WO2019047936A1 - 一种无线通信方法及装置 - Google Patents

一种无线通信方法及装置 Download PDF

Info

Publication number
WO2019047936A1
WO2019047936A1 PCT/CN2018/104681 CN2018104681W WO2019047936A1 WO 2019047936 A1 WO2019047936 A1 WO 2019047936A1 CN 2018104681 W CN2018104681 W CN 2018104681W WO 2019047936 A1 WO2019047936 A1 WO 2019047936A1
Authority
WO
WIPO (PCT)
Prior art keywords
time resource
random access
access preamble
time
flexible
Prior art date
Application number
PCT/CN2018/104681
Other languages
English (en)
French (fr)
Inventor
王亚飞
曹永照
张弛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710806433.XA external-priority patent/CN109474995B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18854278.1A priority Critical patent/EP3672341A4/en
Publication of WO2019047936A1 publication Critical patent/WO2019047936A1/zh
Priority to US16/813,335 priority patent/US11405961B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols

Definitions

  • the present application relates to the field of mobile communications technologies, and in particular, to a wireless communication method and apparatus.
  • the first step of the random access procedure is that the terminal sends a random access preamble.
  • the main function of the random access preamble is to tell the base station to have a random access request, so that the terminal can complete the uplink access, and enable the base station to estimate the transmission delay between the terminal and the terminal, so that the base station can calibrate the uplink time (uplink) Timing), and the calibration information is informed to the terminal by a timing advance command.
  • the random access preamble is transmitted on a Physical Random Access Channel (PRACH), and the base station notifies all terminals through the broadcast system information SIB2, and allows which uplink time-frequency resources are transmitted randomly. Access the preamble.
  • the base station configures the configuration information of the uplink and downlink time resources by using the high layer signaling, where the configuration information indicates the uplink and downlink time resources semi-statically, and indicates which time resources in the uplink time resource can be used as the PRACH for transmitting the random access preamble.
  • the time resource of the resource is transmitted on a Physical Random Access Channel (PRACH), and the base station notifies all terminals through the broadcast system information SIB2, and allows which uplink time-frequency resources are transmitted randomly. Access the preamble.
  • the base station configures the configuration information of the uplink and downlink time resources by using the high layer signaling, where the configuration information indicates the uplink and downlink time resources semi-statically, and indicates which time resources in the uplink time resource can be used as the PRACH for transmitting the random access
  • the corresponding time domain resource unit that is, the length of the subframe is 1 ms (millisecond).
  • the interval for example, supports 15 kHz, 30 kHz, 60 kHz, 120 kHz, etc., correspondingly, the corresponding time resource unit, that is, the length of the time slot, includes 1 ms, 0.5 ms, 0.25 ms, 0.125 ms, and the like.
  • the time length of the used time slot is small, which may cause the time length of the time resource indicated by the base station for transmitting the random access preamble to be less than the transmission time.
  • the length of the time resource used by the random access preamble causes the terminal (mainly the cell edge terminal) that uses the larger subcarrier spacing to be unable to perform random access, resulting in a limited coverage problem of the PRACH.
  • the present application provides a wireless communication method and apparatus for solving the problem of limited coverage of PRACH.
  • the present application provides a method of wireless communication that can be performed by a chip within a terminal or terminal.
  • the method includes: receiving high layer signaling from a base station, where the high layer signaling is used to indicate a period, and a time resource configured to be fixed uplink in the period, a fixed downlink time resource, and a flexible time resource; a broadcast message of the base station, where the broadcast message is used to indicate a random access configuration, where the random access configuration includes: a time resource that can be used by the random access preamble; and sending, according to the random access configuration, a random to the base station An access preamble, wherein the time resource that the random access preamble can use includes part or all of the fixed uplink time resource, and at least one of the fixed downlink time resource and the flexible time resource Part or all of the resource.
  • the time resource that can be used by the random access preamble indicated by the base station includes not only fixed uplink time resources, but also fixed downlink time resources and flexible time resources, that is, fixed downlink time resources and/or flexible time resources are used.
  • the random access preamble is transmitted, thereby expanding the time resource for sending the random access preamble, so that the time resource that the random access preamble can use satisfies the time resource required for sending the random access preamble, thereby solving the problem that the PRACH coverage is limited. It can meet the random access requirements of cell edge terminals.
  • the random access configuration further includes: a format of a random access preamble, and the length of the time resource used by the random access preamble indicated by the format is less than or equal to the random access preamble. The length of time resources that can be used.
  • the time resource that the random access preamble can use includes the fixed downlink time resource, except for the fixed downlink time resource for the synchronization channel and/or the broadcast channel transmission. Part or all of the time resources. Since the fixed downlink time resource used for the synchronization channel and/or the broadcast channel transmission cannot be used for transmitting the preamble, the part of the resource is not included in the random access preamble indicated by the base station.
  • the time resource that the random access preamble can use includes part or all of the time resource except the reserved time resource in the flexible time resource.
  • the reserved time resources in the flexible time resource are not used, and therefore, the reserved resources are not included in the random access preamble indicated by the base station.
  • the configuration granularity of the time resource that the random access preamble can use is a time slot
  • the time resource that the random access preamble can use includes a flexible time resource, where the flexible time resource is a time slot.
  • the time resource that can be used by the random access preamble includes the flexible time resource, if the slot format information for the flexible time resources is received, it is determined that the slot format information is invalid, that is, the flexible time resources are still used to send the random Access the preamble.
  • the configuration granularity of the time resource that the random access preamble can use is a symbol
  • the time resource that the random access preamble can use includes a flexible time resource, where the flexible time resource is a symbol; Determining the slot format information of the slot in which the flexible time resource is located, and determining, according to the slot format information, a time direction of the time resource other than the flexible time resource in the slot in which the flexible time resource is located .
  • the time resource that can be used by the random access preamble includes the flexible time resource, and the flexible time resource is a symbol
  • the time slot format information for the time slot in which the flexible time resource is located is received, only the time slot needs to be determined.
  • the format of time resources outside the time resource, and these flexible time resources are determined as uplink symbols and used to transmit random access preambles.
  • the present application provides a wireless communication method that can be performed by a base station or a chip within a base station.
  • the method includes: transmitting, to the terminal, high layer signaling, where the high layer signaling is used to indicate a period, a time resource configured to be fixed uplink in the period, a fixed downlink time resource, and a flexible time resource; Sending a broadcast message, the broadcast message is used to indicate a random access configuration, where the random access configuration includes: a time resource that the random access preamble can use; and receiving, according to the random access configuration, a random connection from the terminal
  • the time resource that can be used by the random access preamble includes part or all of the fixed uplink time resource, and at least one time resource of the fixed downlink time resource and the flexible time resource. Part or all of it.
  • the random access configuration further includes: a format of a random access preamble, and the length of the time resource used by the random access preamble indicated by the format is less than or equal to the random access preamble. The length of time resources that can be used.
  • the time resource that the random access preamble can use includes the fixed downlink time resource, except for the fixed downlink time resource for the synchronization channel and/or the broadcast channel transmission. Part or all of the time resources.
  • the time resource that the random access preamble can use includes part or all of the time resource except the reserved time resource in the flexible time resource.
  • the present application provides a wireless communication method that can be performed by a terminal or a chip within a terminal.
  • the method includes: receiving high layer signaling from a base station, where the high layer signaling is used to indicate a period, and a time resource configured to be fixed uplink in the period, a fixed downlink time resource, and a flexible time resource; a broadcast message of the base station, where the broadcast message is used to indicate a random access configuration, where the random access configuration includes: a format of a random access preamble, and a time resource that the random access preamble can use, the random access
  • the time resource that the preamble can use includes some or all of the fixed uplink time resources, and the length of the time resource used by the random access preamble indicated by the format is greater than the time resource that the random access preamble can use.
  • a random access preamble is sent to the base station according to the random access configuration, where the time resource actually used by the random access preamble includes: a time resource that the random access preamble can use, and the Part or all of at least one of the downlink time resource and the flexible time resource is fixed.
  • the time resource that the base station indicates that the random access preamble can be used is insufficient, the fixed downlink time resource and/or the flexible time resource may be used as a transmission random access preamble, thereby expanding the transmission of the random access preamble.
  • the time resource is such that the time resource actually used by the random access preamble satisfies the time resource required for transmitting the random access preamble. Therefore, the problem that the PRACH coverage is limited can be solved, and the random access requirement of the cell edge terminal can be satisfied.
  • the time resource actually used by the random access preamble includes the fixed downlink time resource, except for a fixed downlink time resource for a synchronization channel and/or a broadcast channel transmission. Part or all of the time resources. Since the fixed downlink time resource used for the synchronization channel and/or the broadcast channel transmission cannot be used for transmitting the preamble, the part of the resource is not included in the random access preamble indicated by the base station.
  • the time resource actually used by the random access preamble includes part or all of the time resource except the reserved time resource in the flexible time resource.
  • the reserved time resources in the flexible time resource are not used, and therefore, the reserved resources are not included in the random access preamble indicated by the base station.
  • the configuration granularity of the time resource actually used by the random access preamble is a time slot
  • the time resource actually used by the random access preamble includes a flexible time resource, where the flexible time resource is a time slot.
  • Receiving slot format information for the flexible time resource and determining that the slot format information is invalid.
  • the time resource actually used by the random access preamble includes the flexible time resource, if the slot format information for the flexible time resources is received, it is determined that the slot format information is invalid, that is, the flexible time resources are still used to send the random Access the preamble.
  • the configuration granularity of the time resource that the random access preamble can use is a symbol
  • the time resource that the random access preamble can use includes a flexible time resource, where the flexible time resource is a symbol; Determining the slot format information of the slot in which the flexible time resource is located, and determining, according to the slot format information, a time direction of the time resource other than the flexible time resource in the slot in which the flexible time resource is located .
  • the time resource actually used by the random access preamble includes the flexible time resource, and the flexible time resource is a symbol
  • the time slot format information for the time slot in which the flexible time resource is located is received, only the time slot needs to be determined.
  • the format of time resources outside the time resource, and these flexible time resources are determined as uplink symbols and used to transmit random access preambles.
  • the present application provides a wireless communication method that can be performed by a chip in a base station or a base station.
  • the method includes: transmitting, to the terminal, high layer signaling, where the high layer signaling is used to indicate a period, and a time resource configured to be fixed uplink in the period, a fixed downlink time resource, and a flexible time resource;
  • the broadcast message is used to indicate a random access configuration
  • the random access configuration includes: a format of a random access preamble, and a time resource that the random access preamble can use
  • the random The time resource that the access preamble can use includes some or all of the fixed uplink time resources, and the length of the time resource used by the random access preamble indicated by the format is greater than the time that the random access preamble can be used. The length of the resource;
  • the time resource actually used by the random access preamble includes: a time resource that can be used by the random access preamble, and a part of the fixed downlink time resource and the at least one time resource of the flexible time resource. Or all.
  • the time resource actually used by the random access preamble includes the fixed downlink time resource, except for a fixed downlink time resource for a synchronization channel and/or a broadcast channel transmission. Part or all of the time resources.
  • the time resource actually used by the random access preamble includes part or all of the time resource except the reserved time resource in the flexible time resource.
  • the present application provides a device, which may be a terminal or a chip in a terminal.
  • the device has the functionality to implement the various embodiments of the first aspect described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal when the device is a terminal, the terminal comprises: a processing unit and a communication unit, the processing unit may be, for example, a processor, the communication unit may be, for example, a transceiver, the transceiver including a radio frequency Circuitry, optionally, the terminal further includes a storage unit, which may be, for example, a memory.
  • the terminal when the terminal includes a storage unit, the storage unit stores a computer execution instruction, and the processing unit is connected to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit, so that the terminal performs any one of the foregoing first aspects.
  • Wireless communication method when the device is a terminal, the terminal comprises: a processing unit and a communication unit, the processing unit may be, for example, a processor, the communication unit may be, for example, a transceiver, the transceiver including a radio frequency Circuitry, optionally, the terminal further includes a storage unit, which may be, for example, a memory.
  • the storage unit stores
  • the chip comprises: a processing unit and a communication unit
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, an input/output interface, Pin or circuit, etc.
  • the processing unit may execute computer-executed instructions stored by the storage unit to cause the wireless communication method of any of the above aspects to be performed.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the terminal, such as a read-only memory (read) -only memory, ROM), other types of static storage devices that can store static information and instructions, random access memory (RAM), and the like.
  • the processor mentioned in any of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more An integrated circuit for controlling program execution of the wireless communication method of the above first aspect.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the application provides a device, which may be a base station or a chip in a base station.
  • the device has the functionality to implement the various embodiments of the second aspect described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the base station when the device is a base station, the base station comprises: a processing unit and a communication unit, the processing unit being, for example, a processor, the communication unit being, for example, a transceiver, the transceiver comprising a radio frequency Circuitry, optionally, the base station further includes a storage unit, which may be, for example, a memory.
  • the terminal includes a storage unit, the storage unit stores a computer execution instruction, and the processing unit is connected to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit, so that the base station performs any one of the foregoing second aspects.
  • Wireless communication method when the device is a base station, the base station comprises: a processing unit and a communication unit, the processing unit being, for example, a processor, the communication unit being, for example, a transceiver, the transceiver comprising a radio frequency Circuitry, optionally, the base station further includes a storage unit, which may be, for example, a memory.
  • the chip when the device is a chip in a base station, the chip comprises: a processing unit and a communication unit, the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, Pin or circuit, etc.
  • the processing unit may execute a computer-executed instruction stored by the storage unit to cause the wireless communication method of any of the above second aspects to be performed.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the base station, such as a ROM, and may store static Other types of static storage devices, RAM, etc. of information and instructions.
  • the processor mentioned in any of the above may be a general-purpose CPU, a microprocessor, an ASIC, or an integrated circuit of one or more programs for controlling the wireless communication method of the above second aspect.
  • the present application provides a device, which may be a terminal or a chip in a terminal.
  • the device has the functionality to implement the various embodiments of the third aspect described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal when the device is a terminal, the terminal comprises: a processing unit and a communication unit, the processing unit may be, for example, a processor, the communication unit may be, for example, a transceiver, the transceiver including a radio frequency Circuitry, optionally, the terminal further includes a storage unit, which may be, for example, a memory.
  • the terminal when the terminal includes a storage unit, the storage unit stores a computer execution instruction, and the processing unit is connected to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit, so that the terminal performs any one of the foregoing third aspects.
  • Wireless communication method when the device is a terminal, the terminal comprises: a processing unit and a communication unit, the processing unit may be, for example, a processor, the communication unit may be, for example, a transceiver, the transceiver including a radio frequency Circuitry, optionally, the terminal further includes a storage unit, which may be, for example, a memory.
  • the storage unit stores
  • the chip comprises: a processing unit and a communication unit
  • the processing unit may be, for example, a processor
  • the communication unit may be, for example, an input/output interface, Pin or circuit, etc.
  • the processing unit may execute a computer-executed instruction stored by the storage unit to cause the wireless communication method of any of the above-described third aspects to be performed.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a ROM, and may be stored statically. Other types of static storage devices, RAM, etc. of information and instructions.
  • the processor mentioned in any of the above may be a general-purpose CPU, a microprocessor, an ASIC, or an integrated circuit of one or more programs for controlling the wireless communication method of the above third aspect.
  • the application provides a device, which may be a base station or a chip in a base station.
  • the device has the functionality to implement the various embodiments of the fourth aspect described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the base station when the device is a base station, the base station comprises: a processing unit and a communication unit, the processing unit being, for example, a processor, the communication unit being, for example, a transceiver, the transceiver comprising a radio frequency Circuitry, optionally, the base station further includes a storage unit, which may be, for example, a memory.
  • the terminal includes a storage unit, the storage unit stores a computer execution instruction, and the processing unit is connected to the storage unit, and the processing unit executes a computer execution instruction stored by the storage unit, so that the base station performs any one of the foregoing fourth aspects.
  • Wireless communication method when the device is a base station, the base station comprises: a processing unit and a communication unit, the processing unit being, for example, a processor, the communication unit being, for example, a transceiver, the transceiver comprising a radio frequency Circuitry, optionally, the base station further includes a storage unit, which may be, for example, a memory.
  • the chip when the device is a chip in a base station, the chip comprises: a processing unit and a communication unit, the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, Pin or circuit, etc.
  • the processing unit may execute a computer-executed instruction stored by the storage unit to cause the wireless communication method of any of the above fourth aspects to be performed.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the base station, such as a ROM, and may store static Other types of static storage devices, RAM, etc. of information and instructions.
  • the processor mentioned in any of the above may be a general-purpose CPU, a microprocessor, an ASIC, or an integrated circuit of one or more programs for controlling the wireless communication method of the above fourth aspect.
  • the present application further provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the methods described in the above aspects.
  • the present application also provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods described in the various aspects above.
  • the technical effects brought by the second aspect, the fourth aspect to the tenth aspect may refer to the technical effects brought by the different design modes in the first aspect or the third aspect, and details are not described herein again. .
  • FIG. 1 is a schematic diagram of a possible network architecture provided by the present application
  • FIG. 2 is a schematic diagram of time resources that the prior art indicates that a random access preamble can be used
  • FIG. 3 is a schematic diagram of the time resource shown in FIG. 2 changing the configuration ratio of the uplink and downlink subframes;
  • FIG. 5(a) is a schematic diagram of resource configuration provided by the present application.
  • FIG. 5(b) is a schematic diagram of another resource configuration provided by the present application.
  • FIG. 5(c) is a schematic diagram of another resource configuration provided by the present application.
  • FIG. 6 is a diagram showing an example of a slot format provided by the present application.
  • FIG. 7 is a schematic structural diagram of a base station provided by the present application.
  • FIG. 8 is a schematic structural diagram of a terminal provided by the present application.
  • Figure 9 is a schematic structural view of a device provided by the present application.
  • Figure 10 is a schematic structural view of a device provided by the present application.
  • Figure 11 is a schematic structural view of a device provided by the present application.
  • FIG. 12 is a schematic structural diagram of a device provided by the present application.
  • the wireless communication method of the present application may be performed by a device.
  • the device On the network side, the device may be a chip in the base station or the base station, that is, the wireless communication method of the present application may be performed by a chip in the base station or the base station; on the terminal side, the device may be a chip in the terminal or the terminal, that is, may be The terminal or the chip within the terminal performs the wireless communication method of the present application.
  • the present application uses a device as a base station or a terminal as an example to describe a wireless communication method.
  • a device is a chip in a base station or a chip in a terminal
  • FIG. 1 is a schematic diagram of a possible network architecture of the present application. At least one terminal 10 is included to communicate with the base station 20 via a wireless interface. For the sake of clarity, only one base station and one terminal are shown.
  • the terminal is a device with wireless transceiver function, which can be deployed on land, indoors or outdoors, handheld or on-board; it can also be deployed on the water surface (such as ships); it can also be deployed in the air (such as airplanes, balloons). And satellites, etc.).
  • the terminal may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, industrial control (industrial control) Wireless terminal, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transport safety, A wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • a base station is a device that accesses a terminal to a wireless network, including but not limited to: (g nodeB, gNB), evolved node B (eNB), and radio network controller (radio network controller) in 5G. , RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved node B, or home node B, HNB) ), Baseband Unit (BBU), transmission and receiving point (TRP), transmitting point (TP), mobile switching center, etc.
  • wireless fidelity wireless fidelity
  • AP Access point
  • a time resource refers to a resource in a time dimension, and corresponds to a frequency resource of a frequency dimension, and a time resource may also be called a time domain resource (time domain resource). It can also be called a frequency domain resource.
  • time domain resource time domain resource
  • frequency domain resource the content of the present invention is introduced by the names of time resources and frequency resources, and details are not described herein again.
  • the manner in which the base station indicates to the terminal to transmit the time resource that the random access preamble can use is:
  • the base station sends the high-level signaling to the terminal, which is used to indicate the period, and the time resource configured to be fixed uplink in the period, and fix the downlink time resource;
  • the base station sends a broadcast message to the terminal to indicate a random access configuration, where the random access configuration includes a time resource that can be used by the random access preamble, where the time resource that the random access preamble can use includes a fixed uplink time resource.
  • the base station also configures the frequency resource to the terminal.
  • the random access configuration further includes the configured frequency resource. Since the method for configuring the frequency resource is the same as the prior art, the present application is implemented. For example, the configuration method of the frequency resource is not specifically described. For reference, refer to the configuration method in the prior art, and details are not described herein.
  • FIG. 2 it is a schematic diagram of a time resource that the prior art indicates that a random access preamble can be used.
  • the configuration granularity of the time resource is a slot.
  • the base station indicates, by higher layer signaling, the format of each time slot in the system frame, specifically, one time slot, or all symbols for uplink transmission, such as time slot 2, time slot 7 shown in FIG. 2, or All symbols are used for downlink transmission, such as time slot 0, time slot 3, etc. shown in FIG. 2, or partial symbols are used for uplink transmission, partial symbols are used for downlink transmission, and some symbols are not used as reserved resources, as shown in the figure. Time slot 1 and time slot 6 shown in 2.
  • the base station further indicates, by using a broadcast message, a time resource used for transmitting the random access preamble in the configured uplink time resource.
  • a time resource configured by the base station to transmit the random access preamble is time slot 2. It should be noted that the time resource configured for transmitting the random access preamble is a continuous time resource.
  • the time length of time slots may be smaller than the time length of time slots in LTE. Further, if the method in LTE continues to be used, it may cause unsuccessful transmission. Random access preamble. For example, referring to FIG.
  • time slot 2 is a time resource for transmitting a random access preamble
  • time length of time slot 2 is 0.5 ms, and thus is less than 1 ms, where 1 ms is The length of time of one slot in LTE, and the length of time required for the random access preamble to be transmitted is between 0.5 ms and 1 ms, resulting in slot 2 not being used to transmit the random access preamble, and since slot 2
  • the time slot 3 is a fixed downlink time resource, and cannot be allocated for transmitting a random access preamble. Therefore, there is not enough uplink time resource for transmitting the random access preamble, so that some terminals cannot send random access.
  • the preamble and thus, may cause problems with limited cell coverage.
  • a solution is to change the uplink-downlink subframe configuration ratio and increase the number of uplink subframes, as shown in FIG. 3, for the time resource shown in FIG. 2 to change the uplink and downlink subframe configuration ratio.
  • the time slot 3 and the time slot 7 are configured as uplink subframes, so that in the first cycle, the time slots 2 and 3 can be used to transmit a random access preamble, and in the second cycle, the time slot. 7 and time slot 8 can be used to transmit a random access preamble.
  • the method can solve the problem that the cell coverage is limited.
  • the main problem of the method is that the uplink and downlink subframe configuration ratio is determined based on the uplink and downlink traffic load of the cell, and specifically, according to the statistics of the uplink and downlink transmission requirements.
  • the information is determined, if a ratio of the uplink time resource is configured to increase the PRACH transmission time resource, the scenario is determined according to the uplink and downlink subframe configuration ratio in a scenario where the downlink traffic is much larger than the uplink traffic.
  • the downlink resources cannot meet the transmission requirements of the downlink service, and the uplink time resources may be idle and unused, thereby causing the resource utilization rate to decrease.
  • the present application also proposes another solution to the above problem, which is specifically described below.
  • the wireless communication method provided by the present application includes the following steps:
  • Step 401 The base station sends high layer signaling to the terminal, where the terminal receives high layer signaling from the base station.
  • the high layer signaling is used to indicate the period, and the time resources configured to be fixed uplinks in the period, the fixed downlink time resources, and the flexible time resources.
  • Step 402 The base station sends a broadcast message to the terminal, where the terminal receives the broadcast message from the base station.
  • the broadcast message is used to indicate a random access configuration, and the random access configuration includes: a time resource that the random access preamble can use.
  • Step 403 The terminal sends a random access preamble to the base station, and the base station receives the random access preamble from the terminal.
  • the terminal sends a random access preamble to the base station according to the random access configuration; the base station receives the random access preamble from the terminal according to the random access configuration.
  • the high layer signaling sent by the base station to the terminal may be a system information block (SIB), a broadcast signaling, a radio resource control (RRC) signaling, and a media access.
  • SIB system information block
  • RRC radio resource control
  • Control Media Access Control, MAC
  • CE Control Element
  • RMSI Remaining System Information
  • the time resource is divided into a fixed time resource and a flexible time resource, where the fixed time resource further includes a fixed uplink time resource and a fixed downlink time resource.
  • fixed time resources include fixed time slots
  • flexible time resources include flexible time slots.
  • all symbols in the fixed time slot are fixed for uplink or all symbols fixed for downlink
  • the transmission direction of each symbol in the fixed time slot is semi-statically configured by the base station through high layer signaling.
  • the transmission direction of each symbol in the flexible time slot is variable.
  • the base station dynamically indicates the transmission direction of each symbol in the time slot used for each transmission through the downlink control information.
  • the fixed time resources include symbols configured for uplink transmission, and symbols configured for downlink transmission, that is, fixed time resources include fixed uplink symbols, and fixed downlink symbols.
  • the flexible time resource includes flexible symbols, and the transmission direction of each symbol in the flexible time resource is dynamically indicated by the base station through downlink control information.
  • the method may be implemented in units of subframes or in units of system frames, and the implementation method is similar to the unit in time slots.
  • the unit of the time resource unit is not limited in this application.
  • the time slot is a unit of time resources, as shown in FIG. 5( a ) to FIG. 5( c ), which is a schematic diagram of resource configuration provided by the present application.
  • each time slot is Configure a fixed uplink time resource or a fixed downlink time resource. That is, in Figure 5(a), flexible time resources are not included.
  • flexible time resources are also included.
  • the flexible time resource includes a flexible time slot, and the transmission direction of the symbol in the flexible time slot is dynamically indicated by the base station, for example, 7 times per time slot.
  • each symbol transmission direction may be up, down, or not yet known for each time slot, there are 37 kinds of formats, in particular, a slot which format to use, is indicated by the base station; another example If a time slot includes 14 symbols, there are 3 14 formats per time slot.
  • a slot format provided by the present application
  • the protocol defines a format of four flexible slots used, wherein the first slot format is: all symbols are downlink. The symbol is represented by "001".
  • the second slot format is: all symbols are uplink symbols, denoted by "011”
  • the third slot format is: consecutive L downlink symbols + connection M unknown symbols + continuous N uplink symbols, L+M+N is equal to the number of symbols included in one slot, and the values of L>N, L, M, and N are all defined by the protocol, represented by “101”, and the fourth time slot.
  • the format is: consecutive L downlink symbols + connection M unknown symbols + consecutive N uplink symbols, L+M+N is equal to the number of symbols included in one slot, and L ⁇ N, L, M, N values are all It is defined by the protocol and is represented by "111".
  • Both the base station and the terminal pre-store the format information. Therefore, for a time slot, for example, when the slot format indicated by the base station is “001”, the terminal knows that the format of the time slot is: all symbols are used for downlink; For example, when the slot format indicated by the base station is "111", the terminal knows that the format of the slot is: consecutive L downlink symbols + connection M unknown symbols + consecutive N uplink symbols, and L ⁇ N, L, The values of M and N are all defined by the protocol.
  • an unknown time resource can also be understood as a reserved time resource, such as the third format and the fourth format shown in FIG. 6, wherein the unknown symbol can also be understood as a reserved symbol, reserved. Symbols are not used as symbols.
  • the base station may indicate time resources in one cycle, including time resources indicated as fixed uplinks, time resources fixed in downlink, and flexible time resources.
  • the base station sends a broadcast message to the terminal, and the broadcast message may be, for example, an SIB, an RMSI, or the like. And indicating, by the broadcast message, a random access configuration, where the random access configuration includes a time resource that can be used by the random access preamble, the random access configuration further includes a format of a random access preamble, and further includes a random access preamble.
  • the random access configuration includes a time resource that can be used by the random access preamble
  • the random access configuration further includes a format of a random access preamble, and further includes a random access preamble
  • the frequency resources that can be used as well as other configuration information. Since the present application is an improvement on a configuration method of a time resource, and a method of configuring a frequency resource is not discussed, reference may be made to a related art related method.
  • the format of the random access preamble included in the random access configuration indicates the length of the time resource used by the random access preamble. It can also be understood that the format of the random access preamble indicates the time resource required for sending the random access preamble. length.
  • the following describes the two types of time resources according to the types of time resources that the random access preamble can use.
  • the time resource that the random access preamble can use includes part or all of the fixed uplink time resource in the period of the high layer signaling configuration, and the fixed downlink time resource and the high layer letter in the period of the high layer signaling configuration. Part or all of at least one of the time resources in the flexible time resource in the configured period
  • the time resource that can be used by the random access preamble includes: part or all of the fixed uplink time resource indicated by the high layer signaling, and part or all of the fixed downlink time resource indicated by the high layer signaling; or
  • the time resource that can be used by the random access preamble includes: part or all of the fixed uplink time resource indicated by the high layer signaling, and part or all of the flexible time resource indicated by the high layer signaling; or
  • the time resources that can be used by the random access preamble include: part or all of the fixed uplink time resources indicated by the high layer signaling, part or all of the fixed downlink time resources indicated by the high layer signaling, and flexible time resources indicated by the high layer signaling Part or all of it.
  • the time resource that the random access preamble can use includes not only fixed uplink time resources, but also fixed downlink time resources, and/or flexible time resources. Thereby, the time resources that the random access preamble can use are expanded.
  • the time resource that can be used by the random access preamble indicated by the base station includes not only fixed uplink time resources, but also fixed downlink time resources and flexible time resources, that is, fixed downlink time resources and/or flexibility.
  • the time resource is used to transmit the random access preamble, thereby expanding the time resource for sending the random access preamble, so that the time resource that the random access preamble can use satisfies the time resource required for sending the random access preamble, and thus can satisfy the cell edge.
  • the random access requirement of the terminal can further solve the problem that the PRACH coverage is limited.
  • the length of the time resource used by the random access preamble refers to the length of the time resource that needs to be used to send the random access preamble.
  • the configured time resource is configured as shown in FIG. 5(a), and if the time length of the time slot 2 is greater than or equal to the time resource used for sending the random access preamble, For the length, time slot 2 is configured as a time resource that can be used by the random access preamble.
  • the time resource of the fixed downlink after the time slot 2 can also be configured as a time resource that can be used by the random access preamble, for example, if The sum of the time lengths of the time slot 2 and the time slot 3 is greater than or equal to the length of the time resource used for transmitting the random access preamble, and the time slot 2 and the time slot 3 are configured as time resources that can be used by the random access preamble.
  • the time slot 4 can be further configured to be used by the random access preamble.
  • the time resource that is, slot 2, slot 3, and slot 4 are configured as time resources that can be used by the random access preamble.
  • the length of the time resource used for sending the random access preamble is indicated by the format of the random access preamble in the random access configuration sent by the base station. I will not repeat them later.
  • the fixed uplink time resource after the fixed uplink time resource and the fixed uplink time resource may be configured as a time resource that can be used by the random access preamble, thereby randomly accessing the time resource that the preamble can use. , greater than or equal to the length of the time resource needed to send the random access preamble.
  • the indicated time resource configuration is as shown in FIG. 5(b), that is, the time resource configured by the base station includes a fixed uplink time resource, and the downlink time is fixed.
  • the terminal can determine the fixed uplink time resource and the time resource other than the fixed downlink time resource as the flexible time resource. For example, in FIG. 5(b), five time slots are used as one cycle, and in the period from time slot 0 to time slot 4, the base station indicates that time slot 0 is a fixed downlink time resource, and time slot 4 is a fixed uplink time. Resources, so that the terminal can determine other time slots, that is, slot 1 to slot 3, as flexible time resources, that is, flexible time slots.
  • the specific format of each flexible time slot the base station can be indicated by other signaling, such as high layer signaling, and the format of the flexible time slot can be referred to the example shown in FIG. 6.
  • the time slot 4 is configured as a time resource that can be used by the random access preamble. If the time length of the time slot 4 is smaller than the length of the time resource used for transmitting the random access preamble, the time slot 3 before the time slot 4 can also be configured as a time resource that can be used by the random access preamble, for example, if the time slot The sum of the time lengths of 3 and time slot 4 is greater than or equal to the length of the time resource used for transmitting the random access preamble, and then time slot 3 and time slot 4 are configured as time resources that can be used by the random access preamble.
  • the time slot 2 can be further configured to be used by the random access preamble.
  • the time resource that is, the time slot 2, the time slot 3, and the time slot 4 are configured as time resources that can be used by the random access preamble, until the time resource that the configured random access preamble can use, greater than or equal to the need to send the random access preamble.
  • the length of the time resource is configured as time resources that can be used by the random access preamble, until the time resource that the configured random access preamble can use, greater than or equal to the need to send the random access preamble.
  • the fixed uplink resource and the flexible time resource before the fixed uplink time resource may be configured as time resources that can be used by the random access preamble, so that the time resource that the random access preamble can use is greater than Or equal to the length of the time resource that needs to be used to send the random access preamble.
  • the indicated time resource configuration is as shown in FIG. 5(c), that is, the time resource configured by the base station includes a fixed uplink time resource, and the downlink time is fixed.
  • the terminal can determine the fixed uplink time resource and the time resource other than the fixed downlink time resource as the flexible time resource.
  • FIG. 5(c) five time slots are used as one cycle, and in the period from time slot 0 to time slot 4, the base station indicates that time slot 0 and time slot 2 are fixed downlink time resources, and time slot 4 is The uplink time resource is fixed, so that the terminal can determine other time slots, that is, time slot 1 and time slot 3, as flexible time resources, that is, flexible time slots.
  • the specific format of each flexible time slot, the base station can be indicated by other signaling, such as high layer signaling, and the format of the flexible time slot can be referred to the example shown in FIG. 6.
  • the time slot 4 is configured as a time resource that can be used by the random access preamble. If the time length of the time slot 4 is smaller than the length of the time resource used for transmitting the random access preamble, the time slot 3 before the time slot 4 (the time slot 3 is a flexible time slot) can also be configured to be used as a random access preamble.
  • Time resource for example, if the sum of the time lengths of time slot 3 and time slot 4 is greater than or equal to the length of the time resource used to transmit the random access preamble, then time slot 3 and time slot 4 are configured as random access. The time resource that the leader can use.
  • the time slot 2 may be further added (the time slot 2 is a fixed downlink time resource). It is also configured as a time resource that can be used by the random access preamble, that is, the time slot 2, the time slot 3, and the time slot 4 are configured as time resources that can be used by the random access preamble until the time resource that the configured random access preamble can use. , greater than or equal to the length of the time resource needed to send the random access preamble.
  • the fixed uplink time resource and the flexible time resource before the fixed uplink time resource and the fixed downlink time resource may be configured as time resources that can be used by the random access preamble, so that the random access preamble can be
  • the time resource used is greater than or equal to the length of the time resource used to send the random access preamble.
  • the time resource that the base station configures for the random access preamble of the terminal can include at least the time resource of the fixed uplink.
  • the time resource of the fixed uplink can also be fixed.
  • the fixed downlink time resources, and/or flexible time resources, are also configured as time resources that the random access preamble can use.
  • the fixed downlink time resource included in the time resource that can be used by the random access preamble is all fixed downlink time resources in the period configured by the base station through the high layer signaling, or part of the fixed downlink time resource.
  • the flexible time resource included in the time resource that can be used by the random access preamble is all flexible time resources in the period configured by the base station through the high layer signaling, or partially flexible and flexible time resources.
  • the fixed downlink time resource does not belong to the Synchronization Signal Block (SS-block).
  • the fixed downlink time resource belongs to the SS-block, and can also be understood as the fixed downlink time resource used for the synchronization channel, and/or the broadcast channel transmission, that is, the time resource that the random access preamble can use in the present application includes the fixed downlink. Part or all of the time resources in addition to the fixed downlink time resources for the synchronization channel and/or broadcast channel transmission.
  • the slot 3 cannot be configured as a time resource that the random access preamble can use, for example, if slot 2
  • the length of the time is smaller than the length of the time resource used for sending the random access preamble.
  • the base station can skip the cycle in the next cycle. Configure the time resource that the random access preamble can use for the terminal.
  • the flexible time resource cannot include the reserved time resource, that is, the time that the random access preamble can be used in the present application.
  • Resources include some or all of the time resources in the flexible time resource except the reserved time resources.
  • the M reserved symbols in slot 3 cannot be used as a random access preamble.
  • Time resource used if the sum of the lengths of the N uplink symbols in the slot 4 and the slot 3 is greater than or equal to the length of the time resource to be used for transmitting the random access preamble, the N uplink symbols of the slot 3 may be used.
  • the base station may skip the period and configure the terminal randomly in the next period. Access time resources that can be used by the predecessor.
  • the time resource that the random access preamble can use includes a flexible time resource, where the flexible time resource is a time slot, and the terminal receives When the slot format information for the flexible time resource is reached, it is determined that the slot format information is invalid.
  • the base station configures slot 4 and slot 3 as time resources that can be used by the random access preamble
  • the terminal receives the slot format information for slot 3
  • the time is directly determined.
  • the slot format information is invalid or the slot format information is discarded.
  • the slot format information is used to indicate the format of the slot.
  • FIG. 6 it is a few examples of the slot format.
  • the base station indicates the format of a slot by using slot format information, that is, indicates a slot. The direction of transmission of the symbol.
  • the base station since the slot format information is invalid for the terminal, the base station may not transmit the slot format information.
  • the time resource that the random access preamble can use includes a flexible time resource, where the flexible time resource is a symbol, when the terminal receives the target
  • the time slot format information of the time slot in which the flexible time resource is located is still determined as the time resource that can be used by the random access preamble, and the time slot in which the flexible time resource is located is determined according to the slot format information.
  • the base station configures the last 4 symbols of slot 4 and slot 3 as time resources that can be used by the random access preamble
  • the terminal receives
  • the slot format information for the slot 3 is obtained, for example, the slot format information of the indicated slot 3 is the first format in FIG. 6, the terminal determines the first three slots 3 according to the slot format information.
  • the symbol is the down symbol.
  • the terminal uses these 4 symbols for the time resources that the random access preamble can use.
  • the time resource that the random access preamble can use includes: part or all of the fixed uplink time resources in the period configured by the base station through the high layer signaling.
  • the time resource that the base station can use for the random access preamble configured by the terminal through the high layer signaling is still the same as the prior art, including the fixed uplink time resource.
  • the base station still only allocates the fixed uplink time resource to the terminal as a time resource that the random access preamble can use.
  • the base station configures time slot 2 as a time resource that can be used by the random access preamble.
  • the base station configures time slot 4 as a random access preamble.
  • the time resource FIG. 5(c) is an example.
  • the base station configures time slot 4 as a time resource that can be used by the random access preamble.
  • the terminal may directly send the random access on the time resource that can be used by the random access preamble configured by the base station. Enter the lead. For example, if the time length of time slot 2 of FIG. 5(a) is greater than or equal to the length of the time resource used for transmitting the random access preamble, time slot 2 is configured as a time resource that can be used by the random access preamble.
  • the terminal needs to extend the time resource that can be used by the random access preamble, and therefore, the terminal is randomly configured at the base station.
  • the time resource is extended, and the time resource actually used by the random access preamble, that is, the time resource actually used by the random access preamble, is equal to the time resource and extension that can be used by the random access preamble. The sum of time resources.
  • the extended time resource includes: part or all of the fixed downlink time resource configured by the base station by using the high layer signaling; or
  • the extended time resource includes: part or all of flexible time resources configured by the base station through high layer signaling; or
  • the extended time resources include part or all of the fixed downlink time resources configured by the base station through the high layer signaling, and part or all of the flexible time resources configured by the base station through the high layer signaling.
  • the fixed downlink time resource and/or the flexible time resource may be used as a transmission random access preamble, thereby expanding the random connection.
  • the time resource of the preamble is forwarded, so that the time resource actually used by the random access preamble satisfies the time resource required for transmitting the random access preamble, so that the random access requirement of the cell edge terminal can be satisfied, and the problem that the PRACH coverage is limited can be solved.
  • the time resource that can be used by the random access preamble configured by the base station is time slot 2, and the time length of the time slot 2 is smaller than the length of the time resource used for sending the random access preamble, and the terminal can
  • the time slot 3 is used as an extended time resource, and is also used as a time resource that can be used by the random access preamble. If the sum of the time lengths of the time slot 2 and the time slot 3 is greater than or equal to the time resource used for transmitting the random access preamble, The length of the terminal determines that slot 2 and slot 3 are the time resources actually used by the random access preamble.
  • the terminal may further increase the extended time resource until the time resource actually used by the random access preamble
  • the length of time is greater than or equal to the length of time resources needed to transmit the random access preamble, for example, slot 3 and time slot 4 are used as extended time resources.
  • the time resource actually used by the random access preamble determined by the terminal includes: a fixed uplink time resource and a fixed downlink time resource, so that the time resource actually used by the random access preamble is greater than or equal to the sending random connection.
  • the length of the time resource that needs to be used for the preamble includes: a fixed uplink time resource and a fixed downlink time resource, so that the time resource actually used by the random access preamble is greater than or equal to the sending random connection.
  • the time resource that can be used by the random access preamble configured by the base station is time slot 4, and the time length of the time slot 4 is smaller than the length of the time resource used for sending the random access preamble, the terminal can
  • the time slot 3 is used as an extended time resource, and is also used as a time resource that can be used by the random access preamble. If the sum of the time lengths of the time slot 3 and the time slot 4 is greater than or equal to the time resource used for transmitting the random access preamble, The length of the terminal determines slot 3 and slot 4 as the time resources actually used by the random access preamble.
  • the terminal may further increase the extended time resource until the time resource actually used by the random access preamble
  • the length of time is greater than or equal to the length of time resources needed to transmit the random access preamble, for example, slot 2 and slot 3 are used as extended time resources.
  • the time resource actually used by the random access preamble determined by the terminal includes: a fixed uplink time resource and a flexible time resource, so that the time resource actually used by the random access preamble is greater than or equal to the sending random access preamble.
  • the time resource that can be used by the random access preamble configured by the base station is the time slot 4, and the time length of the time slot 4 is smaller than the length of the time resource used for sending the random access preamble, the terminal can
  • the time slot 3 flexible time resource
  • the length of the time resource to be used the terminal determines the time slot 3 and the time slot 4, which is the time resource actually used by the random access preamble.
  • the terminal may further increase the extended time resource until the time resource actually used by the random access preamble
  • the length of time is greater than or equal to the length of time resources needed to transmit the random access preamble, for example, slot 2 (fixed downlink time resource) and slot 3 as extended time resources.
  • the time resource actually used by the random access preamble determined by the terminal includes: a fixed uplink time resource, a fixed downlink time resource, and a flexible time resource, so that the time resource actually used by the random access preamble is greater than or It is equal to the length of the time resource that needs to be used to send the random access preamble.
  • the fixed downlink time resource included in the time resource actually used by the random access preamble is all fixed downlink time resources in the period configured by the base station through the high layer signaling, or part of the fixed downlink time resource.
  • the flexible time resource included in the time resource actually used by the random access preamble is all flexible time resources in the period configured by the base station through the high layer signaling, or partially flexible and flexible time resources.
  • the time resource actually used by the random access preamble includes a fixed downlink time resource
  • the fixed downlink time resource does not belong to the SS-block.
  • the flexible time resource cannot include the reserved time resource, that is, the time that the random access preamble can be used in the present application.
  • Resources include some or all of the time resources in the flexible time resource except the reserved time resources.
  • the time resource actually used by the random access preamble includes a flexible time resource, and the flexible time resource is a time slot, and the terminal receives the time slot.
  • the slot format information for the flexible time resource is reached, it is determined that the slot format information is invalid.
  • the base station since the slot format information is invalid for the terminal, the base station may not transmit the slot format information.
  • the time resource actually used by the random access preamble includes a flexible time resource, where the flexible time resource is a symbol, when the terminal receives the target
  • the time slot format information of the time slot in which the flexible time resource is located is still determined as the time resource actually used by the random access preamble, and the time slot in which the flexible time resource is located is determined according to the slot format information.
  • the transmission direction of the time resource other than the flexible time resource For details, refer to the related description in the above scenario 1, and details are not described herein again.
  • each of the foregoing network elements includes a hardware structure and/or a software module corresponding to each function.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiment of the present application further provides a base station 700.
  • the base station 700 includes one or more remote radio units (RRUs) 701 and one or more baseband units (BBUs) 702.
  • the RRU 701 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and may include at least one antenna 7011 and a radio frequency unit 7012.
  • the RRU 701 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals.
  • the BBU 702 is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 701 and the BBU 702 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 702 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spreading, and the like.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform part of the actions performed by the base station in the above embodiment.
  • the BBU 702 may be configured by one or more boards, and multiple boards may jointly support a single access system radio access network, or may respectively support different access standards of the radio access network.
  • the BBU 702 also includes a memory 7021 and a processor 7022.
  • the memory 7021 is used to store necessary instructions and data.
  • the memory 7021 stores the configuration information of the random access preamble in the above embodiment.
  • the processor 7022 is configured to control a base station to perform necessary actions, for example, to control a base station to perform an action performed by a base station in the foregoing embodiment.
  • the memory 7021 and the processor 7022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor.
  • the necessary circuits are also provided on each board.
  • the embodiment of the present application further provides a terminal 800, which is a schematic structural diagram of the terminal, as shown in FIG.
  • Figure 8 shows only the main components of the terminal.
  • the terminal 800 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal, executing the software program, and processing the data of the software program, for example, for supporting the terminal to perform the actions performed by the terminal in the above embodiment.
  • the memory is mainly used to store software programs and data, such as configuration information of the random access preamble described in the above embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • the signaling sent by the base station is received.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 8 shows only one memory and processor for ease of illustration. In an actual terminal, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and a central processing unit, and the baseband processor is mainly used to process communication protocols and communication data, and the central processing unit is mainly used to control the entire terminal and execute the software.
  • the processor in FIG. 8 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal may include multiple baseband processors to accommodate different network standards.
  • the terminal may include multiple central processors to enhance its processing capabilities, and various components of the terminal may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and control circuit having the transceiving function can be regarded as the transceiving unit 801 of the terminal 800, and the processor having the processing function is regarded as the processing unit 802 of the terminal 800.
  • the terminal 800 includes a transceiver unit 801 and a processing unit 802.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 801 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 801 is regarded as a sending unit, that is, the transceiver unit 801 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the embodiment of the present application further provides an apparatus, which may be a base station or a chip in a base station.
  • the apparatus includes at least a processor 901 and a memory 902.
  • the processor 901, the memory 902 is connected by a bus.
  • the memory 902 is configured to store computer execution instructions
  • the processor 901 is configured to execute computer execution instructions stored by the memory 902.
  • the processor 901 executes the computer-executed instructions stored in the memory 902, so that the apparatus 900 performs the steps performed by the base station in the communication method provided in FIG. 4 and the foregoing embodiments, or causes the base station to deploy the functional unit corresponding to the step.
  • the memory 902 includes the following instructions:
  • the command S1 sending high-level signaling to the terminal, where the high-level signaling is used to indicate a period, and a time resource configured to be fixed uplink in the period, a fixed downlink time resource, and a flexible time resource;
  • the instruction S2 sending a broadcast message to the terminal, where the broadcast message is used to indicate a random access configuration, where the random access configuration includes: a time resource that the random access preamble can use;
  • the instruction S3 receiving, according to the random access configuration, a random access preamble from the terminal, where the time resource that the random access preamble can use includes part or all of the fixed uplink time resource, and Part or all of the fixed time resource of the downlink and the at least one time resource of the flexible time resource.
  • the memory 902 includes the following instructions:
  • the command S1 sending high-level signaling to the terminal, where the high-level signaling is used to indicate a period, and a time resource configured to be fixed uplink in the period, a fixed downlink time resource, and a flexible time resource;
  • the instruction S2 sending a broadcast message to the terminal, where the broadcast message is used to indicate a random access configuration, where the random access configuration includes: a format of a random access preamble, and a time resource that the random access preamble can use,
  • the time resource that can be used by the random access preamble includes part or all of the fixed uplink time resource, and the length of the time resource used by the random access preamble indicated by the format is greater than the random access preamble.
  • the command S3 receiving, according to the random access configuration, a random access preamble from the terminal, where the time resource actually used by the random access preamble includes: a time resource that the random access preamble can use, and And the fixed downlink time resource and part or all of the at least one time resource of the flexible time resource.
  • the processor 901 may include different types of processors 901, or include the same type of processor 901; the processor 901 may be any one of the following: a central processing unit (CPU), an ARM processor, and a field. A device with computational processing capability, such as a Field Programmable Gate Array (FPGA) or a dedicated processor. In an optional implementation manner, the processor 901 may also be integrated into a many-core processor.
  • processors 901 may be any one of the following: a central processing unit (CPU), an ARM processor, and a field.
  • a device with computational processing capability such as a Field Programmable Gate Array (FPGA) or a dedicated processor.
  • FPGA Field Programmable Gate Array
  • the processor 901 may also be integrated into a many-core processor.
  • the memory 902 may be any one or any combination of the following: a random access memory (RAM), a read only memory (ROM), a non-volatile memory (non-volatile memory). , referred to as NVM), Solid State Drives (SSD), mechanical hard disks, disks, disk arrays and other storage media.
  • RAM random access memory
  • ROM read only memory
  • NVM non-volatile memory
  • SSD Solid State Drives
  • the embodiment of the present application further provides a device, which may be a terminal or a chip in the terminal.
  • the device includes at least a processor 1001 and a memory 1002.
  • the processor 1001, the memory 1002 is connected by a bus.
  • the memory 1002 is configured to store computer execution instructions
  • the processor 1001 is configured to execute computer execution instructions stored by the memory 1002.
  • the processor 1001 executes the computer-executed instructions stored in the memory 1002, so that the device 1000 performs the steps performed by the terminal in the communication method provided in FIG. 4 and the foregoing embodiment, or causes the terminal to deploy the functional unit corresponding to the step.
  • the memory 1002 includes the following instructions:
  • the command S1 receiving high-level signaling from the base station, where the high-level signaling is used to indicate a period, and a time resource configured to be fixed uplink in the period, a fixed downlink time resource, and a flexible time resource;
  • the instruction S2 receiving a broadcast message from the base station, where the broadcast message is used to indicate a random access configuration, where the random access configuration includes: a time resource that the random access preamble can use;
  • the instruction S3 sending, according to the random access configuration, a random access preamble to the base station, where the time resource that the random access preamble can use includes part or all of the fixed uplink time resource, and the Part or all of at least one of the downlink time resource and the flexible time resource is fixed.
  • the memory 1002 includes the following instructions:
  • the command S1 receiving high-level signaling from the base station, where the high-level signaling is used to indicate a period, and a time resource configured to be fixed uplink in the period, a fixed downlink time resource, and a flexible time resource;
  • the instruction S2 receiving a broadcast message from the base station, where the broadcast message is used to indicate a random access configuration, where the random access configuration includes: a format of a random access preamble, and a time resource that the random access preamble can use
  • the time resource that can be used by the random access preamble includes some or all of the fixed uplink time resources, and the length of the time resource used by the random access preamble indicated by the format is greater than the random access preamble.
  • the S3 is configured to send a random access preamble to the base station according to the random access configuration, where the time resource actually used by the random access preamble includes: a time resource that the random access preamble can use, and a Part or all of the fixed time resource of the downlink and the at least one time resource of the flexible time resource.
  • the processor 1001 may include different types of processors 1001, or include the same type of processor 1001; the processor 1001 may be any one of the following: a central processing unit (CPU), an ARM processor, and a field. A device with computational processing capability, such as a Field Programmable Gate Array (FPGA) or a dedicated processor. In an optional implementation manner, the processor 1001 may also be integrated into a many-core processor.
  • processors 1001 may be any one of the following: a central processing unit (CPU), an ARM processor, and a field.
  • a device with computational processing capability such as a Field Programmable Gate Array (FPGA) or a dedicated processor.
  • FPGA Field Programmable Gate Array
  • the processor 1001 may also be integrated into a many-core processor.
  • the memory 1002 may be any one or any combination of the following: a random access memory (RAM), a read only memory (ROM), a non-volatile memory (non-volatile memory). , referred to as NVM), Solid State Drives (SSD), mechanical hard disks, disks, disk arrays and other storage media.
  • RAM random access memory
  • ROM read only memory
  • NVM non-volatile memory
  • SSD Solid State Drives
  • FIG. 11 is a schematic diagram of a device provided by the present application.
  • the device 1100 may be a chip in a base station or a base station in any of the foregoing embodiments.
  • the apparatus 1100 can be used to perform any of the wireless communication methods described above.
  • the apparatus 1100 includes at least one processing unit 111, a communication unit 112.
  • the processing unit 111 and the communication unit 112 are connected by a communication bus.
  • the communication bus can include a path for communicating information between the above units.
  • the processing unit 111 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication unit 112 may be a device having a transceiving function for communicating with other devices or communication networks, such as an Ethernet, a radio access network (RAN), a wireless local area network (WLAN), and the like.
  • RAN radio access network
  • WLAN wireless local area network
  • the processing unit 111 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • apparatus 1100 can include a plurality of processing units, such as processing unit 111 and processing unit 118 in FIG. Each of these processing units may be a single-CPU processor or a multi-core processor, where the processor may refer to one or more devices, circuits, and/or A processing core for processing data, such as computer program instructions.
  • the processing unit 111 when the device is a base station, the processing unit 111 may be, for example, a processor, and the communication unit 112 may be, for example, a transceiver, the transceiver includes a radio frequency circuit, when the device further includes a storage unit, The storage unit is configured to store computer execution instructions, and the processing unit 111 is coupled to the storage unit, and the processing unit 111 executes computer execution instructions stored by the storage unit to cause the base station to perform the wireless communication method of any of the above embodiments.
  • the processing unit 111 may be, for example, a processor, and the communication unit 112 may be, for example, an input/output interface, a pin or a circuit, or the like.
  • the processing unit 111 may execute computer-executed instructions stored by the storage unit to cause any of the above-described embodiments to be executed.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the base station, such as a ROM or may store static information. And other types of static storage devices, RAM, etc.
  • the chip performs a wireless communication method, which can be understood as: the chip combines other components in the device to complete the wireless communication method.
  • the communication unit of the chip is connected to the transceiver of the base station, and the chip processing unit sends high-level signaling to the transceiver of the base station through the communication unit, and the high-level signal is sent by the transceiver of the base station to the terminal.
  • the processing unit of the chip transmits a broadcast message to the transceiver of the base station through the communication unit, and then the transceiver of the base station sends a broadcast message to the terminal, and the processor of the base station controls the transceiver of the base station according to the random access configuration.
  • the wireless communication method of the embodiment of the present invention is implemented by the chip of the base station.
  • the apparatus when the apparatus is divided by the method shown in FIG. 11, the apparatus can implement the wireless communication method in any of the above embodiments of the present application by cooperation of the processing unit and the communication unit.
  • the processing unit is configured to control the communication unit:
  • the high layer signaling is used to indicate a period, and a time resource configured to be fixed uplink in the period, a fixed downlink time resource, and a flexible time resource;
  • the broadcast message is used to indicate a random access configuration
  • the random access configuration includes: a time resource that the random access preamble can use
  • the time resource that the random access preamble can use includes part or all of the fixed uplink time resource, and part of the fixed downlink time resource and the at least one time resource of the flexible time resource or All.
  • the random access configuration further includes:
  • the format of the preamble is randomly accessed, and the length of the time resource used by the random access preamble indicated by the format is less than or equal to the length of the time resource that the random access preamble can use.
  • the time resource that can be used by the random access preamble includes time resources of the fixed downlink, except for a fixed downlink time resource for a synchronization channel and/or a broadcast channel transmission. Part or all.
  • the time resource that the random access preamble can use includes part or all of the time resources in the flexible time resource except the reserved time resource.
  • processing unit is configured to control the communication unit:
  • the high layer signaling is used to indicate a period, and a time resource configured to be fixed uplink in the period, a fixed downlink time resource, and a flexible time resource;
  • the broadcast message is used to indicate a random access configuration
  • the random access configuration includes: a format of a random access preamble, and a time resource that the random access preamble can use
  • the random The time resource that the access preamble can use includes some or all of the fixed uplink time resources, and the length of the time resource used by the random access preamble indicated by the format is greater than the time that the random access preamble can be used. The length of the resource;
  • the time resource actually used by the random access preamble includes: a time resource that can be used by the random access preamble, and a part of the fixed downlink time resource and the at least one time resource of the flexible time resource. Or all.
  • the time resource actually used by the random access preamble includes a time resource of the fixed downlink time resource except for a fixed downlink time resource for a synchronization channel and/or a broadcast channel transmission. Part or all.
  • the time resource actually used by the random access preamble includes part or all of the time resource except the reserved time resource in the flexible time resource.
  • chip of the base station or the base station may be used to implement the steps performed by the base station in the method of the wireless communication in the embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a device provided by the present application.
  • the device 1200 may be a chip in a terminal or a terminal in any of the foregoing embodiments.
  • the apparatus 1200 can be used to perform any of the wireless communication methods described above.
  • the apparatus 1200 includes at least one processing unit 121, a communication unit 122.
  • the processing unit 121 and the communication unit 122 are connected by a communication bus.
  • the communication bus can include a path for communicating information between the above units.
  • Processing unit 121 may be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present invention.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication unit 122 may be a device having a transceiving function for communicating with other devices or communication networks, such as an Ethernet, a radio access network (RAN), a wireless local area network (WLAN), and the like.
  • RAN radio access network
  • WLAN wireless local area network
  • processing unit 121 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • apparatus 1200 can include a plurality of processing units, such as processing unit 121 and processing unit 128 in FIG. Each of these processing units may be a single-CPU processor or a multi-core processor, where the processor may refer to one or more devices, circuits, and/or A processing core for processing data, such as computer program instructions.
  • processing unit 121 and processing unit 128 may be a single-CPU processor or a multi-core processor, where the processor may refer to one or more devices, circuits, and/or A processing core for processing data, such as computer program instructions.
  • the processing unit 121 may be, for example, a processor, and the communication unit 122 may be, for example, a transceiver, the transceiver includes a radio frequency circuit, when the device further includes a storage unit, The storage unit is configured to store a computer execution instruction, and the processing unit 121 is coupled to the storage unit, and the processing unit 121 executes a computer execution instruction stored by the storage unit to cause the terminal to execute the wireless communication method of any of the above embodiments.
  • the processing unit 121 may be, for example, a processor, and the communication unit 122 may be, for example, an input/output interface, a pin or a circuit, or the like.
  • the processing unit 121 may execute computer-executed instructions stored by the storage unit to cause any of the wireless communication methods of the above embodiments to be performed.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the terminal, such as a ROM or may store static information. And other types of static storage devices, RAM, etc.
  • the chip performs a wireless communication method, which can be understood as: the chip combines other components in the device to complete the wireless communication method.
  • the communication unit of the chip is connected to the transceiver of the terminal, and the transceiver of the terminal can control the transceiver of the terminal to receive high-level signaling from the base station, so that the communication unit of the chip can receive the communication from the chip.
  • High-level signaling of the base station further, the transceiver of the terminal controllable terminal receives the broadcast message from the base station, the communication unit of the chip can receive the broadcast message from the transceiver, and the processing unit of the chip controls the chip
  • the communication unit sends a random access preamble to the transceiver of the terminal according to the random access configuration, and then the transceiver of the terminal sends the random access preamble to the base station.
  • the wireless communication method of the embodiment of the present invention is implemented by the chip of the terminal.
  • the device when the device is divided by the method shown in FIG. 12, the device can implement the wireless communication method in any of the above embodiments of the present application by cooperation of the processing unit and the communication unit.
  • the processing unit is configured to control the communication unit:
  • the high layer signaling is used to indicate a period, and a time resource configured to be fixed uplink in the period, a fixed downlink time resource, and a flexible time resource;
  • the broadcast message is used to indicate a random access configuration
  • the random access configuration includes: a time resource that the random access preamble can use
  • the time resource that the random access preamble can use includes part or all of the fixed uplink time resource, and part of the fixed downlink time resource and the at least one time resource of the flexible time resource or All.
  • the random access configuration further includes:
  • the format of the preamble is randomly accessed, and the length of the time resource used by the random access preamble indicated by the format is less than or equal to the length of the time resource that the random access preamble can use.
  • the time resource that can be used by the random access preamble includes time resources of the fixed downlink, except for a fixed downlink time resource for a synchronization channel and/or a broadcast channel transmission. Part or all.
  • the time resource that the random access preamble can use includes part or all of the time resources in the flexible time resource except the reserved time resource.
  • the configuration granularity of the time resource that can be used by the random access preamble is a time slot
  • the time resource that the random access preamble can use includes a flexible time resource, where the flexible time resource is a time slot
  • the processing unit is further configured to control the communication unit:
  • the configuration granularity of the time resource that can be used by the random access preamble is a symbol
  • the time resource that the random access preamble can use includes a flexible time resource, where the flexible time resource is a symbol
  • the processing unit is further configured to control the communication unit:
  • processing unit is configured to control the communication unit:
  • the high layer signaling is used to indicate a period, and a time resource configured to be fixed uplink in the period, a fixed downlink time resource, and a flexible time resource;
  • the broadcast message is used to indicate a random access configuration
  • the random access configuration includes: a format of a random access preamble, and a time resource that the random access preamble can use
  • the time resource that can be used by the random access preamble includes some or all of the fixed uplink time resources, and the length of the time resource used by the random access preamble indicated by the format is greater than the random access preamble can use. The length of the time resource;
  • the time resource actually used by the random access preamble includes: a time resource that can be used by the random access preamble, and a part of the fixed downlink time resource and the at least one time resource of the flexible time resource. Or all.
  • the time resource actually used by the random access preamble includes a time resource of the fixed downlink time resource except for a fixed downlink time resource for a synchronization channel and/or a broadcast channel transmission. Part or all.
  • the time resource actually used by the random access preamble includes part or all of the time resource except the reserved time resource in the flexible time resource.
  • the configuration granularity of the time resource actually used by the random access preamble is a time slot
  • the time resource actually used by the random access preamble includes a flexible time resource, where the flexible time resource is a time slot
  • the processing unit is further configured to control the communication unit:
  • the configuration granularity of the time resource that can be used by the random access preamble is a symbol
  • the time resource that the random access preamble can use includes a flexible time resource, where the flexible time resource is a symbol
  • the processing unit is further configured to control the communication unit:
  • chip of the terminal or the terminal may be used to implement the steps performed by the terminal in the wireless communication method of the embodiment of the present invention.
  • reference may be made to the above, and details are not described herein again.
  • chip of the terminal or the terminal may be used to implement the steps performed by the terminal in the wireless communication method of the embodiment of the present invention.
  • reference may be made to the above, and details are not described herein again.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a Solid State Disk (SSD)
  • embodiments of the present application can be provided as a method, apparatus (device), computer readable storage medium, or computer program product.
  • the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects, which are collectively referred to herein as "module” or "system.”
  • a general purpose processor may be a microprocessor.
  • the general purpose processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium can be coupled to the processor such that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium may be disposed in the ASIC, and the ASIC may be disposed in the terminal device. Alternatively, the processor and the storage medium may also be disposed in different components in the terminal device.
  • the above-described functions described in the embodiments of the present application may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer readable medium or transmitted as one or more instructions or code to a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
  • the storage medium can be any available media that any general purpose or special computer can access.
  • Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general purpose or special processor.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote source through a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in the defined computer readable medium.
  • DSL digital subscriber line
  • the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

本申请提供一种无线通信方法及装置,该方法包括:接收来自基站的高层信令,接收来自基站的广播消息,根据随机接入配置,向基站发送随机接入前导;其中,随机接入前导能够使用的时间资源包括固定上行的时间资源的部分或全部,以及固定下行的时间资源和灵活时间资源中的至少一种时间资源的部分或全部。基站指示的随机接入前导能够使用的时间资源不仅包括固定上行的时间资源,还可以包括固定下行的时间资源、灵活时间资源,扩展了发送随机接入前导的时间资源,可使随机接入前导能够使用的时间资源满足发送随机接入前导所需要的时间资源,能够满足小区边缘终端的随机接入需求,可解决PRACH覆盖受限的问题。

Description

一种无线通信方法及装置
本申请要求在2017年9月8日提交中华人民共和国知识产权局、申请号为201710806433.X、发明名称为“一种无线通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种无线通信方法及装置。
背景技术
长期演进(long term evolution,LTE)中,随机接入过程的第一个步骤为,终端发送物理层随机接入前导(random access preamble)。随机接入前导的主要作用是告诉基站有一个随机接入请求,使得终端能完成上行链路的接入,并使得基站能估计其与终端之间的传输时延,以便基站校准上行时间(uplink timing),并将校准信息通过定时提前量命令(timing advance command)告知终端。
LTE中,随机接入前导是在物理随机接入信道(Physical Random Access Channel,PRACH)上传输,并且基站会通过广播系统信息SIB2来通知所有的终端,允许在哪些上行的时频资源上传输随机接入前导。基站通过高层信令配置上下行时间资源的配置信息,该配置信息半静态地指示了上下行时间资源,以及指示了所述上行时间资源中的哪些时间资源可以用作传输随机接入前导的PRACH资源的时间资源。
在LTE中,只有一种子载波间隔,即15kHz(千赫兹),对应的时域资源单元,即子帧的长度为1ms(毫秒),随着通信技术的发展,在5G中将支持多种子载波间隔,例如支持15kHz,30kHz,60kHz,120kHz等,相应地,对应的时间资源单元,即时隙的长度,包括1ms,0.5ms,0.25ms,0.125ms,等。当终端使用较大子载波间隔时,相应地,使用的时隙的时间长度较小,这将导致基站指示的用于传输随机接入前导的PRACH资源中的时间资源的时间长度,可能小于发送的随机接入前导使用的时间资源的长度,从而导致对于使用较大子载波间隔的终端(主要是小区边缘的终端)无法进行随机接入,产生PRACH的覆盖受限问题。
发明内容
本申请提供一种无线通信方法及装置,用以解决PRACH的覆盖受限的问题。
第一方面,本申请提供一种无线通信方法,该方法可由终端或终端内的芯片执行。该方法包括:接收来自基站的高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;接收来自所述基站的广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导能够使用的时间资源;根据所述随机接入配置,向所述基站发送随机接入前导;其中,所述随机接入前导能够使用的时间资源包括所述固定上行的时间资源的部分或全部,以及所述固定下行的时间资源和所述灵活时间资源中的至少一种时间资源的部分或全部。由于基站指示的随机接入前导能够使用的时间资源不仅包括固定 上行的时间资源,还可以包括固定下行的时间资源、灵活时间资源,即,将固定下行的时间资源和/或灵活时间资源用于传输随机接入前导,从而扩展了发送随机接入前导的时间资源,使得随机接入前导能够使用的时间资源满足发送随机接入前导所需要的时间资源,因而,可解决PRACH覆盖受限的问题,能够满足小区边缘终端的随机接入需求。
在一种可能的设计中,所述随机接入配置还包括:随机接入前导的格式,并且,所述格式指示的随机接入前导使用的时间资源的长度小于或等于所述随机接入前导能够使用的时间资源的长度。
在一种可能的设计中,所述随机接入前导能够使用的时间资源包括所述固定下行的时间资源中,除了用于同步信道,和/或广播信道传输的固定下行的时间资源之外,的时间资源的部分或全部。由于用于同步信道,和/或广播信道传输的固定下行的时间资源,不能用于传输preamble,因此,基站指示的随机接入前导中不包括这部分资源。
在一种可能的设计中,所述随机接入前导能够使用的时间资源包括所述灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。灵活时间资源中的保留的时间资源不做使用,因此,基站指示的随机接入前导中不包括这部分保留资源。
在一种可能的设计中,所述随机接入前导能够使用的时间资源的配置粒度为时隙,所述随机接入前导能够使用的时间资源包括灵活时间资源,所述灵活时间资源为时隙;接收针对所述灵活时间资源的时隙格式信息,并确定所述时隙格式信息无效。当随机接入前导能够使用的时间资源包括灵活时间资源时,若接收到针对这些灵活时间资源的时隙格式信息,则确定这些时隙格式信息无效,即,这些灵活时间资源仍然用于发送随机接入前导。
在一种可能的设计中,所述随机接入前导能够使用的时间资源的配置粒度为符号,所述随机接入前导能够使用的时间资源包括灵活时间资源,所述灵活时间资源为符号;接收针对所述灵活时间资源所在的时隙的时隙格式信息,并根据所述时隙格式信息确定所述灵活时间资源所在的时隙中,除所述灵活时间资源之外的时间资源的传输方向。当随机接入前导能够使用的时间资源包括灵活时间资源,且灵活时间资源为符号时,若接收到针对灵活时间资源所在的时隙的时隙格式信息,则只需要确定时隙中除这些灵活时间资源之外的时间资源的格式,而这些灵活时间资源,则确定为上行符号,且用于传输随机接入前导。
第二方面,本申请提供一种无线通信方法,该方法可由基站或基站内的芯片执行。该方法包括:向终端发送高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;向所述终端发送广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导能够使用的时间资源;根据所述随机接入配置,接收来自所述终端的随机接入前导;其中,所述随机接入前导能够使用的时间资源包括所述固定上行的时间资源的部分或全部,以及所述固定下行的时间资源和所述灵活时间资源中的至少一种时间资源的部分或全部。
在一种可能的设计中,所述随机接入配置还包括:随机接入前导的格式,并且,所述格式指示的随机接入前导使用的时间资源的长度小于或等于所述随机接入前导能够使用的时间资源的长度。
在一种可能的设计中,所述随机接入前导能够使用的时间资源包括所述固定下行的时间资源中,除了用于同步信道,和/或广播信道传输的固定下行的时间资源之外,的时间资源的部分或全部。
在一种可能的设计中,所述随机接入前导能够使用的时间资源包括所述灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。
第三方面,本申请提供一种无线通信方法,该方法可由终端或终端内的芯片执行。该方法包括:接收来自基站的高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;接收来自所述基站的广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导的格式,和,随机接入前导能够使用的时间资源,所述随机接入前导能够使用的时间资源包括所述固定上行的时间资源中的部分或全部,并且,所述格式指示的随机接入前导使用的时间资源的长度大于所述随机接入前导能够使用的时间资源的长度;根据所述随机接入配置,向所述基站发送随机接入前导;其中,所述随机接入前导实际使用的时间资源包括:所述随机接入前导能够使用的时间资源,以及所述固定下行的时间资源和所述灵活时间资源中的至少一种时间资源的部分或全部。当基站指示的随机接入前导能够使用的时间资源不够使用时,则可以将固定下行的时间资源,和/或灵活时间资源,用作传输随机接入前导,从而扩展了发送随机接入前导的时间资源,使得随机接入前导实际使用的时间资源满足发送随机接入前导所需要的时间资源,因而,可解决PRACH覆盖受限的问题,能够满足小区边缘终端的随机接入需求。
在一种可能的设计中,所述随机接入前导实际使用的时间资源包括所述固定下行的时间资源中,除了用于同步信道,和/或广播信道传输的固定下行的时间资源之外,的时间资源的部分或全部。由于用于同步信道,和/或广播信道传输的固定下行的时间资源,不能用于传输preamble,因此,基站指示的随机接入前导中不包括这部分资源。
在一种可能的设计中,所述随机接入前导实际使用的时间资源包括所述灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。灵活时间资源中的保留的时间资源不做使用,因此,基站指示的随机接入前导中不包括这部分保留资源。
在一种可能的设计中,所述随机接入前导实际使用的时间资源的配置粒度为时隙,所述随机接入前导实际使用的时间资源包括灵活时间资源,所述灵活时间资源为时隙;接收针对所述灵活时间资源的时隙格式信息,并确定所述时隙格式信息无效。当随机接入前导实际使用的时间资源包括灵活时间资源时,若接收到针对这些灵活时间资源的时隙格式信息,则确定这些时隙格式信息无效,即,这些灵活时间资源仍然用于发送随机接入前导。
在一种可能的设计中,所述随机接入前导能够使用的时间资源的配置粒度为符号,所述随机接入前导能够使用的时间资源包括灵活时间资源,所述灵活时间资源为符号;接收针对所述灵活时间资源所在的时隙的时隙格式信息,并根据所述时隙格式信息确定所述灵活时间资源所在的时隙中,除所述灵活时间资源之外的时间资源的传输方向。当随机接入前导实际使用的时间资源包括灵活时间资源,且灵活时间资源为符号时,若接收到针对灵活时间资源所在的时隙的时隙格式信息,则只需要确定时隙中除这些灵活时间资源之外的时间资源的格式,而这些灵活时间资源,则确定为上行符号,且 用于传输随机接入前导。
第四方面,本申请提供一种无线通信方法,该方法可由基站或基站内的芯片执行。该方法包括:向终端发送高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;
向所述终端发送广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导的格式,和,随机接入前导能够使用的时间资源,所述随机接入前导能够使用的时间资源包括所述固定上行的时间资源中的部分或全部,并且,所述格式指示的随机接入前导使用的时间资源的长度大于所述随机接入前导能够使用的时间资源的长度;
根据所述随机接入配置,接收来自所述终端的随机接入前导;
其中,所述随机接入前导实际使用的时间资源包括:所述随机接入前导能够使用的时间资源,以及所述固定下行的时间资源和所述灵活时间资源中的至少一种时间资源的部分或全部。
在一种可能的设计中,所述随机接入前导实际使用的时间资源包括所述固定下行的时间资源中,除了用于同步信道,和/或广播信道传输的固定下行的时间资源之外,的时间资源的部分或全部。
在一种可能的设计中,所述随机接入前导实际使用的时间资源包括所述灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。
第五方面,本申请提供一种装置,该装置可以是终端,也可以是终端内的芯片。该装置具有实现上述第一方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,当该装置为终端时,终端包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是收发器,所述收发器包括射频电路,可选地,所述终端还包括存储单元,该存储单元例如可以是存储器。当终端包括存储单元时,该存储单元存储有计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该终端执行上述第一方面任意一项的无线通信方法。
在另一种可能的设计中,当该装置为终端内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使上述第一方面任意一项的无线通信方法被执行。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用的中央处理器(Central Processing Unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面的无线通信方法的程序执行的集成电路。
第六方面,本申请提供一种装置,该装置可以是基站,也可以是基站内的芯片。该装置具有实现上述第二方面的各实施例的功能。该功能可以通过硬件实现,也可以 通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,当该装置为基站时,基站包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是收发器,所述收发器包括射频电路,可选地,所述基站还包括存储单元,该存储单元例如可以是存储器。当终端包括存储单元时,该存储单元存储有计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该基站执行上述第二方面任意一项的无线通信方法。
在另一种可能的设计中,当该装置为基站内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使上述第二方面任意一项的无线通信方法被执行。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述基站内的位于所述芯片外部的存储单元,如ROM、可存储静态信息和指令的其他类型的静态存储设备、RAM等。
其中,上述任一处提到的处理器,可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述第二方面的无线通信方法的程序执行的集成电路。
第七方面,本申请提供一种装置,该装置可以是终端,也可以是终端内的芯片。该装置具有实现上述第三方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,当该装置为终端时,终端包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是收发器,所述收发器包括射频电路,可选地,所述终端还包括存储单元,该存储单元例如可以是存储器。当终端包括存储单元时,该存储单元存储有计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该终端执行上述第三方面任意一项的无线通信方法。
在另一种可能的设计中,当该装置为终端内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使上述第三方面任意一项的无线通信方法被执行。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内的位于所述芯片外部的存储单元,如ROM、可存储静态信息和指令的其他类型的静态存储设备、RAM等。
其中,上述任一处提到的处理器,可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述第三方面的无线通信方法的程序执行的集成电路。
第八方面,本申请提供一种装置,该装置可以是基站,也可以是基站内的芯片。该装置具有实现上述第四方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,当该装置为基站时,基站包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是收发器,所述收发器包括射 频电路,可选地,所述基站还包括存储单元,该存储单元例如可以是存储器。当终端包括存储单元时,该存储单元存储有计算机执行指令,该处理单元与该存储单元连接,该处理单元执行该存储单元存储的计算机执行指令,以使该基站执行上述第四方面任意一项的无线通信方法。
在另一种可能的设计中,当该装置为基站内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使上述第四方面任意一项的无线通信方法被执行。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述基站内的位于所述芯片外部的存储单元,如ROM、可存储静态信息和指令的其他类型的静态存储设备、RAM等。
其中,上述任一处提到的处理器,可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述第四方面的无线通信方法的程序执行的集成电路。
第九方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第十方面,本申请还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
另外,第二方面、第四方面至第十方面中任一种设计方式所带来的技术效果可参见第一方面或第三方面中不同设计方式所带来的技术效果,此处不再赘述。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请提供的一种可能的网络架构示意图;
图2为现有技术指示随机接入前导能够使用的时间资源示意图;
图3为图2所示的时间资源改变上下行链路子帧配置比后的示意图;
图4为本申请提供的无线通信方法;
图5(a)为本申请提供的一种资源配置示意图;
图5(b)为本申请提供的另一种资源配置示意图;
图5(c)为本申请提供的另一种资源配置示意图;
图6为本申请提供的一种时隙格式示例图;
图7为本申请提供的一种基站结构示意图;
图8为本申请提供的一种终端结构示意图;
图9为本申请提供的一种装置结构示意图;
图10为本申请提供的一种装置结构示意图;
图11为本申请提供的一种装置结构示意图;
图12为本申请提供的一种装置结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施 例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
需要说明的的是,本申请的无线通信方法可由装置执行。在网络侧,该装置可以是基站或基站内的芯片,即可以由基站或基站内的芯片执行本申请的无线通信方法;在终端侧,该装置可以是终端或终端内的芯片,即可以由终端或终端内的芯片执行本申请的无线通信方法。
为方便说明,本申请,以装置为基站或终端为例,对无线通信方法进行说明,对于装置为基站内的芯片或终端内的芯片的实现方法,可参考基站或终端的无线通信方法的具体说明,不再重复介绍。
如图1所示,为本申请的一种可能的网络架构示意图。包括至少一个终端10,通过无线接口与基站20通信,为清楚起见,图中只示出一个基站和一个终端。
其中,终端是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
基站,是一种将终端接入到无线网络的设备,包括但不限于:5G中的(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(BaseBand Unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等,此外,还可以包括无线保真(wireless fidelity,wifi)接入点(access point,AP)等。
本申请,时间资源(time resource)指的是在时间维度的资源,与其相对应的是频率维度的频率资源(frequency resource),时间资源也可以称为时域资源(time domain resource),频率资源也可以称为频域资源(frequency domain resource)。本申请,以时间资源和频率资源的名称来介绍本发明内容,后续不再赘述。
LTE中,基站向终端指示发送随机接入前导能够使用的时间资源的方式为:
基站向终端发送高层信令,用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源;
基站向终端发送广播消息,用于指示随机接入配置,该随机接入配置包括随机接入前导能够使用的时间资源,其中,该随机接入前导能够使用的时间资源包括固定上行的时间资源。
当然,实际应用中,基站还向终端配置频率资源,具体地,上述随机接入配置中还包括配置的频率资源,由于本申请对频率资源的配置方法与现有技术相同,因此,本申请实施例中,对于频率资源的配置方法不做具体说明,可参考现有技术中给出的的配置方法,后续不再赘述。
例如,参考图2,为现有技术指示随机接入前导能够使用的时间资源示意图。其 中,时间资源的配置粒度为时隙(slot)。基站通过高层信令指示了系统帧中的每个时隙的格式,具体地,一个时隙,或者是全部符号用于上行传输,如图2中所示的时隙2、时隙7,或者是全部符号用于下行传输,如图2中所示的时隙0、时隙3等,或者是部分符号用于上行传输,部分符号用于下行传输,部分符号作为保留资源不使用,如图2中所示的时隙1、时隙6。
进一步地,基站还通过广播消息指示配置的上行时间资源中用于传输随机接入前导的时间资源。参考图2,例如,基站配置用于传输随机接入前导的时间资源为时隙2。需要说明的是,配置用于传输随机接入前导的时间资源是连续的时间资源。
随着通信技术的不断发展,在5G中,将有多种时隙格式,时隙的时间长度可能小于LTE中时隙的时间长度,进而,如果继续使用LTE中的方法,将可能导致无法发送随机接入前导。例如,参考图2,在5G中,若使用LTE中的方法,指示时隙2为发送随机接入前导的时间资源,假设时隙2的时间长度为0.5ms,因而小于1ms,其中,1ms为LTE中一个时隙的时间长度,并且将要发送的随机接入前导需要使用的时间长度介于0.5ms和1ms之间,导致时隙2不能用于发送随机接入前导,并且由于时隙2之后的时隙3是一个固定下行的时间资源,也不能被分配用于发送随机接入前导,从而,没有足够的上行时间资源用于发送该随机接入前导,导致某些终端不能发送随机接入前导,从而,可能会引起小区覆盖受限的问题。
为解决上述问题,本申请提出多种解决方案。
例如,一种解决方案为,改变上下行链路子帧配置比,增加上行子帧的数量,如图3所示,为图2所示的时间资源改变上下行链路子帧配置比后的示意图。其中,时隙3和时隙7,被配置为上行子帧,从而,在第一个周期中,时隙2和时隙3可用于传输随机接入前导,在第二个周期中,时隙7和时隙8可用于传输随机接入前导。
该方法可以解决小区覆盖受限的问题,但该方法存在的一个主要问题是:上下行链路子帧配置比是基于小区的上下行业务负载确定的,具体地,根据上下行传输需求的统计信息确定,如果为了增加PRACH传输时间资源而配置一个上行时间资源较多的配比,会导致在下行业务量远大于上行业务量的场景下,根据所述上下行链路子帧配置比确定的下行资源无法满足下行业务的传输需求,而上行时间资源可能会空闲不用,从而,导致资源的利用率降低。
本申请还提出另一种解决上述问题的方案,下面具体说明。
如图4所示,为本申请提供的无线通信方法,该方法包括以下步骤:
步骤401、基站向终端发送高层信令,终端接收来自基站的高层信令。
高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源。
步骤402、基站向终端发送广播消息,终端接收来自基站的广播消息。
广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导能够使用的时间资源。
步骤403、终端向基站发送随机接入前导,基站接收来自终端的随机接入前导。
具体地,终端根据随机接入配置,向基站发送随机接入前导;基站根据随机接入配置,接收来自终端的随机接入前导。
具体地,上述步骤401中,基站向终端发送的高层信令,可以是系统消息块(System Information Block,SIB),广播信令,无线资源控制(Radio Resource Control,RRC)信令,媒体接入控制(Media Access Control,MAC)控制单元(Control Element,CE)、其余的系统信息(Remaining system information,RMSI)等。
本申请,将时间资源分为固定时间资源和灵活时间资源,其中,固定时间资源进一步包括固定上行的时间资源、固定下行的时间资源。
例如,以时隙为单位,则固定时间资源包括固定时隙,灵活时间资源包括灵活时隙。其中,固定时隙中的所有符号固定的用于上行或所有的符号固定的用于下行,固定时隙中的每个符号的传输方向由基站通过高层信令半静态配置的。灵活时隙中的每个符号的传输方向是可变的,具体地,是由基站通过下行控制信息动态指示每次传输时所使用的时隙中每个符号的传输方向。
再比如,以符号为单位,则固定时间资源包括配置用于上行传输的符号,配置用于下行传输的符号,即固定时间资源包括固定上行的符号,固定下行的符号。灵活时间资源包括灵活符号,并且,灵活时间资源中的每个符号的传输方向是由基站通过下行控制信息动态指示的。
当然,还可以是以子帧为单位,或以系统帧为单位,其实现方法与以时隙为单位类似,本申请对时间资源单元的单位没有限定。
例如,以时隙为时间资源的单位,如图5(a)~图5(c)所示,为本申请提供的资源配置示意图,其中,图5(a)中,每个时隙均被配置固定上行的时间资源或固定下行的时间资源,即,图5(a)中,不包括灵活时间资源。图5(b)和图5(c)中,除了包括固定的时间资源外,还包括灵活时间资源。
针对灵活时间资源,图5(b)和图5(c)中,灵活时间资源包括灵活时隙,灵活时隙中的符号的传输方向由基站动态指示,例如,以每个时隙包括7个符号为例,每个符号的传输方向可以是上行、下行或未知则针对每个时隙,有3 7种格式,具体地,一个时隙使用哪种格式,是由基站进行指示的;再比如,若一个时隙包括14个符号,则每个时隙有3 14种格式。
当然,实际使用中,不是所有的格式都会使用,一般地,会预先定义好使用的哪几种格式,然后由基站通过指示信息指示每个灵活时隙使用何种格式。
例如,参考图6,为本申请提供的一种时隙格式示例图,其中,假设协议定义了使用的四种灵活时隙的格式,其中,第一种时隙格式为:所有符号均为下行符号,用“001”表示,第二种时隙格式为:所有符号均为上行符号,用“011”表示,第三种时隙格式为:连续L个下行符号+连接M个未知符号+连续N个上行符号,L+M+N等于一个时隙中包含的符号数,且L>N,L,M,N的取值都是协议定义的,用“101”表示,第四种时隙格式为:连续L个下行符号+连接M个未知符号+连续N个上行符号,L+M+N等于一个时隙中包含的符号数,且L<N,L,M,N的取值都是协议定义的,用“111”表示。
基站和终端均预存储这几种格式信息,因此针对一个时隙,例如,当基站指示的时隙格式为“001”时,则终端知道该时隙的格式为:所有符号用于下行;再比如,当基站指示的时隙格式为“111”时,则终端知道该时隙的格式为:连续L个下行符号+连接M个未知符号+连续N个上行符号,且L<N,L,M,N的取值都是协议定义的。
需要说明的是,未知的时间资源,也可以理解为保留的时间资源,如图6所示的 第三种格式和第四种格式,其中的未知符号,也可以理解为保留的符号,保留的符号不做为使用的符号。
通过上述步骤401,基站可指示一个周期中的时间资源,包括指示为固定上行的时间资源、固定下行的时间资源和灵活时间资源。
上述步骤402中,基站向终端发送广播消息,该广播消息例如可以是SIB、RMSI等。通过该广播消息,向终端指示随机接入配置,该随机接入配置包括随机接入前导能够使用的时间资源,该随机接入配置还包括随机接入前导的格式,以及还包括随机接入前导能够使用的频率资源,以及,还包括其它配置信息。由于本申请是针对时间资源的配置方法的改进,而对于频率资源的配置方法不做讨论,可参考现有技术相关方法。
其中,随机接入配置包括的随机接入前导的格式指示了随机接入前导使用的时间资源的长度,也可以理解为,随机接入前导的格式指示了发送随机接入前导所需要的时间资源的长度。
下面根据随机接入前导能够使用的时间资源所包括的时间资源的类型,分两种情形进行说明。
情形一、随机接入前导能够使用的时间资源包括高层信令配置的周期中的固定上行的时间资源的部分或全部,以及还包括高层信令配置的周期中的固定下行的时间资源和高层信令配置的周期中的灵活时间资源中的至少一种时间资源的部分或全部
具体地,随机接入前导能够使用的时间资源包括:高层信令指示的固定上行的时间资源的部分或全部,高层信令指示的固定下行的时间资源的部分或全部;或者,
随机接入前导能够使用的时间资源包括:高层信令指示的固定上行的时间资源的部分或全部,高层信令指示的灵活时间资源的部分或全部;或者,
随机接入前导能够使用的时间资源包括:高层信令指示的固定上行的时间资源的部分或全部,高层信令指示的固定下行的时间资源的部分或全部,以及高层信令指示的灵活时间资源的部分或全部。
即,随机接入前导能够使用的时间资源,不仅包括固定上行的时间资源,还可以包括固定下行的时间资源,和/或,灵活时间资源。从而,扩展了随机接入前导能够使用的时间资源。
该情形中,由于基站指示的随机接入前导能够使用的时间资源不仅包括固定上行的时间资源,还可以包括固定下行的时间资源、灵活时间资源,即,将固定下行的时间资源和/或灵活时间资源用于传输随机接入前导,从而扩展了发送随机接入前导的时间资源,使得随机接入前导能够使用的时间资源满足发送随机接入前导所需要的时间资源,因而,能够满足小区边缘终端的随机接入需求,进而可解决PRACH覆盖受限的问题。
其中,随机接入前导使用的时间资源的长度,指的是发送随机接入前导需要使用的时间资源的长度。
下面结合图5(a)~图5(c)进行举例说明。
比如,若基站通过上述步骤401的高层信令,指示的时间资源的配置如图5(a)所示,若时隙2的时间长度,大于或等于发送随机接入前导需要使用的时间资源的长度,则将时隙2配置为随机接入前导能够使用的时间资源。若时隙2的时间长度小于发送 随机接入前导需要使用的时间资源的长度,则可以将时隙2之后的固定下行的时间资源也配置为随机接入前导能够使用的时间资源,例如,如果时隙2和时隙3的时间长度之和,大于或等于发送随机接入前导需要使用的时间资源的长度,则将时隙2和时隙3配置为随机接入前导能够使用的时间资源。当然,如果时隙2和时隙3的时间长度之和,仍然小于发送随机接入前导需要使用的时间资源的长度,则还可以进一步地将时隙4也配置为随机接入前导能够使用的时间资源,即将时隙2,时隙3,时隙4配置为随机接入前导能够使用的时间资源。
其中,发送随机接入前导需要使用的时间资源的长度,是由基站发送的随机接入配置中的随机接入前导的格式所指示。后续不再赘述。
因此,在上述方法中,可将固定上行的时间资源和固定上行的时间资源之后的固定下行的时间资源,配置为随机接入前导能够使用的时间资源,从而随机接入前导能够使用的时间资源,大于或等于发送随机接入前导需要使用的时间资源的长度。
再比如,若基站通过上述步骤401的高层信令,指示的时间资源配置如图5(b)所示,即,基站配置的时间资源中包括固定上行的时间资源,固定下行的时间,从而,终端可将固定上行的时间资源、固定下行的时间资源之外的时间资源,确定为灵活时间资源。例如,图5(b)中,以5个时隙作为一个周期,在时隙0~时隙4的周期中,基站指示时隙0为固定下行的时间资源,时隙4为固定上行的时间资源,从而终端可将其他的时隙,即时隙1~时隙3,确定为灵活时间资源,也即灵活时隙。并且,每个灵活时隙的具体格式,基站可通过其他信令,如高层信令指示,灵活时隙的格式可参考图6所示的示例。
若时隙4的时间长度,大于或等于发送随机接入前导需要使用的时间资源的长度,则将时隙4配置为随机接入前导能够使用的时间资源。若时隙4的时间长度小于发送随机接入前导需要使用的时间资源的长度,则可以将时隙4之前的时隙3也配置为随机接入前导能够使用的时间资源,例如,如果时隙3和时隙4的时间长度之和,大于或等于发送随机接入前导需要使用的时间资源的长度,则将时隙3和时隙4配置为随机接入前导能够使用的时间资源。当然,如果时隙3和时隙4的时间长度之和,仍然小于发送随机接入前导需要使用的时间资源的长度,则还可以进一步地将时隙2也配置为随机接入前导能够使用的时间资源,即将时隙2,时隙3,时隙4配置为随机接入前导能够使用的时间资源,直至配置的随机接入前导能够使用的时间资源,大于或等于发送随机接入前导需要使用的时间资源的长度。
因此,在上述方法中,可将固定上行的时间资源和固定上行的时间资源之前的灵活时间资源,配置为随机接入前导能够使用的时间资源,从而随机接入前导能够使用的时间资源,大于或等于发送随机接入前导需要使用的时间资源的长度。
再比如,若基站通过上述步骤401的高层信令,指示的时间资源配置如图5(c)所示,即,基站配置的时间资源中包括固定上行的时间资源,固定下行的时间,从而,终端可将固定上行的时间资源、固定下行的时间资源之外的时间资源,确定为灵活时间资源。例如,图5(c)中,以5个时隙作为一个周期,在时隙0~时隙4的周期中,基站指示时隙0、时隙2为固定下行的时间资源,时隙4为固定上行的时间资源,从而终端可将其他的时隙,即时隙1、时隙3,确定为灵活时间资源,也即灵活时隙。并且,每个灵活时隙的具体格式,基站可通过其他信令,如高层信令指示,灵活时隙的格式 可参考图6所示的示例。
若时隙4的时间长度,大于或等于发送随机接入前导需要使用的时间资源的长度,则将时隙4配置为随机接入前导能够使用的时间资源。若时隙4的时间长度小于发送随机接入前导需要使用的时间资源的长度,则可以将时隙4之前的时隙3(时隙3为灵活时隙)也配置为随机接入前导能够使用的时间资源,例如,如果时隙3和时隙4的时间长度之和,大于或等于发送随机接入前导需要使用的时间资源的长度,则将时隙3和时隙4配置为随机接入前导能够使用的时间资源。当然,如果时隙3和时隙4的时间长度之和,仍然小于发送随机接入前导需要使用的时间资源的长度,则还可以进一步地将时隙2(时隙2为固定下行的时间资源)也配置为随机接入前导能够使用的时间资源,即将时隙2,时隙3,时隙4配置为随机接入前导能够使用的时间资源,直至配置的随机接入前导能够使用的时间资源,大于或等于发送随机接入前导需要使用的时间资源的长度。
因此,在上述方法中,可将固定上行的时间资源和固定上行的时间资源之前的灵活时间资源、固定下行的时间资源,配置为随机接入前导能够使用的时间资源,从而随机接入前导能够使用的时间资源,大于或等于发送随机接入前导需要使用的时间资源的长度。
上述给出几种示例中,基站配置给终端的随机接入前导能够使用的时间资源,至少包括固定上行的时间资源,当固定上行的时间资源不够使用时,还可以将固定上行的时间资源前后的固定下行的时间资源,和/或,灵活时间资源,也配置为随机接入前导能够使用的时间资源。
需要说明的是,随机接入前导能够使用的时间资源中包括的固定下行的时间资源,是基站通过高层信令配置的周期中的全部的固定下行的时间资源,或部分的固定下行的时间资源。随机接入前导能够使用的时间资源中包括的灵活时间资源,是基站通过高层信令配置的周期中的全部的灵活时间资源,或部分灵活灵活时间资源。
在一种可能的设计中,如果随机接入前导能够使用的时间资源包括固定下行的时间资源,则该固定下行的时间资源不属于同步信号块(Synchronization Signal Block,SS-block)。固定下行的时间资源属于SS-block,也可以理解为该固定下行的时间资源用于同步信道,和/或广播信道传输,即,本申请中,随机接入前导能够使用的时间资源包括固定下行的时间资源中,除了用于同步信道,和/或广播信道传输的固定下行的时间资源之外,的时间资源的部分或全部。
以图5(a)为例,如果时隙3用于同步信道,和/或广播信道传输,则该时隙3不能被配置为随机接入前导能够使用的时间资源,例如,如果时隙2的时间长度小于发送随机接入前导需要使用的时间资源的长度,此时,由于时隙3不能被配置为随机接入前导能够使用的时间资源,因此,基站可以跳过该周期,在下一个周期中为终端配置随机接入前导能够使用的时间资源。
在另一种可能的设计中,如果随机接入前导能够使用的时间资源包括灵活时间资源,则该灵活时间资源不能包括保留的时间资源,即,本申请中,随机接入前导能够使用的时间资源包括灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。
例如,以图5(c)为例,如果时隙3的时隙格式为图6所示的第四种格式,则该时 隙3中的M个保留符号,不能用作随机接入前导能够使用的时间资源。因此,如果时隙4和时隙3中的N个上行符号的时间长度之和,大于或等于发送随机接入前导需要使用的时间资源的长度,则可以将该时隙3的N个上行符号和时隙4,配置为随机接入前导能够使用的时间资源。如果时隙4和时隙3中的N个上行符号的时间长度之和,小于发送随机接入前导需要使用的时间资源的长度,则基站可以跳过该周期,在下一个周期中为终端配置随机接入前导能够使用的时间资源。
在一种可能的设计中,若随机接入前导能够使用的时间资源的配置粒度为时隙,随机接入前导能够使用的时间资源包括灵活时间资源,该灵活时间资源为时隙,当终端接收到针对该灵活时间资源的时隙格式信息时,则确定该时隙格式信息无效。
例如,参考图5(b),若基站将时隙4和时隙3配置为随机接入前导能够使用的时间资源,当终端接收到针对时隙3的时隙格式信息时,直接确定该时隙格式信息无效或丢弃该时隙格式信息。其中,时隙格式信息用于指示时隙的格式,例如,如图6所示,为时隙格式的几种示例,基站通过时隙格式信息指示一个时隙的格式,即指示一个时隙中的符号的传输方向。
当然,在上述设计中,由于该时隙格式信息对于终端是无效的,因此,基站还可以不发送该时隙格式信息。
在另一种可能的设计中,若随机接入前导能够使用的时间资源的配置粒度为符号,随机接入前导能够使用的时间资源包括灵活时间资源,该灵活时间资源为符号,当终端接收针对该灵活时间资源所在的时隙的时隙格式信息,则仍将这些灵活时间资源确定作为随机接入前导能够使用的时间资源,并且,根据时隙格式信息,确定该灵活时间资源所在的时隙中,除所述灵活时间资源之外的时间资源的传输方向。
例如,参考图5(b),以一个时隙包括7个符号为例,若基站将时隙4和时隙3的后4个符号配置为随机接入前导能够使用的时间资源,当终端接收到针对时隙3的时隙格式信息时,例如指示的时隙3的时隙格式信息为图6中的第一种格式,则终端根据该时隙格式信息,确定时隙3的前3个符号为下行符号。对于时隙3的后4个符号,终端将这4个符号用于随机接入前导能够使用的时间资源。
情形二、随机接入前导能够使用的时间资源包括:基站通过高层信令配置的周期中的固定上行的时间资源中的部分或全部。
在该情形中,基站通过高层信令,为终端配置的随机接入前导能够使用的时间资源,仍然是和现有技术相同,包括固定上行的时间资源。
即,在该情形中,基站仍然只将固定上行的时间资源配置给终端,作为随机接入前导能够使用的时间资源。
例如,以图5(a)为例,基站将时隙2配置为随机接入前导能够使用的时间资源,以图5(b)为例,基站将时隙4配置为随机接入前导能够使用的时间资源,图5(c)为例,基站将时隙4配置为随机接入前导能够使用的时间资源。
如果随机接入前导能够使用的时间资源的长度,大于或等于发送随机接入前导需要使用的时间资源的长度,则终端可以直接在基站配置的随机接入前导能够使用的时间资源上发送随机接入前导。例如,若图5(a)的时隙2的时间长度,大于或等于发送随机接入前导需要使用的时间资源的长度,则将时隙2配置为随机接入前导能够使用的时间资源。
如果随机接入前导能够使用的时间资源的长度,小于发送随机接入前导需要使用的时间资源的长度,则终端需要扩展发送随机接入前导能够使用的时间资源,因此,终端在基站配置的随机接入前导能够使用的时间资源的基础上,扩展时间资源,得到随机接入前导实际使用的时间资源,即随机接入前导实际使用的时间资源,等于随机接入前导能够使用的时间资源与扩展的时间资源之和。
其中,扩展的时间资源包括:基站通过高层信令配置的固定下行的时间资源的部分或全部;或者
扩展的时间资源包括:基站通过高层信令配置的灵活时间资源的部分或全部;或者
扩展的时间资源包括:基站通过高层信令配置的固定下行的时间资源的部分或全部,和基站通过高层信令配置的灵活时间资源的部分或全部。
上述方法,当基站指示的随机接入前导能够使用的时间资源不够使用时,则可以将固定下行的时间资源,和/或灵活时间资源,用作传输随机接入前导,从而扩展了发送随机接入前导的时间资源,使得随机接入前导实际使用的时间资源满足发送随机接入前导所需要的时间资源,因而能够满足小区边缘终端的随机接入需求,可解决PRACH覆盖受限的问题。
下面结合图5(a)~图5(c)进行举例说明。
以图5(a)为例,基站配置的随机接入前导能够使用的时间资源为时隙2,且时隙2的时间长度小于发送随机接入前导需要使用的时间资源的长度,则终端可以将时隙3作为扩展的时间资源,也用作随机接入前导能够使用的时间资源,如果时隙2和时隙3的时间长度之和,大于或等于发送随机接入前导需要使用的时间资源的长度,则终端确定时隙2和时隙3,为随机接入前导实际使用的时间资源。当然,如果时隙2和时隙3的时间长度之和,小于发送随机接入前导需要使用的时间资源的长度,则终端可以再增加扩展的时间资源,直至随机接入前导实际使用的时间资源的时间长度,大于或等于发送随机接入前导需要使用的时间资源的长度,例如将时隙3和时隙4作为扩展的时间资源。
因此,在上述方法中,终端确定的随机接入前导实际使用的时间资源包括:固定上行的时间资源和固定下行的时间资源,从而随机接入前导实际使用的时间资源,大于或等于发送随机接入前导需要使用的时间资源的长度。
以图5(b)为例,基站配置的随机接入前导能够使用的时间资源为时隙4,且时隙4的时间长度小于发送随机接入前导需要使用的时间资源的长度,则终端可以将时隙3作为扩展的时间资源,也用作随机接入前导能够使用的时间资源,如果时隙3和时隙4的时间长度之和,大于或等于发送随机接入前导需要使用的时间资源的长度,则终端确定时隙3和时隙4,为随机接入前导实际使用的时间资源。当然,如果时隙3和时隙4的时间长度之和,小于发送随机接入前导需要使用的时间资源的长度,则终端可以再增加扩展的时间资源,直至随机接入前导实际使用的时间资源的时间长度,大于或等于发送随机接入前导需要使用的时间资源的长度,例如将时隙2和时隙3作为扩展的时间资源。
因此,在上述方法中,终端确定的随机接入前导实际使用的时间资源包括:固定上行的时间资源和灵活时间资源,从而随机接入前导实际使用的时间资源,大于或等 于发送随机接入前导需要使用的时间资源的长度。
以图5(c)为例,基站配置的随机接入前导能够使用的时间资源为时隙4,且时隙4的时间长度小于发送随机接入前导需要使用的时间资源的长度,则终端可以将时隙3(灵活时间资源)作为扩展的时间资源,也用作随机接入前导能够使用的时间资源,如果时隙3和时隙4的时间长度之和,大于或等于发送随机接入前导需要使用的时间资源的长度,则终端确定时隙3和时隙4,为随机接入前导实际使用的时间资源。当然,如果时隙3和时隙4的时间长度之和,小于发送随机接入前导需要使用的时间资源的长度,则终端可以再增加扩展的时间资源,直至随机接入前导实际使用的时间资源的时间长度,大于或等于发送随机接入前导需要使用的时间资源的长度,例如将时隙2(固定下行的时间资源)和时隙3作为扩展的时间资源。
因此,在上述方法中,终端确定的随机接入前导实际使用的时间资源包括:固定上行的时间资源、固定下行的时间资源和灵活时间资源,从而随机接入前导实际使用的时间资源,大于或等于发送随机接入前导需要使用的时间资源的长度。
需要说明的是,随机接入前导实际使用的时间资源中包括的固定下行的时间资源,是基站通过高层信令配置的周期中的全部的固定下行的时间资源,或部分的固定下行的时间资源。随机接入前导实际使用的时间资源中包括的灵活时间资源,是基站通过高层信令配置的周期中的全部的灵活时间资源,或部分灵活灵活时间资源。
在一种可能的设计中,如果随机接入前导实际使用的时间资源包括固定下行的时间资源,则该固定下行的时间资源不属于SS-block。具体可参考上述情形一中的相关描述,此处不再赘述。
在另一种可能的设计中,如果随机接入前导实际使用的时间资源包括灵活时间资源,则该灵活时间资源不能包括保留的时间资源,即,本申请中,随机接入前导能够使用的时间资源包括灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。具体可参考上述情形一中的相关描述,此处不再赘述。
在一种可能的设计中,若随机接入前导实际使用的时间资源的配置粒度为时隙,随机接入前导实际使用的时间资源包括灵活时间资源,该灵活时间资源为时隙,当终端接收到针对该灵活时间资源的时隙格式信息时,则确定该时隙格式信息无效。具体可参考上述情形一中的相关描述,此处不再赘述。
当然,在上述设计中,由于该时隙格式信息对于终端是无效的,因此,基站还可以不发送该时隙格式信息。
在另一种可能的设计中,若随机接入前导实际使用的时间资源的配置粒度为符号,随机接入前导实际使用的时间资源包括灵活时间资源,该灵活时间资源为符号,当终端接收针对该灵活时间资源所在的时隙的时隙格式信息,则仍将这些灵活时间资源确定作为随机接入前导实际使用的时间资源,并且,根据时隙格式信息,确定该灵活时间资源所在的时隙中,除所述灵活时间资源之外的时间资源的传输方向。具体可参考上述情形一中的相关描述,此处不再赘述。
上述主要从各个网元之间交互的角度对本申请提供的方案进行了介绍。可以理解的是,上述实现各网元为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。 某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
基于相同的发明构思,本申请实施例还提供一种基站700,如图7所示,为基站700的结构示意图,该基站700可应用于执行上述实施例中由基站执行的动作。基站700包括一个或多个远端射频单元(remote radio unit,RRU)701和一个或多个基带单元(baseband unit,BBU)702。所述RRU701可以称为收发单元、收发机、收发电路、或者收发器等,其可以包括至少一个天线7011和射频单元7012。所述RRU701主要用于射频信号的收发以及射频信号与基带信号的转换。所述BBU702主要用于进行基带处理,对基站进行控制等。所述RRU701与BBU702可以是物理上设置在一起,也可以是物理上分离设置的,即分布式基站。
所述BBU702为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述实施例中由基站执行的部分动作。
在一个示例中,所述BBU702可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网,也可以分别支持不同接入制式的无线接入网。所述BBU702还包括存储器7021和处理器7022。所述存储器7021用以存储必要的指令和数据。例如存储器7021存储上述实施例中的随机接入前导的配置信息。所述处理器7022用于控制基站进行必要的动作,例如用于控制基站执行上述实施例中由基站执行的动作。所述存储器7021和处理器7022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板公用相同的存储器和处理器。此外每个单板上还设置有必要的电路。
基于相同的发明构思,本申请实施例还提供一种终端800,如图8所示,为终端的结构示意图。为了便于说明,图8仅示出了终端的主要部件。如图8所示,终端800包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端执行上述实施例中由终端执行的动作。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的随机接入前导的配置信息。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。接收基站发送的信令,具体可参照上面相关部分的描述。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图8仅示出了一个存储器和处理器。在实际的终端中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端进行控制,执行软件程序,处理软件程序的数据。图8中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端可以包括多个基带处理器以适应不同的网络制式,终端可以包括多个中央处理器以增强其处理能力,终端的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,在申请实施例中,可以将具有收发功能的天线和控制电路视为终端800的收发单元801,将具有处理功能的处理器视为终端800的处理单元802。如图8所示,终端800包括收发单元801和处理单元802。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元801中用于实现接收功能的器件视为接收单元,将收发单元801中用于实现发送功能的器件视为发送单元,即收发单元801包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
基于相同的发明构思,本申请实施例还提供一种装置,该装置可以基站,也可以为基站内的芯片,如图9所示,该装置至少包括处理器901和存储器902。所述处理器901,所述存储器902通过总线连接。
所述存储器902,用于存储计算机执行指令,所述处理器901,用于执行所述存储器902存储的计算机执行指令。
所述处理器901执行所述存储器902存储的计算机执行指令,使得所述装置900执行图4及上述实施例提供的通信方法中由基站执行的步骤,或者使得基站部署与该步骤对应的功能单元。例如,所述存储器902包括以下指令:
指令S1:向终端发送高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;
指令S2:向所述终端发送广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导能够使用的时间资源;
指令S3:根据所述随机接入配置,接收来自所述终端的随机接入前导;其中,所述随机接入前导能够使用的时间资源包括所述固定上行的时间资源的部分或全部,以及所述固定下行的时间资源和所述灵活时间资源中的至少一种时间资源的部分或全部。
或者,所述存储器902包括以下指令:
指令S1:向终端发送高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;
指令S2:向所述终端发送广播消息,所述广播消息用于指示随机接入配置,所述 随机接入配置包括:随机接入前导的格式,和,随机接入前导能够使用的时间资源,所述随机接入前导能够使用的时间资源包括所述固定上行的时间资源中的部分或全部,并且,所述格式指示的随机接入前导使用的时间资源的长度大于所述随机接入前导能够使用的时间资源的长度;
指令S3:根据所述随机接入配置,接收来自所述终端的随机接入前导;其中,所述随机接入前导实际使用的时间资源包括:所述随机接入前导能够使用的时间资源,以及所述固定下行的时间资源和所述灵活时间资源中的至少一种时间资源的部分或全部。
处理器901,可以包括不同类型的处理器901,或者包括相同类型的处理器901;处理器901可以是以下的任一种:中央处理器(Central Processing Unit,简称CPU)、ARM处理器、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、专用处理器等具有计算处理能力的器件。一种可选实施方式,所述处理器901还可以集成为众核处理器。
存储器902可以是以下的任一种或任一种组合:随机存取存储器(Random Access Memory,简称RAM)、只读存储器(read only memory,简称ROM)、非易失性存储器(non-volatile memory,简称NVM)、固态硬盘(Solid State Drives,简称SSD)、机械硬盘、磁盘、磁盘整列等存储介质。
基于相同的发明构思,本申请实施例还提供一种装置,该装置可以终端,也可以为终端内的芯片,如图10所示,该装置至少包括处理器1001和存储器1002。所述处理器1001,所述存储器1002通过总线连接。
所述存储器1002,用于存储计算机执行指令,所述处理器1001,用于执行所述存储器1002存储的计算机执行指令。
所述处理器1001执行所述存储器1002存储的计算机执行指令,使得所述装置1000执行图4及上述实施例提供的通信方法中由终端执行的步骤,或者使得终端部署与该步骤对应的功能单元。例如,所述存储器1002包括以下指令:
指令S1:接收来自基站的高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;
指令S2:接收来自所述基站的广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导能够使用的时间资源;
指令S3:根据所述随机接入配置,向所述基站发送随机接入前导;其中,所述随机接入前导能够使用的时间资源包括所述固定上行的时间资源的部分或全部,以及所述固定下行的时间资源和所述灵活时间资源中的至少一种时间资源的部分或全部。
或者,所述存储器1002包括以下指令:
指令S1:接收来自基站的高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;
指令S2:接收来自所述基站的广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导的格式,和,随机接入前导能够使用的时间资源,所述随机接入前导能够使用的时间资源包括所述固定上行的时间资源中的部分或全部,并且,所述格式指示的随机接入前导使用的时间资源的长度大于所述随机接入 前导能够使用的时间资源的长度;
指令S3:根据所述随机接入配置,向所述基站发送随机接入前导;其中,所述随机接入前导实际使用的时间资源包括:所述随机接入前导能够使用的时间资源,以及所述固定下行的时间资源和所述灵活时间资源中的至少一种时间资源的部分或全部。
处理器1001,可以包括不同类型的处理器1001,或者包括相同类型的处理器1001;处理器1001可以是以下的任一种:中央处理器(Central Processing Unit,简称CPU)、ARM处理器、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、专用处理器等具有计算处理能力的器件。一种可选实施方式,所述处理器1001还可以集成为众核处理器。
存储器1002可以是以下的任一种或任一种组合:随机存取存储器(Random Access Memory,简称RAM)、只读存储器(read only memory,简称ROM)、非易失性存储器(non-volatile memory,简称NVM)、固态硬盘(Solid State Drives,简称SSD)、机械硬盘、磁盘、磁盘整列等存储介质。
如图11所示,为本申请提供的一种装置示意图,该装置1100可以是上述任一实施例中的基站或基站内的芯片。
该装置1100可用于执行上述任一无线通信方法。该装置1100包括至少一个处理单元111,通信单元112。所述处理单元111、通信单元112通过通信总线连接。通信总线可包括一通路,在上述单元之间传送信息。
处理单元111可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
所述通信单元112,可以是具有收发功能的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(wireless local area networks,WLAN)等。
在具体实现中,作为一种实施例,处理单元111可以包括一个或多个CPU,例如图11中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置1100可以包括多个处理单元,例如图11中的处理单元111和处理单元118。这些处理单元中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器,这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在一种可能的设计中,当该装置为基站时,处理单元111例如可以是处理器,通信单元112例如可以是收发器,所述收发器包括射频电路,当该装置还包括存储单元时,该存储单元用于存储计算机执行指令,该处理单元111与该存储单元连接,该处理单元111执行该存储单元存储的计算机执行指令,以使该基站执行上述任一实施例的无线通信方法。
在另一种可能的设计中,当该装置为基站内的芯片时,处理单元111例如可以是处理器,通信单元112例如可以是输入/输出接口、管脚或电路等。该处理单元111可执行存储单元存储的计算机执行指令,以使上述实施例中的任一无线通信方法被执行。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元 还可以是所述基站内位于所述芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,芯片执行无线通信方法,可以理解为:芯片结合装置内的其它部件,来完成无线通信方法。
比如,当芯片为基站内的芯片时,芯片的通信单元与基站的收发器连接,芯片处理单元通过通信单元,向基站的收发器发送高层信令,并由基站的收发器向终端发送高层信令,进一步地,芯片的处理单元通过通信单元,向基站的收发器发送广播消息,然后基站的收发器向终端发送广播消息,以及,基站的处理器控制基站的收发器,根据随机接入配置接收来自终端的随机接入前导,然后芯片的通信单元从基站的收发器获取到随机接入前导。从而,由基站的芯片实现本发明实施例的无线通信方法。
例如在采用图11所示的方法对装置进行划分时,通过处理单元和通信单元的协作,可使该装置实现本申请上述任一实施例中的无线通信方法。
在一种实现方式中,所述处理单元,用于控制所述通信单元:
向终端发送高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;
向所述终端发送广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导能够使用的时间资源;
根据所述随机接入配置,接收来自所述终端的随机接入前导;
其中,所述随机接入前导能够使用的时间资源包括所述固定上行的时间资源的部分或全部,以及所述固定下行的时间资源和所述灵活时间资源中的至少一种时间资源的部分或全部。
可选地,所述随机接入配置还包括:
随机接入前导的格式,并且,所述格式指示的随机接入前导使用的时间资源的长度小于或等于所述随机接入前导能够使用的时间资源的长度。
可选地,所述随机接入前导能够使用的时间资源包括所述固定下行的时间资源中,除了用于同步信道,和/或广播信道传输的固定下行的时间资源之外,的时间资源的部分或全部。
可选地,所述随机接入前导能够使用的时间资源包括所述灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。
在另一种实现方式中,所述处理单元,用于控制所述通信单元:
向终端发送高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;
向所述终端发送广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导的格式,和,随机接入前导能够使用的时间资源,所述随机接入前导能够使用的时间资源包括所述固定上行的时间资源中的部分或全部,并且,所述格式指示的随机接入前导使用的时间资源的长度大于所述随机接入前导能够使用的时间资源的长度;
根据所述随机接入配置,接收来自所述终端的随机接入前导;
其中,所述随机接入前导实际使用的时间资源包括:所述随机接入前导能够使用的时间资源,以及所述固定下行的时间资源和所述灵活时间资源中的至少一种时间资 源的部分或全部。
可选地,所述随机接入前导实际使用的时间资源包括所述固定下行的时间资源中,除了用于同步信道,和/或广播信道传输的固定下行的时间资源之外,的时间资源的部分或全部。
可选地,所述随机接入前导实际使用的时间资源包括所述灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。
应理解,该基站或基站的芯片可以用于实现本发明实施例的无线通信方法中由基站执行的步骤,相关特征可以参照上文,此处不再赘述。
如图12所示,为本申请提供的一种装置示意图,该装置1200可以是上述任一实施例中的终端或终端内的芯片。
该装置1200可用于执行上述任一无线通信方法。该装置1200包括至少一个处理单元121,通信单元122。所述处理单元121、通信单元122通过通信总线连接。通信总线可包括一通路,在上述单元之间传送信息。
处理单元121可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。
所述通信单元122,可以是具有收发功能的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(wireless local area networks,WLAN)等。
在具体实现中,作为一种实施例,处理单元121可以包括一个或多个CPU,例如图12中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置1200可以包括多个处理单元,例如图12中的处理单元121和处理单元128。这些处理单元中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器,这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在一种可能的设计中,当该装置为终端时,处理单元121例如可以是处理器,通信单元122例如可以是收发器,所述收发器包括射频电路,当该装置还包括存储单元时,该存储单元用于存储计算机执行指令,该处理单元121与该存储单元连接,该处理单元121执行该存储单元存储的计算机执行指令,以使该终端执行上述任一实施例的无线通信方法。
在另一种可能的设计中,当该装置为终端内的芯片时,处理单元121例如可以是处理器,通信单元122例如可以是输入/输出接口、管脚或电路等。该处理单元121可执行存储单元存储的计算机执行指令,以使上述实施例中的任一无线通信方法被执行。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端内位于所述芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,芯片执行无线通信方法,可以理解为:芯片结合装置内的其它部件,来完成无线通信方法。
比如,当芯片为终端内的芯片时,芯片的通信单元与终端的收发器连接,终端的 处理器可控制终端的收发器可接收来自基站的高层信令,从而芯片的通信单元可接收到来自基站的高层信令,进一步地,终端的处理器可控制终端的收发器接收来自所述基站的广播消息,则芯片的通信单元可从收发器接收到广播消息,以及,芯片的处理单元控制芯片的通信单元,根据随机接入配置向终端的收发器发送随机接入前导,然后由终端的收发器将随机接入前导发送给基站。从而,由终端的芯片实现本发明实施例的无线通信方法。例如在采用图12所示的方法对装置进行划分时,通过处理单元和通信单元的协作,可使该装置实现本申请上述任一实施例中的无线通信方法。
在一种实现方式中,所述处理单元,用于控制所述通信单元:
接收来自基站的高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;
接收来自所述基站的广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导能够使用的时间资源;
根据所述随机接入配置,向所述基站发送随机接入前导;
其中,所述随机接入前导能够使用的时间资源包括所述固定上行的时间资源的部分或全部,以及所述固定下行的时间资源和所述灵活时间资源中的至少一种时间资源的部分或全部。
可选地,所述随机接入配置还包括:
随机接入前导的格式,并且,所述格式指示的随机接入前导使用的时间资源的长度小于或等于所述随机接入前导能够使用的时间资源的长度。
可选地,所述随机接入前导能够使用的时间资源包括所述固定下行的时间资源中,除了用于同步信道,和/或广播信道传输的固定下行的时间资源之外,的时间资源的部分或全部。
可选地,所述随机接入前导能够使用的时间资源包括所述灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。
可选地,所述随机接入前导能够使用的时间资源的配置粒度为时隙,所述随机接入前导能够使用的时间资源包括灵活时间资源,所述灵活时间资源为时隙;
所述处理单元,还用于控制所述通信单元:
接收针对所述灵活时间资源的时隙格式信息,并确定所述时隙格式信息无效。
可选地,所述随机接入前导能够使用的时间资源的配置粒度为符号,所述随机接入前导能够使用的时间资源包括灵活时间资源,所述灵活时间资源为符号;
所述处理单元,还用于控制所述通信单元:
接收针对所述灵活时间资源所在的时隙的时隙格式信息,并根据所述时隙格式信息确定所述灵活时间资源所在的时隙中,除所述灵活时间资源之外的时间资源的传输方向。
在另一种实现方式中,所述处理单元,用于控制所述通信单元:
接收来自基站的高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;
接收来自所述基站的广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导的格式,和,随机接入前导能够使用的时间资源,所述随机接入前导能够使用的时间资源包括所述固定上行的时间资源中的部分或全部,并 且,所述格式指示的随机接入前导使用的时间资源的长度大于所述随机接入前导能够使用的时间资源的长度;
根据所述随机接入配置,向所述基站发送随机接入前导;
其中,所述随机接入前导实际使用的时间资源包括:所述随机接入前导能够使用的时间资源,以及所述固定下行的时间资源和所述灵活时间资源中的至少一种时间资源的部分或全部。
可选地,所述随机接入前导实际使用的时间资源包括所述固定下行的时间资源中,除了用于同步信道,和/或广播信道传输的固定下行的时间资源之外,的时间资源的部分或全部。
可选地,所述随机接入前导实际使用的时间资源包括所述灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。
可选地,所述随机接入前导实际使用的时间资源的配置粒度为时隙,所述随机接入前导实际使用的时间资源包括灵活时间资源,所述灵活时间资源为时隙;
所述处理单元,还用于控制所述通信单元:
接收针对所述灵活时间资源的时隙格式信息,并确定所述时隙格式信息无效。
可选地,所述随机接入前导能够使用的时间资源的配置粒度为符号,所述随机接入前导能够使用的时间资源包括灵活时间资源,所述灵活时间资源为符号;
所述处理单元,还用于控制所述通信单元:
接收针对所述灵活时间资源所在的时隙的时隙格式信息,并根据所述时隙格式信息确定所述灵活时间资源所在的时隙中,除所述灵活时间资源之外的时间资源的传输方向。
应理解,该终端或终端的芯片可以用于实现本发明实施例的无线通信方法中由终端执行的步骤,相关特征可以参照上文,此处不再赘述。
应理解,该终端或终端的芯片可以用于实现本发明实施例的无线通信方法中由终端执行的步骤,相关特征可以参照上文,此处不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
尽管在此结合各实施例对本发明进行了描述,然而,在实施所要求保护的本发明 过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
本领域技术人员应明白,本申请的实施例可提供为方法、装置(设备)、计算机可读存储介质或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,这里将它们都统称为“模块”或“系统”。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
在一个或多个示例性的设计中,本申请实施例所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理器读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、DVD、软盘和蓝光光盘, 磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本申请是参照本申请的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本发明进行了描述,显而易见的,在不脱离本发明的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本发明的示例性说明,且视为已覆盖本发明范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (22)

  1. 一种无线通信方法,其特征在于,包括:
    接收来自基站的高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;
    接收来自所述基站的广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导能够使用的时间资源;
    根据所述随机接入配置,向所述基站发送随机接入前导;
    其中,所述随机接入前导能够使用的时间资源包括所述灵活时间资源中的部分或全部。
  2. 根据权利要求1所述的方法,其特征在于,所述随机接入前导能够使用的时间资源还包括所述固定上行的时间资源的部分或全部。
  3. 根据权利要求1或2所述的方法,其特征在于,所述随机接入配置还包括:
    随机接入前导的格式,并且,所述格式指示的随机接入前导使用的时间资源的长度小于或等于所述随机接入前导能够使用的时间资源的长度。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,
    所述随机接入前导能够使用的时间资源包括所述灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。
  5. 根据权利要求1-4任一所述的方法,其特征在于,
    所述随机接入前导能够使用的时间资源的配置粒度为时隙,所述随机接入前导能够使用的时间资源包括灵活时间资源,所述灵活时间资源为时隙;
    接收针对所述灵活时间资源的时隙格式信息,并确定所述时隙格式信息无效。
  6. 根据权利要求1-4任一所述的方法,其特征在于,
    所述随机接入前导能够使用的时间资源的配置粒度为符号,所述随机接入前导能够使用的时间资源包括灵活时间资源,所述灵活时间资源为符号;
    接收针对所述灵活时间资源所在的时隙的时隙格式信息,并根据所述时隙格式信息确定所述灵活时间资源所在的时隙中,除所述灵活时间资源之外的时间资源的传输方向。
  7. 一种无线通信方法,其特征在于,包括:
    向终端发送高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;
    向所述终端发送广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导能够使用的时间资源;
    根据所述随机接入配置,接收来自所述终端的随机接入前导;
    其中,所述随机接入前导能够使用的时间资源包括所述灵活时间资源中的部分或全部。
  8. 根据权利要求7所述的方法,其特征在于,所述随机接入前导能够使用的时间资源还包括所述固定上行的时间资源的部分或全部。
  9. 根据权利要求7或8所述的方法,其特征在于,所述随机接入配置还包括:
    随机接入前导的格式,并且,所述格式指示的随机接入前导使用的时间资源的长 度小于或等于所述随机接入前导能够使用的时间资源的长度。
  10. 根据权利要求7-9任意一项所述的方法,其特征在于,
    所述随机接入前导能够使用的时间资源包括所述灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。
  11. 一种装置,其特征在于,包括:处理单元和通信单元;
    所述处理单元,用于控制所述通信单元:
    接收来自基站的高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;
    接收来自所述基站的广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导能够使用的时间资源;
    根据所述随机接入配置,向所述基站发送随机接入前导;
    其中,所述随机接入前导能够使用的时间资源包括所述灵活时间资源中的部分或全部。
  12. 根据权利要求11所述的装置,其特征在于,所述随机接入前导能够使用的时间资源还包括所述固定上行的时间资源的部分或全部。
  13. 根据权利要求11或12所述的装置,其特征在于,所述随机接入配置还包括:
    随机接入前导的格式,并且,所述格式指示的随机接入前导使用的时间资源的长度小于或等于所述随机接入前导能够使用的时间资源的长度。
  14. 根据权利要求11-13任意一项所述的装置,其特征在于,
    所述随机接入前导能够使用的时间资源包括所述灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。
  15. 根据权利要求11-14任一所述的装置,其特征在于,
    所述随机接入前导能够使用的时间资源的配置粒度为时隙,所述随机接入前导能够使用的时间资源包括灵活时间资源,所述灵活时间资源为时隙;
    所述处理单元,还用于控制所述通信单元:
    接收针对所述灵活时间资源的时隙格式信息,并确定所述时隙格式信息无效。
  16. 根据权利要求11-14任一所述的装置,其特征在于,
    所述随机接入前导能够使用的时间资源的配置粒度为符号,所述随机接入前导能够使用的时间资源包括灵活时间资源,所述灵活时间资源为符号;
    所述处理单元,还用于控制所述通信单元:
    接收针对所述灵活时间资源所在的时隙的时隙格式信息,并根据所述时隙格式信息确定所述灵活时间资源所在的时隙中,除所述灵活时间资源之外的时间资源的传输方向。
  17. 一种装置,其特征在于,包括:处理单元和通信单元;
    所述处理单元,用于控制所述通信单元:
    向终端发送高层信令,所述高层信令用于指示周期,以及所述周期中被配置为固定上行的时间资源,固定下行的时间资源,和灵活时间资源;
    向所述终端发送广播消息,所述广播消息用于指示随机接入配置,所述随机接入配置包括:随机接入前导能够使用的时间资源;
    根据所述随机接入配置,接收来自所述终端的随机接入前导;
    其中,所述随机接入前导能够使用的时间资源包括所述灵活时间资源中的部分或全部。
  18. 根据权利要求17所述的装置,其特征在于,所述随机接入前导能够使用的时间资源还包括所述固定上行的时间资源的部分或全部。
  19. 根据权利要求17或18所述的装置,其特征在于,所述随机接入配置还包括:
    随机接入前导的格式,并且,所述格式指示的随机接入前导使用的时间资源的长度小于或等于所述随机接入前导能够使用的时间资源的长度。
  20. 根据权利要求17-19任意一项所述的装置,其特征在于,
    所述随机接入前导能够使用的时间资源包括所述灵活时间资源中,除了保留的时间资源之外,的时间资源的部分或全部。
  21. 一种通信装置,其特征在于,包括存储器和处理器,其中,所述存储器中存储指令代码,所述指令代码被所述处理器调用时实现如权利要求1-10任意一项所述的方法。
  22. 一种计算机存储介质,其特征在于,包括存储器,其中,所述存储器中存储指令代码,所述指令代码被调用时实现如权利要求1-10任意一项所述的方法。
PCT/CN2018/104681 2017-09-08 2018-09-07 一种无线通信方法及装置 WO2019047936A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18854278.1A EP3672341A4 (en) 2017-09-08 2018-09-07 WIRELESS COMMUNICATION PROCESS AND DEVICE
US16/813,335 US11405961B2 (en) 2017-09-08 2020-03-09 Wireless communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710806433.XA CN109474995B (zh) 2017-09-08 一种无线通信方法及装置
CN201710806433.X 2017-09-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/813,335 Continuation US11405961B2 (en) 2017-09-08 2020-03-09 Wireless communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2019047936A1 true WO2019047936A1 (zh) 2019-03-14

Family

ID=65633521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104681 WO2019047936A1 (zh) 2017-09-08 2018-09-07 一种无线通信方法及装置

Country Status (3)

Country Link
US (1) US11405961B2 (zh)
EP (1) EP3672341A4 (zh)
WO (1) WO2019047936A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803421A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 随机接入方法、终端及网络设备
CN111418253B (zh) * 2017-12-01 2023-08-29 株式会社Ntt都科摩 用户装置及基站装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431367A (zh) * 2007-11-09 2009-05-13 大唐移动通信设备有限公司 随机接入前导序列的发送方法和装置
CN106255213A (zh) * 2016-07-29 2016-12-21 宇龙计算机通信科技(深圳)有限公司 一种配置时域调度单元的方法及基站
CN106255215A (zh) * 2016-08-05 2016-12-21 宇龙计算机通信科技(深圳)有限公司 通信方法及通信装置
CN106301738A (zh) * 2016-06-28 2017-01-04 宇龙计算机通信科技(深圳)有限公司 基于帧结构的通信方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060239239A1 (en) * 2005-04-26 2006-10-26 Navini Networks, Inc. Random access method for wireless communication systems
WO2011034317A2 (en) * 2009-09-17 2011-03-24 Lg Electronics Inc. Method and apparatus for transmitting reference signal in time division duplex system
US20110176461A1 (en) * 2009-12-23 2011-07-21 Telefonakatiebolaget Lm Ericsson (Publ) Determining configuration of subframes in a radio communications system
US10873425B2 (en) * 2010-11-12 2020-12-22 Qualcomm Incorporated Acknowledgement / negative acknowledgement feedback for TDD
CN104868975B (zh) * 2011-03-31 2019-07-19 华为技术有限公司 时分双工系统中子帧配置的方法、基站及用户设备
KR102043203B1 (ko) * 2011-06-28 2019-11-11 엘지전자 주식회사 무선 통신 시스템에서 사용자 기기의 신호 송수신 방법
US8937918B2 (en) * 2011-10-29 2015-01-20 Ofinno Technologies, Llc Efficient special subframe allocation
US8934436B2 (en) * 2011-12-31 2015-01-13 Ofinno Technologies, L.L.C. Special subframe configuration in wireless networks
US9185620B2 (en) * 2012-05-30 2015-11-10 Intel Corporation Adaptive UL-DL configurations in a TDD heterogeneous network
EP2870708B1 (en) * 2012-07-06 2020-07-01 Samsung Electronics Co., Ltd. Method and apparatus for determining tdd ul-dl configuration applicable for radio frames
EP2901306B1 (en) * 2012-09-28 2022-06-15 BlackBerry Limited Methods and apparatus for enabling further l1 enhancements in lte heterogeneous networks
US9455811B2 (en) * 2013-01-17 2016-09-27 Intel IP Corporation Channel state information-reference signal patterns for time division duplex systems in long term evolution wireless networks
EP2802091A1 (en) * 2013-05-08 2014-11-12 Panasonic Intellectual Property Corporation of America Flexible TDD uplink-downlink configuration with flexible subframes
CN105191450B (zh) * 2013-05-09 2019-02-05 夏普株式会社 终端装置、通信方法以及集成电路
US9872259B2 (en) * 2013-06-24 2018-01-16 Lg Electronics Inc. Method for controlling transmission power of sounding reference signal in wireless communication system and apparatus for same
MX352355B (es) * 2013-08-23 2017-11-22 Huawei Tech Co Ltd Metodo y aparato para transmitir informacion de enlace ascendente.
US11700641B2 (en) * 2015-08-19 2023-07-11 Lg Electronics Inc. Random access procedure performing method in wireless communication system, and apparatus therefor
TWI620461B (zh) * 2016-06-17 2018-04-01 財團法人資訊工業策進會 窄頻物聯網系統及其前置訊號傳輸方法
CN108809602B (zh) * 2017-05-05 2022-06-03 北京三星通信技术研究有限公司 基站、终端及随机接入前导检测、随机接入信道配置方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431367A (zh) * 2007-11-09 2009-05-13 大唐移动通信设备有限公司 随机接入前导序列的发送方法和装置
CN106301738A (zh) * 2016-06-28 2017-01-04 宇龙计算机通信科技(深圳)有限公司 基于帧结构的通信方法
CN106255213A (zh) * 2016-07-29 2016-12-21 宇龙计算机通信科技(深圳)有限公司 一种配置时域调度单元的方法及基站
CN106255215A (zh) * 2016-08-05 2016-12-21 宇龙计算机通信科技(深圳)有限公司 通信方法及通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3672341A4

Also Published As

Publication number Publication date
CN109474995A (zh) 2019-03-15
US11405961B2 (en) 2022-08-02
EP3672341A4 (en) 2020-08-12
US20200214046A1 (en) 2020-07-02
EP3672341A1 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
JP6527965B2 (ja) チャネル効率の高い分散方式のピアステーション間のデータ伝送の方法及びシステム
US11032846B2 (en) Method and apparatus for controlling channel access in wireless local area network (WLAN) system
WO2018171640A1 (zh) 一种数据传输方法、终端设备及基站系统
WO2021017702A1 (zh) 一种信号传输方法及装置
WO2018228511A1 (zh) 通信方法、网络设备和终端
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
WO2020221093A1 (zh) 搜索空间的监测、配置方法及装置
WO2020062955A1 (zh) 一种信息发送和接收方法及装置、终端和基站
CN107534848B (zh) 一种以分散和省电方式进行数据通信的系统和方法
WO2019158039A1 (zh) 通信方法和通信装置
WO2019029741A1 (zh) 一种无线通信方法及装置
US11405961B2 (en) Wireless communication method and apparatus
JP2023552069A (ja) 優先トラフィックに対応する通信装置および通信方法
WO2021204196A1 (zh) 控制信息传输方法、装置及系统
WO2021027864A1 (zh) 用于小区测量的方法和装置
US20230389068A1 (en) Multi-user (mu) enhanced distributed channel access (edca) termination signaling
WO2020221030A1 (zh) 天线面板信息的配置方法及装置
WO2021097648A1 (zh) 检测物理下行控制信道pdcch的方法以及装置
WO2019141069A1 (zh) 用于管理非授权频段的信道占用时长的方法和设备
WO2022111324A1 (zh) 一种数据处理方法及其设备
WO2020200115A1 (zh) 通信方法、装置、系统和存储介质
WO2019192408A1 (zh) 通信方法及装置
CN109474995B (zh) 一种无线通信方法及装置
WO2020088455A1 (zh) 通信方法和通信装置
WO2019041261A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018854278

Country of ref document: EP

Effective date: 20200318