,My,Rx,Ry。
  11. 根据权利要求10所述的振镜矫正方法,其特征在于,所述S3中的第一水平方向误差量和第二水平方向误差量包括所述振镜的光轴在每个光斑的名义位置处的补偿量,表示为:
    DeltaX(y)=Δx-Tx-0.5·(Rx+Ry)·y
    DeltaY(x)=Δy-Ty-0.5·(Rx+Ry)·x。
  12. 根据权利要求11所述的振镜矫正方法,其特征在于,所述振镜扫描系统在每一特定测量位置均进行多次光斑位置测量,并对多个光斑位置数据取均值,用于S3中的计算。
  13. 根据权利要求11所述的振镜矫正方法,其特征在于,还包括以下步骤:
    S5:保持所述振镜扫描系统的振镜的光轴的场内位置不变,所述振镜扫描系统在所述龙门架上进行所述第一水平方向运动,每步进一次,由所述振镜扫描系统投射多次光斑,并利用所述光斑位置测量装置测量各个步进位置下各次投射的光斑在所述龙门架的零位坐标系下的位置x i,j,y i,j,其中i=1,2,...,n为步进的次数,j=1,2,…,m为每个步进位置处投射光斑的次数;
    S6:保持所述振镜扫描系统的位置不变,使所述振镜的光轴沿所述第一水平方向,在各个测量位置进行场内光斑投射,利用所述光斑位置测量装置测量各个测量位置下投射的各个光斑在所述龙门架的零位坐标系下的水平向位置x′ i,j,y′ i,j,其中i=1,2,...,n为测量位置的个数,j=1,2,…,m为在每个测量位置处投射的光斑的个数;
    S7:S6中光斑的名义位置与S5中的名义位置相同,均分别为 x_nom i,y_nom i,S5和S6中对所述振镜扫描系统在每个位置处均进行m次曝光,并对每一处的光斑的采样数据求均值:
    Figure PCTCN2018104693-appb-100002
    Figure PCTCN2018104693-appb-100003
    Figure PCTCN2018104693-appb-100004
    Figure PCTCN2018104693-appb-100005
    将以上的采样数据代入以下公式进行最小二乘拟合,得到振镜安装旋转量为k:
    Figure PCTCN2018104693-appb-100006
    其中,b为常数;
    S8:通过振镜控制器,根据S7中得出的振镜安装旋转量对所述振镜扫描系统进行校正,控制矫正后的所述振镜扫描系统进行重新扫描并重新形成多个光斑,并对重新形成的多个光斑进行检测以及精度判断,如精度不满足则重复S5至S7,如精度满足则停止重复步骤,完成安装旋转矫正。
PCT/CN2018/104693 2017-09-08 2018-09-07 一种振镜矫正系统及方法 WO2019047938A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020510520A JP6967140B2 (ja) 2017-09-08 2018-09-07 検流計補正システム及び方法
KR1020207010221A KR102392452B1 (ko) 2017-09-08 2018-09-07 갈바노미터 보정 시스템 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710807754.1A CN109471333B (zh) 2017-09-08 2017-09-08 一种振镜矫正系统及方法
CN201710807754.1 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019047938A1 true WO2019047938A1 (zh) 2019-03-14

Family

ID=65633518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104693 WO2019047938A1 (zh) 2017-09-08 2018-09-07 一种振镜矫正系统及方法

Country Status (5)

Country Link
JP (1) JP6967140B2 (zh)
KR (1) KR102392452B1 (zh)
CN (1) CN109471333B (zh)
TW (1) TWI669578B (zh)
WO (1) WO2019047938A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021090628A1 (zh) * 2019-11-05 2021-05-14
CN115717859A (zh) * 2022-11-16 2023-02-28 南京博视医疗科技有限公司 一种点扫描光学系统激光标定方法及其装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487180B (zh) * 2019-08-12 2020-12-25 上海理工大学 一种用于扫描振镜式激光加工系统的热漂移测量方法
CN110940490B (zh) * 2019-12-13 2021-05-04 湖南省鹰眼在线电子科技有限公司 一种激光加工设备的激光光斑扫描精度检测方法及装置
CN111290218B (zh) * 2020-01-20 2022-08-23 江苏迪盛智能科技有限公司 一种dmd模块化设计的安装调试机构及ldi设备
CN113369680B (zh) * 2020-02-25 2022-06-10 广东汉邦激光科技有限公司 激光校准装置和激光校准方法
CN112092361B (zh) * 2020-07-28 2022-06-07 湖南华曙高科技股份有限公司 一种用于制造三维物体的扫描单元的实时检测方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538663A (zh) * 2010-12-13 2012-07-04 中国科学院沈阳自动化研究所 一种二维位置跟踪测量装置及其测量方法
CN104730708A (zh) * 2015-04-10 2015-06-24 长春理工大学 机载激光通信附面层效应光学补偿方法
CN105527796A (zh) * 2014-09-28 2016-04-27 上海微电子装备有限公司 龙门式设备和控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2630025B2 (ja) * 1990-06-21 1997-07-16 日本電気株式会社 レーザトリミング方法及び装置
JP2690466B2 (ja) * 1995-01-11 1997-12-10 住友電気工業株式会社 レーザビームスピンナ
JP2008279471A (ja) * 2007-05-08 2008-11-20 Sony Corp レーザ加工装置、レーザ加工方法、tft基板、及び、tft基板の欠陥修正方法
JP4297952B2 (ja) * 2007-05-28 2009-07-15 三菱電機株式会社 レーザ加工装置
JP5519123B2 (ja) * 2008-06-10 2014-06-11 株式会社片岡製作所 レーザ加工機
CN101513693A (zh) * 2009-03-17 2009-08-26 深圳市大族激光科技股份有限公司 一种振镜校正系统及其校正方法
KR20100116432A (ko) * 2009-04-22 2010-11-01 주식회사 필옵틱스 갈바노미터 보정 장치
JP5943669B2 (ja) * 2012-03-26 2016-07-05 ビアメカニクス株式会社 ガルバノスキャナ及びレーザ加工装置
CN103913294B (zh) * 2014-03-20 2016-02-24 西安交通大学 一种用于激光振镜系统的十字线增量标定方法
CN106271122B (zh) * 2015-05-29 2019-01-18 上海微电子装备(集团)股份有限公司 一种激光封装设备的垂向控制装置及方法
CN106553338A (zh) * 2015-09-18 2017-04-05 广东汉邦激光科技有限公司 激光3d打印机及其振镜扫描校准系统及方法
CN106956430B (zh) * 2017-03-29 2019-07-30 深圳市大业激光成型技术有限公司 一种振镜扫描系统的校准装置及应用其的3d打印机系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538663A (zh) * 2010-12-13 2012-07-04 中国科学院沈阳自动化研究所 一种二维位置跟踪测量装置及其测量方法
CN105527796A (zh) * 2014-09-28 2016-04-27 上海微电子装备有限公司 龙门式设备和控制方法
CN104730708A (zh) * 2015-04-10 2015-06-24 长春理工大学 机载激光通信附面层效应光学补偿方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021090628A1 (zh) * 2019-11-05 2021-05-14
JP7288517B2 (ja) 2019-11-05 2023-06-07 Nok株式会社 水系表面処理剤
CN115717859A (zh) * 2022-11-16 2023-02-28 南京博视医疗科技有限公司 一种点扫描光学系统激光标定方法及其装置
CN115717859B (zh) * 2022-11-16 2023-09-29 南京博视医疗科技有限公司 一种点扫描光学系统激光标定方法及其装置

Also Published As

Publication number Publication date
KR102392452B1 (ko) 2022-04-29
CN109471333A (zh) 2019-03-15
JP6967140B2 (ja) 2021-11-17
TW201923473A (zh) 2019-06-16
TWI669578B (zh) 2019-08-21
JP2020536738A (ja) 2020-12-17
KR20200046107A (ko) 2020-05-06
CN109471333B (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
WO2019047938A1 (zh) 一种振镜矫正系统及方法
TWI645267B (zh) Optical measuring device and method
TWI359715B (en) Scan head calibration system and method
TWI668523B (zh) 一種用於光蝕刻機的垂直方向控制方法
CN103913294B (zh) 一种用于激光振镜系统的十字线增量标定方法
TW201024012A (en) Laser processing apparatus
JP2012255756A (ja) 3次元測定方法
WO2016045461A1 (zh) 龙门式设备和控制方法
US20090073458A1 (en) Means and method for determining the spatial position of moving elements of a coordinate measuring machine
KR20200115379A (ko) 광학 측정 장치 및 방법
WO2018059359A1 (zh) 一种光学测量装置和方法
TW201900316A (zh) 雷射加工裝置
JPH0122977B2 (zh)
CN116503493B (zh) 一种多相机标定方法、高精度装备及计算机可读存储介质
WO2023155789A1 (zh) 操作装置与两个工件在相对运动中的间距补偿方法
CN117139832A (zh) 一种振镜快速矫正方法及系统
KR20110019011A (ko) 로봇 tcp와 lvs 사이의 캘리브레이션 방법 및 캘리브레이션 지그
CN205374982U (zh) 一种光束调节装置
JP2012133122A (ja) 近接露光装置及びそのギャップ測定方法
CN113492600B (zh) 一种激光打标设备和激光打标设备的自动调焦方法
CN103365107A (zh) 一种多离轴对准系统匹配测校方法
CN104460235B (zh) 调焦调平光斑水平位置的测量方法
CN113050393B (zh) 光刻设备中运动台水平向位置的校准方法
CN116652369A (zh) 激光加工控制方法、系统及装置
KR101721189B1 (ko) 광각 보정 장치와 이를 사용하는 노광 장치 및 광각 보정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510520

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010221

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18853976

Country of ref document: EP

Kind code of ref document: A1