WO2022111324A1 - 一种数据处理方法及其设备 - Google Patents

一种数据处理方法及其设备 Download PDF

Info

Publication number
WO2022111324A1
WO2022111324A1 PCT/CN2021/130642 CN2021130642W WO2022111324A1 WO 2022111324 A1 WO2022111324 A1 WO 2022111324A1 CN 2021130642 W CN2021130642 W CN 2021130642W WO 2022111324 A1 WO2022111324 A1 WO 2022111324A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
terminal device
base station
downlink
time domain
Prior art date
Application number
PCT/CN2021/130642
Other languages
English (en)
French (fr)
Inventor
邱建军
沈宇祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022111324A1 publication Critical patent/WO2022111324A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communications technologies, and in particular, to a data processing method and device thereof.
  • the 5G standard defines the standard for high-precision positioning, but it does not meet the requirements of such low power consumption.
  • the positioning process requires the serving cell to allocate SRS resources, the terminal sends SRS signals in the RRC connection state, and multiple surrounding base stations receive SRS signals for TOA calculation, and report to the server for TDOA calculation.
  • 5G UTDOA positioning In the positioning process, after the terminal equipment is powered on, it is mainly divided into three stages. The first stage is to capture the system to obtain system messages, the second stage is to randomly access and establish an RRC connection, and the third stage is to obtain the SRS configuration and cycle. Send SRS signal.
  • the RRC connection needs to be maintained. If the RRC connection is released, the random access needs to be re-initiated. After the RRC connection is re-established, the SRS configuration data can be re-sent before the SRS signal can be sent for positioning. Therefore, in order to complete the periodic positioning, the terminal device will be in the RRC connection state for a long time, and the power consumption of the terminal device is relatively high, which affects the layout of the terminal device based on low power consumption.
  • An embodiment of the present application provides a data processing method, in which a terminal device does not need to maintain an RRC connection with a base station by sending second uplink positioning information at a fixed second time domain location, thereby saving power consumption of the terminal device.
  • a first aspect of the present application provides a data processing method.
  • the terminal device receives the first downlink data sent by the base station at the first time domain position, the first downlink data includes a resource allocation message, and the resource allocation message carries the information of the second time domain position, and the terminal device sends the first downlink data at the second time domain position.
  • One uplink positioning information and the first uplink data, the first uplink positioning information is used for the base station to estimate the time of arrival TOA, when the terminal device starts the timer, the terminal device enters the sleep mode, and the power consumption of the sleep mode is lower than that of the terminal device in the normal mode
  • the power consumption of the timer is the preset threshold.
  • the terminal device enters the normal mode, and the terminal device sends the second uplink positioning information to the base station at the second time domain position, and the second uplink positioning information is used by the base station for TOA estimation of the time of arrival.
  • the terminal device enters the sleep mode after sending the first uplink positioning information, enters the normal mode when the second uplink positioning information needs to be sent, and sends the second uplink positioning information at the same second time domain position,
  • the terminal device does not need to maintain an RRC connection with the base station by sending the second uplink positioning information at the fixed second time domain location, which saves the power consumption of the terminal device.
  • the terminal device receives the second downlink data sent by the base station at the third time domain position, the second downlink data includes a system message, and the system message carries the fourth time domain location information, the terminal device sends the second uplink data and the first uplink positioning information to the base station at the fourth time domain location, the second uplink data includes an initial access message, and the initial access message is used for the terminal device to perform initial access.
  • the initial access message is sent to the base station through the fourth time domain location, which saves the RRC connection time between the terminal device and the base station.
  • the terminal device receives the downlink synchronization information sent by the base station at the first time domain position or the third time domain position, and the downlink synchronization information uses Time synchronization with terminal devices.
  • the downlink synchronization information is sent through the first time domain location or the third time domain location, which improves the implementability of the solution.
  • the terminal device receives downlink data and downlink synchronization information through a downlink physical channel, and the downlink data includes the first downlink data and the second downlink data.
  • the downlink data and downlink synchronization information are received through the downlink physical channel, which improves the implementability of the solution.
  • the downlink physical channel includes a broadcast channel and/or a downlink common control channel
  • the broadcast channel is used by the terminal device to receive the second downlink data and downlink synchronization information
  • the downlink common control channel The channel is used by the terminal device to receive the first downlink data and downlink synchronization information.
  • the downlink physical channel includes a broadcast channel and/or a downlink common control channel, which improves the implementability of the solution.
  • the subcarrier spacing of the downlink physical channel is N times the NR subcarrier spacing of the new air interface, where N is a positive integer greater than or equal to 1.
  • the subcarrier spacing of the downlink physical channel is N times the NR subcarrier spacing of the new air interface, which can improve the utilization rate of air interface resources.
  • N is equal to 1
  • the duration of the first time domain position is equal to the duration of the target symbol
  • the duration of the third time domain position is equal to the duration of the target symbol
  • the duration of the target symbol is the symbol of NR.
  • the duration of the first time domain position is equal to the duration of the target symbol, which improves the achievability of the solution.
  • N is a positive integer greater than or equal to 2
  • the first time domain position includes N first subsymbols
  • the terminal device is in the M first subsymbols
  • Receiving downlink synchronization information the terminal device receives the second downlink data at (N-M) first subsymbols
  • the third time domain position includes N second subsymbols
  • the terminal device receives the downlink synchronization information at M second symbol symbols
  • the terminal The device receives the second downlink data in (N-M) second subsymbols, the sum of the durations of the N first subsymbols is equal to the duration of the target symbol, the sum of the durations of the N second subsymbols is equal to the duration of the target symbol, and the target symbol is the symbol of NR
  • M is a positive integer greater than or equal to 1
  • (N-M) is a positive integer greater than or equal to 1.
  • the duration of the sub-symbol is less than the duration of the NR symbol, which improves the utilization rate of the symbol.
  • the terminal device receives downlink synchronization information and downlink data sent by the base station in a frequency division multiplexing manner.
  • the downlink synchronization information and downlink data are sent in the manner of frequency division multiplexing, which improves the spectrum utilization rate.
  • the terminal device sends uplink data and or uplink positioning information through an uplink physical channel, and the uplink positioning information includes the first uplink positioning information and the second uplink positioning information, and the uplink positioning information includes the first uplink positioning information and the second uplink positioning information.
  • the data includes first uplink data and second uplink data.
  • the terminal device sends the uplink data and or the uplink positioning information through the uplink physical channel, which improves the implementability of the solution.
  • the uplink physical channel includes an access channel and/or an uplink shared channel
  • the access channel is used by the terminal device to send the second uplink data and uplink positioning information
  • the uplink shared channel The channel is used by the terminal device to send the first uplink data and the uplink positioning message.
  • the uplink physical channel includes an access channel and/or an uplink shared channel, which improves the implementability of the solution.
  • the subcarrier spacing of the uplink physical channel is N times the NR subcarrier spacing of the new air interface, where N is a positive integer greater than or equal to 1.
  • the subcarrier spacing of the downlink physical channel is N times the NR subcarrier spacing of the new air interface, which can improve the utilization rate of air interface resources.
  • N is equal to 1
  • the terminal device sends uplink positioning information and uplink data by means of frequency division multiplexing
  • the duration of the second time domain position is equal to the duration of the target symbol.
  • duration, the duration of the fourth time domain position is equal to the duration of the target symbol, and the target symbol is the symbol of NR.
  • the terminal device when N is equal to 1, the terminal device sends uplink positioning information and uplink data in a frequency division multiplexing manner, which can improve the utilization rate of air interface resources.
  • N is a positive integer greater than or equal to 2
  • the second time domain position includes N third subsymbols
  • the terminal device is in the M third subsymbols Sending uplink positioning information
  • the terminal device sends the first uplink data in (N-M) third subsymbols
  • the fourth time domain position includes N fourth subsymbols
  • the terminal device sends uplink positioning information in M fourth symbol symbols
  • the terminal sends the second uplink data in (N-M) fourth subsymbols
  • the sum of the durations of the N third subsymbols is equal to the duration of the target symbol
  • the sum of the durations of the N fourth subsymbols is equal to the duration of the target symbol
  • the target symbol is the symbol of NR
  • M is a positive integer greater than or equal to 1
  • (N-M) is a positive integer greater than or equal to 1.
  • the duration of the sub-symbol is less than the duration of the NR symbol, which improves the utilization rate of the symbol.
  • the terminal device further sends uplink positioning information and uplink data by means of frequency division multiplexing.
  • the terminal device sends uplink positioning information and uplink data in a frequency division multiplexing manner, which can improve the utilization rate of air interface resources.
  • a second aspect of the embodiments of the present application provides a data processing method.
  • the base station sends the first downlink data to the terminal device at the first time domain position, the first downlink data includes a resource allocation message, and the resource allocation message carries the information of the second time domain position, and the base station receives the transmission from the terminal device at the second time domain position
  • the first uplink positioning information and the first uplink data, the first uplink positioning information is used for the base station to estimate the time of arrival TOA.
  • the base station does not need to maintain an RRC connection with the terminal device by receiving the second uplink positioning information at the fixed second time domain position, which saves the power consumption of the terminal device.
  • the base station sends the second downlink data to the terminal device at the third time domain location, where the second downlink data includes a system message, and the system message carries the fourth time domain location information, the base station receives the second uplink data and the first uplink positioning information sent by the terminal device at the fourth time domain position, the second uplink data includes the initial access message, and the initial access message is used for the terminal device to perform initial access.
  • the initial access message is sent to the base station through the fourth time domain location, which saves the RRC connection time between the terminal device and the base station.
  • the base station sends downlink synchronization information to the terminal device at the first time domain position or the third time domain position, and the downlink synchronization information is used for the terminal device to perform time synchronization.
  • the downlink synchronization information is sent through the first time domain location or the third time domain location, which improves the implementability of the solution.
  • the base station sends downlink data and downlink synchronization information through a downlink physical channel, and the downlink data includes the first downlink data and the second downlink data.
  • the downlink data and downlink synchronization information are received through the downlink physical channel, which improves the implementability of the solution.
  • the downlink physical channel includes a broadcast channel and or a downlink common control channel
  • the broadcast channel is used by the base station to send the second downlink data and downlink synchronization information
  • the downlink common control channel Used by the base station to send the first downlink data and downlink synchronization information
  • the downlink physical channel includes a broadcast channel and/or a downlink common control channel, which improves the implementability of the solution.
  • the subcarrier spacing of the downlink physical channel is N times the NR subcarrier spacing of the new air interface, where N is a positive integer greater than or equal to 1.
  • the subcarrier spacing of the downlink physical channel is N times the NR subcarrier spacing of the new air interface, which can improve the utilization rate of air interface resources.
  • N is equal to 1
  • the base station sends downlink synchronization information and downlink data by means of frequency division multiplexing
  • the duration of the first time domain position is equal to the duration of the target symbol
  • the duration of the third time domain position is equal to the duration of the target symbol
  • the target symbol is the NR symbol.
  • the duration of the first time domain position is equal to the duration of the target symbol, which improves the achievability of the solution.
  • N is a positive integer greater than or equal to 2
  • the first time domain position includes N first subsymbols
  • the base station sends the M first subsymbols Downlink synchronization information
  • the base station sends the second downlink data in (N-M) first subsymbols
  • the third time domain position includes N second subsymbols
  • the base station sends downlink synchronization information in M second symbol symbols
  • the sum of the durations of the N first subsymbols is equal to the duration of the target symbol
  • the sum of the durations of the N second subsymbols is equal to the duration of the target symbol
  • the target symbol is the symbol of NR
  • M is a positive integer greater than or equal to 1
  • (N-M) is a positive integer greater than or equal to 1.
  • the duration of the sub-symbol is less than the duration of the NR symbol, which improves the utilization rate of the symbol.
  • the base station further sends downlink synchronization information and downlink data by means of frequency division multiplexing.
  • the downlink synchronization information and downlink data are sent in the manner of frequency division multiplexing, which improves the spectrum utilization rate.
  • the base station receives uplink data and/or uplink positioning information through an uplink physical channel, and the uplink positioning information includes the first uplink positioning information and the second uplink positioning information, and the uplink data Including the first uplink data and the second uplink data.
  • the terminal device sends the uplink data and or the uplink positioning information through the uplink physical channel, which improves the implementability of the solution.
  • the uplink physical channel includes an access channel and or an uplink shared channel
  • the access channel is used by the base station to receive the second uplink data and uplink positioning information
  • the uplink shared channel It is used by the base station to receive the first uplink data and the uplink positioning message.
  • the uplink physical channel includes an access channel and/or an uplink shared channel, which improves the implementability of the solution.
  • the subcarrier spacing of the uplink physical channel is N times the NR subcarrier spacing of the new air interface, where N is a positive integer greater than or equal to 1.
  • the subcarrier spacing of the downlink physical channel is N times the NR subcarrier spacing of the new air interface, which can improve the utilization rate of air interface resources.
  • N is equal to 1
  • the duration of the second time domain position is equal to the duration of the target symbol
  • the duration of the fourth time domain position is equal to the duration of the target symbol
  • the duration of the target symbol is the symbol of NR.
  • the terminal device when N is equal to 1, the terminal device sends uplink positioning information and uplink data in a frequency division multiplexing manner, which can improve the utilization rate of air interface resources.
  • N is a positive integer greater than or equal to 2
  • the second time domain position includes N third subsymbols
  • the base station receives the M third subsymbols Uplink positioning information
  • the base station receives the first uplink data at (N-M) third subsymbols
  • the fourth time domain position includes N fourth subsymbols
  • the base station receives the uplink positioning information at M fourth character symbols
  • the base station is at (N-M) ) fourth sub-symbols receive the second uplink data
  • the sum of the durations of the N third sub-symbols is equal to the duration of the target symbol
  • the sum of the durations of the N fourth sub-symbols is equal to the duration of the target symbol
  • the target symbol is the symbol of NR
  • M is a positive integer greater than or equal to 1
  • (N-M) is a positive integer greater than or equal to 1.
  • the duration of the sub-symbol is less than the duration of the NR symbol, which improves the utilization rate of the symbol.
  • the base station receives uplink positioning information and uplink data sent by the terminal device in a frequency division multiplexing manner.
  • a third aspect of the embodiments of the present application provides a terminal device.
  • a terminal device including:
  • a sending unit configured to receive the first downlink data sent by the base station at the first time domain position, where the first downlink data includes a resource allocation message, and the resource allocation message carries information of the second time domain position;
  • the sending unit is further configured to send the first uplink positioning information and the first uplink data at the second time domain position, and the first uplink positioning information is used for the base station to estimate the time of arrival TOA;
  • a processing unit configured to enter the sleep mode when the terminal device starts the timer, the power consumption of the sleep mode is lower than the power consumption of the terminal device in the normal mode, and the duration of the timer is a preset threshold;
  • the processing unit is also used to enter the normal mode when the timer times out;
  • the sending unit is further configured to send the second uplink positioning information to the base station at the second time domain position, where the second uplink positioning information is used for the base station to perform TOA estimation of the time of arrival.
  • the receiving unit is further configured to receive second downlink data sent by the base station at a third time domain position, where the second downlink data includes a system message, and the system message carries the fourth Time domain location information;
  • the sending unit is further configured to send the second uplink data and the first uplink positioning information to the base station at the fourth time domain position, where the second uplink data includes an initial access message, and the initial access message is used for the terminal equipment to perform initial access.
  • the receiving unit is further configured to receive downlink synchronization information sent by the base station at the first time domain position or the third time domain position, and the downlink synchronization information is used by the terminal device to perform time synchronization.
  • the receiving unit is specifically configured to receive downlink data and downlink synchronization information through a downlink physical channel, and the downlink data includes the first downlink data and the second downlink data.
  • the downlink physical channel includes a broadcast channel and/or a downlink common control channel
  • the broadcast channel is used for the receiving unit to receive the second downlink data and the downlink synchronization information
  • the downlink common control channel It is used for the receiving unit to receive the first downlink data and downlink synchronization information.
  • the subcarrier spacing of the downlink physical channel is N times the NR subcarrier spacing of the new air interface, where N is a positive integer greater than or equal to 1.
  • N is equal to 1
  • the duration of the first time domain position is equal to the duration of the target symbol
  • the duration of the third time domain position is equal to the duration of the target symbol
  • the target symbol is Notation for NR.
  • N is a positive integer greater than or equal to 2
  • the first time domain position includes N first subsymbols
  • the receiving unit receives the M first subsymbols Downlink synchronization information
  • the receiving unit receives the second downlink data at (N-M) first subsymbols
  • the third time domain position includes N second subsymbols
  • the receiving unit receives the downlink synchronization information at M second character symbols
  • the second downlink data is received in (N-M) second subsymbols
  • the sum of the durations of the N first subsymbols is equal to the duration of the target symbol
  • the sum of the durations of the N second subsymbols is equal to the duration of the target symbol
  • the target symbol is The sign of NR
  • M is a positive integer greater than or equal to 1
  • (N-M) is a positive integer greater than or equal to 1.
  • the receiving unit is specifically configured to receive downlink synchronization information and downlink data sent by the base station in a frequency division multiplexing manner.
  • the sending unit sends uplink data and/or uplink positioning information through an uplink physical channel, and the uplink positioning information includes the first uplink positioning information and the second uplink positioning information information, the uplink data includes the first uplink data and the second uplink data.
  • the uplink physical channel includes an access channel and or an uplink shared channel
  • the access channel is used by the sending unit to send the second uplink data and uplink positioning information
  • the uplink shared channel The sending unit sends the first uplink data and the uplink positioning message.
  • the subcarrier spacing of the uplink physical channel is N times the NR subcarrier spacing of the new air interface, where N is a positive integer greater than or equal to 1.
  • N is equal to 1
  • the transmitting unit transmits uplink positioning information and uplink data by means of frequency division multiplexing
  • the duration of the second time domain location is equal to the duration of the target symbol
  • the duration of the fourth time domain position is equal to the duration of the target symbol
  • the target symbol is the NR symbol.
  • N is a positive integer greater than or equal to 2
  • the second time domain position includes N third subsymbols
  • the sending unit sends the M third subsymbols Uplink positioning information
  • the sending unit sends the first uplink data at (N-M) third subsymbols
  • the fourth time domain position includes N fourth subsymbols
  • the sending unit sends the uplink positioning information at M fourth character symbols
  • the sending unit The second uplink data is sent in (N-M) fourth subsymbols
  • the sum of the durations of the N third subsymbols is equal to the duration of the target symbol
  • the sum of the durations of the N fourth subsymbols is equal to the duration of the target symbol
  • the target symbol is The sign of NR
  • M is a positive integer greater than or equal to 1
  • (N-M) is a positive integer greater than or equal to 1.
  • the sending unit further sends the uplink positioning information and the uplink data by means of frequency division multiplexing.
  • each unit in the terminal device provided in the third aspect of the present application is similar to the method performed by the terminal device in the embodiments of the foregoing first aspect, and details are not described herein again.
  • a fourth aspect of the present application provides a base station.
  • a base station comprising:
  • a sending unit configured to send the first downlink data to the terminal device at the first time domain position, where the first downlink data includes a resource allocation message, and the resource allocation message carries information of the second time domain position;
  • the receiving unit is configured to receive the first uplink positioning information and the first uplink data sent by the terminal device at the second time domain position, and the first uplink positioning information is used for the base station to estimate the time of arrival TOA.
  • the sending unit sends the second downlink data to the terminal device at the third time domain position, where the second downlink data includes a system message, and the system message carries the information of the fourth time domain position information;
  • the receiving unit is further configured to receive the second uplink data and the first uplink positioning information sent by the terminal device at the fourth time domain position, where the second uplink data includes an initial access message, and the initial access message is used for the terminal device to perform initial access.
  • the sending unit is further configured to send downlink synchronization information to the terminal device at the first time domain position or the third time domain position, and the downlink synchronization information is used by the terminal device to perform time Synchronize.
  • the sending unit is further configured to send downlink data and downlink synchronization information through a downlink physical channel, where the downlink data includes the first downlink data and the second downlink data.
  • the downlink physical channel includes a broadcast channel and/or a downlink common control channel
  • the broadcast channel is used by the sending unit to send the second downlink data and the downlink synchronization information
  • the downlink common control channel is used for sending the second downlink data and the downlink synchronization information.
  • the sending unit sends the first downlink data and the downlink synchronization information.
  • the subcarrier spacing of the downlink physical channel is N times the NR subcarrier spacing of the new air interface, where N is a positive integer greater than or equal to 1.
  • N is equal to 1
  • the transmitting unit transmits the downlink synchronization information and the downlink data by means of frequency division multiplexing
  • the duration of the first time domain position is equal to the duration of the target symbol
  • the duration of the third time domain position is equal to the duration of the target symbol
  • the target symbol is the NR symbol.
  • N is a positive integer greater than or equal to 2
  • the first time domain position includes N first subsymbols
  • the sending unit sends the downlink in the M first subsymbols Synchronization information
  • the sending unit sends the second downlink data at (N-M) first subsymbols
  • the third time domain position includes N second subsymbols
  • the sending unit sends the downlink synchronization information at M second character symbols
  • the sending unit is at (N-M) second sub-symbols send the second downlink data
  • the sum of the durations of the N first sub-symbols is equal to the duration of the target symbol
  • the sum of the durations of the N second sub-symbols is equal to the duration of the target symbol
  • the target symbol is NR
  • M is a positive integer greater than or equal to 1
  • (N-M) is a positive integer greater than or equal to 1.
  • the sending unit further sends downlink synchronization information and downlink data by means of frequency division multiplexing.
  • the receiving unit receives uplink data and/or uplink positioning information through an uplink physical channel, the uplink positioning information includes the first uplink positioning information and the second uplink positioning information, and the uplink data includes The first uplink data and the second uplink data.
  • the uplink physical channel includes an access channel and/or an uplink shared channel
  • the access channel is used by the receiving unit to receive the second uplink data and the uplink positioning information
  • the uplink shared channel is used for The receiving unit receives the first uplink data and the uplink positioning message.
  • the subcarrier interval of the uplink physical channel is N times the subcarrier interval of the new air interface NR, where N is a positive integer greater than or equal to 1.
  • N is equal to 1
  • the duration of the second time domain position is equal to the duration of the target symbol
  • the duration of the fourth time domain position is equal to the duration of the target symbol
  • the target symbol is NR symbol.
  • N is a positive integer greater than or equal to 2
  • the second time domain position includes N third subsymbols
  • the receiving unit receives the uplink at the M third subsymbols Positioning information
  • the receiving unit receives the first uplink data at (N-M) third subsymbols
  • the fourth time domain position includes N fourth subsymbols
  • the receiving unit receives the uplink positioning information at the M fourth character symbols
  • the receiving unit is at (N-M) fourth subsymbols receive the second uplink data
  • the sum of the durations of the N third subsymbols is equal to the duration of the target symbol
  • the sum of the durations of the N fourth subsymbols is equal to the duration of the target symbol
  • the target symbol is NR
  • M is a positive integer greater than or equal to 1
  • (N-M) is a positive integer greater than or equal to 1.
  • the receiving unit receives uplink positioning information and uplink data sent by the terminal device in a frequency division multiplexing manner.
  • each unit in the base station provided in the fourth aspect of the present application is similar to the method performed by the base station in the embodiments of the foregoing second aspect, and details are not described herein again.
  • a fifth aspect of the present application provides a computer storage medium, where instructions are stored in the computer storage medium, and when the instructions are executed on a computer, the instructions cause the computer to execute the method according to the embodiments of the first aspect or the second aspect of the present application.
  • a sixth aspect of the present application provides a computer program product, which, when executed on a computer, causes the computer to execute the method according to the embodiments of the first aspect or the second aspect of the present application.
  • the embodiments of the present application have the following advantages:
  • the terminal device enters the sleep mode after sending the first uplink positioning information, enters the normal mode when the second uplink positioning information needs to be sent, and sends the second uplink positioning information at the same second time domain position,
  • the terminal device does not need to maintain an RRC connection with the base station by sending the second uplink positioning information at the fixed second time domain location, which saves the power consumption of the terminal device.
  • Fig. 1 is a prior art positioning flowchart provided by an embodiment of the present application
  • FIG. 2 is an architecture diagram of a low-power positioning system provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of resource allocation according to an embodiment of the present application.
  • FIG. 4 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • 5a is a schematic flowchart of a data processing method provided by an embodiment of the present application.
  • 5b is a schematic flowchart of another data processing method provided by an embodiment of the present application.
  • FIG. 5c is a schematic flowchart of another data processing method provided by an embodiment of the present application.
  • 5d is a schematic flowchart of another data processing method provided by an embodiment of the present application.
  • FIG. 6 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 7 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 8 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 9 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 10 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 11 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 12 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 13 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 14 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 15 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 16 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 17 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 18 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 19 is another schematic diagram of resource allocation provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a base station provided by an embodiment of the present application.
  • FIG. 22 is another schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 23 is another schematic structural diagram of a base station provided by an embodiment of the present application.
  • An embodiment of the present application provides a data processing method.
  • the terminal device enters the sleep mode after sending the first uplink positioning information, enters the normal mode when the second uplink positioning information needs to be sent, and sends the data at the same second time domain position.
  • the terminal device does not need to maintain an RRC connection with the base station by sending the second uplink positioning information at a fixed second time domain position, which saves power consumption of the terminal device.
  • FIG. 1 is a flow chart of prior art positioning provided by an embodiment of the present application.
  • the positioning process of the terminal device can be divided into three steps.
  • the terminal device captures system messages.
  • the terminal device searches for the 5G network, captures PSS/SSS, and obtains synchronization timing.
  • the terminal uses PBCH, PDCCH, PDSCH and other channels to read multiple system messages such as MIB/SIB to obtain parameters related to them.
  • the terminal device establishes an access connection.
  • the terminal device sends the random access preamble through the PRACH channel, and the base station sends the random access response through the PDCCH and PDSCH channels.
  • the terminal device sends the connection request through the PUSCH, the base station sends the RRC connection configuration through the PDCCH and PDSCH channels, and the terminal device sends the RRC configuration complete message through the PUSCH.
  • the terminal device obtains the SRS period and sends the SRS.
  • the base station sends an RRC reconfiguration message (ie, a periodic SRS configuration message) through the PDCCH and PDSCH channels, and the terminal device sends an RRC reconfiguration complete message through the PUSCH channel.
  • the terminal device may periodically send an SRS signal at the SRS resource symbol position according to the period and bandwidth of the SRS configuration, and the SRS signal is used for the base station to perform TOA positioning.
  • the terminal device in the process of positioning the terminal equipment and the base station, almost all the uplink and downlink physical channels of the 5G system are used, excluding the implicit reference signals such as DMRS used for RRC data transmission, and the explicit reference signals. 3 signals are also used, and 5 are used for uplink and downlink physical channels. Moreover, in order to complete the periodic positioning, the terminal device will be in the RRC connection state for a long time, cannot sleep, and cannot well meet the requirements of low power consumption.
  • an embodiment of the present application provides a data processing method, which can make a terminal device enter a sleep state when not sending a positioning message, save the power consumption of the terminal device, simplify the interaction process of the air interface, and reduce the cost of the base station. Interaction time with end devices.
  • FIG. 2 is an architecture diagram of a low-power positioning system provided by an embodiment of the present application.
  • the architecture of the low-power positioning system includes at least one positioning terminal 201 , at least one positioning base station 202 , and at least one positioning solution server 203 .
  • the positioning terminal 202 is a terminal device, and the positioning base station 202 is a base station. It can be understood that, in this embodiment of the present application, more positioning terminals 201 , positioning base stations 202 , and positioning calculation servers 203 may be further included.
  • the positioning terminal 201 and the positioning base station 202 may be connected through a wireless network.
  • the wireless network connection may include a fifth generation (5th generation, 5G) mobile communication network, a 5G NR network, or other future new mobile communication networks.
  • the wireless network connection may also be a communication network that supports multiple wireless technologies at the same time, such as a communication network that supports LTE and NR at the same time; or, the wireless network connection may also be a communication network that supports short-range communication, for example, supports sidelinks. Road (sidelink, SL) technology communication network, wireless fidelity (wireless fidelity, WiFi) technology communication network and so on.
  • the positioning base station 202 and the positioning solution server may be connected through a wired network or a wireless network.
  • the wired network connection may be a fiber optic connection or the like.
  • the wireless network connection is similar to the wireless network connection between the positioning terminal 201 and the positioning base station 202 described above, and details are not repeated here.
  • the positioning base station 202 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, etc., or a base station in other future mobile communication systems , which is not limited in the specific embodiments of the present application.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB in an NR system
  • the positioning terminal 201 may be an entity for receiving or transmitting signals, such as a mobile phone.
  • the positioning terminal 201 may also be referred to as a terminal (terminal), a user equipment (UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and the like.
  • the positioning terminal 201 can be a car with a communication function, a smart car, a mobile phone (mobile phone), a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, augmented reality (augmented reality, AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart grid (smart grid) ), wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the positioning terminal 201 is usually made in the form of a label, and the positioning terminal 201 may also be called a positioning label sometimes.
  • the positioning calculation server 203 is responsible for calculating the position of the positioning terminal 201 , and the positioning result of the positioning terminal 201 is obtained from the positioning calculation server 203 .
  • the positioning base station 202 communicates with the positioning terminal 201, and completes the TOA estimation of the positioning reference signal sent by the positioning terminal 201.
  • the positioning terminal 201 communicates with the positioning base station 202, and sends a positioning reference signal, that is, the uplink positioning information in the embodiment of the present application, to the positioning base station 202.
  • the channels and signals that need to be used for positioning include: PSS/SSS, PBCH, PDCCH, PDSCH, PRACH, PUSCH, and SRS. in:
  • the primary synchronization signal (PSS) and the secondary synchronization signal (SSS) are mainly used for the UE to perform downlink synchronization system acquisition.
  • the Physical Broadcast Channel (PBCH) carries system broadcast messages, namely MIB messages and scheduling information of SIB1.
  • the Physical Downlink Control Channel (PDCCH) is used for uplink and downlink scheduling and indicating the location of other SIBs.
  • the Physical Downlink Shared Channel (PDSCH) is used to carry downlink user data and other SIB data.
  • the Physical Random Access Channel (PRACH) is used by the UE to initiate random access requests.
  • the Physical Uplink Shared Channel (PUSCH) is used by the UE to transmit uplink user data.
  • SRS Sounding Reference Signal
  • Frame Frame, the duration of a frame is 10ms.
  • Subframe Sub Frame, the duration of one subframe is 1ms, and one frame contains 10 subframes.
  • Time slot Slot, the duration of the time slot is related to the subcarrier spacing, in a subframe: 1 time slot for 15k subcarriers, 2 time slots for 30K subcarriers, 4 time slots for 60K subcarriers, And so on.
  • Symbol Symbol, a slot contains 14 symbols.
  • the 5G time-domain and frequency-domain resources used for low-power positioning need to be negotiated with the 5G NR network.
  • time domain resources and frequency domain resources used for positioning are obtained by means of time domain slicing.
  • the time domain resources and frequency domain resources NR that are segmented and used by the data processing method in the embodiment of the present application are no longer used, so as to avoid mutual interference.
  • Which resources are segmented by the NR network and how many resources are segmented for use by the data processing method in this embodiment of the present application need to be planned according to the actual service capacity requirements, but the minimum resource requirements for low-power positioning need to be met: within one frame, the At least 1 downstream symbol and 2 upstream symbols. Two specific segmentation schemes are shown below for reference.
  • time slots there are 3 kinds of time slots, namely downlink time slot (D), uplink time slot (U) and special time slot (S).
  • the special time slot is the time slot for uplink and downlink switching.
  • the symbols in front of the time slot are downlink symbols, the following symbols are uplink symbols, and there are some GAP symbols (G) in the middle, which are not used for uplink and downlink. Guard symbol for uplink and downlink handover.
  • one radio frame (10ms) is used as a period, and one downlink symbol is divided, and five uplink symbols are used for the data processing method in the embodiment of the present application, wherein, Symbol 6 of slot7 is used to locate the downstream symbol "PD", symbol 8/9 of slot7, and symbol 7/8/9 of slot17 are used to locate the upstream symbol "PU”.
  • one downlink symbol is allocated every 10ms, and 14 uplink symbols are used for the data processing method in this embodiment of the present application.
  • the symbol 6 of slot 7 is used as the positioning downlink symbol "PD", and the 14 symbols of the entire slot19 are used as the positioning uplink symbol "PU”.
  • the positioning terminal 201 is used as a terminal device and the positioning base station 202 is used as an example for description.
  • uplink data or downlink data may be transmitted in one NR symbol by means of frequency division multiplexing or by means of setting multiple sub-symbols in one NR symbol, which will be described separately in the embodiments of this application.
  • FIG. 5 is a schematic flowchart of a data processing method provided by an embodiment of the present application.
  • step 501 the base station sends the second downlink data to the terminal device.
  • the base station will first send the second downlink data on the downlink physical channel PDCH through the third time domain position, where the second downlink data includes a system message, and the system message carries the information of the fourth time domain position.
  • the location information in the fourth time domain is used to indicate the symbol location of the initial access channel, and the third time domain location is defined by the protocol between the base station and the terminal device.
  • the system message can also carry more information, for example, the system information can also carry information about the bandwidth used by the uplink positioning information, which is not specifically limited here.
  • one downlink physical channel PDCH and two logical channels are designed in the downlink channel: the broadcast channel BCH and the downlink common control channel DCCH.
  • the data of the two logical channels are carried by the same downlink physical channel PDCH.
  • the broadcast channel is used for sending system messages
  • the downlink common control channel is used for delivering control messages, such as resource allocation messages, to a single terminal device.
  • the downlink physical channel designed in this embodiment consists of a cyclic prefix CP, a downlink synchronization reference signal DSS (ie, downlink synchronization information) and downlink data.
  • DSS downlink synchronization reference signal
  • the system message also carries time information, and the time information is used for the terminal device to perform time synchronization.
  • the terminal equipment realizes frequency synchronization with the base station through the synchronization reference signal DSS sent by the base station, and realizes time synchronization with the base station through time information.
  • the duration of the subsymbols used in this embodiment is half of the NR symbol duration.
  • this embodiment can use two sub-symbols to carry data. For example, if NR uses 30K subcarrier spacing, then PDCH uses 60K subcarrier spacing or 120K subcarrier spacing, then the duration of subsymbols is half or one quarter of the duration of NR symbols, that is, one target symbol can be used as two or more sub-symbols are used.
  • the PDCH adopts a double-symbol design, and each symbol has a cyclic prefix CP.
  • the first symbol sends a downlink synchronization sequence DSS, that is, downlink synchronization information, which is used by the terminal device to capture system messages and align with the time synchronization of the base station.
  • DSS can also be used for channel estimation.
  • the second symbol is used to transmit the data carried by the PDCH.
  • the bandwidth used by the PDCH is a certain fixed bandwidth, such as 10Mhz or 20Mhz.
  • the modulation mode of DSS adopts the mode of BPSK.
  • the DSS sequence adopts a fixed m sequence defined by the 3GPP standard, or a fixed ZC sequence with a low peak-to-average ratio Low-PARP. It can be understood that other types of sequences can also be used, which are not specifically limited here.
  • the downlink data can adopt the modulation mode adopted by 3GPP standards such as QPSK, 16QAM or 64QAM, which is not specifically limited here.
  • the channel coding of the PDCH may use a coding method commonly used in 3GPP such as a convolutional code, a Polar code, and an LDPC code, which is not specifically limited here.
  • the downlink physical channel divides an NR target symbol from the NR network according to a fixed period to transmit downlink data.
  • the downlink physical channel is designed with two logical channels, the two logical channels are transmitted alternately, that is, the broadcast channel is transmitted in the first fixed period, and the downlink control channel is transmitted in the second fixed period.
  • broadcast channels are sent in even frames, and downlink control channels are sent in odd frames.
  • the downlink physical channel takes 10ms as a cycle, the broadcast channel uses the NR target symbol in the first 10ms, and the downlink control channel uses the NR target symbol in the second 10ms.
  • the target symbol cut out from the NR network is the 6th symbol in the 7th time slot, then in frame 0, the broadcast channel uses the target symbol to transmit system messages, and in frame 0
  • the target symbol of is the third time domain position, and in frame 3, the downlink control channel uses the target symbol to transmit the resource allocation message.
  • step 502 the terminal device sends the second uplink data and the first uplink positioning information to the base station.
  • the terminal device After the terminal device receives the system message sent by the base station, the terminal device sends the second uplink data and the first uplink positioning information to the base station through the uplink physical channel at the fourth time domain position according to the system message, where the second uplink data includes the initial connection information.
  • the initial access message is used for the terminal equipment to perform initial access.
  • one uplink physical channel PUCH and two logical channels are designed in the uplink channel: the access channel ACH and the uplink shared channel USCH.
  • the data of the two logical channels are carried by the same uplink physical channel.
  • the access channel is used to send the initial access message
  • the uplink shared channel is used to transmit uplink data and uplink positioning information
  • the UTDOA positioning is to use the uplink positioning information to perform TOA estimation.
  • the uplink physical channel designed in this embodiment consists of a cyclic prefix CP, a low power consumption positioning reference signal LPRS (ie, uplink positioning information) and uplink data.
  • CP cyclic prefix
  • LPRS low power consumption positioning reference signal
  • the duration of the subsymbols used in this embodiment is half the duration of the NR symbol.
  • this embodiment can use two sub-symbols to carry data. For example, if NR uses 30K subcarrier spacing, then PUCH uses 60K subcarrier spacing or 120K subcarrier spacing, then the duration of subsymbols is half or one quarter of the duration of NR symbols, that is, one target symbol can be used as two or more sub-symbols are used.
  • PUCH adopts a double symbol design, and each symbol has a cyclic prefix CP.
  • the first symbol sends a low-power positioning reference signal LPRS, that is, uplink positioning information, which is used for TOA estimation by the base station.
  • LPRS low-power positioning reference signal
  • the uplink positioning information can also be used for channel estimation of uplink physical channels.
  • the second symbol is used to transmit the data carried by the PUCH.
  • the bandwidth occupied by PUCH is divided into two parts.
  • the full bandwidth is usually used.
  • the use of full bandwidth when sending LPRS is due to the accuracy requirements of UTDOA positioning.
  • Using more bandwidth to send more LPRS can perform UTDOA positioning more accurately, thereby improving the positioning accuracy of UTODA.
  • the specific bandwidth can be negotiated and configured according to the load of the NR network and the positioning system. For example, only part of the bandwidth is used to transmit LPRS, which is not specifically limited here.
  • a fixed bandwidth such as 10Mhz or 20Mhz
  • the full bandwidth can be saved and bandwidth resources can be saved.
  • the full bandwidth can also be used, which is not limited here.
  • the modulation mode of LPRS adopts the mode of BPSK.
  • the LPRS sequence may use the fixed ZC sequence of Low-PAPR defined by the 3GPP standard. It is understood that other types of sequences may also be used, which are not specifically limited here.
  • the uplink data may adopt the modulation mode adopted by the 3GPP standard such as QPSK, 16QAM or 64QAM, which is not specifically limited here.
  • the 3GPP standard such as QPSK, 16QAM or 64QAM, which is not specifically limited here.
  • the channel coding of the PUCH may adopt the coding methods commonly used in 3GPP such as convolutional codes, Polar codes, and LDPC codes, which are not specifically limited here.
  • the uplink physical channel divides an NR target symbol from the NR network according to a fixed period for transmitting uplink data.
  • the uplink physical channel is designed with two logical channels, the two logical channels are sent alternately, that is, the access channel is sent in the first fixed period, and the uplink shared channel is sent in the second fixed period.
  • the access channel is sent on even-numbered frames, and the uplink shared channel is sent on odd-numbered frames.
  • the uplink physical channel takes 10ms as a cycle, the access channel uses the NR target symbol in the first 10ms, and the uplink shared channel uses the NR target symbol in the second 10ms.
  • the target symbol cut out from the NR network is the 8th symbol in the 7th time slot, then in frame 0, the access channel uses the target symbol to transmit the initial access message, the The target symbol in frame 0 is the fourth time domain position, in the 9th symbol in the 7th time slot of frame 0 and the 7th, 8th, and 9th symbols in the 17th time slot in frame 0 , the uplink shared channel uses these target symbols to transmit positioning messages.
  • step 503 the base station sends the first downlink data to the terminal device.
  • the base station After the terminal device sends the initial access message to the base station, the base station sends the first downlink data to the terminal device at the first time domain position, where the first downlink data includes a resource allocation message, and the resource allocation message carries the second Time domain location information.
  • the base station further sends downlink synchronization information through the first time domain location, where the downlink synchronization information is used for time synchronization of the terminal device.
  • the first time domain location is a time domain resource segmented by the NR network, that is, an NR target symbol
  • the base station sends the first downlink data and downlink synchronization information in the NR target symbol.
  • the downlink synchronization information may be sent in the first subsymbol of the NR target symbol
  • the first downlink data may be sent in the second subsymbol.
  • the base station will only carry the resource allocation message in the first downlink data when resources need to be allocated to the terminal device. If the terminal device does not need to allocate resources, the base station may only send the downlink synchronization information and the downlink synchronization information in the first time domain position without sending the resource allocation message.
  • step 504 the terminal device sends the second uplink data and the first uplink positioning information to the base station.
  • the terminal device After the terminal device receives the resource allocation message and the downlink synchronization information sent by the base station, the terminal device sends the second uplink data and the first uplink positioning information at the second time domain position according to the resource allocation message, and the first uplink positioning information is used by the base station. An estimate of the time of arrival TOA is made.
  • the terminal device can send the second uplink data and the first uplink positioning message in the second time domain location through the uplink shared channel USCH, and the information of the second time domain location is carried in the resources sent by the base station in the assignment message.
  • the first time domain position is the time domain resource segmented by the NR network, that is, an NR target symbol
  • the terminal device sends the second uplink data and the first uplink positioning message in the NR target symbol.
  • the first uplink positioning message may be sent in the first subsymbol of the NR target symbol
  • the second uplink data may be sent in the second subsymbol.
  • the amount of uplink data sent by the terminal device will be smaller, and in the positioning scenario, the base station requires higher positioning accuracy. Therefore, the terminal device can use the maximum bandwidth when sending the first uplink positioning message to ensure that more first uplink positioning messages are sent.
  • the second uplink data is sent, it can be adjusted according to the actual data volume. If the data volume is small, the second uplink data is sent using less bandwidth, which can save bandwidth resources.
  • step 505 the terminal device starts a timer and enters a sleep mode.
  • the terminal device may start a timer, and after the timer is started, enter a sleep mode, and the power consumption of the sleep mode is lower than that of the terminal device in the normal mode, and the timing The duration of the timer is a preset threshold.
  • the terminal device may enter a sleep mode in order to maintain a low power consumption state.
  • the terminal device can receive downlink synchronization information and system messages at the designated time domain resource location allocated by the base station, so that the terminal device can perform time synchronization with the base station and receive system messages.
  • the sleep mode can be entered in order to reduce the power consumption of the terminal device.
  • step 506 when the timer expires, the terminal device enters the normal mode.
  • the terminal device When the timer expires, the terminal device exits the sleep mode and enters the normal mode.
  • the terminal device can receive downlink synchronization information and system messages at the designated time domain resource location allocated by the base station. For example, the terminal device may receive the second downlink data that carries the system message and is sent by the base station at the third time domain position.
  • step 507 the terminal device sends the second uplink positioning information to the base station.
  • the terminal device After the terminal device enters the normal mode, based on the agreement with the base station, the terminal device sends the second uplink positioning information to the base station at the second time domain position, and the uplink positioning information is used for the base station to estimate the time of arrival TOA.
  • the terminal device sends the second uplink positioning information to the base station based on the time domain resource information that has been allocated by the base station. For example, the second time domain exits the sleep mode, the time to enter the normal mode is in the first time slot in frame 0, and the second time domain position allocated by the base station to the terminal device is in the 17th time slot in frame 0. For the seventh symbol, the terminal device only needs to wait for the duration of 10 time slots and 7 NR target symbols before sending the uplink positioning information to the base station again.
  • At least one NR target symbol will be allocated for sending uplink positioning information, so the waiting time of the terminal equipment is shorter, which reduces the time of waiting for the terminal equipment to send uplink positioning information.
  • the terminal device may continue to enter the sleep mode to maintain a low power consumption running state.
  • the base station and the terminal device can realize data transmission and positioning between the terminal device and the base station through less information exchange, avoiding the complex process of standard UTDOA positioning, and can be based on the time allocated by the base station for a long time.
  • the domain resource periodically sends the uplink positioning message, and can sleep immediately after the sending is completed, so as to maintain the low power consumption state of the terminal device and save the power consumption of the terminal device.
  • the method for low power consumption positioning in the embodiment of the present application is compared with the standard UTDOA positioning process of the prior art 3GPP as shown in Table 1 below.
  • the processing time for the terminal to receive and send messages is also significantly shorter than the R16 standard UTDOA positioning process.
  • the channel sequence is simple and the periodic position is fixed, and information is received and transmitted in the allocated symbols, and the duration is less than 1 NR target symbol.
  • the PDCCH channel needs to be monitored first, and the duration of the PDCCH is 1-3 NR target symbols, and the duration of the PDSCH is usually in time slots.
  • the channel in the embodiment of the present application also does not need the HARQ response mechanism of the R16 standard L2, which reduces the number of signal transmission times of the terminal device.
  • FIG. 5b is another schematic flowchart of the data processing method provided by the embodiment of the present application.
  • step 601 the base station sends the second downlink data to the terminal device.
  • the base station will first send the second downlink data on the downlink physical channel PDCH through the third time domain position, where the second downlink data includes a system message, and the system message carries the information of the fourth time domain position.
  • the location information in the fourth time domain is used to indicate the symbol location of the initial access channel, and the third time domain location is defined by the protocol between the base station and the terminal device.
  • the system message can also carry more information, for example, the system information can also carry information about the bandwidth used by the uplink positioning information, which is not specifically limited here.
  • one downlink physical channel PDCH and two logical channels are designed in the downlink channel: the broadcast channel BCH and the downlink common control channel DCCH.
  • the data of the two logical channels are carried by the same downlink physical channel PDCH.
  • the broadcast channel is used for sending system messages
  • the downlink common control channel is used for delivering control messages, such as resource allocation messages, to a single terminal device.
  • the downlink physical channel designed in this embodiment consists of a cyclic prefix CP, a downlink synchronization reference signal DSS (ie, downlink synchronization information) and downlink data.
  • DSS downlink synchronization reference signal
  • the subcarrier spacing of the PDCH is set to be the same as the NR subcarrier spacing, and multiplexing is implemented by frequency division puncturing, so that the second downlink data and downlink synchronization information can be sent through one NR target symbol.
  • frequency division puncturing can be performed at a ratio of 1:3, as shown in Figure 12, that is, in one NR target symbol, one copy of downlink synchronization information and 3 copies of downlink data for punching. It can be understood that, in the actual application process, other ratios can also be used for punching, for example, 1:5 or 2:3 for punching, which is not specifically limited here.
  • the downlink synchronization sequence DSS that is, the downlink synchronization information, is used for the terminal device to capture the system message and align it with the time synchronization of the base station.
  • the DSS can also be used for channel estimation.
  • the second symbol is used to transmit the data carried by the PDCH.
  • the system message also carries time information, and the time information is used for the terminal device to perform time synchronization.
  • the terminal equipment realizes frequency synchronization with the base station through the synchronization reference signal DSS sent by the base station, and realizes time synchronization with the base station through time information.
  • the bandwidth used by the PDCH is a certain fixed bandwidth, such as 10Mhz or 20Mhz.
  • the modulation mode of DSS adopts the mode of BPSK.
  • the DSS sequence adopts a fixed m sequence defined by the 3GPP standard, or a fixed ZC sequence with a low peak-to-average ratio Low-PARP. It can be understood that other types of sequences can also be used, which are not specifically limited here.
  • the downlink data may adopt the modulation mode adopted by 3GPP standards such as QPSK, 16QAM or 64QAM, which is not specifically limited here.
  • the channel coding of the PDCH may use a coding method commonly used in 3GPP such as a convolutional code, a Polar code, and an LDPC code, which is not specifically limited here.
  • the downlink physical channel divides an NR target symbol from the NR network according to a fixed period to transmit downlink data.
  • the downlink physical channel is designed with two logical channels, the two logical channels are transmitted alternately, that is, the broadcast channel is transmitted in the first fixed period, and the downlink control channel is transmitted in the second fixed period.
  • broadcast channels are sent in even frames, and downlink control channels are sent in odd frames.
  • the downlink physical channel takes 10ms as a cycle, the broadcast channel uses the NR target symbol in the first 10ms, and the downlink control channel uses the NR target symbol in the second 10ms.
  • the target symbol cut out from the NR network is the 6th symbol in the 7th time slot, then in frame 0, the broadcast channel uses the target symbol to transmit system messages, and in frame 0
  • the target symbol of is the third time domain position, and in frame 3, the downlink control channel uses the target symbol to transmit the resource allocation message.
  • step 602 the terminal device sends the second uplink data and the first uplink positioning information to the base station.
  • the terminal device After the terminal device receives the system message sent by the base station, the terminal device sends the second uplink data and the first uplink positioning information to the base station through the uplink physical channel at the fourth time domain position according to the system message, where the second uplink data includes the initial connection information.
  • the initial access message is used for the terminal equipment to perform initial access.
  • one uplink physical channel PUCH and two logical channels are designed in the uplink channel: the access channel ACH and the uplink shared channel USCH.
  • the data of the two logical channels are carried by the same uplink physical channel.
  • the access channel is used to send the initial access message
  • the uplink shared channel is used to transmit uplink data and uplink positioning information
  • the UTDOA positioning is to use the uplink positioning information to perform TOA estimation.
  • the uplink physical channel designed in this embodiment consists of a cyclic prefix CP, a low power consumption positioning reference signal LPRS (ie, uplink positioning information) and uplink data.
  • CP cyclic prefix
  • LPRS low power consumption positioning reference signal
  • the subcarrier spacing of the PUCH is set to be the same as the NR subcarrier spacing, and multiplexing is implemented by frequency division puncturing, so that the second uplink data and uplink positioning information can be sent through one NR target symbol.
  • the amount of uplink data is relatively small, and the base station needs to use uplink positioning information for TOA measurement, which requires a large bandwidth.
  • puncturing is performed in the manner of three uplink positioning information and one uplink data. It can be understood that, in the actual application process, other ratios may also be used for punching, for example, 3:2 or 5:3 for punching, which is not specifically limited here.
  • the low-power positioning reference signal LPRS that is, uplink positioning information
  • LPRS is used for TOA estimation by the base station.
  • the uplink positioning information can also be used for channel estimation of uplink physical channels.
  • the second symbol is used to transmit the data carried by the PUCH.
  • the specific bandwidth can be negotiated and configured according to the load of the NR network and the positioning system. For example, only part of the bandwidth is used to transmit LPRS, which is not specifically limited here.
  • the modulation mode of LPRS adopts the mode of BPSK.
  • the LPRS sequence may use the fixed ZC sequence of Low-PAPR defined by the 3GPP standard. It is understood that other types of sequences may also be used, which are not specifically limited here.
  • the uplink data may adopt the modulation mode adopted by the 3GPP standard such as QPSK, 16QAM or 64QAM, which is not specifically limited here.
  • the 3GPP standard such as QPSK, 16QAM or 64QAM, which is not specifically limited here.
  • the channel coding of the PUCH may adopt the coding methods commonly used in 3GPP such as convolutional codes, Polar codes, and LDPC codes, which are not specifically limited here.
  • the uplink physical channel divides an NR target symbol from the NR network according to a fixed period for transmitting uplink data.
  • the uplink physical channel is designed with two logical channels, the two logical channels are sent alternately, that is, the access channel is sent in the first fixed period, and the uplink shared channel is sent in the second fixed period.
  • the access channel is sent on even-numbered frames, and the uplink shared channel is sent on odd-numbered frames.
  • the uplink physical channel takes 10ms as a cycle, the access channel uses the NR target symbol in the first 10ms, and the uplink shared channel uses the NR target symbol in the second 10ms.
  • the target symbol cut out from the NR network is the 8th symbol in the 7th time slot, then in frame 0, the access channel uses the target symbol to transmit the initial access message, the The target symbol in frame 0 is the fourth time domain position, in the 9th symbol in the 7th time slot of frame 0 and the 7th, 8th, and 9th symbols in the 17th time slot in frame 0 , the uplink shared channel uses these target symbols to transmit positioning messages.
  • step 603 the base station sends the first downlink data to the terminal device.
  • the base station After the terminal device sends the initial access message to the base station, the base station sends the first downlink data to the terminal device at the first time domain position, where the first downlink data includes a resource allocation message, and the resource allocation message carries the second Time domain location information.
  • the base station further sends downlink synchronization information through the first time domain location, where the downlink synchronization information is used for time synchronization of the terminal device.
  • the first time domain location is a time domain resource segmented by the NR network, that is, an NR target symbol
  • the base station sends the first downlink data and downlink synchronization information in the NR target symbol.
  • the downlink synchronization information and the first downlink data may be sent in the NR target symbol by means of frequency division puncturing.
  • the base station will only carry the resource allocation message in the first downlink data when resources need to be allocated to the terminal device. If the terminal device does not need to allocate resources, the base station may only send the downlink synchronization information in the first time domain position without sending the resource allocation message.
  • step 604 the terminal device sends the second uplink data and the first uplink positioning information to the base station.
  • the terminal device After the terminal device receives the resource allocation message and the downlink synchronization information sent by the base station, the terminal device sends the second uplink data and the first uplink positioning information at the second time domain position according to the resource allocation message, and the first uplink positioning information is used by the base station. An estimate of the time of arrival TOA is made.
  • the terminal device can send the second uplink data and the first uplink positioning message in the second time domain location through the uplink shared channel USCH, and the information of the second time domain location is carried in the resources sent by the base station in the assignment message.
  • the first time domain location is a time domain resource segmented by the NR network, that is, an NR target symbol
  • the terminal device sends the second uplink data and the first uplink positioning message in the NR target symbol.
  • the first uplink positioning message and the second uplink data may be sent by frequency division puncturing in the NR target symbol.
  • step 605 the terminal device starts a timer and enters a sleep mode.
  • the terminal device may start a timer, and after the timer is started, enter a sleep mode, and the power consumption of the sleep mode is lower than that of the terminal device in the normal mode, and the timing The duration of the timer is a preset threshold.
  • the terminal device may enter a sleep mode in order to maintain a low power consumption state.
  • the terminal device can receive downlink synchronization information and system messages at the designated time domain resource location allocated by the base station, so that the terminal device can perform time synchronization with the base station and receive system messages.
  • the sleep mode can be entered in order to reduce the power consumption of the terminal device.
  • step 606 when the timer expires, the terminal device enters the normal mode.
  • the terminal device When the timer expires, the terminal device exits the sleep mode and enters the normal mode.
  • the terminal device can receive downlink synchronization information and system messages at the designated time domain resource location allocated by the base station. For example, the terminal device may receive the second downlink data that carries the system message and is sent by the base station at the third time domain position.
  • step 607 the terminal device sends the second uplink positioning information to the base station.
  • the terminal device After the terminal device enters the normal mode, based on the agreement with the base station, the terminal device sends the second uplink positioning information to the base station at the second time domain position, and the uplink positioning information is used for the base station to estimate the time of arrival TOA.
  • the terminal device sends the second uplink positioning information to the base station based on the time domain resource information that has been allocated by the base station. For example, the second time domain exits the sleep mode, the time to enter the normal mode is in the first time slot in frame 0, and the second time domain position allocated by the base station to the terminal device is in the 17th time slot in frame 0. For the seventh symbol, the terminal device only needs to wait for the duration of 10 time slots and 7 NR target symbols before sending the uplink positioning information to the base station again.
  • At least one NR target symbol will be allocated for sending uplink positioning information, so the waiting time of the terminal equipment is shorter, which reduces the time of waiting for the terminal equipment to send uplink positioning information.
  • the terminal device may continue to enter the sleep mode to maintain a low power consumption running state.
  • the base station and the terminal device can realize data transmission and positioning between the terminal device and the base station through less information exchange, avoiding the complex process of standard UTDOA positioning, and can be based on the time allocated by the base station for a long time.
  • the domain resource periodically sends the uplink positioning message, and can sleep immediately after the sending is completed, so as to maintain the low power consumption state of the terminal device and save the power consumption of the terminal device.
  • Sending uplink data and positioning information by means of frequency division puncturing does not require multiple symbols for transmission, but only needs to be sent through a single symbol, which saves time.
  • the low power consumption positioning method in the embodiment of the present application is compared with the prior art 3GPP standard UTDOA positioning process as shown in Table 1 below.
  • the processing time for the terminal to receive and send messages is also significantly shorter than the R16 standard UTDOA positioning process.
  • the channel sequence is simple and the periodic position is fixed, and information is received and transmitted in the allocated symbols, and the duration is less than 1 NR target symbol.
  • the PDCCH channel needs to be monitored first, and the duration of the PDCCH is 1-3 NR target symbols, and the duration of the PDSCH is usually in time slots.
  • the channel in the embodiment of the present application also does not need the HARQ response mechanism of the R16 standard L2, which reduces the number of signal transmission times of the terminal device.
  • FIG. 5c is another schematic flowchart of the data processing method provided by the embodiment of the present application.
  • step 701 the base station sends the second downlink data to the terminal device.
  • the base station will first send the second downlink data on the downlink physical channel PDCH through the third time domain position, where the second downlink data includes a system message, and the system message carries the information of the fourth time domain position.
  • the location information in the fourth time domain is used to indicate the symbol location of the initial access channel, and the third time domain location is defined by the protocol between the base station and the terminal device.
  • the system message can also carry more information, for example, the system information can also carry information about the bandwidth used by the uplink positioning information, which is not specifically limited here.
  • one downlink physical channel PDCH and two logical channels are designed in the downlink channel: the broadcast channel BCH and the downlink common control channel DCCH.
  • the data of the two logical channels are carried by the same downlink physical channel PDCH.
  • the broadcast channel is used for sending system messages
  • the downlink common control channel is used for delivering control messages, such as resource allocation messages, to a single terminal device.
  • the downlink physical channel designed in this embodiment consists of a cyclic prefix CP, a downlink synchronization reference signal DSS (ie, downlink synchronization information) and downlink data.
  • DSS downlink synchronization reference signal
  • the system message also carries time information, and the time information is used for the terminal device to perform time synchronization.
  • the terminal equipment realizes frequency synchronization with the base station through the synchronization reference signal DSS sent by the base station, and realizes time synchronization with the base station through time information.
  • the subcarrier spacing of the downlink physical channel is N times the subcarrier spacing of the new air interface NR, where N is a positive integer greater than 2.
  • the first time domain position includes N first subsymbols
  • the terminal device receives downlink synchronization information in M first symbol symbols
  • the terminal device receives second downlink data in (N-M) first subsymbols.
  • the third time domain position also includes N second subsymbols, the terminal device receives downlink synchronization information in M second subsymbols, the terminal device receives second downlink data in (N-M) second subsymbols, and N
  • the sum of the durations of the first sub-symbols is equal to the duration of the target symbol, and the sum of the durations of the N second sub-symbols is also equal to the duration of the target symbols, where M is a positive integer greater than or equal to 1, and (N-M) is greater than or equal to A positive integer of 1.
  • the subcarrier spacing of the PDCH is set to be three times or more than the NR subcarrier spacing, so that the duration of the subsymbols used in this embodiment is less than one third of the duration of the NR symbol. Therefore, when When a target symbol is segmented from the NR network for use, this embodiment can use more than three sub-symbols to carry data. For example, if NR uses 30K subcarrier spacing, then PDCH uses 90K subcarrier spacing or 120K subcarrier spacing, then the subsymbol duration is one-third or one-quarter of the NR symbol duration, that is, one target symbol can be used as three more than one subsymbol is used.
  • the PDCH adopts a multi-symbol design, and each symbol has a cyclic prefix CP.
  • the first symbol sends a downlink synchronization sequence DSS, that is, downlink synchronization information, which is used by the terminal device to capture system messages and align with the time synchronization of the base station.
  • DSS can also be used for channel estimation.
  • the remaining symbols can be used to transmit data carried by the PDCH.
  • the bandwidth used by the PDCH is a certain fixed bandwidth, such as 10Mhz or 20Mhz.
  • the modulation mode of DSS adopts the mode of BPSK.
  • the DSS sequence adopts a fixed m sequence defined by the 3GPP standard, or a fixed ZC sequence with a low peak-to-average ratio Low-PARP. It can be understood that other types of sequences can also be used, which are not specifically limited here.
  • the downlink data may adopt the modulation mode adopted by 3GPP standards such as QPSK, 16QAM or 64QAM, which is not specifically limited here.
  • the channel coding of the PDCH may use a coding method commonly used in 3GPP such as a convolutional code, a Polar code, and an LDPC code, which is not specifically limited here.
  • the downlink physical channel divides an NR target symbol from the NR network according to a fixed period to transmit downlink data.
  • the downlink physical channel is designed with two logical channels, the two logical channels are transmitted alternately, that is, the broadcast channel is transmitted in the first fixed period, and the downlink control channel is transmitted in the second fixed period.
  • broadcast channels are sent in even frames, and downlink control channels are sent in odd frames.
  • the downlink physical channel takes 10ms as a cycle, the broadcast channel uses the NR target symbol in the first 10ms, and the downlink control channel uses the NR target symbol in the second 10ms.
  • the target symbol cut out from the NR network is the 6th symbol in the 7th time slot, then in frame 0, the broadcast channel uses the target symbol to transmit system messages, and in frame 0
  • the target symbol of is the third time domain position, and in frame 3, the downlink control channel uses the target symbol to transmit the resource allocation message.
  • step 702 the terminal device sends the second uplink data and the first uplink positioning information to the base station.
  • the terminal device After the terminal device receives the system message sent by the base station, the terminal device sends the second uplink data and the first uplink positioning information to the base station through the uplink physical channel at the fourth time domain position according to the system message, where the second uplink data includes the initial connection information.
  • the initial access message is used for the terminal equipment to perform initial access.
  • one uplink physical channel PUCH and two logical channels are designed in the uplink channel: the access channel ACH and the uplink shared channel USCH.
  • the data of the two logical channels are carried by the same uplink physical channel.
  • the access channel is used to send the initial access message
  • the uplink shared channel is used to transmit uplink data and uplink positioning information
  • the UTDOA positioning is to use the uplink positioning information to perform TOA estimation.
  • the uplink physical channel designed in this embodiment is composed of a cyclic prefix CP, a low-power positioning reference signal LPRS (ie, uplink positioning information) and uplink data.
  • CP cyclic prefix
  • LPRS low-power positioning reference signal
  • the subcarrier interval of the uplink physical channel is N times the subcarrier interval of the NR of the new air interface, where N is a positive integer greater than 2.
  • the second time domain position includes N third subsymbols, the terminal device sends uplink positioning information in M third subsymbols, and the terminal device sends the first uplink data in (N-M) third subsymbols.
  • the fourth time domain position also includes N fourth subsymbols, the terminal device sends uplink positioning information in the M fourth subsymbols, the terminal device sends the second uplink data in the (N-M) fourth subsymbols, and the N third subsymbols.
  • the sum of the durations of the sub-symbols is equal to the duration of the target symbol
  • the sum of the durations of the N fourth sub-symbols is equal to the duration of the target symbol
  • the target symbol is the symbol of NR
  • M is a positive integer greater than or equal to 1
  • (N-M) is greater than or equal to 1. or a positive integer equal to 1.
  • the subcarrier spacing of the PUCH is set to be three times or more than the NR subcarrier spacing, so that the duration of the subsymbols used in this embodiment is less than one third of the duration of the NR symbol. Therefore, when When a target symbol is segmented from the NR network for use, this embodiment can use more than three sub-symbols to carry data. For example, if NR uses 30K subcarrier spacing, then PDCH uses 90K subcarrier spacing or 120K subcarrier spacing, then the subsymbol duration is one-third or one-quarter of the NR symbol duration, that is, one target symbol can be used as three more than one subsymbol is used.
  • PUCH adopts multi-symbol design, and each symbol has a cyclic prefix CP.
  • the low-power positioning reference signal LPRS that is, uplink positioning information
  • LPRS is used for TOA estimation by the base station.
  • the uplink positioning information can also be used for channel estimation of uplink physical channels.
  • the remaining symbols can be used to send data carried by the PUCH or uplink positioning information, which is not specifically limited here.
  • the bandwidth occupied by PUCH is divided into two parts.
  • the full bandwidth is usually used.
  • the use of full bandwidth when sending LPRS is due to the accuracy requirements of UTDOA positioning.
  • Using more bandwidth to send more LPRS can perform UTDOA positioning more accurately, thereby improving the positioning accuracy of UTODA.
  • the specific bandwidth can be negotiated and configured according to the load of the NR network and the positioning system. For example, only part of the bandwidth is used to transmit LPRS, which is not specifically limited here.
  • a fixed bandwidth such as 10Mhz or 20Mhz
  • the full bandwidth may also be used, which is not specifically limited here.
  • the modulation mode of LPRS adopts the mode of BPSK.
  • the LPRS sequence may use the fixed ZC sequence of Low-PAPR defined by the 3GPP standard. It is understood that other types of sequences may also be used, which are not specifically limited here.
  • the uplink data may adopt the modulation mode adopted by the 3GPP standard such as QPSK, 16QAM or 64QAM, which is not specifically limited here.
  • the 3GPP standard such as QPSK, 16QAM or 64QAM, which is not specifically limited here.
  • the channel coding of the PUCH may adopt the coding methods commonly used in 3GPP such as convolutional codes, Polar codes, and LDPC codes, which are not specifically limited here.
  • the uplink physical channel divides an NR target symbol from the NR network according to a fixed period for transmitting uplink data.
  • the uplink physical channel is designed with two logical channels, the two logical channels are sent alternately, that is, the access channel is sent in the first fixed period, and the uplink shared channel is sent in the second fixed period.
  • the access channel is sent on even-numbered frames, and the uplink shared channel is sent on odd-numbered frames.
  • the uplink physical channel takes 10ms as a cycle, the access channel uses the NR target symbol in the first 10ms, and the uplink shared channel uses the NR target symbol in the second 10ms.
  • the target symbol cut out from the NR network is the 8th symbol in the 7th time slot, then in frame 0, the access channel uses the target symbol to transmit the initial access message, the The target symbol in frame 0 is the fourth time domain position, in the 9th symbol in the 7th time slot of frame 0 and the 7th, 8th, and 9th symbols in the 17th time slot in frame 0 , the uplink shared channel uses these target symbols to transmit positioning messages.
  • step 703 the base station sends the first downlink data to the terminal device.
  • the base station After the terminal device sends the initial access message to the base station, the base station sends the first downlink data to the terminal device at the first time domain position, where the first downlink data includes a resource allocation message, and the resource allocation message carries the second Time domain location information.
  • the base station further sends downlink synchronization information through the first time domain location, where the downlink synchronization information is used for time synchronization of the terminal device.
  • the first time domain location is a time domain resource segmented by the NR network, that is, an NR target symbol
  • the base station sends the first downlink data and downlink synchronization information in the NR target symbol.
  • the downlink synchronization information may be sent in the first subsymbol of the NR target symbol, and the first downlink data may be sent in the remaining subsymbols.
  • the base station will only carry the resource allocation message in the first downlink data when resources need to be allocated to the terminal device. If the terminal device does not need to allocate resources, the base station may only send the downlink synchronization information in the first time domain position without sending the resource allocation message.
  • step 704 the terminal device sends the second uplink data and the first uplink positioning information to the base station.
  • the terminal device After the terminal device receives the resource allocation message and the downlink synchronization information sent by the base station, the terminal device sends the second uplink data and the first uplink positioning information at the second time domain position according to the resource allocation message, and the first uplink positioning information is used by the base station. An estimate of the time of arrival TOA is made.
  • the terminal device can send the second uplink data and the first uplink positioning message in the second time domain location through the uplink shared channel USCH, and the information of the second time domain location is carried in the resources sent by the base station in the assignment message.
  • the first time domain location is a time domain resource segmented by the NR network, that is, an NR target symbol
  • the terminal device sends the second uplink data and the first uplink positioning message in the NR target symbol.
  • the first uplink positioning message may be sent in the first subsymbol of the NR target symbol
  • the second uplink data or the first uplink positioning message may be sent in the remaining subsymbols, which are not specifically limited herein.
  • the amount of uplink data sent by the terminal device will be smaller, and in the positioning scenario, the base station requires higher positioning accuracy. Therefore, the terminal device can use the maximum bandwidth when sending the first uplink positioning message to ensure that more first uplink positioning messages are sent.
  • the second uplink data is sent, it can be adjusted according to the actual data volume. If the data volume is small, the second uplink data is sent using less bandwidth, which can save bandwidth resources.
  • step 705 the terminal device starts a timer and enters a sleep mode.
  • the terminal device may start a timer, and after the timer is started, enter a sleep mode, and the power consumption of the sleep mode is lower than that of the terminal device in the normal mode, and the timing The duration of the timer is a preset threshold.
  • the terminal device may enter a sleep mode in order to maintain a low power consumption state.
  • the terminal device can receive downlink synchronization information and system messages at the designated time domain resource location allocated by the base station, so that the terminal device can perform time synchronization with the base station and receive system messages.
  • the sleep mode can be entered in order to reduce the power consumption of the terminal device.
  • step 706 when the timer expires, the terminal device enters the normal mode.
  • the terminal device When the timer expires, the terminal device exits the sleep mode and enters the normal mode.
  • the terminal device can receive downlink synchronization information and system messages at the designated time domain resource location allocated by the base station. For example, the terminal device may receive the second downlink data that carries the system message and is sent by the base station at the third time domain position.
  • step 707 the terminal device sends the second uplink positioning information to the base station.
  • the terminal device After the terminal device enters the normal mode, based on the agreement with the base station, the terminal device sends the second uplink positioning information to the base station at the second time domain position, and the uplink positioning information is used for the base station to estimate the time of arrival TOA.
  • the terminal device sends the second uplink positioning information to the base station based on the time domain resource information that has been allocated by the base station. For example, the second time domain exits the sleep mode, the time to enter the normal mode is in the first time slot in frame 0, and the second time domain position allocated by the base station to the terminal device is in the 17th time slot in frame 0. For the seventh symbol, the terminal device only needs to wait for the duration of 10 time slots and 7 NR target symbols before sending the uplink positioning information to the base station again.
  • At least one NR target symbol will be allocated for sending uplink positioning information, so the waiting time of the terminal equipment is shorter, which reduces the time of waiting for the terminal equipment to send uplink positioning information.
  • the terminal device may continue to enter the sleep mode to maintain a low power consumption running state.
  • the base station and the terminal device can realize data transmission and positioning between the terminal device and the base station through less information exchange, avoiding the complex process of standard UTDOA positioning, and can be based on the time allocated by the base station for a long time.
  • the domain resource periodically sends the uplink positioning message, and can sleep immediately after the sending is completed, so as to maintain the low power consumption state of the terminal device and save the power consumption of the terminal device.
  • the uplink data and positioning information are sent in a multi-symbol manner, which increases the data volume of the uplink data and the uplink positioning information.
  • the low power consumption positioning method in the embodiment of the present application is compared with the prior art 3GPP standard UTDOA positioning process as shown in Table 1 below.
  • the processing time for the terminal to receive and send messages is also significantly shorter than the R16 standard UTDOA positioning process.
  • the channel sequence is simple and the periodic position is fixed, and information is received and transmitted in the allocated symbols, and the duration is less than 1 NR target symbol.
  • the PDCCH channel needs to be monitored first, and the duration of the PDCCH is 1-3 NR target symbols, and the duration of the PDSCH is usually in time slots.
  • the channel in the embodiment of the present application also does not need the HARQ response mechanism of the R16 standard L2, which reduces the number of signal transmission times of the terminal device.
  • FIG. 5d is another schematic flowchart of the data processing method provided by the embodiment of the present application.
  • step 801 the base station sends the second downlink data to the terminal device.
  • the base station will first send the second downlink data on the downlink physical channel PDCH through the third time domain position, where the second downlink data includes a system message, and the system message carries the information of the fourth time domain position.
  • the location information in the fourth time domain is used to indicate the symbol location of the initial access channel, and the third time domain location is defined by the protocol between the base station and the terminal device.
  • the system message can also carry more information, for example, the system information can also carry information about the bandwidth used by the uplink positioning information, which is not specifically limited here.
  • one downlink physical channel PDCH and two logical channels are designed in the downlink channel: the broadcast channel BCH and the downlink common control channel DCCH.
  • the data of the two logical channels are carried by the same downlink physical channel PDCH.
  • the broadcast channel is used for sending system messages
  • the downlink common control channel is used for delivering control messages, such as resource allocation messages, to a single terminal device.
  • the downlink physical channel designed in this embodiment consists of a cyclic prefix CP, a downlink synchronization reference signal DSS (ie, downlink synchronization information) and downlink data.
  • DSS downlink synchronization reference signal
  • the system message also carries time information, and the time information is used for the terminal device to perform time synchronization.
  • the terminal equipment realizes frequency synchronization with the base station through the synchronization reference signal DSS sent by the base station, and realizes time synchronization with the base station through time information.
  • the subcarrier spacing of the downlink physical channel is N times the subcarrier spacing of the new air interface NR, where N is a positive integer greater than or equal to 2.
  • the first time domain position includes N first subsymbols, the terminal device receives downlink synchronization information in M first symbol symbols, and the terminal device receives second downlink data in (N-M) first subsymbols.
  • the third time domain position also includes N second subsymbols, the terminal device receives downlink synchronization information in M second subsymbols, the terminal device receives second downlink data in (N-M) second subsymbols, and N
  • the sum of the durations of the first sub-symbols is equal to the duration of the target symbol, and the sum of the durations of the N second sub-symbols is also equal to the duration of the target symbols, where M is a positive integer greater than or equal to 1, and (N-M) is greater than or equal to A positive integer of 1.
  • the subcarrier spacing of the PDCH is set to be twice or more than the NR subcarrier spacing, so that the duration of the subsymbols used in this embodiment is less than half the duration of the NR symbol. Therefore, when When one target symbol is split from the NR network for use, this embodiment may use more than two sub-symbols to carry data. For example, if NR uses 30K subcarrier spacing, then PDCH uses 60K subcarrier spacing or 120K subcarrier spacing, and the subsymbol duration is one-half or one-quarter of the NR symbol duration, that is, one target symbol can be used as two more than one subsymbol is used.
  • multiplexing may also be implemented in the subsymbol by means of frequency division puncturing, so as to realize that the second downlink data and the downlink synchronization information can be sent through one subsymbol.
  • frequency division puncturing can be performed at a ratio of 1:3, that is, in one NR target symbol, one copy of downlink synchronization information and three copies of downlink data are used. A punch is made, and all 4 symbols are punched. It can be understood that, in the actual application process, other ratios can also be used for punching, for example, 1:5 or 2:3 for punching, which is not specifically limited here.
  • puncturing can be performed in several ways.
  • puncturing is performed in the manner of 1 copy of downlink synchronization information and 3 copies of downlink data, and puncturing is performed in all 4 symbols.
  • all symbols carry uplink positioning information.
  • puncturing is performed in the manner of 1 part of downlink synchronization information and 3 parts of downlink data.
  • the PDCH adopts a multi-symbol design, and each symbol has a cyclic prefix CP.
  • the first symbol sends a downlink synchronization sequence DSS, that is, downlink synchronization information, which is used by the terminal device to capture system messages and align with the time synchronization of the base station.
  • DSS can also be used for channel estimation.
  • the remaining symbols can be used to transmit data carried by the PDCH.
  • the bandwidth used by the PDCH is a certain fixed bandwidth, such as 10Mhz or 20Mhz.
  • the modulation mode of DSS adopts the mode of BPSK.
  • the DSS sequence adopts a fixed m sequence defined by the 3GPP standard, or a fixed ZC sequence with a low peak-to-average ratio Low-PARP. It can be understood that other types of sequences can also be used, which are not specifically limited here.
  • the downlink data may adopt the modulation mode adopted by 3GPP standards such as QPSK, 16QAM or 64QAM, which is not specifically limited here.
  • the channel coding of the PDCH may use a coding method commonly used in 3GPP such as a convolutional code, a Polar code, and an LDPC code, which is not specifically limited here.
  • the downlink physical channel divides an NR target symbol from the NR network according to a fixed period to transmit downlink data.
  • the downlink physical channel is designed with two logical channels, the two logical channels are transmitted alternately, that is, the broadcast channel is transmitted in the first fixed period, and the downlink control channel is transmitted in the second fixed period.
  • broadcast channels are sent in even frames, and downlink control channels are sent in odd frames.
  • the downlink physical channel takes 10ms as a cycle, the broadcast channel uses the NR target symbol in the first 10ms, and the downlink control channel uses the NR target symbol in the second 10ms.
  • the target symbol cut out from the NR network is the 6th symbol in the 7th time slot, then in frame 0, the broadcast channel uses the target symbol to transmit system messages, and in frame 0
  • the target symbol of is the third time domain position, and in frame 3, the downlink control channel uses the target symbol to transmit the resource allocation message.
  • step 802 the terminal device sends the second uplink data and the first uplink positioning information to the base station.
  • the terminal device After the terminal device receives the system message sent by the base station, the terminal device sends the second uplink data and the first uplink positioning information to the base station through the uplink physical channel at the fourth time domain position according to the system message, where the second uplink data includes the initial connection information.
  • the initial access message is used for the terminal equipment to perform initial access.
  • one uplink physical channel PUCH and two logical channels are designed in the uplink channel: the access channel ACH and the uplink shared channel USCH.
  • the data of the two logical channels are carried by the same uplink physical channel.
  • the access channel is used to send the initial access message
  • the uplink shared channel is used to transmit uplink data and uplink positioning information
  • the UTDOA positioning is to use the uplink positioning information to perform TOA estimation.
  • the uplink physical channel designed in this embodiment is composed of a cyclic prefix CP, a low-power positioning reference signal LPRS (ie, uplink positioning information) and uplink data.
  • CP cyclic prefix
  • LPRS low-power positioning reference signal
  • the subcarrier spacing of the uplink physical channel is N times the subcarrier spacing of the new air interface NR, where N is a positive integer greater than or equal to 2.
  • the second time domain position includes N third subsymbols, the terminal device sends uplink positioning information in M third subsymbols, and the terminal device sends the first uplink data in (N-M) third subsymbols.
  • the fourth time domain position also includes N fourth subsymbols, the terminal device sends uplink positioning information in the M fourth subsymbols, the terminal device sends the second uplink data in the (N-M) fourth subsymbols, and the N third subsymbols.
  • the sum of the durations of the sub-symbols is equal to the duration of the target symbol
  • the sum of the durations of the N fourth sub-symbols is equal to the duration of the target symbol
  • the target symbol is the symbol of NR
  • M is a positive integer greater than or equal to 1
  • (N-M) is greater than or equal to 1. or a positive integer equal to 1.
  • the subcarrier spacing of the PUCH is set to be twice or more than the NR subcarrier spacing, so that the duration of the subsymbols used in this embodiment is less than half the duration of the NR symbol. Therefore, when When one target symbol is split from the NR network for use, this embodiment may use more than two sub-symbols to carry data. For example, if NR uses 30K subcarrier spacing, then PDCH uses 60K subcarrier spacing or 120K subcarrier spacing, and the duration of subsymbols is one-half or one-quarter of the NR symbol duration, that is, one target symbol can be used as two more than one subsymbol is used.
  • multiplexing can also be implemented in the sub-symbol by means of frequency division puncturing, so as to realize that the second uplink data and the uplink positioning information can be sent through one sub-symbol.
  • frequency division puncturing can be performed at a ratio of 3:1, that is, in one NR target symbol, three copies of uplink positioning information and one copy of uplink data are used. A punch is made, and it is punched in all 4 subsymbols. It can be understood that, in the actual application process, other ratios can also be used for punching, for example, 5:1 or 3:2 for punching, which is not specifically limited here.
  • puncturing can be performed in several ways.
  • puncturing is performed in the manner of 3 pieces of uplink positioning information and 1 piece of uplink data, and puncturing is performed in all 4 symbols.
  • all symbols carry uplink positioning information.
  • puncturing is performed in the manner of 3 parts of downlink synchronization information and 1 part of downlink data.
  • PUCH adopts multi-symbol design, and each symbol has a cyclic prefix CP.
  • the low-power positioning reference signal LPRS that is, uplink positioning information
  • LPRS is used for TOA estimation by the base station.
  • the uplink positioning information can also be used for channel estimation of uplink physical channels.
  • the remaining symbols can be used to send data carried by the PUCH or uplink positioning information, which is not specifically limited here.
  • the bandwidth occupied by PUCH is divided into two parts.
  • the full bandwidth is usually used.
  • the use of full bandwidth when sending LPRS is due to the accuracy requirements of UTDOA positioning.
  • Using more bandwidth to send more LPRS can perform UTDOA positioning more accurately, thereby improving the positioning accuracy of UTODA.
  • the specific bandwidth can be negotiated and configured according to the load of the NR network and the positioning system. For example, only part of the bandwidth is used to transmit LPRS, which is not specifically limited here.
  • a fixed bandwidth such as 10Mhz or 20Mhz
  • the full bandwidth may also be used, which is not specifically limited here.
  • the modulation mode of LPRS adopts the mode of BPSK.
  • the LPRS sequence may use the fixed ZC sequence of Low-PAPR defined by the 3GPP standard. It is understood that other types of sequences may also be used, which are not specifically limited here.
  • the uplink data may adopt the modulation mode adopted by the 3GPP standard such as QPSK, 16QAM or 64QAM, which is not specifically limited here.
  • the 3GPP standard such as QPSK, 16QAM or 64QAM, which is not specifically limited here.
  • the channel coding of the PUCH may adopt the coding methods commonly used in 3GPP such as convolutional codes, Polar codes, and LDPC codes, which are not specifically limited here.
  • the uplink physical channel divides an NR target symbol from the NR network according to a fixed period for transmitting uplink data.
  • the uplink physical channel is designed with two logical channels, the two logical channels are sent alternately, that is, the access channel is sent in the first fixed period, and the uplink shared channel is sent in the second fixed period.
  • the access channel is sent on even-numbered frames, and the uplink shared channel is sent on odd-numbered frames.
  • the uplink physical channel takes 10ms as a cycle, the access channel uses the NR target symbol in the first 10ms, and the uplink shared channel uses the NR target symbol in the second 10ms.
  • the target symbol cut out from the NR network is the 8th symbol in the 7th time slot, then in frame 0, the access channel uses the target symbol to transmit the initial access message, the The target symbol in frame 0 is the fourth time domain position, in the 9th symbol in the 7th time slot of frame 0 and the 7th, 8th, and 9th symbols in the 17th time slot in frame 0 , the uplink shared channel uses these target symbols to transmit positioning messages.
  • step 803 the base station sends the first downlink data to the terminal device.
  • the base station After the terminal device sends the initial access message to the base station, the base station sends the first downlink data to the terminal device at the first time domain position, where the first downlink data includes a resource allocation message, and the resource allocation message carries the second Time domain location information.
  • the base station further sends downlink synchronization information through the first time domain location, where the downlink synchronization information is used for time synchronization of the terminal device.
  • the first time domain location is a time domain resource segmented by the NR network, that is, an NR target symbol
  • the base station sends the first downlink data and downlink synchronization information in the NR target symbol.
  • the downlink synchronization information may be sent in the first subsymbol of the NR target symbol, and the first downlink data may be sent in the remaining subsymbols.
  • the resource allocation message is sent according to the requirements of the terminal device. For example, the base station will only carry the resource allocation message in the first downlink data when resources need to be allocated to the terminal device. If the terminal device does not need to allocate resources, the base station may only send the downlink synchronization information in the first time domain position without sending the resource allocation message.
  • step 804 the terminal device sends the second uplink data and the first uplink positioning information to the base station.
  • the terminal device After the terminal device receives the resource allocation message and the downlink synchronization information sent by the base station, the terminal device sends the second uplink data and the first uplink positioning information at the second time domain position according to the resource allocation message, and the first uplink positioning information is used by the base station. An estimate of the time of arrival TOA is made.
  • the terminal device can send the second uplink data and the first uplink positioning message in the second time domain location through the uplink shared channel USCH, and the information of the second time domain location is carried in the resources sent by the base station in the assignment message.
  • the first time domain location is a time domain resource segmented by the NR network, that is, an NR target symbol
  • the terminal device sends the second uplink data and the first uplink positioning message in the NR target symbol.
  • the first uplink positioning information and the second uplink data may be sent in any subsymbol of the multiple subsymbols in the NR target symbol, or the first uplink positioning information and the uplink data may only be sent in the first subsymbol , sending uplink data in other symbols, which is not specifically limited here.
  • the amount of uplink data sent by the terminal device will be smaller, and in the positioning scenario, the base station requires higher positioning accuracy. Therefore, the terminal device can use the maximum bandwidth when sending the first uplink positioning message to ensure that more first uplink positioning messages are sent.
  • the second uplink data is sent, it can be adjusted according to the actual data volume. If the data volume is small, the second uplink data is sent using less bandwidth, which can save bandwidth resources.
  • step 805 the terminal device starts a timer and enters a sleep mode.
  • the terminal device may start a timer, and after the timer is started, enter a sleep mode, and the power consumption of the sleep mode is lower than that of the terminal device in the normal mode, and the timing The duration of the timer is a preset threshold.
  • the terminal device may enter a sleep mode in order to maintain a low power consumption state.
  • the terminal device can receive downlink synchronization information and system messages at the designated time domain resource location allocated by the base station, so that the terminal device can perform time synchronization with the base station and receive system messages.
  • the sleep mode can be entered in order to reduce the power consumption of the terminal device.
  • step 806 when the timer expires, the terminal device enters the normal mode.
  • the terminal device When the timer expires, the terminal device exits the sleep mode and enters the normal mode.
  • the terminal device can receive downlink synchronization information and system messages at the designated time domain resource location allocated by the base station. For example, the terminal device may receive the second downlink data that carries the system message and is sent by the base station at the third time domain position.
  • step 807 the terminal device sends the second uplink positioning information to the base station.
  • the terminal device After the terminal device enters the normal mode, based on the agreement with the base station, the terminal device sends the second uplink positioning information to the base station at the second time domain position, and the uplink positioning information is used for the base station to estimate the time of arrival TOA.
  • the terminal device sends the second uplink positioning information to the base station based on the time domain resource information that has been allocated by the base station. For example, the second time domain exits the sleep mode, the time to enter the normal mode is in the first time slot in frame 0, and the second time domain position allocated by the base station to the terminal device is in the 17th time slot in frame 0. For the seventh symbol, the terminal device only needs to wait for the duration of 10 time slots and 7 NR target symbols before sending the uplink positioning information to the base station again.
  • At least one NR target symbol will be allocated for sending uplink positioning information, so the waiting time of the terminal equipment is shorter, which reduces the time of waiting for the terminal equipment to send uplink positioning information.
  • the terminal device may continue to enter the sleep mode to maintain a low power consumption running state.
  • the base station and the terminal device can realize data transmission and positioning between the terminal device and the base station through less information exchange, avoiding the complex process of standard UTDOA positioning, and can be based on the time allocated by the base station for a long time.
  • the domain resource periodically sends the uplink positioning message, and can sleep immediately after the sending is completed, so as to maintain the low power consumption state of the terminal device and save the power consumption of the terminal device.
  • the uplink data and positioning information are sent in a multi-symbol manner, which increases the data volume of the uplink data and the uplink positioning information.
  • Uplink data and positioning information are sent by frequency division puncturing, and are sent with multiple symbols, and more data can be sent per unit time. Moreover, the control of the transmission mode of uplink positioning information and uplink data is more flexible.
  • the low power consumption positioning method in the embodiment of the present application is compared with the prior art 3GPP standard UTDOA positioning process as shown in Table 1 below.
  • the processing time for the terminal to receive and send messages is also significantly shorter than the R16 standard UTDOA positioning process.
  • the channel sequence is simple and the periodic position is fixed, and information is received and transmitted in the allocated symbols, and the duration is less than 1 NR target symbol.
  • the PDCCH channel needs to be monitored first, and the duration of the PDCCH is 1-3 NR target symbols, and the duration of the PDSCH is usually in time slots.
  • the channel in the embodiment of the present application also does not need the HARQ response mechanism of the R16 standard L2, which reduces the number of signal transmission times of the terminal device.
  • FIG. 20 is a schematic structural diagram of the terminal device provided by the present application.
  • a terminal device including:
  • a receiving unit 2001 configured to receive first downlink data sent by a base station at a first time domain location, where the first downlink data includes a resource allocation message, and the resource allocation message carries information about the second time domain location;
  • a sending unit 2002 configured to send the first uplink positioning information and the first uplink data at the second time domain position, and the first uplink positioning information is used for the base station to estimate the time of arrival TOA;
  • the processing unit 2003 is configured to enter the sleep mode when the terminal device starts the timer, the power consumption of the sleep mode is lower than the power consumption of the terminal device in the normal mode, and the duration of the timer is a preset threshold;
  • the processing unit 2003 is further configured to enter the normal mode when the timer times out;
  • the sending unit 2002 is further configured to send the second uplink positioning information to the base station at the second time domain position, where the second uplink positioning information is used for the base station to estimate the time of arrival TOA.
  • each unit of the terminal device is similar to the steps performed by the terminal device in the foregoing embodiments shown in FIG. 5a to FIG. 5d , and details are not repeated here.
  • FIG. 20 is another schematic structural diagram of the terminal device provided by the present application.
  • a terminal device including:
  • a receiving unit 2001 configured to receive first downlink data sent by a base station at a first time domain location, where the first downlink data includes a resource allocation message, and the resource allocation message carries information about the second time domain location;
  • a sending unit 2002 configured to send the first uplink positioning information and the first uplink data at the second time domain position, and the first uplink positioning information is used for the base station to estimate the time of arrival TOA;
  • the processing unit 2003 is configured to enter the sleep mode when the terminal device starts the timer, the power consumption of the sleep mode is lower than the power consumption of the terminal device in the normal mode, and the duration of the timer is a preset threshold;
  • the processing unit 2003 is further configured to enter the normal mode when the timer times out;
  • the sending unit 2002 is further configured to send the second uplink positioning information to the base station at the second time domain position, where the second uplink positioning information is used for the base station to estimate the time of arrival TOA.
  • the receiving unit 2001 is also used to receive the second downlink data sent by the base station at the third time domain position, and the second downlink data includes a system message, and the system message carries the information of the fourth time domain position;
  • the sending unit 2002 is further configured to send the second uplink data and the first uplink positioning information to the base station at the fourth time domain position, where the second uplink data includes an initial access message, and the initial access message is used for the terminal equipment to perform initial access.
  • the receiving unit 2001 is further configured to receive downlink synchronization information sent by the base station at the first time domain position or the third time domain position, where the downlink synchronization information is used for the terminal device to perform time synchronization.
  • the receiving unit 2001 is specifically configured to receive downlink data and downlink synchronization information through a downlink physical channel, where the downlink data includes the first downlink data and the second downlink data.
  • the downlink physical channel includes a broadcast channel and or a downlink common control channel
  • the broadcast channel is used for the receiving unit 2001 to receive the second downlink data and the downlink synchronization information
  • the downlink common control channel is used for the receiving unit to receive the first downlink data and downlink data. Synchronization information.
  • the subcarrier spacing of the downlink physical channel is N times the subcarrier spacing of the new air interface NR, where N is a positive integer greater than or equal to 1.
  • N is equal to 1
  • the duration of the first time domain position is equal to the duration of the target symbol
  • the duration of the third time domain position is equal to the duration of the target symbol
  • the target symbol is an NR symbol.
  • N is a positive integer greater than or equal to 2
  • the first time domain position includes N first subsymbols
  • the receiving unit 2001 receives the downlink synchronization information in the M first subsymbols
  • the receiving unit receives the downlink synchronization information in the (N-M)th
  • the third time domain position includes N second subsymbols
  • the receiving unit receives the downlink synchronization information in the M second symbol symbols
  • the receiving unit receives the second subsymbol in the (N-M) second subsymbols.
  • the sum of the durations of the N first subsymbols is equal to the duration of the target symbol
  • the sum of the durations of the N second subsymbols is equal to the duration of the target symbol
  • the target symbol is an NR symbol
  • M is a positive value greater than or equal to 1.
  • Integer, (N-M) is a positive integer greater than or equal to 1.
  • the receiving unit 2001 is specifically configured to receive downlink synchronization information and downlink data sent by the base station in a frequency division multiplexing manner.
  • the sending unit 2002 sends uplink data and/or uplink positioning information through an uplink physical channel, the uplink positioning information includes first uplink positioning information and second uplink positioning information, and the uplink data includes first uplink data and second uplink data.
  • the uplink physical channel includes an access channel and or an uplink shared channel
  • the access channel is used for the sending unit 2002 to send the second uplink data and the uplink positioning information
  • the uplink shared channel is used for the sending unit to send the first uplink data and uplink positioning information. information.
  • the subcarrier spacing of the uplink physical channel is N times the subcarrier spacing of the new air interface NR, where N is a positive integer greater than or equal to 1.
  • N is equal to 1
  • the sending unit 2002 sends uplink positioning information and uplink data by means of frequency division multiplexing
  • the duration of the second time domain position is equal to the duration of the target symbol
  • the duration of the fourth time domain position is equal to the duration of the target symbol.
  • duration the target symbol is the symbol of NR.
  • N is a positive integer greater than or equal to 2
  • the second time domain position includes N third subsymbols
  • the sending unit 2002 sends the uplink positioning information at the M third subsymbols
  • the sending unit sends the uplink positioning information at the (N-M)th Three sub-symbols send the first uplink data
  • the fourth time domain position includes N fourth sub-symbols
  • the sending unit sends the uplink positioning information at the M fourth-symbols
  • the sending unit sends the second
  • the sum of the durations of the N third subsymbols is equal to the duration of the target symbol
  • the sum of the durations of the N fourth subsymbols is equal to the duration of the target symbol.
  • the target symbol is an NR symbol
  • M is a positive value greater than or equal to 1.
  • Integer (N-M) is a positive integer greater than or equal to 1.
  • the sending unit 2002 also sends the uplink positioning information and the uplink data by means of frequency division multiplexing.
  • each unit of the terminal device is similar to the steps performed by the terminal device in the foregoing embodiments shown in FIG. 5a to FIG. 5d , and details are not repeated here.
  • FIG. 21 is a schematic structural diagram of a base station provided by the present application.
  • a base station comprising:
  • a sending unit 2102 configured to send the first downlink data to the terminal device at the first time domain position, where the first downlink data includes a resource allocation message, and the resource allocation message carries the information of the second time domain position;
  • the receiving unit 2101 is configured to receive the first uplink positioning information and the first uplink data sent by the terminal device at the second time domain position, where the first uplink positioning information is used for the base station to estimate the time of arrival TOA.
  • each unit of the base station is similar to the steps performed by the base station in the foregoing embodiments shown in FIG. 5a to FIG. 5d , and details are not repeated here.
  • FIG. 21 is another schematic structural diagram of the base station provided by the present application.
  • a base station comprising:
  • a sending unit 2102 configured to send the first downlink data to the terminal device at the first time domain position, where the first downlink data includes a resource allocation message, and the resource allocation message carries the information of the second time domain position;
  • the receiving unit 2101 is configured to receive the first uplink positioning information and the first uplink data sent by the terminal device at the second time domain position, where the first uplink positioning information is used for the base station to estimate the time of arrival TOA.
  • the sending unit 2102 sends second downlink data to the terminal device at the third time domain position, where the second downlink data includes a system message, and the system message carries information about the fourth time domain position;
  • the receiving unit 2101 is further configured to receive the second uplink data and the first uplink positioning information sent by the terminal device at the fourth time domain position, where the second uplink data includes an initial access message, and the initial access message is used for the terminal device to perform initial access .
  • the sending unit 2102 is further configured to send downlink synchronization information to the terminal device at the first time domain position or the third time domain position, where the downlink synchronization information is used for the terminal device to perform time synchronization.
  • the sending unit 2102 is further configured to send downlink data and downlink synchronization information through a downlink physical channel, where the downlink data includes the first downlink data and the second downlink data.
  • the downlink physical channel includes a broadcast channel and or a downlink common control channel
  • the broadcast channel is used for the sending unit 2102 to send the second downlink data and the downlink synchronization information
  • the downlink common control channel is used for the sending unit to send the first downlink data and downlink. Synchronization information.
  • the subcarrier spacing of the downlink physical channel is N times the subcarrier spacing of the new air interface NR, where N is a positive integer greater than or equal to 1.
  • N is equal to 1
  • the sending unit 2102 sends downlink synchronization information and downlink data by means of frequency division multiplexing
  • the duration of the first time domain position is equal to the duration of the target symbol
  • the duration of the third time domain position is equal to the duration of the target symbol.
  • duration the target symbol is the symbol of NR.
  • N is a positive integer greater than or equal to 2
  • the first time domain position includes N first subsymbols
  • the sending unit 2102 sends downlink synchronization information in the M first subsymbols
  • the sending unit sends the downlink synchronization information in the (N-M)th
  • the third time domain position includes N second subsymbols
  • the sending unit sends the downlink synchronization information in the M second symbol symbols
  • the sending unit sends the second subsymbol in (N-M) second subsymbols.
  • the sum of the durations of the N first subsymbols is equal to the duration of the target symbol
  • the sum of the durations of the N second subsymbols is equal to the duration of the target symbol
  • the target symbol is an NR symbol
  • M is a positive value greater than or equal to 1.
  • Integer, (N-M) is a positive integer greater than or equal to 1.
  • the sending unit 2102 also sends downlink synchronization information and downlink data by means of frequency division multiplexing.
  • the receiving unit 2101 receives uplink data and/or uplink positioning information through an uplink physical channel, the uplink positioning information includes the first uplink positioning information and the second uplink positioning information, and the uplink data includes the first uplink data and the second uplink data.
  • the uplink physical channel includes an access channel and or an uplink shared channel
  • the access channel is used for the receiving unit 2101 to receive the second uplink data and uplink positioning information
  • the uplink shared channel is used for the receiving unit 2101 to receive the first uplink data and uplink. Locate messages.
  • the subcarrier spacing of the uplink physical channel is N times the subcarrier spacing of the new air interface NR, where N is a positive integer greater than or equal to 1.
  • N is equal to 1
  • the duration of the second time domain position is equal to the duration of the target symbol
  • the duration of the fourth time domain position is equal to the duration of the target symbol
  • the target symbol is an NR symbol.
  • N is a positive integer greater than or equal to 2
  • the second time domain position includes N third subsymbols
  • the receiving unit 2101 receives uplink positioning information in the M third subsymbols
  • the receiving unit 2101 receives the uplink positioning information in (N-M)
  • the third sub-symbol receives the first uplink data
  • the fourth time domain position includes N fourth sub-symbols
  • the receiving unit 2101 receives the uplink positioning information at the M fourth-symbols
  • the receiving unit 2101 receives the (N-M) fourth sub-symbols
  • the sum of the durations of the N third subsymbols is equal to the duration of the target symbol
  • the sum of the durations of the N fourth subsymbols is equal to the duration of the target symbol
  • the target symbol is the NR symbol
  • M is greater than or equal to
  • (N-M) is a positive integer greater than or equal to 1.
  • the receiving unit 2101 receives uplink positioning information and uplink data sent by the terminal device in a frequency division multiplexing manner.
  • FIG. 22 is a schematic structural diagram of another embodiment of a terminal device provided by the present application.
  • the terminal equipment includes a processor 2201, a memory 2202, a bus 2205, an interface 2204 and other equipment.
  • the processor 2201 is connected to the memory 2202 and the interface 2204.
  • the bus 2205 is respectively connected to the processor 2201, the memory 2202 and the interface 2204.
  • the processor 2201 is a single-core or multi-core central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement embodiments of the present invention.
  • the memory 2202 may be a random access memory (Random Access Memory, RAM), or a non-volatile memory (non-volatile memory), such as at least one hard disk memory.
  • Memory 2202 is used to store computer-executable instructions.
  • the program 2203 may be included in the computer-executed instructions.
  • the processor 2201 can perform the operations performed by the terminal device in the foregoing embodiments shown in FIGS. 5a-5d, and details are not repeated here.
  • FIG. 23 is a schematic structural diagram of another embodiment of a base station provided by the present application.
  • the base station includes a processor 2301, a memory 2302, a bus 2305, an interface 2304 and other equipment.
  • the processor 2301 is connected to the memory 2302 and the interface 2304.
  • the bus 2305 is respectively connected to the processor 2301, the memory 2302 and the interface 2304.
  • the interface 2304 is used for receiving or sending Data
  • processor 2301 is a single-core or multi-core central processing unit, or a specific integrated circuit, or one or more integrated circuits configured to implement embodiments of the invention.
  • the memory 2302 may be a random access memory (Random Access Memory, RAM) or a non-volatile memory (non-volatile memory), such as at least one hard disk memory.
  • Memory 2302 is used to store computer-implemented instructions. Specifically, the program 2303 may be included in the computer-executed instructions.
  • the processor 2301 may perform the operations performed by the base station in the foregoing embodiments shown in FIGS. 5a-5d, and details are not repeated here.
  • the processors mentioned in the terminal device and the base station in the above embodiments of the present application, or the processors provided in the above embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors.
  • processors digital signal processor (DSP), application-specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gates Or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the number of processors in the terminal device and the base station in the above embodiments of the present application may be one or more, and may be adjusted according to actual application scenarios. This is only an exemplary description, not a limitation .
  • the number of memories in this embodiment of the present application may be one or multiple, and may be adjusted according to actual application scenarios, which is merely illustrative and not limiting.
  • the terminal device and the base station include a processor (or a processing unit) and a memory
  • the processor in this application may be integrated with the memory, or the processor and the memory may be connected through an interface, or Adjustment according to actual application scenarios is not limited.
  • the present application provides a chip system
  • the chip system includes a processor for supporting a terminal device and a base station to implement the functions of the controller involved in the above method, such as processing data and/or information involved in the above method.
  • the chip system further includes a memory for storing necessary program instructions and data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the chip system when the chip system is a chip in a user equipment or an access network, the chip includes: a processing unit and a communication unit.
  • the processing unit may be a processor, for example, and the communication unit may be an input/communication unit, for example. Output interface, pin or circuit, etc.
  • the processing unit can execute the computer-executed instructions stored in the storage unit, so that the chips in the terminal device and the base station etc. execute the steps performed by the first terminal device and the base station in any one of the embodiments in FIG. 3 or FIG. 4 .
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit can also be a storage unit located outside the chip in a terminal device and a base station, such as a read-only memory (read-only memory, ROM) Or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • Embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, implements the method process performed with the controller of the terminal device and the base station in any of the above method embodiments.
  • the computer may be the above-mentioned terminal device and base station.
  • controller or processor mentioned in the above embodiments of the present application may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processor, DSP) ), application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. various combinations.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the number of processors or controllers in the terminal device and the base station or chip system in the above embodiments of the present application may be one or more, and may be adjusted according to actual application scenarios, and here is only the number of processors or controllers. Exemplary, not limiting.
  • the number of memories in this embodiment of the present application may be one or multiple, and may be adjusted according to actual application scenarios, which is merely illustrative and not limiting.
  • the memory or readable storage medium, etc. mentioned in the terminal device and the base station in the above embodiments, etc. may be volatile memory or non-volatile memory, or may include volatile memory and both non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous DRAM
  • SDRAM double data rate synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM enhanced synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SCRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the steps performed by the terminal device and the base station or the processor 2102 to implement the above embodiments may be completed by hardware or programs instructing related hardware.
  • the program may be stored in a computer-readable storage medium, and the above-mentioned storage medium may be a read-only memory, a random access memory, or the like.
  • the above-mentioned processing unit or processor may be a central processing unit, a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices , transistor logic devices, hardware components, or any combination thereof.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • Useful media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media, among others.
  • the words “if” or “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting.”
  • the phrases “if determined” or “if detected (the stated condition or event)” can be interpreted as “when determined” or “in response to determining” or “when detected (the stated condition or event),” depending on the context )” or “in response to detection (a stated condition or event)”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种数据处理方法,用于进行TOA定位。本申请实施例方法包括:在第一时域位置接收基站发送的第一下行数据,第一下行数据包括资源分配消息,资源分配消息携带第二时域位置的信息,终端设备在第二时域位置发送第一上行定位信息和第一上行数据,第一上行定位信息用于基站进行到达时间TOA估计,当终端设备启动定时器时,终端设备进入休眠模式,休眠模式的功耗低于终端设备处于正常模式的功耗,当定时器超时,终端设备进入正常模式,终端设备在第二时域位置向基站发送第二上行定位信息,第二上行定位信息用于基站进行到达时间TOA估计。本申请实施例中,终端设备通过在固定的第二时域位置发送第二上行定位信息,节省了终端设备的功耗。

Description

一种数据处理方法及其设备
本申请要求于2020年11月30日提交中国专利局、申请号为202011377376.6、申请名称为“一种数据处理方法及其设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,具体涉及一种数据处理方法及其设备。
背景技术
5G市场的定位需求中,往往有很多对于物的定位(资产管理设备、设备监控等)。对于物的定位是需要极地功耗要求的,通常需要终端设备满足长期使用的情况下不充电,不更换电池。
5G标准在R16版本中,定义了高精度定位的标准,但是并不满足这样低功耗的要求。以UTDOA定位为例,定位过程需要服务小区分配SRS资源,终端在RRC连接态发送SRS信号,周边多个基站接收SRS信号进行TOA解算,并上报服务器进行TDOA解算。5G UTDOA定位在定位过程中,终端设备开机后主要分成3个阶段,第一阶段是捕获系统获取系统消息,第二阶段是随机接入和建立RRC连接,第三阶段才是获得SRS配置并周期发送SRS信号。
整个定位期间,需要保持RRC连接,如果RRC连接释放了,需要重新发起随机接入,再次建立RRC连接后,重新发送SRS配置数据,才能发送SRS信号进行定位。因此,为完成周期定位,终端设备将长期处于RRC连接态,终端设备的功耗较高,影响了终端设备基于低功耗的布局。
发明内容
本申请实施例提供了一种数据处理方法,终端设备通过在固定的第二时域位置发送第二上行定位信息,并不需要与基站保持RRC连接,节省了终端设备的功耗。
本申请第一方面提供了一种数据处理方法。
终端设备在第一时域位置接收基站发送的第一下行数据,第一下行数据包括资源分配消息,资源分配消息携带第二时域位置的信息,终端设备在第二时域位置发送第一上行定位信息和第一上行数据,第一上行定位信息用于基站进行到达时间TOA估计,当终端设备启动定时器时,终端设备进入休眠模式,休眠模式的功耗低于终端设备处于正常模式的功耗,定时器的的时长为预设阈值。当定时器超时,终端设备进入正常模式,终端设备在第二时域位置向基站发送第二上行定位信息,第二上行定位信息用于基站进行到达时间TOA估计。
本申请实施例中,终端设备通过在发送第一上行定位信息之后进入休眠模式,在需要发送第二上行定位信息时进入正常模式,并在相同的第二时域位置发送第二上行定位信息,终端设备通过在固定的第二时域位置发送第二上行定位信息,并不需要与基站保持RRC连 接,节省了终端设备的功耗。
基于第一方面的数据处理方法,在一种可能的实现方式中,终端设备在第三时域位置接收基站发送的第二下行数据,第二下行数据包括系统消息,系统消息携带第四时域位置的信息,终端设备在第四时域位置向基站发送第二上行数据和第一上行定位信息,第二上行数据包括初始接入消息,初始接入消息用于终端设备进行初始接入。
本申请实施例中,通过第四时域位置向基站发送初始接入消息,节省了终端设备和基站的RRC连接时间。
本申请实施例中,基于第一方面的数据处理方法,在一种可能的实现方式中,终端设备在第一时域位置或第三时域位置接收基站发送的下行同步信息,下行同步信息用于终端设备进行时间同步。
本申请实施例中,通过第一时域位置或者第三时域位置发送下行同步信息,提升了方案的可实现性。
基于第一方面的数据处理方法,在一种可能的实现方式中,终端设备通过下行物理信道接收下行数据和下行同步信息,下行数据包括第一下行数据和第二下行数据。
本申请实施例中,通过下行物理信道接收下行数据和下行同步信息,提升了方案的可实现性。
基于第一方面的数据处理方法,在一种可能的实现方式中,下行物理信道包括广播信道和或下行公共控制信道,广播信道用于终端设备接收第二下行数据和下行同步信息,下行公共控制信道用于终端设备接收第一下行数据和下行同步信息。
本申请实施例中,下行物理信道包括广播信道和或下行公共控制信道,提升了方案的可实现性。
基于第一方面的数据处理方法,在一种可能的实现方式中,下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或者等于1的正整数。
本申请实施例中,下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,可以提升空口资源利用率。
基于第一方面的数据处理方法,在一种可能的实现方式中,N等于1,第一时域位置的时长等于目标符号的时长,第三时域位置的时长等于目标符号的时长,目标符号为NR的符号。
本申请实施例中,N等于1时,第一时域位置的时长等于目标符号的时长,提升了方案的可实现性。
基于第一方面的数据处理方法,在一种可能的实现方式中,N为大于或者等于2的正整数,第一时域位置包括N个第一子符号,终端设备在M个第一子符号接收下行同步信息,终端设备在(N-M)个第一子符号接收第二下行数据,第三时域位置包括N个第二子符号,终端设备在M个第二字符号接收下行同步信息,终端设备在(N-M)个第二子符号接收第二下行数据,N个第一子符号的时长之和等于目标符号的时长,N个第二子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
本申请实施例中,N为大于或者等于2的正整数时,子符号的时长小于NR符号的时长,提升了符号的利用率。
基于第一方面的数据处理方法,在一种可能的实现方式中,终端设备接收基站通过频分复用的方式发送的下行同步信息和下行数据。
本申请实施例中,通过频分复用的方式发送的下行同步信息和下行数据,提升了频谱利用率。
基于第一方面的数据处理方法,在一种可能的实现方式中,终端设备通过上行物理信道发送上行数据和或上行定位信息,上行定位信息包括第一上行定位信息和第二上行定位信息,上行数据包括第一上行数据和第二上行数据。
本申请实施例中,终端设备通过上行物理信道发送上行数据和或上行定位信息,提升了方案的可实现性。
基于第一方面的数据处理方法,在一种可能的实现方式中,上行物理信道包括接入信道和或上行共享信道,接入信道用于终端设备发送第二上行数据和上行定位信息,上行共享信道用于终端设备发送第一上行数据和上行定位消息。
本申请实施例中,上行物理信道包括接入信道和或上行共享信道,提升了方案的可实现性。
基于第一方面的数据处理方法,在一种可能的实现方式中,上行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或者等于1的正整数。
本申请实施例中,下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,可以提升空口资源利用率。
基于第一方面的数据处理方法,在一种可能的实现方式中,N等于1,终端设备通过频分复用的方式发送上行定位信息和上行数据,第二时域位置的时长等于目标符号的时长,第四时域位置的时长等于目标符号的时长,目标符号为NR的符号。
本申请实施例中,N等于1时,终端设备通过频分复用的方式发送上行定位信息和上行数据,可以提升空口资源利用率。
基于第一方面的数据处理方法,在一种可能的实现方式中,N为大于或者等于2的正整数,第二时域位置包括N个第三子符号,终端设备在M个第三子符号发送上行定位信息,终端设备在(N-M)个第三子符号发送第一上行数据,第四时域位置包括N个第四子符号,终端设备在M个第四字符号发送上行定位信息,终端设备在(N-M)个第四子符号发送第二上行数据,N个第三子符号的时长之和等于目标符号的时长,N个第四子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
本申请实施例中,N为大于或者等于2的正整数时,子符号的时长小于NR符号的时长,提升了符号的利用率。
基于第一方面的数据处理方法,在一种可能的实现方式中,终端设备还通过频分复用的方式发送上行定位信息和上行数据。
本申请实施例中,终端设备通过频分复用的方式发送上行定位信息和上行数据,可以 提升空口资源利用率。
本申请实施例第二方面提供了一种数据处理方法。
基站在第一时域位置向终端设备发送第一下行数据,第一下行数据包括资源分配消息,资源分配消息携带第二时域位置的信息,基站在第二时域位置接收终端设备发送的第一上行定位信息和第一上行数据,第一上行定位信息用于基站进行到达时间TOA估计。
本申请实施例中,基站通过在固定的第二时域位置接收第二上行定位信息,并不需要与终端设备保持RRC连接,节省了终端设备的功耗。
基于第二方面的数据处理方法,在一种可能的实现方式中,基站在第三时域位置向终端设备发送第二下行数据,第二下行数据包括系统消息,系统消息携带第四时域位置的信息,基站在第四时域位置接收终端设备发送的第二上行数据和第一上行定位信息,第二上行数据包括初始接入消息,初始接入消息用于终端设备进行初始接入。
本申请实施例中,本申请实施例中,通过第四时域位置向基站发送初始接入消息,节省了终端设备和基站的RRC连接时间。
基于第二方面的数据处理方法,在一种可能的实现方式中基站在第一时域位置或第三时域位置向终端设备发送下行同步信息,下行同步信息用于终端设备进行时间同步。
本申请实施例中,通过第一时域位置或者第三时域位置发送下行同步信息,提升了方案的可实现性。
基于第二方面的数据处理方法,在一种可能的实现方式中,基站通过下行物理信道发送下行数据和下行同步信息,下行数据包括第一下行数据和第二下行数据。
本申请实施例中,通过下行物理信道接收下行数据和下行同步信息,提升了方案的可实现性。
基于第二方面的数据处理方法,在一种可能的实现方式中,下行物理信道包括广播信道和或下行公共控制信道,广播信道用于基站发送第二下行数据和下行同步信息,下行公共控制信道用于基站发送第一下行数据和下行同步信息。
本申请实施例中,下行物理信道包括广播信道和或下行公共控制信道,提升了方案的可实现性。
基于第二方面的数据处理方法,在一种可能的实现方式中,下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或者等于1的正整数。
本申请实施例中,下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,可以提升空口资源利用率。
基于第二方面的数据处理方法,在一种可能的实现方式中,N等于1,基站通过频分复用的方式发送下行同步信息和下行数据,第一时域位置的时长等于目标符号的时长,第三时域位置的时长等于目标符号的时长,目标符号为NR的符号。
本申请实施例中,N等于1时,第一时域位置的时长等于目标符号的时长,提升了方案的可实现性。
基于第二方面的数据处理方法,在一种可能的实现方式中,N为大于或者等于2的正整数,第一时域位置包括N个第一子符号,基站在M个第一子符号发送下行同步信息,基 站在(N-M)个第一子符号发送第二下行数据,第三时域位置包括N个第二子符号,基站在M个第二字符号发送下行同步信息,基站在(N-M)个第二子符号发送第二下行数据,N个第一子符号的时长之和等于目标符号的时长,N个第二子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
本申请实施例中,N为大于或者等于2的正整数时,子符号的时长小于NR符号的时长,提升了符号的利用率。
基于第二方面的数据处理方法,在一种可能的实现方式中,基站还通过频分复用的方式发送下行同步信息和下行数据。
本申请实施例中,通过频分复用的方式发送的下行同步信息和下行数据,提升了频谱利用率。
基于第二方面的数据处理方法,在一种可能的实现方式中,基站通过上行物理信道接收上行数据和或上行定位信息,上行定位信息包括第一上行定位信息和第二上行定位信息,上行数据包括第一上行数据和第二上行数据。
本申请实施例中,终端设备通过上行物理信道发送上行数据和或上行定位信息,提升了方案的可实现性。
基于第二方面的数据处理方法,在一种可能的实现方式中,上行物理信道包括接入信道和或上行共享信道,接入信道用于基站接收第二上行数据和上行定位信息,上行共享信道用于基站接收第一上行数据和上行定位消息。
本申请实施例中,上行物理信道包括接入信道和或上行共享信道,提升了方案的可实现性。
基于第二方面的数据处理方法,在一种可能的实现方式中,上行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或者等于1的正整数。
本申请实施例中,下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,可以提升空口资源利用率。
基于第二方面的数据处理方法,在一种可能的实现方式中,N等于1,第二时域位置的时长等于目标符号的时长,第四时域位置的时长等于目标符号的时长,目标符号为NR的符号。
本申请实施例中,N等于1时,终端设备通过频分复用的方式发送上行定位信息和上行数据,可以提升空口资源利用率。
基于第二方面的数据处理方法,在一种可能的实现方式中,N为大于或者等于2的正整数,第二时域位置包括N个第三子符号,基站在M个第三子符号接收上行定位信息,基站在(N-M)个第三子符号接收第一上行数据,第四时域位置包括N个第四子符号,基站在M个第四字符号接收上行定位信息,基站在(N-M)个第四子符号接收第二上行数据,N个第三子符号的时长之和等于目标符号的时长,N个第四子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
本申请实施例中,N为大于或者等于2的正整数时,子符号的时长小于NR符号的时长,提升了符号的利用率。
基于第二方面的数据处理方法,在一种可能的实现方式中,基站接收终端设备通过频分复用的方式发送的上行定位信息和上行数据。
本申请实施例中,
本申请实施例第三方面提供了一种终端设备。
一种终端设备,包括:
发送单元,用于在第一时域位置接收基站发送的第一下行数据,第一下行数据包括资源分配消息,资源分配消息携带第二时域位置的信息;
发送单元还用于在第二时域位置发送第一上行定位信息和第一上行数据,第一上行定位信息用于基站进行到达时间TOA估计;
处理单元,用于当终端设备启动定时器时,进入休眠模式,休眠模式的功耗低于终端设备处于正常模式的功耗,定时器的的时长为预设阈值;
处理单元还用于当定时器超时,进入正常模式;
发送单元还用于在第二时域位置向基站发送第二上行定位信息,第二上行定位信息用于基站进行到达时间TOA估计。
基于第三方面的终端设备,在一种可能的实现方式中,接收单元还用于在第三时域位置接收基站发送的第二下行数据,第二下行数据包括系统消息,系统消息携带第四时域位置的信息;
发送单元还用于在第四时域位置向基站发送第二上行数据和第一上行定位信息,第二上行数据包括初始接入消息,初始接入消息用于终端设备进行初始接入。
基于第三方面的终端设备,在一种可能的实现方式中,接收单元还用于在第一时域位置或第三时域位置接收基站发送的下行同步信息,下行同步信息用于终端设备进行时间同步。
基于第三方面的终端设备,在一种可能的实现方式中,接收单元具体用于通过下行物理信道接收下行数据和下行同步信息,下行数据包括第一下行数据和第二下行数据。
基于第三方面的终端设备,在一种可能的实现方式中,下行物理信道包括广播信道和或下行公共控制信道,广播信道用于接收单元接收第二下行数据和下行同步信息,下行公共控制信道用于接收单元接收第一下行数据和下行同步信息。
基于第三方面的终端设备,在一种可能的实现方式中,下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或者等于1的正整数。
基于第三方面的终端设备,在一种可能的实现方式中,N等于1,第一时域位置的时长等于目标符号的时长,第三时域位置的时长等于目标符号的时长,目标符号为NR的符号。
基于第三方面的终端设备,在一种可能的实现方式中,N为大于或者等于2的正整数,第一时域位置包括N个第一子符号,接收单元在M个第一子符号接收下行同步信息,接收单元在(N-M)个第一子符号接收第二下行数据,第三时域位置包括N个第二子符号,接收单元在M个第二字符号接收下行同步信息,接收单元在(N-M)个第二子符号接收第二下行 数据,N个第一子符号的时长之和等于目标符号的时长,N个第二子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
基于第三方面的终端设备,在一种可能的实现方式中,接收单元具体用于接收基站通过频分复用的方式发送的下行同步信息和下行数据。
基于第三方面的终端设备,在一种可能的实现方式中,其特征在于,发送单元通过上行物理信道发送上行数据和或上行定位信息,上行定位信息包括第一上行定位信息和第二上行定位信息,上行数据包括第一上行数据和第二上行数据。
基于第三方面的终端设备,在一种可能的实现方式中,上行物理信道包括接入信道和或上行共享信道,接入信道用于发送单元发送第二上行数据和上行定位信息,上行共享信道用于发送单元发送第一上行数据和上行定位消息。
基于第三方面的终端设备,在一种可能的实现方式中,上行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或者等于1的正整数。
基于第三方面的终端设备,在一种可能的实现方式中,N等于1,发送单元通过频分复用的方式发送上行定位信息和上行数据,第二时域位置的时长等于目标符号的时长,第四时域位置的时长等于目标符号的时长,目标符号为NR的符号。
基于第三方面的终端设备,在一种可能的实现方式中,N为大于或者等于2的正整数,第二时域位置包括N个第三子符号,发送单元在M个第三子符号发送上行定位信息,发送单元在(N-M)个第三子符号发送第一上行数据,第四时域位置包括N个第四子符号,发送单元在M个第四字符号发送上行定位信息,发送单元在(N-M)个第四子符号发送第二上行数据,N个第三子符号的时长之和等于目标符号的时长,N个第四子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
基于第三方面的终端设备,在一种可能的实现方式中,发送单元还通过频分复用的方式发送上行定位信息和上行数据。
本申请第三方面提供的终端设备中各单元所执行的方法与前述第一方面实施方式中终端设备所执行的方法类似,具体此处不再赘述。
本申请第四方面提供了一种基站。
一种基站,包括:
发送单元,用于在第一时域位置向终端设备发送第一下行数据,第一下行数据包括资源分配消息,资源分配消息携带第二时域位置的信息;
接收单元,用于在第二时域位置接收终端设备发送的第一上行定位信息和第一上行数据,第一上行定位信息用于基站进行到达时间TOA估计。
基于第四方面的基站,在一种可能的实现方式中,发送单元在第三时域位置向终端设备发送第二下行数据,第二下行数据包括系统消息,系统消息携带第四时域位置的信息;
接收单元还用于在第四时域位置接收终端设备发送的第二上行数据和第一上行定位信息,第二上行数据包括初始接入消息,初始接入消息用于终端设备进行初始接入。
基于第四方面的基站,在一种可能的实现方式中,发送单元还用于在第一时域位置或第三时域位置向终端设备发送下行同步信息,下行同步信息用于终端设备进行时间同步。
基于第四方面的基站,在一种可能的实现方式中,发送单元还用于通过下行物理信道发送下行数据和下行同步信息,下行数据包括第一下行数据和第二下行数据。
基于第四方面的基站,在一种可能的实现方式中,下行物理信道包括广播信道和或下行公共控制信道,广播信道用于发送单元发送第二下行数据和下行同步信息,下行公共控制信道用于发送单元发送第一下行数据和下行同步信息。
基于第四方面的基站,在一种可能的实现方式中,下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或者等于1的正整数。
基于第四方面的基站,在一种可能的实现方式中,N等于1,发送单元通过频分复用的方式发送下行同步信息和下行数据,第一时域位置的时长等于目标符号的时长,第三时域位置的时长等于目标符号的时长,目标符号为NR的符号。
基于第四方面的基站,在一种可能的实现方式中,N为大于或者等于2的正整数,第一时域位置包括N个第一子符号,发送单元在M个第一子符号发送下行同步信息,发送单元在(N-M)个第一子符号发送第二下行数据,第三时域位置包括N个第二子符号,发送单元在M个第二字符号发送下行同步信息,发送单元在(N-M)个第二子符号发送第二下行数据,N个第一子符号的时长之和等于目标符号的时长,N个第二子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
基于第四方面的基站,在一种可能的实现方式中,发送单元还通过频分复用的方式发送下行同步信息和下行数据。
基于第四方面的基站,在一种可能的实现方式中,接收单元通过上行物理信道接收上行数据和或上行定位信息,上行定位信息包括第一上行定位信息和第二上行定位信息,上行数据包括第一上行数据和第二上行数据。
基于第四方面的基站,在一种可能的实现方式中,上行物理信道包括接入信道和或上行共享信道,接入信道用于接收单元接收第二上行数据和上行定位信息,上行共享信道用于接收单元接收第一上行数据和上行定位消息。
基于第四方面的基站,在一种可能的实现方式中,上行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或者等于1的正整数。
基于第四方面的基站,在一种可能的实现方式中,N等于1,第二时域位置的时长等于目标符号的时长,第四时域位置的时长等于目标符号的时长,目标符号为NR的符号。
基于第四方面的基站,在一种可能的实现方式中,N为大于或者等于2的正整数,第二时域位置包括N个第三子符号,接收单元在M个第三子符号接收上行定位信息,接收单元在(N-M)个第三子符号接收第一上行数据,第四时域位置包括N个第四子符号,接收单元在M个第四字符号接收上行定位信息,接收单元在(N-M)个第四子符号接收第二上行数据,N个第三子符号的时长之和等于目标符号的时长,N个第四子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等 于1的正整数。
基于第四方面的基站,在一种可能的实现方式中,接收单元接收终端设备通过频分复用的方式发送的上行定位信息和上行数据。
本申请第四方面提供的基站中各单元所执行的方法与前述第二方面实施方式中基站所执行的方法类似,具体此处不再赘述。
本申请第五方面提供了一种计算机存储介质,计算机存储介质中存储有指令,指令在计算机上执行时,使得计算机执行如本申请第一方面或第二方面实施方式的方法。
本申请第六方面提供了一种计算机程序产品,计算机程序产品在计算机上执行时,使得计算机执行如本申请第一方面或第二方面实施方式的方法。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,终端设备通过在发送第一上行定位信息之后进入休眠模式,在需要发送第二上行定位信息时进入正常模式,并在相同的第二时域位置发送第二上行定位信息,终端设备通过在固定的第二时域位置发送第二上行定位信息,并不需要与基站保持RRC连接,节省了终端设备的功耗。
附图说明
图1为本申请实施例提供的一个现有技术定位流程图;
图2为本申请实施例提供的一个低功耗定位系统架构图;
图3为本申请实施例提供的一个资源分配示意图;
图4为本申请实施例提供的另一资源分配示意图;
图5a为本申请实施例提供的一个数据处理方法流程示意图;
图5b为本申请实施例提供的另一数据处理方法流程示意图;
图5c为本申请实施例提供的另一数据处理方法流程示意图;
图5d为本申请实施例提供的另一数据处理方法流程示意图;
图6为本申请实施例提供的另一资源分配示意图;
图7为本申请实施例提供的另一资源分配示意图;
图8为本申请实施例提供的另一资源分配示意图;
图9为本申请实施例提供的另一资源分配示意图;
图10为本申请实施例提供的另一资源分配示意图;
图11为本申请实施例提供的另一资源分配示意图;
图12为本申请实施例提供的另一资源分配示意图;
图13为本申请实施例提供的另一资源分配示意图;
图14为本申请实施例提供的另一资源分配示意图;
图15为本申请实施例提供的另一资源分配示意图;
图16为本申请实施例提供的另一资源分配示意图;
图17为本申请实施例提供的另一资源分配示意图;
图18为本申请实施例提供的另一资源分配示意图;
图19为本申请实施例提供的另一资源分配示意图;
图20为本申请实施例提供的终端设备一个结构示意图;
图21为本申请实施例提供的基站一个结构示意图;
图22为本申请实施例提供的终端设备另一结构示意图;
图23为本申请实施例提供的基站另一结构示意图。
具体实施方式
本申请实施例提供了一种数据处理方法,终端设备通过在发送第一上行定位信息之后进入休眠模式,在需要发送第二上行定位信息时进入正常模式,并在相同的第二时域位置发送第二上行定位信息,终端设备通过在固定的第二时域位置发送第二上行定位信息,并不需要与基站保持RRC连接,节省了终端设备的功耗。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,为本申请实施例提供的一个现有技术定位流程图。
为了方便本领域技术人员理解本申请实施例,本申请实施例对现有技术中的定位流程作出简单介绍。
如图1所示,终端设备在定位流程中,可分为三个步骤。
第一步,终端设备捕获系统消息。
具体的,终端设备搜索5G网络,捕获PSS/SSS,获得同步定时。终端利用PBCH、PDCCH、PDSCH等信道,读取MIB/SIB等多条系统消息,获得与其相关的参数。
第二步,终端设备建立接入连接。
具体的,终端设备通过PRACH信道发送随机接入前导,基站通过PDCCH和PDSCH信道发送随机接入响应。终端设备通过PUSCH发送连接请求,基站通过PDCCH和PDSCH信道发送RRC连接配置,终端设备通过PUSCH发送RRC配置完成消息。
第三步,终端设备获得SRS周期,并发送SRS。
具体的,基站通过PDCCH和PDSCH信道发送RRC重配置消息(即周期SRS配置消息),终端设备通过PUSCH信道发送RRC重配置完成消息。在终端设备完成RRC重配置之后,终端设备可以在SRS资源符号位置,按照SRS配置的周期和带宽等,周期性的发送SRS信号,该SRS信号用于基站进行TOA定位。
现有技术中,终端设备和基站在进行定位的过程中,几乎把5G系统的所有上下行物理信道都使用了,不算RRC数据传输使用的DMRS等隐性的参考信号外,显性的参考信号也使用了3个,上下行的物理信道使用了5个。而且,为了完成周期定位,终端设备将长期处于RRC连接态,无法休眠,不能很好的满足低功耗的要求。
为了解决上述问题,本申请实施例提供了一种数据处理方法,可以使得终端设备在不发送定位消息时进入休眠状态,节省了终端设备的功耗,并且简化了空口的交互流程,降 低了基站和终端设备的交互时间。
下面,对本申请实施例的低功耗定位系统架构进行介绍。
请参阅图2,为本申请实施例提供的低功耗定位系统架构图。
如图2所示,该低功耗定位系统架构中包括至少一个定位终端201,至少一个定位基站202,和至少一个定位解算服务器203。其中,定位终端202即为终端设备,定位基站202即为基站。可以理解的是,本申请实施例中,还可以包括更多的定位终端201、定位基站202和定位解算服务器203。
定位终端201和定位基站202可以通过无线网络连接。具体的,该无线网络连接可以包括第五代(5th generation,5G)移动通信网络、5G NR网络,或者其他未来的新型移动通信网络等。该无线网络连接还可以是同时支持多种无线技术的通信网络,例如同时支持LTE和NR的通信网络;或者,该无线网络连接还可以是支持近距离通信的通信网络,例如,支持侧行链路(sidelink,SL)技术的通信网络,支持无线保真(wireless fidelity,WiFi)技术的通信网络等等。
定位基站202和定位解算服务器可以通过有线网络连接或者无线网络连接。有线网络连接可以是光纤连接等。无线网络连接和上述定位终端201与定位基站202的无线网络连接类似,具体此处不再赘述。
定位基站202可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)等,或者其他未来移动通信系统中的基站,具体本申请实施例对此不作限定。
定位终端201可以是一种用于接收或发射信号的实体,如手机。定位终端201也可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。定位终端201可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
需要说明的是,本申请实施例中定位终端201通常做成标签的形态,所有有时也可以称定位终端201为定位标签。
定位解算服务器203负责进行定位终端201的位置解算,定位终端201的定位结果在该定位解算服务器203获得。
定位基站202与定位终端201通信,并完成定位终端201发送定位参考信号的TOA估计。
定位终端201与定位基站202通信,向定位基站202发送定位参考信号,即本申请实施例中的上行定位信息。
为了方便理解,下面对本申请实施例中使用到的名词作出基本解释。
定位需要使用到的信道和信号包括:PSS/SSS、PBCH、PDCCH、PDSCH、PRACH、PUSCH、SRS。其中:
主同步信号(PSS)和辅同步信号(SSS)主要用于UE进行下行的同步系统捕获。
物理广播信道(PBCH)承载系统广播消息,即MIB消息和SIB1的调度信息。
物理下行控制信道(PDCCH)用于上下行的调度和指示其他SIB的位置。
物理下行共享信道(PDSCH)用于承载下行用户数据和其他SIB数据。
物理随机接入信道(PRACH)用于UE发起随机接入请求。
物理上行共享信道(PUSCH)用于UE发送上行用户数据。
Sounding参考信号(SRS)用于进行上行信道测量,TOA估计等。
5G标准的空口帧结构中,有帧、子帧、时隙、符号的概念,信道设计与帧结构密切相关,具体概念描述如下。
帧:Frame,一个帧的持续时长是10ms。
子帧:Sub Frame,1个子帧时长是1ms,1帧含10个子帧。
时隙:Slot,时隙的时长与子载波间隔相关,1个子帧中:15k子载波时有1个时隙,30K子载波时有2个时隙,60K子载波时有4个时隙,以此类推。
符号:Symbol,一个时隙含14个符号。
在实施本申请实施例的方法之前,需要满足一些前提要求。具体下面做详细介绍。
因为本申请实施例用于低功耗定位的信道是独立设计的,所以低功耗定位所使用的5G时域和频域资源需要同5G NR网络进行协商。
例如,通过时域切片的方式获得定位所用的时域资源和频域资源。切分出来给本申请实施例中数据处理方法使用的时域资源和频域资源NR不再使用,以避免相互之间的干扰。NR网络切分哪些资源,切分多少资源给本申请实施例中数据处理方法使用,需要根据实际的业务的容量诉求来规划,但是需要满足低功耗定位的最小资源需求:一帧内,需要至少1个下行符号和2个上行符号。下面示例两个具体的切分方案供参考。
在5G NR的时分双工TDD模式下,存在上下行切换时隙配比。其中,有3种时隙,分别是下行时隙(D),上行时隙(U)和特殊时隙(S)。其中特殊时隙是上下行切换的时隙,该时隙前面的若干符号是下行符号,后面的若干符号是上行符号,中间会有一些GAP符号(G),该符号上下行都不使用,作为上下行切换的保护符号。
一、仅使用GAP符号进行切分。
如图3所示,在30K子载波间隔的NR网络中,以一个无线帧(10ms)为周期,切分1个下行符号,5个上行符号给本申请实施例中数据处理方法使用,其中,slot7的符号6用于定位下行符号“PD”,slot7的符号8/9,slot17的符号7/8/9用于定位的上行符号“PU”。
二、使用GAP符号和上行符号进行切分。
如图4所示,在30K子载波间隔NR网络,每10ms分配1个下行符号,14个上行符号给本申请实施例中数据处理方法使用。Slot7的符号6作为定位下行符号“PD”,整个 slot19的14个符号都作为定位的上行符号“PU”。
以上对本实施例的低功耗定位系统架构和前提要求作出了说明,下面对本申请实施例的数据处理方法进行详细说明。
本申请实施例中,以定位终端201为终端设备,定位基站202为基站为例进行说明。
本申请实施例中,可以在一个NR符号中通过频分复用的方式或者通过在一个NR符号中设置多个子符号的方式传输上行数据或者下行数据,本申请实施例将分别进行说明。
一、通过在一个NR符号中设置两个子符号的方式传输上行数据或者下行数据。
请参阅图5,为本申请实施例提供的数据处理方法的一个流程示意图。
在步骤501中,基站向终端设备发送第二下行数据。
在低功耗定位场景中,基站会先通过第三时域位置在下行物理信道PDCH发送第二下行数据,该第二下行数据包括系统消息,该系统消息中携带第四时域位置的信息,该第四时域的位置信息用于指示初始接入信道的符号位置,该第三时域位置为基站和终端设备协议定义的。可以理解的是,在实际应用过程中,该系统消息还可以携带更多的信息,例如该系统信息还可以携带上行定位信息使用的带宽的信息,具体此处不做限定。
如图6所示,本实施例中,在下行信道中设计了1个下行物理信道PDCH,2个逻辑信道:广播信道BCH和下行公共控制信道DCCH。这两个逻辑信道的数据都通过相同的下行物理信道PDCH承载。其中,广播信道用于系统消息的发送,下行公共控制信道用于针对单个终端设备下发控制消息,例如资源分配消息等。
如图7所示,本实施例设计的下行物理信道由循环前缀CP,下行同步参考信号DSS(即下行同步信息)以及下行数据几部分组成。
在一种可能的实现方式中,系统消息中还携带有时间信息,该时间信息用于终端设备进行时间同步。在实际应用过程中,终端设备通过基站发送的同步参考信号DSS实现与基站的频率同步,并通过时间信息实现与基站的时间同步。
本实施例中,通过将PDCH的子载波间隔设置为NR子载波间隔的2倍,使得本实施例中所使用的子符号的时长为NR符号时长的一半,因此,当从NR网络中切分一个目标符号使用时,本实施例可以使用两个子符号来承载数据。例如,NR使用30K子载波间隔,则PDCH采用60K子载波间隔或者120K子载波间隔,则子符号的时长为NR符号时长的一半或者四分之一,即可以将一个目标符号作为两个以上的子符号进行使用。
其中,PDCH采用双符号设计,每个符号都带有循环前缀CP。第一个符号发送下行同步序列DSS,即下行同步信息,用于终端设备捕获系统消息并和基站的时间同步对齐,可选的,该DSS还可以用于信道估计。第二个符号用于发送PDCH承载的数据。
PDCH使用的带宽为某个固定的带宽,例如10Mhz或者20Mhz。
DSS的调制方式采用BPSK的方式。DSS序列采用3GPP标准定义的固定m序列,或者采用低峰均比Low-PARP的固定ZC序列,可以理解的是,还可以采用其他类型的序列,具体此处不做限定。
下行数据可以采用QPSK、16QAM或者64QAM等3GPP标准采用的调制方式,具体此处不 做限定。
PDCH的信道编码可以采用卷积码,Polar码,LDPC码等3GPP常用编码方式,具体此处不做限定。
下行物理信道按照固定的周期,从NR网络中划分一个NR目标符号用于传输下行数据。其中,因为下行物理信道设计了两个逻辑信道,这两个逻辑信道交替发送,即第一个固定周期发送广播信道,第二个固定周期发送下行控制信道。例如,广播信道在偶数帧发送,下行控制信道在奇数帧发送。下行物理信道按照10ms为一个周期,则广播信道在第一个10ms中使用该NR目标符号,下行控制信道在第二个10ms中使用该NR目标符号。如图8所示,从NR网络中切分出的目标符号为在第7个时隙中的第6个符号,则在帧0中,广播信道使用该目标符号传输系统消息,该帧0中的目标符号即为第三时域位置,在帧3中,下行控制信道使用该目标符号传输资源分配消息。
在步骤502中,终端设备向基站发送第二上行数据和第一上行定位信息。
终端设备在接收到基站发送的系统消息之后,终端设备根据系统消息通过上行物理信道在第四时域位置向基站发送第二上行数据和第一上行定位信息,该第二上行数据中包括初始接入消息,该初始接入消息用于终端设备进行初始接入。
如图9所示,本实施例中,在上行信道中设计了1个上行物理信道PUCH,2个逻辑信道:接入信道ACH和上行共享信道USCH。这两个逻辑信道的数据都通过相同的上行物理信道承载。其中,接入信道用于发送初始接入消息,上行共享信道用于传输上行数据以及上行定位信息,UTDOA定位就是利用上行定位信息进行TOA的估计。
如图10所示,本实施例设计的上行物理信道由循环前缀CP,低功耗定位参考信号LPRS(即上行定位信息)以及上行数据几部分组成。
本实施例中,通过将PUCH的子载波间隔设置为NR子载波间隔的2倍,使得本实施例中所使用的子符号的时长为NR符号时长的一半,因此,当从NR网络中切分一个目标符号使用时,本实施例可以使用两个子符号来承载数据。例如,NR使用30K子载波间隔,则PUCH采用60K子载波间隔或者120K子载波间隔,则子符号的时长为NR符号时长的一半或者四分之一,即可以将一个目标符号作为两个以上的子符号进行使用。
其中,PUCH采用双符号设计,每个符号都带有循环前缀CP。第一个符号发送低功耗定位参考信号LPRS,即上行定位信息,用于基站进行TOA估计,可选的,该上行定位信息还可以用于上行物理信道的信道估计。第二个符号用于发送PUCH承载的数据。
与PDCH的带宽使用情况不同,PUCH占用的带宽分成两部分。当通过第一个符号发送LPRS时,通常是使用全带宽。发送LPRS时使用全带宽是由于UTDOA定位的精度要求,使用更多的带宽发送更多的LPRS,可以更准确的进行UTDOA定位,进而可以提高UTODA的定位精准度。在实际应用过程中,具体的带宽可以根据NR网络和定位系统的负荷情况进行协商配置,例如只使用其中的部分带宽传输LPRS,具体此处不做限定。
而通过第二个符号发送上行数据时,可以使用某个固定的带宽,例如10Mhz或者20Mhz,因为在定位场景下,需要发送的上行数据较少,因此可以不占用全带宽,节省带宽资源。在实际应用过程中,通过第二个符号发送上行数据时,也可以使用全带宽,具体 此处不做限定。
LPRS的调制方式采用BPSK的方式。LPRS序列可以采用3GPP标准定义的Low-PAPR的固定ZC序列,可以理解的是,还可以采用其他类型的序列,具体此处不做限定。
上行数据可以采用QPSK、16QAM或者64QAM等3GPP标准采用的调制方式,具体此处不做限定。
PUCH的信道编码可以采用卷积码,Polar码,LDPC码等3GPP常用编码方式,具体此处不做限定。
上行物理信道按照固定的周期,从NR网络中划分一个NR目标符号用于传输上行数据。其中,因为上行物理信道设计了两个逻辑信道,这两个逻辑信道交替发送,即第一个固定周期发送接入信道,第二个固定周期发送上行共享信道。例如,接入信道在偶数帧发送,上行共享信道在奇数帧发送。上行物理信道按照10ms为一个周期,则接入信道在第一个10ms中使用该NR目标符号,上行共享信道在第二个10ms中使用该NR目标符号。如图11所示,从NR网络中切分出的目标符号为在第7个时隙中的第8个符号,则在帧0中,接入信道使用该目标符号传输初始接入消息,该帧0中的目标符号即为第四时域位置,在帧0的第7个时隙中的第9个符号和帧0中的第17个时隙中的第7、8、9个符号中,上行共享信道使用这些目标符号传输定位消息。
在步骤503中,基站向终端设备发送第一下行数据。
当终端设备向基站发送初始接入消息之后,基站在第一时域位置向终端设备发送第一下行数据,该第一下行数据包括了资源分配消息,该资源分配消息中携带了第二时域位置的信息。
可选地,基站还通过该第一时域位置发送下行同步信息,该下行同步信息用于终端设备进行时间同步。
如前述步骤,该第一时域位置为通过NR网络切分到的时域资源,即为一个NR目标符号,基站通过在该NR目标符号中发送第一下行数据和下行同步信息。具体的,可以在该NR目标符号的第一子符号中发送下行同步信息,在第二子符号中发送第一下行数据。
本实施例中,因为第一下行数据中包括了资源分配消息,而资源分配消息是根据终端设备的需求进行发送的。例如,当需要给终端设备分配资源时,基站才会在第一下行数据中携带资源分配消息。若终端设备不需要分配资源时,则基站可以在第一时域位置中只发送下行同步信息下行同步信息,不发送资源分配消息。
在步骤504中,终端设备向基站发送第二上行数据和第一上行定位信息。
终端设备在接收到基站发送的资源分配消息和下行同步信息之后,终端设备根据资源分配消息在第二时域位置发送第二上行数据和第一上行定位信息,该第一上行定位信息用于基站进行到达时间TOA的估计。
具体的,如前述步骤,终端设备可以在通过上行共享信道USCH在第二时域位置中发送第二上行数据和第一上行定位消息,该第二时域位置的信息是携带在基站发送的资源分配消息中的。
如前述步骤,该第一时域位置为通过NR网络切分到的时域资源,即为一个NR目标符 号,终端设备通过在该NR目标符号中发送第二上行数据和第一上行定位消息。具体的,可以在该NR目标符号的第一子符号中发送第一上行定位消息,在第二子符号中发送第二上行数据。
在实际应用过程中,终端设备发送上行数据的数据量会小一些,且在定位场景下,基站对定位的精准度要求较高。因此,终端设备可以在发送第一上行定位消息时,使用最大带宽,以确保发送更多的第一上行定位消息。而在发送第二上行数据时,可以根据实际的数据量进行调整,若数据量小,则使用较少的带宽发送第二上行数据,可以节省带宽资源。
在步骤505中,终端设备启动定时器,进入休眠模式。
终端设备在发送完第一上行定位消息之后,终端设备可以启动定时器,并在定时器启动之后,进入休眠模式,该休眠模式的功耗低于终端设备处于正常模式下的功耗,该定时器的时长为预设阈值。
具体的,因为终端设备没有和基站之间建立RRC连接,因此终端设备为了保持低功耗状态,可以进入休眠模式。本实施例方法中,终端设备可以通过在基站分配的指定时域资源位置接收下行同步信息和系统消息,用于终端设备与基站进行时间同步,并且接收系统消息。而在其他时间段,则可以进入休眠模式,以便于减少终端设备的功耗。
在步骤506中,当定时器超时,终端设备进入正常模式。
当定时器超时之后,终端设备退出休眠模式,进入正常模式,在正常模式下终端设备可以在基站分配的指定时域资源位置接收下行同步信息和系统消息。例如终端设备可以在第三时域位置接收基站发送的携带有系统消息的第二下行数据。
在步骤507中,终端设备向基站发送第二上行定位信息。
终端设备在进入正常模式之后,终端设备基于与基站的协议约定,在第二时域位置向基站发送第二上行定位信息,该上行定位信息用于基站进行到达时间TOA估计。
具体的,终端设备在进入正常模式之后,终端设备基于基站已经分配的时域资源信息,向基站发送第二上行定位信息。例如,第二时域退出休眠模式,进入正常模式的时间在帧0中的第1个时隙,而基站给终端设备分配的第二时域位置是帧0中的第17个时隙中的第7个符号,则终端设备只需要等待10个时隙与7个NR目标符号的时长,就可以再次向基站发送上行定位信息。因为本实施例中限定了每1个帧中,都会有分配到至少1个NR目标符号用于发送上行定位信息,因此终端设备等待的时间较短,减少了终端设备因等待发送上行定位信息的时域资源而消耗的功耗。
在实际应用过程中,终端设备在发送完第二上行定位信息之后,又可以继续进入休眠模式,以保持低功耗的运行状态。
本申请实施例中,基站和终端设备通过更少的信息交互,就可以实现终端设备和基站之间的数据传输和定位,避免了标准UTDOA定位的复杂流程,并且可以长时间按照基站分配的时域资源周期性的发送上行定位消息,发送完成后又可以立即休眠,以保持终端设备的低功耗状态,节省了终端设备的功耗。
基于前述图1所示的现有技术UTDOA定位流程,本申请实施例中低功耗定位的方法与 现有技术3GPP的标准UTDOA定位流程对比如下表1。
表1低功耗定位的方法与现有技术3GPP的标准UTDOA定位流程对比表
Figure PCTCN2021130642-appb-000001
利用本申请实施例的信道除了可以简化上述R16的标准UTDOA定位流程,终端接收和发送消息的处理时间也明显少于R16标准UTDOA定位流程。本申请实施例的信道时序简单并且周期位置固定,在已经分配的符号进行接收信息和发送信息,持续时长小于1个NR目标符号。而R16标准UTDOA定位流程中,通过PDSCH接收消息时,需要先监听PDCCH信道,而PDCCH的持续时长是1-3个NR目标符号,PDSCH的时长通常是以时隙为单位的。另外,本申请实施例中的信道也无需R16标准L2的HARQ应答机制,减少了终端设备的信号发送次数。
二、通过频分复用的方式在一个NR符号中传输上行数据或者下行数据。
请参阅图5b,为本申请实施例提供的数据处理方法的另一流程示意图。
在步骤601中,基站向终端设备发送第二下行数据。
在低功耗定位场景中,基站会先通过第三时域位置在下行物理信道PDCH发送第二下行数据,该第二下行数据包括系统消息,该系统消息中携带第四时域位置的信息,该第四时域的位置信息用于指示初始接入信道的符号位置,该第三时域位置为基站和终端设备协 议定义的。可以理解的是,在实际应用过程中,该系统消息还可以携带更多的信息,例如该系统信息还可以携带上行定位信息使用的带宽的信息,具体此处不做限定。
如图6所示,本实施例中,在下行信道中设计了1个下行物理信道PDCH,2个逻辑信道:广播信道BCH和下行公共控制信道DCCH。这两个逻辑信道的数据都通过相同的下行物理信道PDCH承载。其中,广播信道用于系统消息的发送,下行公共控制信道用于针对单个终端设备下发控制消息,例如资源分配消息等。
如图7所示,本实施例设计的下行物理信道由循环前缀CP,下行同步参考信号DSS(即下行同步信息)以及下行数据几部分组成。
本实施例中,将PDCH的子载波间隔设置为和NR子载波间隔相同,通过频分打孔的方式实现复用,以实现可以通过一个NR目标符号发送第二下行数据和下行同步信息。因为下行数据传输的过程中,下行数据的数据量比较大,可以采用1:3的比例进行频分打孔,如图12所示,即1个NR目标符号中,按照1份下行同步信息和3份下行数据的方式进行打孔。可以理解的是,在实际应用过程中,还可以采用其他比例进行打孔,例如1:5或者2:3的方式进行打孔,具体此处不做限定。
下行同步序列DSS,即下行同步信息,用于终端设备捕获系统消息并和基站的时间同步对齐,可选的,该DSS还可以用于信道估计。第二个符号用于发送PDCH承载的数据。
在一种可能的实现方式中,系统消息中还携带有时间信息,该时间信息用于终端设备进行时间同步。在实际应用过程中,终端设备通过基站发送的同步参考信号DSS实现与基站的频率同步,并通过时间信息实现与基站的时间同步。
PDCH使用的带宽为某个固定的带宽,例如10Mhz或者20Mhz。
DSS的调制方式采用BPSK的方式。DSS序列采用3GPP标准定义的固定m序列,或者采用低峰均比Low-PARP的固定ZC序列,可以理解的是,还可以采用其他类型的序列,具体此处不做限定。
下行数据可以采用QPSK、16QAM或者64QAM等3GPP标准采用的调制方式,具体此处不做限定。
PDCH的信道编码可以采用卷积码,Polar码,LDPC码等3GPP常用编码方式,具体此处不做限定。
下行物理信道按照固定的周期,从NR网络中划分一个NR目标符号用于传输下行数据。其中,因为下行物理信道设计了两个逻辑信道,这两个逻辑信道交替发送,即第一个固定周期发送广播信道,第二个固定周期发送下行控制信道。例如,广播信道在偶数帧发送,下行控制信道在奇数帧发送。下行物理信道按照10ms为一个周期,则广播信道在第一个10ms中使用该NR目标符号,下行控制信道在第二个10ms中使用该NR目标符号。如图8所示,从NR网络中切分出的目标符号为在第7个时隙中的第6个符号,则在帧0中,广播信道使用该目标符号传输系统消息,该帧0中的目标符号即为第三时域位置,在帧3中,下行控制信道使用该目标符号传输资源分配消息。
在步骤602中,终端设备向基站发送第二上行数据和第一上行定位信息。
终端设备在接收到基站发送的系统消息之后,终端设备根据系统消息通过上行物理信 道在第四时域位置向基站发送第二上行数据和第一上行定位信息,该第二上行数据中包括初始接入消息,该初始接入消息用于终端设备进行初始接入。
如图9所示,本实施例中,在上行信道中设计了1个上行物理信道PUCH,2个逻辑信道:接入信道ACH和上行共享信道USCH。这两个逻辑信道的数据都通过相同的上行物理信道承载。其中,接入信道用于发送初始接入消息,上行共享信道用于传输上行数据以及上行定位信息,UTDOA定位就是利用上行定位信息进行TOA的估计。
如图10所示,本实施例设计的上行物理信道由循环前缀CP,低功耗定位参考信号LPRS(即上行定位信息)以及上行数据几部分组成。
本实施例中,将PUCH的子载波间隔设置为和NR子载波间隔相同,通过频分打孔的方式实现复用,以实现可以通过一个NR目标符号发送第二上行数据和上行定位信息。因为上行数据传输的过程中,上行数据的数据量比较小,而基站需要利用上行定位信息进行TOA测量,带宽需求大,为提升定位的精度,可以采用3:1的比例进行频分打孔,如图13所示,即1个NR目标符号中,按照3份上行定位信息和1份上行数据的方式进行打孔。可以理解的是,在实际应用过程中,还可以采用其他比例进行打孔,例如3:2或者5:3的方式进行打孔,具体此处不做限定。
低功耗定位参考信号LPRS,即上行定位信息,用于基站进行TOA估计,可选的,该上行定位信息还可以用于上行物理信道的信道估计。第二个符号用于发送PUCH承载的数据。
在实际应用过程中,具体的带宽可以根据NR网络和定位系统的负荷情况进行协商配置,例如只使用其中的部分带宽传输LPRS,具体此处不做限定。
LPRS的调制方式采用BPSK的方式。LPRS序列可以采用3GPP标准定义的Low-PAPR的固定ZC序列,可以理解的是,还可以采用其他类型的序列,具体此处不做限定。
上行数据可以采用QPSK、16QAM或者64QAM等3GPP标准采用的调制方式,具体此处不做限定。
PUCH的信道编码可以采用卷积码,Polar码,LDPC码等3GPP常用编码方式,具体此处不做限定。
上行物理信道按照固定的周期,从NR网络中划分一个NR目标符号用于传输上行数据。其中,因为上行物理信道设计了两个逻辑信道,这两个逻辑信道交替发送,即第一个固定周期发送接入信道,第二个固定周期发送上行共享信道。例如,接入信道在偶数帧发送,上行共享信道在奇数帧发送。上行物理信道按照10ms为一个周期,则接入信道在第一个10ms中使用该NR目标符号,上行共享信道在第二个10ms中使用该NR目标符号。如图11所示,从NR网络中切分出的目标符号为在第7个时隙中的第8个符号,则在帧0中,接入信道使用该目标符号传输初始接入消息,该帧0中的目标符号即为第四时域位置,在帧0的第7个时隙中的第9个符号和帧0中的第17个时隙中的第7、8、9个符号中,上行共享信道使用这些目标符号传输定位消息。
在步骤603中,基站向终端设备发送第一下行数据。
当终端设备向基站发送初始接入消息之后,基站在第一时域位置向终端设备发送第一 下行数据,该第一下行数据包括了资源分配消息,该资源分配消息中携带了第二时域位置的信息。
可选地,基站还通过该第一时域位置发送下行同步信息,该下行同步信息用于终端设备进行时间同步。
如前述步骤,该第一时域位置为通过NR网络切分到的时域资源,即为一个NR目标符号,基站通过在该NR目标符号中发送第一下行数据和下行同步信息。具体的,可以在该NR目标符号通过频分打孔的方式发送下行同步信息和第一下行数据。
本实施例中,因为第一下行数据中包括了资源分配消息,而资源分配消息是根据终端设备的需求进行发送的。例如,当需要给终端设备分配资源时,基站才会在第一下行数据中携带资源分配消息。若终端设备不需要分配资源时,则基站可以在第一时域位置中只发送下行同步信息,不发送资源分配消息。
在步骤604中,终端设备向基站发送第二上行数据和第一上行定位信息。
终端设备在接收到基站发送的资源分配消息和下行同步信息之后,终端设备根据资源分配消息在第二时域位置发送第二上行数据和第一上行定位信息,该第一上行定位信息用于基站进行到达时间TOA的估计。
具体的,如前述步骤,终端设备可以在通过上行共享信道USCH在第二时域位置中发送第二上行数据和第一上行定位消息,该第二时域位置的信息是携带在基站发送的资源分配消息中的。
如前述步骤,该第一时域位置为通过NR网络切分到的时域资源,即为一个NR目标符号,终端设备通过在该NR目标符号中发送第二上行数据和第一上行定位消息。具体的,可以通过在该NR目标符号频分打孔的方式发送第一上行定位消息和第二上行数据。
在步骤605中,终端设备启动定时器,进入休眠模式。
终端设备在发送完第一上行定位消息之后,终端设备可以启动定时器,并在定时器启动之后,进入休眠模式,该休眠模式的功耗低于终端设备处于正常模式下的功耗,该定时器的时长为预设阈值。
具体的,因为终端设备没有和基站之间建立RRC连接,因此终端设备为了保持低功耗状态,可以进入休眠模式。本实施例方法中,终端设备可以通过在基站分配的指定时域资源位置接收下行同步信息和系统消息,用于终端设备与基站进行时间同步,并且接收系统消息。而在其他时间段,则可以进入休眠模式,以便于减少终端设备的功耗。
在步骤606中,当定时器超时,终端设备进入正常模式。
当定时器超时之后,终端设备退出休眠模式,进入正常模式,在正常模式下终端设备可以在基站分配的指定时域资源位置接收下行同步信息和系统消息。例如终端设备可以在第三时域位置接收基站发送的携带有系统消息的第二下行数据。
在步骤607中,终端设备向基站发送第二上行定位信息。
终端设备在进入正常模式之后,终端设备基于与基站的协议约定,在第二时域位置向基站发送第二上行定位信息,该上行定位信息用于基站进行到达时间TOA估计。
具体的,终端设备在进入正常模式之后,终端设备基于基站已经分配的时域资源信 息,向基站发送第二上行定位信息。例如,第二时域退出休眠模式,进入正常模式的时间在帧0中的第1个时隙,而基站给终端设备分配的第二时域位置是帧0中的第17个时隙中的第7个符号,则终端设备只需要等待10个时隙与7个NR目标符号的时长,就可以再次向基站发送上行定位信息。因为本实施例中限定了每1个帧中,都会有分配到至少1个NR目标符号用于发送上行定位信息,因此终端设备等待的时间较短,减少了终端设备因等待发送上行定位信息的时域资源而消耗的功耗。
在实际应用过程中,终端设备在发送完第二上行定位信息之后,又可以继续进入休眠模式,以保持低功耗的运行状态。
本申请实施例中,基站和终端设备通过更少的信息交互,就可以实现终端设备和基站之间的数据传输和定位,避免了标准UTDOA定位的复杂流程,并且可以长时间按照基站分配的时域资源周期性的发送上行定位消息,发送完成后又可以立即休眠,以保持终端设备的低功耗状态,节省了终端设备的功耗。通过频分打孔的方式发送上行数据和定位信息,不需要用到多符号进行发送,只需要通过单符号进行发送,节省了时间。
基于前述图1所示的现有技术UTDOA定位流程,本申请实施例中低功耗定位的方法与现有技术3GPP的标准UTDOA定位流程对比如下表1。
表1低功耗定位的方法与现有技术3GPP的标准UTDOA定位流程对比表
Figure PCTCN2021130642-appb-000002
Figure PCTCN2021130642-appb-000003
利用本申请实施例的信道除了可以简化上述R16的标准UTDOA定位流程,终端接收和发送消息的处理时间也明显少于R16标准UTDOA定位流程。本申请实施例的信道时序简单并且周期位置固定,在已经分配的符号进行接收信息和发送信息,持续时长小于1个NR目标符号。而R16标准UTDOA定位流程中,通过PDSCH接收消息时,需要先监听PDCCH信道,而PDCCH的持续时长是1-3个NR目标符号,PDSCH的时长通常是以时隙为单位的。另外,本申请实施例中的信道也无需R16标准L2的HARQ应答机制,减少了终端设备的信号发送次数。
三、通过在一个NR符号中设置两个以上的子符号的方式传输上行数据或者下行数据。
请参阅图5c,为本申请实施例提供的数据处理方法的另一流程示意图。
在步骤701中,基站向终端设备发送第二下行数据。
在低功耗定位场景中,基站会先通过第三时域位置在下行物理信道PDCH发送第二下行数据,该第二下行数据包括系统消息,该系统消息中携带第四时域位置的信息,该第四时域的位置信息用于指示初始接入信道的符号位置,该第三时域位置为基站和终端设备协议定义的。可以理解的是,在实际应用过程中,该系统消息还可以携带更多的信息,例如该系统信息还可以携带上行定位信息使用的带宽的信息,具体此处不做限定。
如图6所示,本实施例中,在下行信道中设计了1个下行物理信道PDCH,2个逻辑信道:广播信道BCH和下行公共控制信道DCCH。这两个逻辑信道的数据都通过相同的下行物理信道PDCH承载。其中,广播信道用于系统消息的发送,下行公共控制信道用于针对单个终端设备下发控制消息,例如资源分配消息等。
如图14所示,本实施例设计的下行物理信道由循环前缀CP,下行同步参考信号DSS(即下行同步信息)以及下行数据几部分组成。
在一种可能的实现方式中,系统消息中还携带有时间信息,该时间信息用于终端设备进行时间同步。在实际应用过程中,终端设备通过基站发送的同步参考信号DSS实现与基站的频率同步,并通过时间信息实现与基站的时间同步。
本实施例中,下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于2的正整数。其中,第一时域位置包括N个第一子符号,终端设备在M个第一字符号接收下行同步信息,终端设备在(N-M)个第一子符号接收第二下行数据。第三时域位置也包括了N个第二子符号,终端设备在M个第二子符号接收下行同步信息,终端设备在(N-M)个第二子符号接收第二下行数据,且,N个第一子符号的时长之和等于目标符号的时长,N个第二子符号的时长之和也等于目标符号的时长,其中,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
举例来说,将PDCH的子载波间隔设置为NR子载波间隔的3倍或者3倍以上,使得本实施例中所使用的子符号的时长为NR符号时长的三分之一以下,因此,当从NR网络中切分一个目标符号使用时,本实施例可以使用三个以上的子符号来承载数据。例如,NR使用30K子载波间隔,则PDCH采用90K子载波间隔或者120K子载波间隔,则子符号的时长为NR符号时长的三分之一或者四分之一,即可以将一个目标符号作为三个以上的子符号进行使用。
其中,PDCH采用多符号设计,每个符号都带有循环前缀CP。第一个符号发送下行同步序列DSS,即下行同步信息,用于终端设备捕获系统消息并和基站的时间同步对齐,可选的,该DSS还可以用于信道估计。其余的符号可以用于发送PDCH承载的数据。
PDCH使用的带宽为某个固定的带宽,例如10Mhz或者20Mhz。
DSS的调制方式采用BPSK的方式。DSS序列采用3GPP标准定义的固定m序列,或者采用低峰均比Low-PARP的固定ZC序列,可以理解的是,还可以采用其他类型的序列,具体此处不做限定。
下行数据可以采用QPSK、16QAM或者64QAM等3GPP标准采用的调制方式,具体此处不做限定。
PDCH的信道编码可以采用卷积码,Polar码,LDPC码等3GPP常用编码方式,具体此处不做限定。
下行物理信道按照固定的周期,从NR网络中划分一个NR目标符号用于传输下行数据。其中,因为下行物理信道设计了两个逻辑信道,这两个逻辑信道交替发送,即第一个固定周期发送广播信道,第二个固定周期发送下行控制信道。例如,广播信道在偶数帧发送,下行控制信道在奇数帧发送。下行物理信道按照10ms为一个周期,则广播信道在第一个10ms中使用该NR目标符号,下行控制信道在第二个10ms中使用该NR目标符号。如图8所示,从NR网络中切分出的目标符号为在第7个时隙中的第6个符号,则在帧0中,广播信道使用该目标符号传输系统消息,该帧0中的目标符号即为第三时域位置,在帧3中,下行控制信道使用该目标符号传输资源分配消息。
在步骤702中,终端设备向基站发送第二上行数据和第一上行定位信息。
终端设备在接收到基站发送的系统消息之后,终端设备根据系统消息通过上行物理信道在第四时域位置向基站发送第二上行数据和第一上行定位信息,该第二上行数据中包括初始接入消息,该初始接入消息用于终端设备进行初始接入。
如图9所示,本实施例中,在上行信道中设计了1个上行物理信道PUCH,2个逻辑信道:接入信道ACH和上行共享信道USCH。这两个逻辑信道的数据都通过相同的上行物理信道承载。其中,接入信道用于发送初始接入消息,上行共享信道用于传输上行数据以及上行定位信息,UTDOA定位就是利用上行定位信息进行TOA的估计。
如图15所示,本实施例设计的上行物理信道由循环前缀CP,低功耗定位参考信号LPRS(即上行定位信息)以及上行数据几部分组成。
本实施例中,上行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于2的正整数。其中,第二时域位置包括N个第三子符号,终端设备在M个第三子符号发送上 行定位信息,终端设备在(N-M)个第三子符号发送第一上行数据。第四时域位置也包括了N个第四子符号,终端设备在M个第四字符号发送上行定位信息,终端设备在(N-M)个第四子符号发送第二上行数据,N个第三子符号的时长之和等于目标符号的时长,N个第四子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
举例来说,将PUCH的子载波间隔设置为NR子载波间隔的3倍或者3倍以上,使得本实施例中所使用的子符号的时长为NR符号时长的三分之一以下,因此,当从NR网络中切分一个目标符号使用时,本实施例可以使用三个以上的子符号来承载数据。例如,NR使用30K子载波间隔,则PDCH采用90K子载波间隔或者120K子载波间隔,则子符号的时长为NR符号时长的三分之一或者四分之一,即可以将一个目标符号作为三个以上的子符号进行使用。
其中,PUCH采用多符号设计,每个符号都带有循环前缀CP。低功耗定位参考信号LPRS,即上行定位信息,用于基站进行TOA估计,可选的,该上行定位信息还可以用于上行物理信道的信道估计。其余的符号可以用于发送PUCH承载的数据或者上行定位信息,具体此处不做限定。
与PDCH的带宽使用情况不同,PUCH占用的带宽分成两部分。当通过发送LPRS时,通常是使用全带宽。发送LPRS时使用全带宽是由于UTDOA定位的精度要求,使用更多的带宽发送更多的LPRS,可以更准确的进行UTDOA定位,进而可以提高UTODA的定位精准度。在实际应用过程中,具体的带宽可以根据NR网络和定位系统的负荷情况进行协商配置,例如只使用其中的部分带宽传输LPRS,具体此处不做限定。
而通过发送上行数据时,可以使用某个固定的带宽,例如10Mhz或者20Mhz,因为在定位场景下,需要发送的上行数据较少,因此可以不占用全带宽,节省带宽资源。在实际应用过程中,发送上行数据时,也可以使用全带宽,具体此处不做限定。
LPRS的调制方式采用BPSK的方式。LPRS序列可以采用3GPP标准定义的Low-PAPR的固定ZC序列,可以理解的是,还可以采用其他类型的序列,具体此处不做限定。
上行数据可以采用QPSK、16QAM或者64QAM等3GPP标准采用的调制方式,具体此处不做限定。
PUCH的信道编码可以采用卷积码,Polar码,LDPC码等3GPP常用编码方式,具体此处不做限定。
上行物理信道按照固定的周期,从NR网络中划分一个NR目标符号用于传输上行数据。其中,因为上行物理信道设计了两个逻辑信道,这两个逻辑信道交替发送,即第一个固定周期发送接入信道,第二个固定周期发送上行共享信道。例如,接入信道在偶数帧发送,上行共享信道在奇数帧发送。上行物理信道按照10ms为一个周期,则接入信道在第一个10ms中使用该NR目标符号,上行共享信道在第二个10ms中使用该NR目标符号。如图11所示,从NR网络中切分出的目标符号为在第7个时隙中的第8个符号,则在帧0中,接入信道使用该目标符号传输初始接入消息,该帧0中的目标符号即为第四时域位置,在帧0的第7个时隙中的第9个符号和帧0中的第17个时隙中的第7、8、9个符号中,上行 共享信道使用这些目标符号传输定位消息。
在步骤703中,基站向终端设备发送第一下行数据。
当终端设备向基站发送初始接入消息之后,基站在第一时域位置向终端设备发送第一下行数据,该第一下行数据包括了资源分配消息,该资源分配消息中携带了第二时域位置的信息。
可选地,基站还通过该第一时域位置发送下行同步信息,该下行同步信息用于终端设备进行时间同步。
如前述步骤,该第一时域位置为通过NR网络切分到的时域资源,即为一个NR目标符号,基站通过在该NR目标符号中发送第一下行数据和下行同步信息。具体的,可以在该NR目标符号的第一子符号中发送下行同步信息,在其余子符号中发送第一下行数据。
本实施例中,因为第一下行数据中包括了资源分配消息,而资源分配消息是根据终端设备的需求进行发送的。例如,当需要给终端设备分配资源时,基站才会在第一下行数据中携带资源分配消息。若终端设备不需要分配资源时,则基站可以在第一时域位置中只发送下行同步信息,不发送资源分配消息。
在步骤704中,终端设备向基站发送第二上行数据和第一上行定位信息。
终端设备在接收到基站发送的资源分配消息和下行同步信息之后,终端设备根据资源分配消息在第二时域位置发送第二上行数据和第一上行定位信息,该第一上行定位信息用于基站进行到达时间TOA的估计。
具体的,如前述步骤,终端设备可以在通过上行共享信道USCH在第二时域位置中发送第二上行数据和第一上行定位消息,该第二时域位置的信息是携带在基站发送的资源分配消息中的。
如前述步骤,该第一时域位置为通过NR网络切分到的时域资源,即为一个NR目标符号,终端设备通过在该NR目标符号中发送第二上行数据和第一上行定位消息。具体的,可以在该NR目标符号的第一子符号中发送第一上行定位消息,在其余的子符号中发送第二上行数据或者第一上行定位消息,具体此处不做限定。
在实际应用过程中,终端设备发送上行数据的数据量会小一些,且在定位场景下,基站对定位的精准度要求较高。因此,终端设备可以在发送第一上行定位消息时,使用最大带宽,以确保发送更多的第一上行定位消息。而在发送第二上行数据时,可以根据实际的数据量进行调整,若数据量小,则使用较少的带宽发送第二上行数据,可以节省带宽资源。
在步骤705中,终端设备启动定时器,进入休眠模式。
终端设备在发送完第一上行定位消息之后,终端设备可以启动定时器,并在定时器启动之后,进入休眠模式,该休眠模式的功耗低于终端设备处于正常模式下的功耗,该定时器的时长为预设阈值。
具体的,因为终端设备没有和基站之间建立RRC连接,因此终端设备为了保持低功耗状态,可以进入休眠模式。本实施例方法中,终端设备可以通过在基站分配的指定时域资源位置接收下行同步信息和系统消息,用于终端设备与基站进行时间同步,并且接收系统 消息。而在其他时间段,则可以进入休眠模式,以便于减少终端设备的功耗。
在步骤706中,当定时器超时,终端设备进入正常模式。
当定时器超时之后,终端设备退出休眠模式,进入正常模式,在正常模式下终端设备可以在基站分配的指定时域资源位置接收下行同步信息和系统消息。例如终端设备可以在第三时域位置接收基站发送的携带有系统消息的第二下行数据。
在步骤707中,终端设备向基站发送第二上行定位信息。
终端设备在进入正常模式之后,终端设备基于与基站的协议约定,在第二时域位置向基站发送第二上行定位信息,该上行定位信息用于基站进行到达时间TOA估计。
具体的,终端设备在进入正常模式之后,终端设备基于基站已经分配的时域资源信息,向基站发送第二上行定位信息。例如,第二时域退出休眠模式,进入正常模式的时间在帧0中的第1个时隙,而基站给终端设备分配的第二时域位置是帧0中的第17个时隙中的第7个符号,则终端设备只需要等待10个时隙与7个NR目标符号的时长,就可以再次向基站发送上行定位信息。因为本实施例中限定了每1个帧中,都会有分配到至少1个NR目标符号用于发送上行定位信息,因此终端设备等待的时间较短,减少了终端设备因等待发送上行定位信息的时域资源而消耗的功耗。
在实际应用过程中,终端设备在发送完第二上行定位信息之后,又可以继续进入休眠模式,以保持低功耗的运行状态。
本申请实施例中,基站和终端设备通过更少的信息交互,就可以实现终端设备和基站之间的数据传输和定位,避免了标准UTDOA定位的复杂流程,并且可以长时间按照基站分配的时域资源周期性的发送上行定位消息,发送完成后又可以立即休眠,以保持终端设备的低功耗状态,节省了终端设备的功耗。通过多符号的方式发送上行数据和定位信息,提升了发送上行数据和上行定位信息的数据量。
基于前述图1所示的现有技术UTDOA定位流程,本申请实施例中低功耗定位的方法与现有技术3GPP的标准UTDOA定位流程对比如下表1。
表1低功耗定位的方法与现有技术3GPP的标准UTDOA定位流程对比表
Figure PCTCN2021130642-appb-000004
Figure PCTCN2021130642-appb-000005
利用本申请实施例的信道除了可以简化上述R16的标准UTDOA定位流程,终端接收和发送消息的处理时间也明显少于R16标准UTDOA定位流程。本申请实施例的信道时序简单并且周期位置固定,在已经分配的符号进行接收信息和发送信息,持续时长小于1个NR目标符号。而R16标准UTDOA定位流程中,通过PDSCH接收消息时,需要先监听PDCCH信道,而PDCCH的持续时长是1-3个NR目标符号,PDSCH的时长通常是以时隙为单位的。另外,本申请实施例中的信道也无需R16标准L2的HARQ应答机制,减少了终端设备的信号发送次数。
四、通过频分复用和在一个NR符号中设置两个或者两个以上符号的方式在一个NR符号中传输上行数据或者下行数据。
请参阅图5d,为本申请实施例提供的数据处理方法的另一流程示意图。
在步骤801中,基站向终端设备发送第二下行数据。
在低功耗定位场景中,基站会先通过第三时域位置在下行物理信道PDCH发送第二下行数据,该第二下行数据包括系统消息,该系统消息中携带第四时域位置的信息,该第四时域的位置信息用于指示初始接入信道的符号位置,该第三时域位置为基站和终端设备协议定义的。可以理解的是,在实际应用过程中,该系统消息还可以携带更多的信息,例如该系统信息还可以携带上行定位信息使用的带宽的信息,具体此处不做限定。
如图6所示,本实施例中,在下行信道中设计了1个下行物理信道PDCH,2个逻辑信道:广播信道BCH和下行公共控制信道DCCH。这两个逻辑信道的数据都通过相同的下行物理信道PDCH承载。其中,广播信道用于系统消息的发送,下行公共控制信道用于针对单个终端设备下发控制消息,例如资源分配消息等。
如图14所示,本实施例设计的下行物理信道由循环前缀CP,下行同步参考信号DSS(即下行同步信息)以及下行数据几部分组成。
在一种可能的实现方式中,系统消息中还携带有时间信息,该时间信息用于终端设备进行时间同步。在实际应用过程中,终端设备通过基站发送的同步参考信号DSS实现与基站的频率同步,并通过时间信息实现与基站的时间同步。
本实施例中,下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或 者等于2的正整数。其中,第一时域位置包括N个第一子符号,终端设备在M个第一字符号接收下行同步信息,终端设备在(N-M)个第一子符号接收第二下行数据。第三时域位置也包括了N个第二子符号,终端设备在M个第二子符号接收下行同步信息,终端设备在(N-M)个第二子符号接收第二下行数据,且,N个第一子符号的时长之和等于目标符号的时长,N个第二子符号的时长之和也等于目标符号的时长,其中,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
举例来说,将PDCH的子载波间隔设置为NR子载波间隔的2倍或者2倍以上,使得本实施例中所使用的子符号的时长为NR符号时长的二分之一以下,因此,当从NR网络中切分一个目标符号使用时,本实施例可以使用两个以上的子符号来承载数据。例如,NR使用30K子载波间隔,则PDCH采用60K子载波间隔或者120K子载波间隔,则子符号的时长为NR符号时长的二分之一或者四分之一,即可以将一个目标符号作为两个以上的子符号进行使用。并且,还可以在子符号中通过频分打孔的方式实现复用,以实现可以通过一个子符号发送第二下行数据和下行同步信息。因为下行数据传输的过程中,下行数据的数据量比较大,可以采用1:3的比例进行频分打孔,即1个NR目标符号中,按照1份下行同步信息和3份下行数据的方式进行打孔,并且在4个符号中都进行打孔。可以理解的是,在实际应用过程中,还可以采用其他比例进行打孔,例如1:5或者2:3的方式进行打孔,具体此处不做限定。
本实施例中,可以通过几种方式进行打孔,一种是仅第一个子符号携带下行同步信息,其余子符号都是数据。例如图16所示,在第一子符号中,按照1份下行同步信息和3份下行数据的方式进行打孔,并且在4个符号中都进行打孔。
还可以是所有符号都携带上行定位信息。如图18所示,在所有子符号中,都是按照1份下行同步信息和3份下行数据的方式进行打孔。
其中,PDCH采用多符号设计,每个符号都带有循环前缀CP。第一个符号发送下行同步序列DSS,即下行同步信息,用于终端设备捕获系统消息并和基站的时间同步对齐,可选的,该DSS还可以用于信道估计。其余的符号可以用于发送PDCH承载的数据。
PDCH使用的带宽为某个固定的带宽,例如10Mhz或者20Mhz。
DSS的调制方式采用BPSK的方式。DSS序列采用3GPP标准定义的固定m序列,或者采用低峰均比Low-PARP的固定ZC序列,可以理解的是,还可以采用其他类型的序列,具体此处不做限定。
下行数据可以采用QPSK、16QAM或者64QAM等3GPP标准采用的调制方式,具体此处不做限定。
PDCH的信道编码可以采用卷积码,Polar码,LDPC码等3GPP常用编码方式,具体此处不做限定。
下行物理信道按照固定的周期,从NR网络中划分一个NR目标符号用于传输下行数据。其中,因为下行物理信道设计了两个逻辑信道,这两个逻辑信道交替发送,即第一个固定周期发送广播信道,第二个固定周期发送下行控制信道。例如,广播信道在偶数帧发送,下行控制信道在奇数帧发送。下行物理信道按照10ms为一个周期,则广播信道在第 一个10ms中使用该NR目标符号,下行控制信道在第二个10ms中使用该NR目标符号。如图8所示,从NR网络中切分出的目标符号为在第7个时隙中的第6个符号,则在帧0中,广播信道使用该目标符号传输系统消息,该帧0中的目标符号即为第三时域位置,在帧3中,下行控制信道使用该目标符号传输资源分配消息。
在步骤802中,终端设备向基站发送第二上行数据和第一上行定位信息。
终端设备在接收到基站发送的系统消息之后,终端设备根据系统消息通过上行物理信道在第四时域位置向基站发送第二上行数据和第一上行定位信息,该第二上行数据中包括初始接入消息,该初始接入消息用于终端设备进行初始接入。
如图9所示,本实施例中,在上行信道中设计了1个上行物理信道PUCH,2个逻辑信道:接入信道ACH和上行共享信道USCH。这两个逻辑信道的数据都通过相同的上行物理信道承载。其中,接入信道用于发送初始接入消息,上行共享信道用于传输上行数据以及上行定位信息,UTDOA定位就是利用上行定位信息进行TOA的估计。
如图15所示,本实施例设计的上行物理信道由循环前缀CP,低功耗定位参考信号LPRS(即上行定位信息)以及上行数据几部分组成。
本实施例中,上行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或者等于2的正整数。其中,第二时域位置包括N个第三子符号,终端设备在M个第三子符号发送上行定位信息,终端设备在(N-M)个第三子符号发送第一上行数据。第四时域位置也包括了N个第四子符号,终端设备在M个第四字符号发送上行定位信息,终端设备在(N-M)个第四子符号发送第二上行数据,N个第三子符号的时长之和等于目标符号的时长,N个第四子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
举例来说,将PUCH的子载波间隔设置为NR子载波间隔的2倍或者2倍以上,使得本实施例中所使用的子符号的时长为NR符号时长的二分之一以下,因此,当从NR网络中切分一个目标符号使用时,本实施例可以使用两个以上的子符号来承载数据。例如,NR使用30K子载波间隔,则PDCH采用60K子载波间隔或者120K子载波间隔,则子符号的时长为NR符号时长的二分之一或者四分之一,即可以将一个目标符号作为两个以上的子符号进行使用。并且,还可以在子符号中通过频分打孔的方式实现复用,以实现可以通过一个子符号发送第二上行数据和上行定位信息。因为上行数据传输的过程中,上行数据的数据量比较小,可以采用3:1的比例进行频分打孔,即1个NR目标符号中,按照3份上行定位信息和1份上行数据的方式进行打孔,并且在4个子符号中都进行打孔。可以理解的是,在实际应用过程中,还可以采用其他比例进行打孔,例如5:1或者3:2的方式进行打孔,具体此处不做限定。
本实施例中,可以通过几种方式进行打孔,一种是仅第一个子符号携带上行数据,其余子符号都是上行定位信息。例如图17所示,在第一子符号中,按照3份上行定位信息和1份上行数据的方式进行打孔,并且在4个符号中都进行打孔。
还可以是所有符号都携带上行定位信息。如图19所示,在所有子符号中,都是按照3份下行同步信息和1份下行数据的方式进行打孔。
其中,PUCH采用多符号设计,每个符号都带有循环前缀CP。低功耗定位参考信号LPRS,即上行定位信息,用于基站进行TOA估计,可选的,该上行定位信息还可以用于上行物理信道的信道估计。其余的符号可以用于发送PUCH承载的数据或者上行定位信息,具体此处不做限定。
与PDCH的带宽使用情况不同,PUCH占用的带宽分成两部分。当通过发送LPRS时,通常是使用全带宽。发送LPRS时使用全带宽是由于UTDOA定位的精度要求,使用更多的带宽发送更多的LPRS,可以更准确的进行UTDOA定位,进而可以提高UTODA的定位精准度。在实际应用过程中,具体的带宽可以根据NR网络和定位系统的负荷情况进行协商配置,例如只使用其中的部分带宽传输LPRS,具体此处不做限定。
而通过发送上行数据时,可以使用某个固定的带宽,例如10Mhz或者20Mhz,因为在定位场景下,需要发送的上行数据较少,因此可以不占用全带宽,节省带宽资源。在实际应用过程中,发送上行数据时,也可以使用全带宽,具体此处不做限定。
LPRS的调制方式采用BPSK的方式。LPRS序列可以采用3GPP标准定义的Low-PAPR的固定ZC序列,可以理解的是,还可以采用其他类型的序列,具体此处不做限定。
上行数据可以采用QPSK、16QAM或者64QAM等3GPP标准采用的调制方式,具体此处不做限定。
PUCH的信道编码可以采用卷积码,Polar码,LDPC码等3GPP常用编码方式,具体此处不做限定。
上行物理信道按照固定的周期,从NR网络中划分一个NR目标符号用于传输上行数据。其中,因为上行物理信道设计了两个逻辑信道,这两个逻辑信道交替发送,即第一个固定周期发送接入信道,第二个固定周期发送上行共享信道。例如,接入信道在偶数帧发送,上行共享信道在奇数帧发送。上行物理信道按照10ms为一个周期,则接入信道在第一个10ms中使用该NR目标符号,上行共享信道在第二个10ms中使用该NR目标符号。如图11所示,从NR网络中切分出的目标符号为在第7个时隙中的第8个符号,则在帧0中,接入信道使用该目标符号传输初始接入消息,该帧0中的目标符号即为第四时域位置,在帧0的第7个时隙中的第9个符号和帧0中的第17个时隙中的第7、8、9个符号中,上行共享信道使用这些目标符号传输定位消息。
在步骤803中,基站向终端设备发送第一下行数据。
当终端设备向基站发送初始接入消息之后,基站在第一时域位置向终端设备发送第一下行数据,该第一下行数据包括了资源分配消息,该资源分配消息中携带了第二时域位置的信息。
可选地,基站还通过该第一时域位置发送下行同步信息,该下行同步信息用于终端设备进行时间同步。
如前述步骤,该第一时域位置为通过NR网络切分到的时域资源,即为一个NR目标符号,基站通过在该NR目标符号中发送第一下行数据和下行同步信息。具体的,可以在该NR目标符号的第一子符号中发送下行同步信息,在其余子符号中发送第一下行数据。
本实施例中,因为第一下行数据中包括了资源分配消息,而资源分配消息是根据终端 设备的需求进行发送的。例如,当需要给终端设备分配资源时,基站才会在第一下行数据中携带资源分配消息。若终端设备不需要分配资源时,则基站可以在第一时域位置中只发送下行同步信息,不发送资源分配消息。
在步骤804中,终端设备向基站发送第二上行数据和第一上行定位信息。
终端设备在接收到基站发送的资源分配消息和下行同步信息之后,终端设备根据资源分配消息在第二时域位置发送第二上行数据和第一上行定位信息,该第一上行定位信息用于基站进行到达时间TOA的估计。
具体的,如前述步骤,终端设备可以在通过上行共享信道USCH在第二时域位置中发送第二上行数据和第一上行定位消息,该第二时域位置的信息是携带在基站发送的资源分配消息中的。
如前述步骤,该第一时域位置为通过NR网络切分到的时域资源,即为一个NR目标符号,终端设备通过在该NR目标符号中发送第二上行数据和第一上行定位消息。具体的,可以在该NR目标符号中的多个子符号中的任一子符号中发送第一上行定位信息和第二上行数据,或者只在第一子符号中发送第一上行定位信息和上行数据,在其他符号发送上行数据,具体此处不做限定。
在实际应用过程中,终端设备发送上行数据的数据量会小一些,且在定位场景下,基站对定位的精准度要求较高。因此,终端设备可以在发送第一上行定位消息时,使用最大带宽,以确保发送更多的第一上行定位消息。而在发送第二上行数据时,可以根据实际的数据量进行调整,若数据量小,则使用较少的带宽发送第二上行数据,可以节省带宽资源。
在步骤805中,终端设备启动定时器,进入休眠模式。
终端设备在发送完第一上行定位消息之后,终端设备可以启动定时器,并在定时器启动之后,进入休眠模式,该休眠模式的功耗低于终端设备处于正常模式下的功耗,该定时器的时长为预设阈值。
具体的,因为终端设备没有和基站之间建立RRC连接,因此终端设备为了保持低功耗状态,可以进入休眠模式。本实施例方法中,终端设备可以通过在基站分配的指定时域资源位置接收下行同步信息和系统消息,用于终端设备与基站进行时间同步,并且接收系统消息。而在其他时间段,则可以进入休眠模式,以便于减少终端设备的功耗。
在步骤806中,当定时器超时,终端设备进入正常模式。
当定时器超时之后,终端设备退出休眠模式,进入正常模式,在正常模式下终端设备可以在基站分配的指定时域资源位置接收下行同步信息和系统消息。例如终端设备可以在第三时域位置接收基站发送的携带有系统消息的第二下行数据。
在步骤807中,终端设备向基站发送第二上行定位信息。
终端设备在进入正常模式之后,终端设备基于与基站的协议约定,在第二时域位置向基站发送第二上行定位信息,该上行定位信息用于基站进行到达时间TOA估计。
具体的,终端设备在进入正常模式之后,终端设备基于基站已经分配的时域资源信息,向基站发送第二上行定位信息。例如,第二时域退出休眠模式,进入正常模式的时间 在帧0中的第1个时隙,而基站给终端设备分配的第二时域位置是帧0中的第17个时隙中的第7个符号,则终端设备只需要等待10个时隙与7个NR目标符号的时长,就可以再次向基站发送上行定位信息。因为本实施例中限定了每1个帧中,都会有分配到至少1个NR目标符号用于发送上行定位信息,因此终端设备等待的时间较短,减少了终端设备因等待发送上行定位信息的时域资源而消耗的功耗。
在实际应用过程中,终端设备在发送完第二上行定位信息之后,又可以继续进入休眠模式,以保持低功耗的运行状态。
本申请实施例中,基站和终端设备通过更少的信息交互,就可以实现终端设备和基站之间的数据传输和定位,避免了标准UTDOA定位的复杂流程,并且可以长时间按照基站分配的时域资源周期性的发送上行定位消息,发送完成后又可以立即休眠,以保持终端设备的低功耗状态,节省了终端设备的功耗。通过多符号的方式发送上行数据和定位信息,提升了发送上行数据和上行定位信息的数据量。通过频分打孔的方式发送上行数据和定位信息,且用多符号进行发送,并且在单位时间内可以发送更多的数据量。且对上行定位信息和上行数据的传输方式控制更加灵活。
基于前述图1所示的现有技术UTDOA定位流程,本申请实施例中低功耗定位的方法与现有技术3GPP的标准UTDOA定位流程对比如下表1。
表1低功耗定位的方法与现有技术3GPP的标准UTDOA定位流程对比表
Figure PCTCN2021130642-appb-000006
Figure PCTCN2021130642-appb-000007
利用本申请实施例的信道除了可以简化上述R16的标准UTDOA定位流程,终端接收和发送消息的处理时间也明显少于R16标准UTDOA定位流程。本申请实施例的信道时序简单并且周期位置固定,在已经分配的符号进行接收信息和发送信息,持续时长小于1个NR目标符号。而R16标准UTDOA定位流程中,通过PDSCH接收消息时,需要先监听PDCCH信道,而PDCCH的持续时长是1-3个NR目标符号,PDSCH的时长通常是以时隙为单位的。另外,本申请实施例中的信道也无需R16标准L2的HARQ应答机制,减少了终端设备的信号发送次数。
上面对本申请实施例中的地址分配的处理方法进行了描述,下面对本申请实施例中的终端设备进行描述,请参阅图20,为本申请提供的终端设备的一个结构示意图。
一种终端设备,包括:
接收单元2001,用于在第一时域位置接收基站发送的第一下行数据,第一下行数据包括资源分配消息,资源分配消息携带第二时域位置的信息;
发送单元2002,用于在第二时域位置发送第一上行定位信息和第一上行数据,第一上行定位信息用于基站进行到达时间TOA估计;
处理单元2003,用于当终端设备启动定时器时,进入休眠模式,休眠模式的功耗低于终端设备处于正常模式的功耗,定时器的时长为预设阈值;
处理单元2003还用于当定时器超时,进入正常模式;
发送单元2002还用于在第二时域位置向基站发送第二上行定位信息,第二上行定位信息用于基站进行到达时间TOA估计。
本实施例中,终端设备各单元所执行的操作与前述图5a至图5d所示实施例中终端设备所执行的步骤类似,具体此处不再赘述。
请参阅图20,为本申请提供的终端设备的另一结构示意图。
一种终端设备,包括:
接收单元2001,用于在第一时域位置接收基站发送的第一下行数据,第一下行数据包括资源分配消息,资源分配消息携带第二时域位置的信息;
发送单元2002,用于在第二时域位置发送第一上行定位信息和第一上行数据,第一上行定位信息用于基站进行到达时间TOA估计;
处理单元2003,用于当终端设备启动定时器时,进入休眠模式,休眠模式的功耗低于终端设备处于正常模式的功耗,定时器的时长为预设阈值;
处理单元2003还用于当定时器超时,进入正常模式;
发送单元2002还用于在第二时域位置向基站发送第二上行定位信息,第二上行定位信息用于基站进行到达时间TOA估计。
可选地,接收单元2001还用于在第三时域位置接收基站发送的第二下行数据,第二下 行数据包括系统消息,系统消息携带第四时域位置的信息;
发送单元2002还用于在第四时域位置向基站发送第二上行数据和第一上行定位信息,第二上行数据包括初始接入消息,初始接入消息用于终端设备进行初始接入。
可选地,接收单元2001还用于在第一时域位置或第三时域位置接收基站发送的下行同步信息,下行同步信息用于终端设备进行时间同步。
可选地,接收单元2001具体用于通过下行物理信道接收下行数据和下行同步信息,下行数据包括第一下行数据和第二下行数据。
可选地,下行物理信道包括广播信道和或下行公共控制信道,广播信道用于接收单元2001接收第二下行数据和下行同步信息,下行公共控制信道用于接收单元接收第一下行数据和下行同步信息。
可选地,下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或者等于1的正整数。
可选地,N等于1,第一时域位置的时长等于目标符号的时长,第三时域位置的时长等于目标符号的时长,目标符号为NR的符号。
可选地,N为大于或者等于2的正整数,第一时域位置包括N个第一子符号,接收单元2001在M个第一子符号接收下行同步信息,接收单元在(N-M)个第一子符号接收第二下行数据,第三时域位置包括N个第二子符号,接收单元在M个第二字符号接收下行同步信息,接收单元在(N-M)个第二子符号接收第二下行数据,N个第一子符号的时长之和等于目标符号的时长,N个第二子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
可选地,接收单元2001具体用于接收基站通过频分复用的方式发送的下行同步信息和下行数据。
可选地,发送单元2002通过上行物理信道发送上行数据和或上行定位信息,上行定位信息包括第一上行定位信息和第二上行定位信息,上行数据包括第一上行数据和第二上行数据。
可选地,上行物理信道包括接入信道和或上行共享信道,接入信道用于发送单元2002发送第二上行数据和上行定位信息,上行共享信道用于发送单元发送第一上行数据和上行定位消息。
可选地,上行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或者等于1的正整数。
可选地,N等于1,发送单元2002通过频分复用的方式发送上行定位信息和上行数据,第二时域位置的时长等于目标符号的时长,第四时域位置的时长等于目标符号的时长,目标符号为NR的符号。
可选地,N为大于或者等于2的正整数,第二时域位置包括N个第三子符号,发送单元2002在M个第三子符号发送上行定位信息,发送单元在(N-M)个第三子符号发送第一上行数据,第四时域位置包括N个第四子符号,发送单元在M个第四字符号发送上行定位信息,发送单元在(N-M)个第四子符号发送第二上行数据,N个第三子符号的时长之和等 于目标符号的时长,N个第四子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
可选地,发送单元2002还通过频分复用的方式发送上行定位信息和上行数据。
本实施例中,终端设备各单元所执行的操作与前述图5a至图5d所示实施例中终端设备所执行的步骤类似,具体此处不再赘述。
请参阅图21,为本申请提供的基站的一个结构示意图。
一种基站,包括:
发送单元2102,用于在第一时域位置向终端设备发送第一下行数据,第一下行数据包括资源分配消息,资源分配消息携带第二时域位置的信息;
接收单元2101,用于在第二时域位置接收终端设备发送的第一上行定位信息和第一上行数据,第一上行定位信息用于基站进行到达时间TOA估计。
本实施例中,基站各单元所执行的操作与前述图5a至图5d所示实施例中基站所执行的步骤类似,具体此处不再赘述。
请参阅图21,为本申请提供的基站的另一结构示意图。
一种基站,包括:
发送单元2102,用于在第一时域位置向终端设备发送第一下行数据,第一下行数据包括资源分配消息,资源分配消息携带第二时域位置的信息;
接收单元2101,用于在第二时域位置接收终端设备发送的第一上行定位信息和第一上行数据,第一上行定位信息用于基站进行到达时间TOA估计。
可选地,发送单元2102在第三时域位置向终端设备发送第二下行数据,第二下行数据包括系统消息,系统消息携带第四时域位置的信息;
接收单元2101还用于在第四时域位置接收终端设备发送的第二上行数据和第一上行定位信息,第二上行数据包括初始接入消息,初始接入消息用于终端设备进行初始接入。
可选地,发送单元2102还用于在第一时域位置或第三时域位置向终端设备发送下行同步信息,下行同步信息用于终端设备进行时间同步。
可选地,发送单元2102还用于通过下行物理信道发送下行数据和下行同步信息,下行数据包括第一下行数据和第二下行数据。
可选地,下行物理信道包括广播信道和或下行公共控制信道,广播信道用于发送单元2102发送第二下行数据和下行同步信息,下行公共控制信道用于发送单元发送第一下行数据和下行同步信息。
可选地,下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或者等于1的正整数。
可选地,N等于1,发送单元2102通过频分复用的方式发送下行同步信息和下行数据,第一时域位置的时长等于目标符号的时长,第三时域位置的时长等于目标符号的时长,目标符号为NR的符号。
可选地,N为大于或者等于2的正整数,第一时域位置包括N个第一子符号,发送单元2102在M个第一子符号发送下行同步信息,发送单元在(N-M)个第一子符号发送第二 下行数据,第三时域位置包括N个第二子符号,发送单元在M个第二字符号发送下行同步信息,发送单元在(N-M)个第二子符号发送第二下行数据,N个第一子符号的时长之和等于目标符号的时长,N个第二子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
可选地,发送单元2102还通过频分复用的方式发送下行同步信息和下行数据。
可选地,接收单元2101通过上行物理信道接收上行数据和或上行定位信息,上行定位信息包括第一上行定位信息和第二上行定位信息,上行数据包括第一上行数据和第二上行数据。
可选地,上行物理信道包括接入信道和或上行共享信道,接入信道用于接收单元2101接收第二上行数据和上行定位信息,上行共享信道用于接收单元2101接收第一上行数据和上行定位消息。
可选地,上行物理信道的子载波间隔为新空口NR子载波间隔的N倍,N为大于或者等于1的正整数。
可选地,N等于1,第二时域位置的时长等于目标符号的时长,第四时域位置的时长等于目标符号的时长,目标符号为NR的符号。
可选地,N为大于或者等于2的正整数,第二时域位置包括N个第三子符号,接收单元2101在M个第三子符号接收上行定位信息,接收单元2101在(N-M)个第三子符号接收第一上行数据,第四时域位置包括N个第四子符号,接收单元2101在M个第四字符号接收上行定位信息,接收单元2101在(N-M)个第四子符号接收第二上行数据,N个第三子符号的时长之和等于目标符号的时长,N个第四子符号的时长之和等于目标符号的时长,目标符号为NR的符号,M为大于或者等于1的正整数,(N-M)为大于或者等于1的正整数。
可选地,接收单元2101接收终端设备通过频分复用的方式发送的上行定位信息和上行数据。
请参阅图22,为本申请提供的终端设备的另一实施例的结构示意图。
终端设备中包括处理器2201、存储器2202、总线2205、接口2204等设备,处理器2201与存储器2202、接口2204相连,总线2205分别连接处理器2201、存储器2202以及接口2204,接口2204用于接收或者发送数据,处理器2201是单核或多核中央处理单元,或者为特定集成电路,或者为被配置成实施本发明实施例的一个或多个集成电路。存储器2202可以为随机存取存储器(Random Access Memory,RAM),也可以为非易失性存储器(non-volatile memory),例如至少一个硬盘存储器。存储器2202用于存储计算机执行指令。具体的,计算机执行指令中可以包括程序2203。
本实施例中,该处理器2201可以执行前述图5a-5d所示实施例中终端设备所执行的操作,具体此处不再赘述。
请参阅图23,为本申请提供的基站的另一实施例的结构示意图。
基站中包括处理器2301、存储器2302、总线2305、接口2304等设备,处理器2301与存储器2302、接口2304相连,总线2305分别连接处理器2301、存储器2302以及接口2304,接口2304用于接收或者发送数据,处理器2301是单核或多核中央处理单元,或者 为特定集成电路,或者为被配置成实施本发明实施例的一个或多个集成电路。存储器2302可以为随机存取存储器(Random Access Memory,RAM),也可以为非易失性存储器(non-volatile memory),例如至少一个硬盘存储器。存储器2302用于存储计算机执行指令。具体的,计算机执行指令中可以包括程序2303。
本实施例中,该处理器2301可以执行前述图5a-5d所示实施例中基站所执行的操作,具体此处不再赘述。应理解,本申请以上实施例中的终端设备和基站中提及的处理器,或者本申请上述实施例提供的处理器,可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请中以上实施例中的终端设备和基站中的处理器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。本申请实施例中的存储器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。
还需要说明的是,当终端设备和基站包括处理器(或处理单元)与存储器时,本申请中的处理器可以是与存储器集成在一起的,也可以是处理器与存储器通过接口连接,可以根据实际应用场景调整,并不作限定。
本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备和基站实现上述方法中所涉及的控制器的功能,例如处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,芯片系统还包括存储器,存储器,用于保存必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
在另一种可能的设计中,当该芯片系统为用户设备或接入网等内的芯片时,芯片包括:处理单元和通信单元,处理单元例如可以是处理器,通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端设备和基站等内的芯片执行上述图3或图4中任一项实施例中第一终端设备和基站执行的步骤。可选地,存储单元为芯片内的存储单元,如寄存器、缓存等,存储单元还可以是终端设备和基站等内的位于芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例中与终端设备和基站的控制器执行的方法流程。对应的,该计算机可以为上述终端设备和基站。
应理解,本申请以上实施例中的提及的控制器或处理器,可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、分立硬件组件等中的一种或多种的组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请中以上实施例中的终端设备和基站或芯片系统等中的处理器或控制器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。本申请实施例中的存储器的数量可以是一个,也可以是多个,可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。
还应理解,本申请实施例中以上实施例中的终端设备和基站等中提及的存储器或可读存储介质等,可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本领域普通技术人员可以理解实现上述实施例的全部或部分由终端设备和基站或者处理器2102执行的步骤可以通过硬件或程序来指令相关的硬件完成。程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,随机接入存储器等。具体地,例如:上述处理单元或处理器可以是中央处理器,通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。上述的这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
当使用软件实现时,上述实施例描述的方法步骤可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质等。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本申请实施例中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
取决于语境,如在此所使用的词语“如果”或“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
以上,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (31)

  1. 一种数据处理方法,其特征在于,包括:
    终端设备在第一时域位置接收基站发送的第一下行数据,所述第一下行数据包括资源分配消息,所述资源分配消息携带第二时域位置的信息;
    所述终端设备在所述第二时域位置发送第一上行定位信息和第一上行数据,所述第一上行定位信息用于所述基站进行到达时间TOA估计;
    当所述终端设备启动定时器时,所述终端设备进入休眠模式,所述休眠模式的功耗低于所述终端设备处于正常模式的功耗,所述定时器的时长为预设阈值;
    当所述定时器超时,所述终端设备进入所述正常模式;
    所述终端设备在所述第二时域位置向所述基站发送第二上行定位信息,所述第二上行定位信息用于所述基站进行到达时间TOA估计。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备在第三时域位置接收所述基站发送的第二下行数据,所述第二下行数据包括系统消息,所述系统消息携带第四时域位置的信息;
    所述终端设备在所述第四时域位置向所述基站发送第二上行数据和所述第一上行定位信息,所述第二上行数据包括初始接入消息,所述初始接入消息用于所述终端设备进行初始接入。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述第一时域位置或所述第三时域位置接收所述基站发送的下行同步信息,所述下行同步信息用于所述终端设备进行时间同步。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备通过下行物理信道接收下行数据和所述下行同步信息,所述下行数据包括所述第一下行数据和所述第二下行数据。
  5. 根据权利要求4所述的方法,其特征在于,所述下行物理信道包括广播信道和或下行公共控制信道,所述广播信道用于所述终端设备接收所述第二下行数据和所述下行同步信息,所述下行公共控制信道用于所述终端设备接收所述第一下行数据和所述下行同步信息。
  6. 根据权利要求4或5所述的方法,其特征在于,所述下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,所述N为大于或者等于1的正整数。
  7. 根据权利要求6所述的方法,其特征在于,所述N等于1,所述第一时域位置的时长等于目标符号的时长,所述第三时域位置的时长等于所述目标符号的时长,所述目标符号为所述NR的符号。
  8. 根据权利要求6所述的方法,其特征在于,所述N为大于或者等于2的正整数,所述第一时域位置包括N个第一子符号,所述终端设备在M个第一子符号接收所述下行同步信息,所述终端设备在(N-M)个第一子符号接收所述第二下行数据,所述第三时域位置包括N个第二子符号,所述终端设备在M个第二字符号接收所述下行同步信息,所述终端设备在(N-M)个所述第二子符号接收所述第二下行数据,所述N个第一子符号的时长之和等于目标符号的时长,所述N个第二子符号的时长之和等于目标符号的时长,所述目标符号 为所述NR的符号,所述M为大于或者等于1的正整数,所述(N-M)为大于或者等于1的正整数。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备接收所述基站通过频分复用的方式发送的所述下行同步信息和所述下行数据。
  10. 根据权利要求3至9中任一项所述的方法,其特征在于,所述终端设备通过上行物理信道发送上行数据和或上行定位信息,所述上行定位信息包括所述第一上行定位信息和所述第二上行定位信息,所述上行数据包括所述第一上行数据和所述第二上行数据。
  11. 根据权利要求10所述的方法,其特征在于,所述上行物理信道包括接入信道和或上行共享信道,所述接入信道用于所述终端设备发送所述第二上行数据和所述上行定位信息,所述上行共享信道用于所述终端设备发送所述第一上行数据和所述上行定位消息。
  12. 根据权利要求10或11所述的方法,其特征在于,所述上行物理信道的子载波间隔为新空口NR子载波间隔的N倍,所述N为大于或者等于1的正整数。
  13. 根据权利要求12所述的方法,其特征在于,所述N等于1,所述终端设备通过频分复用的方式发送所述上行定位信息和所述上行数据,所述第二时域位置的时长等于目标符号的时长,所述第四时域位置的时长等于所述目标符号的时长,所述目标符号为所述NR的符号。
  14. 根据权利要求12所述的方法,其特征在于,所述N为大于或者等于2的正整数,所述第二时域位置包括N个第三子符号,所述终端设备在M个第三子符号发送所述上行定位信息,所述终端设备在(N-M)个第三子符号发送所述第一上行数据,所述第四时域位置包括N个第四子符号,所述终端设备在M个第四字符号发送所述上行定位信息,所述终端设备在(N-M)个所述第四子符号发送所述第二上行数据,所述N个第三子符号的时长之和等于目标符号的时长,所述N个第四子符号的时长之和等于目标符号的时长,所述目标符号为所述NR的符号,所述M为大于或者等于1的正整数,所述(N-M)为大于或者等于1的正整数。
  15. 根据权利要求14所述的方法,其特征在于,所述终端设备还通过频分复用的方式发送所述上行定位信息和所述上行数据。
  16. 一种数据处理方法,其特征在于,包括:
    基站在第一时域位置向终端设备发送第一下行数据,所述第一下行数据包括资源分配消息,所述资源分配消息携带第二时域位置的信息;
    所述基站在所述第二时域位置接收所述终端设备发送的第一上行定位信息和第一上行数据,所述第一上行定位信息用于所述基站进行到达时间TOA估计。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述基站在第三时域位置向所述终端设备发送第二下行数据,所述第二下行数据包括系统消息,所述系统消息携带第四时域位置的信息;
    所述基站在所述第四时域位置接收所述终端设备发送的第二上行数据和所述第一上行定位信息,所述第二上行数据包括初始接入消息,所述初始接入消息用于所述终端设备进行初始接入。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述基站在所述第一时域位置或所述第三时域位置向所述终端设备发送下行同步信息,所述下行同步信息用于所述终端设备进行时间同步。
  19. 根据权利要求18所述的方法,其特征在于,所述基站通过下行物理信道发送下行数据和所述下行同步信息,所述下行数据包括所述第一下行数据和所述第二下行数据。
  20. 根据权利要求19所述的方法,其特征在于,所述下行物理信道包括广播信道和或下行公共控制信道,所述广播信道用于所述基站发送所述第二下行数据和所述下行同步信息,所述下行公共控制信道用于所述基站发送所述第一下行数据和所述下行同步信息。
  21. 根据权利要求19或20所述的方法,其特征在于,所述下行物理信道的子载波间隔为新空口NR子载波间隔的N倍,所述N为大于或者等于1的正整数。
  22. 根据权利要求21所述的方法,其特征在于,所述N等于1,所述基站通过频分复用的方式发送所述下行同步信息和所述下行数据,所述第一时域位置的时长等于目标符号的时长,所述第三时域位置的时长等于所述目标符号的时长,所述目标符号为所述NR的符号。
  23. 根据权利要求21所述的方法,其特征在于,所述N为大于或者等于2的正整数,所述第一时域位置包括N个第一子符号,所述基站在M个第一子符号发送所述下行同步信息,所述基站在(N-M)个第一子符号发送所述第二下行数据,所述第三时域位置包括N个第二子符号,所述基站在M个第二字符号发送所述下行同步信息,所述基站在(N-M)个所述第二子符号发送所述第二下行数据,所述N个第一子符号的时长之和等于目标符号的时长,所述N个第二子符号的时长之和等于目标符号的时长,所述目标符号为所述NR的符号,所述M为大于或者等于1的正整数,所述(N-M)为大于或者等于1的正整数。
  24. 根据权利要求23所述的方法,其特征在于,所述基站还通过频分复用的方式发送所述下行同步信息和所述下行数据。
  25. 根据权利要求18至24中任一项所述的方法,其特征在于,所述基站通过上行物理信道接收上行数据和或上行定位信息,所述上行定位信息包括所述第一上行定位信息和所述第二上行定位信息,所述上行数据包括所述第一上行数据和所述第二上行数据。
  26. 根据权利要求25所述的方法,其特征在于,所述上行物理信道包括接入信道和或上行共享信道,所述接入信道用于所述基站接收所述第二上行数据和所述上行定位信息,所述上行共享信道用于所述基站接收所述第一上行数据和所述上行定位消息。
  27. 根据权利要求25或26所述的方法,其特征在于,所述上行物理信道的子载波间隔为新空口NR子载波间隔的N倍,所述N为大于或者等于1的正整数。
  28. 根据权利要求27所述的方法,其特征在于,所述N等于1,所述第二时域位置的时长等于目标符号的时长,所述第四时域位置的时长等于所述目标符号的时长,所述目标符号为所述NR的符号。
  29. 根据权利要求27所述的方法,其特征在于,所述N为大于或者等于2的正整数,所述第二时域位置包括N个第三子符号,所述基站在M个第三子符号接收所述上行定位信息,所述基站在(N-M)个第三子符号接收所述第一上行数据,所述第四时域位置包括N个 第四子符号,所述基站在M个第四字符号接收所述上行定位信息,所述基站在(N-M)个所述第四子符号接收所述第二上行数据,所述N个第三子符号的时长之和等于目标符号的时长,所述N个第四子符号的时长之和等于目标符号的时长,所述目标符号为所述NR的符号,所述M为大于或者等于1的正整数,所述(N-M)为大于或者等于1的正整数。
  30. 根据权利要求29所述的方法,其特征在于,所述基站接收所述终端设备通过频分复用的方式发送的所述上行定位信息和所述上行数据。
  31. 一种可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1-30中任一项所述的方法被实现。
PCT/CN2021/130642 2020-11-30 2021-11-15 一种数据处理方法及其设备 WO2022111324A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011377376.6A CN114585060B (zh) 2020-11-30 2020-11-30 一种数据处理方法及其设备
CN202011377376.6 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022111324A1 true WO2022111324A1 (zh) 2022-06-02

Family

ID=81753991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130642 WO2022111324A1 (zh) 2020-11-30 2021-11-15 一种数据处理方法及其设备

Country Status (2)

Country Link
CN (1) CN114585060B (zh)
WO (1) WO2022111324A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024078363A1 (zh) * 2022-10-09 2024-04-18 华为技术有限公司 信号传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205967B (zh) * 2012-03-16 2018-03-09 华为技术有限公司 资源配置方法、设备及系统
CN111934830A (zh) * 2019-05-13 2020-11-13 华为技术有限公司 一种通信方法及设备
CN112887066A (zh) * 2019-11-29 2021-06-01 中国移动通信有限公司研究院 Cdrx参数的配置方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205967B (zh) * 2012-03-16 2018-03-09 华为技术有限公司 资源配置方法、设备及系统
CN111934830A (zh) * 2019-05-13 2020-11-13 华为技术有限公司 一种通信方法及设备
CN112887066A (zh) * 2019-11-29 2021-06-01 中国移动通信有限公司研究院 Cdrx参数的配置方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Discussion of NR Positioning Enhancements", 3GPP TSG RAN WG1 MEETING #102 R1-2005712, 8 August 2020 (2020-08-08), XP051917687 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024078363A1 (zh) * 2022-10-09 2024-04-18 华为技术有限公司 信号传输方法及装置

Also Published As

Publication number Publication date
CN114585060B (zh) 2024-03-01
CN114585060A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2016188432A1 (zh) 一种机器通信调度方法、基站和用户设备
EP3858057B1 (en) Transitioning between different scheduling delay assumptions
US11102714B2 (en) Method and apparatus for obtaining system information
EP3863347A1 (en) Resource configuration method and device
EP2850905B1 (en) Methods and apparatuses for indicating packet transmission time
WO2016070552A1 (zh) 功能指示的方法、装置及系统
WO2020221093A1 (zh) 搜索空间的监测、配置方法及装置
WO2012116624A1 (zh) 一种传输数据的方法及设备
WO2020151661A1 (zh) 信息发送、接收方法、装置、基站、终端及通信系统
WO2016123772A1 (zh) 一种传输业务数据的方法和装置
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2020156559A1 (zh) 一种数据传输方法、网络设备和终端设备
US20220150922A1 (en) System and Method for Scheduling Control Channel Information
US20210235506A1 (en) Information processing method and apparatus
EP4171144A1 (en) Physical downlink control channel (pdcch) monitoring method and apparatus, and terminal
US11528714B2 (en) Data transmission method and apparatus
US10440646B2 (en) Communications device and method utilizing a delay period between transmission and reception of data via a wireless network
US9900909B2 (en) Communications system for transmitting and receiving data
WO2022111324A1 (zh) 一种数据处理方法及其设备
WO2019095916A1 (zh) 一种非授权频段上同步信号的发送方法、网络设备及终端设备
WO2015090199A1 (zh) 传输数据的方法、装置和系统
WO2021097648A1 (zh) 检测物理下行控制信道pdcch的方法以及装置
EP3843488A1 (en) Method for transmitting data, and method and device for sending control information
WO2019041261A1 (zh) 一种通信方法及设备
WO2015114451A2 (en) Method and apparatus for transmitting an uplink response message

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896825

Country of ref document: EP

Kind code of ref document: A1