WO2024078363A1 - 信号传输方法及装置 - Google Patents

信号传输方法及装置 Download PDF

Info

Publication number
WO2024078363A1
WO2024078363A1 PCT/CN2023/122688 CN2023122688W WO2024078363A1 WO 2024078363 A1 WO2024078363 A1 WO 2024078363A1 CN 2023122688 W CN2023122688 W CN 2023122688W WO 2024078363 A1 WO2024078363 A1 WO 2024078363A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
signal
duration
symbols
symbol
Prior art date
Application number
PCT/CN2023/122688
Other languages
English (en)
French (fr)
Inventor
李强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024078363A1 publication Critical patent/WO2024078363A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communication technology, and in particular to a signal transmission method and device.
  • the transmitting end and the receiving end can perform relevant steps of time synchronization.
  • the transmitting end sends a signal to the receiving end, and the signal carries a synchronization signal and data.
  • the receiving end receives the signal, it performs a time domain correlation operation on the signal and the locally stored synchronization signal to obtain time synchronization information.
  • the current scheme can achieve a certain synchronization effect, due to the influence of factors such as noise and channel distortion of the wireless channel, the synchronization information obtained by the current synchronization scheme is not accurate.
  • the present application provides a signal transmission method and device, which can minimize the impact of noise and distortion of wireless channels and obtain accurate synchronization information.
  • a signal transmission method which can be applied to a sending device, and the method includes: generating a first signal, and sending the first signal to a receiving device.
  • the first signal includes data information and a first synchronization signal;
  • the first synchronization signal includes at least two first modulation symbols,
  • the data information includes at least two second modulation symbols, and the duration of the symbol in the at least two first modulation symbols is shorter than the duration of the symbol in the at least two second modulation symbols.
  • the above scheme takes into account that when the receiving device performs time synchronization, the width of the correlation peak used to determine the time synchronization information (also called timing information) is affected by the time width of the modulation symbol in the first synchronization signal. Therefore, when the sending device generates the first synchronization signal, the duration of the first modulation symbol in the first synchronization signal is shorter than the duration of the second modulation symbol in the data information. In this way, when the receiving device performs time domain correlation according to the first synchronization signal, it can obtain a correlation peak with a narrower width, so as to determine the synchronization information from a narrower time range, which helps to improve the accuracy of synchronization.
  • the method further includes:
  • the first configuration information includes at least one of the following information: indication information of the first duration, sequence information of the first synchronization signal, and a sending period of the first synchronization signal; the indication information of the first duration is used to indicate the duration of a symbol in the at least two first modulation symbols.
  • the receiving device can generate a first local synchronization signal for time synchronization according to the first configuration information, and perform a correlation operation on the first local synchronization signal and the received first synchronization signal to determine a correlation peak, and determine the synchronization information according to the correlation peak.
  • the receiving device since the duration of the first modulation symbol in the first synchronization signal is shorter (shorter than the duration of the second modulation symbol in the data information), the receiving device can obtain a narrower correlation peak through correlation operation to improve the accuracy of synchronization.
  • the method further includes:
  • the second signal includes a second synchronization signal and a third synchronization signal
  • the second synchronization signal includes at least two third modulation symbols, and the time interval between adjacent symbols in the at least two third modulation symbols is the first time interval
  • the third synchronization signal includes at least two fourth modulation symbols, and the time interval between adjacent symbols in the at least two fourth modulation symbols is the first time interval
  • the sending time of the second synchronization signal is consistent with the sending time of the third synchronization signal
  • the duration of the symbol in the at least two fourth modulation symbols is shorter than the duration of the symbol in the at least two third modulation symbols
  • the second signal is sent.
  • the second signal includes a second synchronization signal and a third synchronization signal, which can be understood as the second signal carrying the second synchronization signal and the third synchronization signal.
  • the OOK signal (an example of the second signal) includes a second synchronization signal (shown as filled with diagonal lines), a third synchronization signal (shown as filled with black) and data information.
  • the second synchronization signal includes OOK symbol No. 5, OOK symbol No. 15.
  • the second synchronization signal may also include OOK symbols such as OOK symbol No. 25. It can be seen that the time interval between two adjacent symbols in the second synchronization signal (shown as filled with diagonal lines) is T3 (the first time interval).
  • the third synchronization signal includes OOK symbol No. 0 and OOK symbol No. 10. Similarly, the third synchronization signal may also include OOK symbol No. 20 and other symbols. It can be seen that the time interval between two adjacent symbols in the third synchronization signal is the first time interval T3.
  • the duration (T1) of the fourth modulation symbol in the third synchronization signal is shorter than the duration (T1’) of the third modulation symbol in the second synchronization signal.
  • the receiving device can be synchronized according to the second synchronization signal and the third synchronization signal.
  • the receiving device can correlate the local synchronization signal 1 (an example of the third synchronization signal) and the local synchronization signal 2 (an example of the third synchronization signal) with the received OOK signal to obtain corresponding correlation peaks.
  • the receiving device can determine the synchronization information according to the time of the corresponding correlation peak obtained in Figures 12 and 13, so as to determine the starting position of the data information.
  • the correlation peaks obtained can be divided into three categories, the width of the first type of correlation peak is 2T1, the width of the second type of correlation peak is T1+T2 (the duration of T1 is shorter than the duration of T2), and the width of the third type of correlation peak is 2T2.
  • the width (2T1) of the first type of correlation peak is the narrowest, then at the time of the first type of correlation peak, the receiving device can obtain the most accurate timing time.
  • the duration of the modulation symbol of the second synchronization signal in the second signal is longer, so the signal energy of the second synchronization signal is higher. Therefore, using the second synchronization signal with higher energy for synchronization can improve the success probability of synchronization of the receiving device.
  • the receiving device can also detect the second synchronization signal, and then perform time synchronization according to the second synchronization signal.
  • the synchronization accuracy can be improved through the third synchronization signal (the duration of the modulation symbol is relatively short).
  • the method further includes:
  • the second configuration information includes at least one of the following information: the first time interval, the first offset time, sequence information of the second synchronization signal, sequence information of the third synchronization signal, indication information of the second duration, indication information of the third duration, a sending period of the second synchronization signal, and a sending period of the third synchronization signal;
  • the indication information of the second duration is used to indicate the duration of a symbol in the at least two third modulation symbols
  • the indication information of the third duration is used to indicate the duration of a symbol in the at least two fourth modulation symbols.
  • the receiving device can generate a second local synchronization signal and a third local synchronization signal according to the second configuration information, and perform time synchronization according to the second local synchronization signal and the third local synchronization signal.
  • the duration of the modulation symbol in the second synchronization signal is longer, the energy of the second synchronization signal is higher, which can resist the distortion and noise of the channel environment and improve the probability of the second synchronization signal being received by the receiving end.
  • the receiving device since the duration of the modulation symbol in the third synchronization signal is shorter, the receiving device can obtain a narrower correlation peak according to the third synchronization signal, thereby improving the synchronization accuracy.
  • the method further includes:
  • the second signal includes a second synchronization signal and a third synchronization signal;
  • the second synchronization signal is The last first-category symbol corresponding to at least one second-category symbol is occupied in the time domain;
  • the third synchronization signal occupies the cyclic prefix CP corresponding to the at least one second-category symbol in the time domain;
  • the signal in the CP is obtained by copying the signal of the last first-category symbol in the second-category symbol corresponding to the CP;
  • the second signal is sent.
  • the transmitting device generates an OOK signal through an OFDM transmitter.
  • the transmitter generates 4 OOK symbols in each OFDM symbol.
  • the signal at the end of each OFDM symbol will be copied to the head end of the OFDM symbol.
  • the transmitter copies the synchronization signal of the end of OFDM symbol No. 1 (i.e., OOK symbol No. 4) to the head end of OFDM symbol No. 1 (i.e., the black filling position in front of OOK symbol No. 1 in FIG9B ), and copies the synchronization signal of the end of OFDM symbol No. 3 (i.e., OOK symbol No. 12) to the head end of OFDM symbol No. 3 (i.e., the black filling position in front of OOK symbol No. 9 in FIG9B ).
  • the transmitting device sends the third synchronization signal in the CP corresponding to OFDM symbols 1, 3, 4, and 5, and sends the second synchronization signal in the last OOK symbol corresponding to OFDM symbols 1, 3, 4, and 5.
  • the second synchronization signal occupies the last OOK symbol corresponding to at least one OFDM symbol (OFDM symbols 1, 3, 4, and 5) in the time domain;
  • the third synchronization signal occupies the CP corresponding to each of the above at least one OFDM symbol (CP corresponding to OFDM symbols 1, 3, 4, and 5) in the time domain.
  • the second signal may include the second synchronization signal and the third modulation symbol.
  • the receiving device may use the two synchronization signals to perform time synchronization, thereby improving the accuracy of time synchronization.
  • the duration of the first type of symbols is greater than or equal to the duration of the CP.
  • the second signal may include the second synchronization signal with a longer modulation symbol and the third modulation symbol with a shorter modulation symbol. Since the duration of the modulation symbol in the second synchronization signal is longer, the energy of the second synchronization signal is higher, which can resist the distortion and noise of the channel environment and improve the probability of the second synchronization signal being received by the receiving end. At the same time, since the duration of the modulation symbol in the third synchronization signal is shorter, the receiving end can obtain a narrower correlation peak according to the third synchronization signal, thereby improving the synchronization accuracy.
  • the method further includes:
  • the third configuration information includes at least one of the following information: the second type of symbols occupied by the second synchronization signal, the second type of symbols occupied by the third synchronization signal, the sending time interval between adjacent modulation symbols in the second synchronization signal, the sending time interval between adjacent modulation symbols in the third synchronization signal, the offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal, the sequence information of the second synchronization signal, the sequence information of the third synchronization signal, the sending period of the second synchronization signal, and the sending period of the third synchronization signal.
  • generating the second signal includes:
  • the second signal is generated by an Orthogonal Frequency Division Multiplexing (OFDM) transmitter.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the existing OFDM transmitter in the sending device can be used to generate and send the second signal, without the need to upgrade the hardware of the sending device, thereby reducing costs.
  • the first category of symbols includes at least one of the following categories of symbols: on-off keying OOK symbols, amplitude keying ASK symbols, and frequency keying FSK symbols; the second category of symbols includes OFDM symbols.
  • a signal transmission method which is applied to a receiving device, and the method includes:
  • the first signal includes data information and a first synchronization signal;
  • the first synchronization signal includes at least two first modulation symbols,
  • the data information includes at least two second modulation symbols, and the duration of a symbol in the at least two first modulation symbols is shorter than the duration of a symbol in the at least two second modulation symbols;
  • Time synchronization is performed according to the first synchronization signal.
  • the method further includes:
  • the first configuration information includes at least one of the following information: indication information of a first duration, sequence information of the first synchronization signal, and a transmission period of the first synchronization signal; the indication information of the first duration is used to indicate the duration of a symbol in the at least two first modulation symbols;
  • a first local synchronization signal is generated according to the first configuration information, where the first local synchronization signal is used for time synchronization.
  • the receiving end may generate a local synchronization signal 3 according to the first configuration information.
  • the waveform of the local synchronization signal 3 is consistent with the waveform of the first synchronization signal.
  • the first configuration information is pre-configured, or the first configuration information is configured by the sending device.
  • performing time synchronization according to the first synchronization signal includes:
  • Time synchronization is performed according to the first local synchronization signal and the first synchronization signal.
  • the method further includes:
  • the second signal includes a second synchronization signal and a third synchronization signal
  • the second synchronization signal includes at least two third modulation symbols, and the time interval between adjacent symbols in the at least two third modulation symbols is a first time interval
  • the third synchronization signal includes at least two fourth modulation symbols, and the time interval between adjacent symbols in the at least two fourth modulation symbols is the first time interval
  • the duration of the symbols in the at least two fourth modulation symbols is shorter than the duration of the symbols in the at least two third modulation symbols
  • Time synchronization is performed according to the second synchronization signal and the third synchronization signal.
  • the method further includes:
  • the second configuration information includes at least one of the following information: the first time interval, the first offset time, the sequence information of the second synchronization signal, the sequence information of the third synchronization signal, the indication information of the second duration, the indication information of the third duration, the sending period of the second synchronization signal, and the sending period of the third synchronization signal; wherein the indication information of the second duration is used to indicate the duration of a symbol in the at least two third modulation symbols, and the indication information of the third duration is used to indicate the duration of a symbol in the at least two fourth modulation symbols;
  • a second local synchronization signal and a third local synchronization signal are generated according to the second configuration information.
  • the method further includes:
  • the second signal includes a second synchronization signal and a third synchronization signal;
  • the second synchronization signal occupies the last first-category symbol corresponding to at least one second-category symbol in the time domain;
  • the third synchronization signal occupies the cyclic prefix CP corresponding to the at least one second-category symbol in the time domain;
  • the signal in the CP is obtained by copying the signal of the last first-category symbol in the second-category symbol corresponding to the CP;
  • Time synchronization is performed according to the second synchronization signal and the third synchronization signal.
  • the method further includes:
  • the third configuration information including at least one of the following information: the second type of symbols occupied by the second synchronization signal, the second type of symbols occupied by the third synchronization signal, the sending time interval of adjacent modulation symbols in the second synchronization signal, the sending time interval of adjacent modulation symbols in the third synchronization signal, the offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal, the sequence information of the second synchronization signal, the sequence information of the third synchronization signal, the sending period of the second synchronization signal, and the sending period of the third synchronization signal;
  • a second local synchronization signal and a third local synchronization signal are generated according to the third configuration information.
  • the duration of the first type of symbols is greater than the duration of the CP.
  • performing time synchronization according to the second synchronization signal and the third synchronization signal includes:
  • a first timing time corresponding to the second synchronization signal and a second timing time corresponding to the third synchronization signal are determined according to the second local synchronization signal, the second synchronization signal and the third synchronization signal.
  • the receiving device correlates the local synchronization signal 1 (an example of the second local synchronization signal) with the second synchronization signal and the third synchronization signal to obtain a second type of correlation peak and a third type of correlation peak, and determines the second timing time according to the second type of correlation peak (the correlation peak corresponding to the third synchronization signal), and determines the first timing time according to the third type of correlation peak.
  • the local synchronization signal 1 an example of the second local synchronization signal
  • the third synchronization signal determines the second timing time according to the second type of correlation peak (the correlation peak corresponding to the third synchronization signal), and determines the first timing time according to the third type of correlation peak.
  • performing time synchronization according to the second synchronization signal and the third synchronization signal includes:
  • the third timing time corresponds to a first correlation peak
  • the fourth timing time corresponds to a second correlation peak
  • the time domain width of the first correlation peak is greater than the time domain width of the second correlation peak
  • the receiving device correlates the local synchronization signal 2 (an example of the third local synchronization signal) with the second synchronization signal and the third synchronization signal to obtain the second type of correlation peak and the first type of correlation peak, and determines the fourth timing time according to the first type of correlation peak (the correlation peak corresponding to the third synchronization signal), and determines the third timing time according to the second type of correlation peak (the correlation peak corresponding to the second synchronization signal).
  • the time domain width (2T1) of the first type of correlation peak is smaller than the time domain width (T1+T2) of the second type of correlation peak.
  • a signal transmission method which is applied to a sending device, and the method includes:
  • the second signal includes a second synchronization signal and a third synchronization signal;
  • the second synchronization signal includes at least two third modulation symbols, and the time interval between adjacent symbols in the at least two third modulation symbols is a first time interval;
  • the third synchronization signal includes at least two fourth modulation symbols, and the time interval between adjacent symbols in the at least two fourth modulation symbols is a first time interval; there is a first offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal; the duration of the symbols in the at least two fourth modulation symbols is shorter than the duration of the symbols in the at least two third modulation symbols;
  • the method further includes:
  • the second configuration information includes at least one of the following information: a first time interval, a first offset time, sequence information of a second synchronization signal, sequence information of a third synchronization signal, indication information of a second duration, indication information of a third duration, a sending period of a second synchronization signal, and a sending period of a third synchronization signal.
  • the second duration indication information is used to indicate the duration of a symbol in the at least two third modulation symbols
  • the third duration indication information is used to indicate the duration of a symbol in the at least two fourth modulation symbols.
  • a signal transmission method which is applied to a receiving device, and the method includes:
  • the second signal includes a second synchronization signal and a third synchronization signal;
  • the second synchronization signal includes at least two third modulation symbols, and the time interval between adjacent symbols in the at least two third modulation symbols is a first time interval;
  • the third synchronization signal includes at least two fourth modulation symbols, and the time interval between adjacent symbols in the at least two fourth modulation symbols is a first time interval; there is a first offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal; the duration of the symbols in the at least two fourth modulation symbols is shorter than the duration of the symbols in the at least two third modulation symbols;
  • Time synchronization is performed according to the second signal.
  • the method further includes:
  • the second configuration information includes at least one of the following information: a first time interval, a first offset time, sequence information of a second synchronization signal, sequence information of a third synchronization signal, indication information of a second duration, indication information of a third duration, a sending period of a second synchronization signal, and a sending period of a third synchronization signal.
  • the second duration indication information is used to indicate the duration of a symbol in the at least two third modulation symbols
  • the third duration indication information is used to indicate the duration of a symbol in the at least two fourth modulation symbols.
  • a signal transmission method which is applied to a sending device, and the method includes:
  • the second signal including a second synchronization signal and a third synchronization signal
  • the second synchronization signal occupies the last first-category symbol corresponding to at least one second-category symbol in the time domain
  • the third synchronization signal occupies the cyclic prefix CP corresponding to at least one second-category symbol in the time domain
  • the signal in the CP is obtained by duplicating the signal of the last first-category symbol in the second-category symbol corresponding to the CP;
  • the duration of the first type of symbols is greater than or equal to the duration of the CP.
  • the method further includes:
  • the third configuration information includes at least one of the following information: the second type of symbols occupied by the second synchronization signal, the second type of symbols occupied by the third synchronization signal, the sending time interval between adjacent modulation symbols in the second synchronization signal, the sending time interval between adjacent modulation symbols in the third synchronization signal, the offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal, sequence information of the second synchronization signal, sequence information of the third synchronization signal, the sending period of the second synchronization signal, and the sending period of the third synchronization signal.
  • a signal transmission method which is applied to a receiving device, and the method includes:
  • the second signal including a second synchronization signal and a third synchronization signal;
  • the second synchronization signal occupies the last first-category symbol corresponding to at least one second-category symbol in the time domain;
  • the third synchronization signal occupies the cyclic prefix CP corresponding to at least one second-category symbol in the time domain;
  • the signal in the CP is obtained by duplicating the signal of the last first-category symbol in the second-category symbol corresponding to the CP;
  • Time synchronization is performed according to the second signal.
  • the duration of the first type of symbols is greater than or equal to the duration of the CP.
  • the method further includes:
  • the third configuration information includes at least one of the following information: the second type of symbols occupied by the second synchronization signal, the second type of symbols occupied by the third synchronization signal, the sending time interval between adjacent modulation symbols in the second synchronization signal, the sending time interval between adjacent modulation symbols in the third synchronization signal, the offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal, sequence information of the second synchronization signal, sequence information of the third synchronization signal, the sending period of the second synchronization signal, and the sending period of the third synchronization signal.
  • a signal transmission device which is applied to a sending device, and the device includes:
  • a processing module configured to generate a first signal, the first signal comprising data information and a first synchronization signal; the first synchronization signal comprising at least two first modulation symbols, the data information comprising at least two second modulation symbols, the duration of a symbol in the at least two first modulation symbols being shorter than the duration of a symbol in the at least two second modulation symbols;
  • the communication module is used to send a first signal to a receiving device.
  • the communication module is further configured to send first configuration information to the receiving device
  • the first configuration information includes at least one of the following information: indication information of the first duration, sequence information of the first synchronization signal, and a sending period of the first synchronization signal; the indication information of the first duration is used to indicate the duration of a symbol in the at least two first modulation symbols.
  • the processing module is further used to: generate a second signal, the second signal includes a second synchronization signal and a third synchronization signal; the second synchronization signal includes at least two third modulation symbols, and the time interval between adjacent symbols in the at least two third modulation symbols is a first time interval; the third synchronization signal includes at least two fourth modulation symbols, and the time interval between adjacent symbols in the at least two fourth modulation symbols is the first time interval; there is a first offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal; the duration of the symbols in the at least two fourth modulation symbols is shorter than the duration of the symbols in the at least two third modulation symbols;
  • the communication module is also used to send a second signal.
  • the communication module is further used to: send second configuration information to the receiving device;
  • the second configuration information includes at least one of the following information: a first time interval, a first offset time, sequence information of the second synchronization signal, sequence information of the third synchronization signal, indication information of the second duration, indication information of the third duration, a sending period of the second synchronization signal, and a sending period of the third synchronization signal;
  • the second duration indication information is used to indicate the duration of a symbol in the at least two third modulation symbols
  • the third duration indication information is used to indicate the duration of a symbol in the at least two fourth modulation symbols.
  • the processing module is further used to: generate a second signal, the second signal including a second synchronization signal and a third synchronization signal; the second synchronization signal occupies the last first-category symbol corresponding to at least one second-category symbol in the time domain; the third synchronization signal occupies the cyclic prefix CP corresponding to at least one second-category symbol in the time domain; the signal in the CP is obtained by copying the signal of the last first-category symbol in the second-category symbol corresponding to the CP;
  • the communication module is also used to send a second signal.
  • the duration of the first type of symbols is greater than or equal to the duration of the CP.
  • the communication module is further used to: send third configuration information to the receiving device;
  • the third configuration information includes at least one of the following information: the second type of symbols occupied by the second synchronization signal, the second type of symbols occupied by the third synchronization signal, the sending time interval between adjacent modulation symbols in the second synchronization signal, the sending time interval between adjacent modulation symbols in the third synchronization signal, the offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal, sequence information of the second synchronization signal, sequence information of the third synchronization signal, the sending period of the second synchronization signal, and the sending period of the third synchronization signal.
  • generating a second signal includes:
  • the second signal is generated by an Orthogonal Frequency Division Multiplexing (OFDM) transmitter.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first category of symbols includes at least one of the following categories of symbols: on-off keying OOK symbols, amplitude keying ASK symbols, and frequency keying FSK symbols; the second category of symbols includes OFDM symbols.
  • a signal transmission device which is applied to a receiving device, including:
  • a communication module configured to receive a first signal from a transmitting device; the first signal includes data information and a first synchronization signal; the first synchronization signal includes at least two first modulation symbols, the data information includes at least two second modulation symbols, and the duration of a symbol in the at least two first modulation symbols is shorter than the duration of a symbol in the at least two second modulation symbols;
  • the processing module is used to perform time synchronization according to the first synchronization signal.
  • the processing module is further configured to:
  • the first configuration information includes at least one of the following information: indication information of the first duration, sequence information of the first synchronization signal, and a transmission period of the first synchronization signal; the indication information of the first duration is used to indicate the duration of a symbol in the at least two first modulation symbols;
  • a first local synchronization signal is generated according to the first configuration information, where the first local synchronization signal is used for time synchronization.
  • the first configuration information is pre-configured, or the first configuration information is configured by the sending device.
  • performing time synchronization according to the first synchronization signal includes:
  • Time synchronization is performed according to the first local synchronization signal and the first synchronization signal.
  • the communication module is further used to: receive a second signal, the second signal includes a second synchronization signal and a third synchronization signal; the second synchronization signal includes at least two third modulation symbols, and the time interval between adjacent symbols in the at least two third modulation symbols is a first time interval; the third synchronization signal includes at least two fourth modulation symbols, and the time interval between adjacent symbols in the at least two fourth modulation symbols is a first time interval; there is a first offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal; the duration of the symbols in the at least two fourth modulation symbols is shorter than the duration of the symbols in the at least two third modulation symbols;
  • the processing module is further used to perform time synchronization according to the second synchronization signal and the third synchronization signal.
  • the communication module is further used to: receive second configuration information from a sending device;
  • the second configuration information includes at least one of the following information: a first time interval, a first offset time, sequence information of a second synchronization signal, sequence information of a third synchronization signal, indication information of a second duration, indication information of a third duration, a sending period of the second synchronization signal, and a sending period of the third synchronization signal; wherein the indication information of the second duration is used to indicate the duration of a symbol in the at least two third modulation symbols, and the indication information of the third duration is used to indicate the duration of a symbol in the at least two fourth modulation symbols;
  • the processing module is further used to generate a second local synchronization signal and a third local synchronization signal according to the second configuration information.
  • the communication module is further used to: receive a second signal, the second signal including a second synchronization signal and a third synchronization signal; the second synchronization signal occupies the last first-category symbol corresponding to at least one second-category symbol in the time domain; the third synchronization signal occupies the cyclic prefix CP corresponding to at least one second-category symbol in the time domain; the signal in the CP is obtained by copying the signal of the last first-category symbol in the second-category symbol corresponding to the CP;
  • the processing module is further used to perform time synchronization according to the second synchronization signal and the third synchronization signal.
  • the communication module is further used to: receive third configuration information from the sending device, the third configuration information including at least one of the following information: the second type of symbol occupied by the second synchronization signal, the second type of symbol occupied by the third synchronization signal, the sending time interval of adjacent modulation symbols in the second synchronization signal, and the sending time interval of adjacent modulation symbols in the third synchronization signal. interval, the offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal, the sequence information of the second synchronization signal, the sequence information of the third synchronization signal, the sending period of the second synchronization signal, and the sending period of the third synchronization signal;
  • the processing module is further used to generate a second local synchronization signal and a third local synchronization signal according to the third configuration information.
  • the duration of the first type of symbols is greater than the duration of the CP.
  • performing time synchronization according to the second synchronization signal and the third synchronization signal includes:
  • a first timing time corresponding to the second synchronization signal and a second timing time corresponding to the third synchronization signal are determined.
  • performing time synchronization according to the second synchronization signal and the third synchronization signal includes:
  • the third timing time corresponding to the second synchronization signal and the fourth timing time corresponding to the third synchronization signal are determined; the third timing time corresponds to the first correlation peak, the fourth timing time corresponds to the second correlation peak, and the time domain width of the first correlation peak is greater than the time domain width of the second correlation peak.
  • a signal transmission device which is applied to a sending device, including:
  • a processing module configured to generate a second signal, the second signal comprising a second synchronization signal and a third synchronization signal; the second synchronization signal comprising at least two third modulation symbols, the time interval between adjacent symbols in the at least two third modulation symbols being a first time interval; the third synchronization signal comprising at least two fourth modulation symbols, the time interval between adjacent symbols in the at least two fourth modulation symbols being a first time interval; a first offset time exists between a sending time of the second synchronization signal and a sending time of the third synchronization signal; a duration of a symbol in the at least two fourth modulation symbols being shorter than a duration of a symbol in the at least two third modulation symbols;
  • the communication module is used to send a second signal.
  • the communication module is further used to: send second configuration information to the receiving device;
  • the second configuration information includes at least one of the following information: a first time interval, a first offset time, sequence information of the second synchronization signal, sequence information of the third synchronization signal, indication information of the second duration, indication information of the third duration, a sending period of the second synchronization signal, and a sending period of the third synchronization signal;
  • the second duration indication information is used to indicate the duration of a symbol in the at least two third modulation symbols
  • the third duration indication information is used to indicate the duration of a symbol in the at least two fourth modulation symbols.
  • a signal transmission device which is applied to a receiving device, including:
  • a communication module configured to receive a second signal, the second signal comprising a second synchronization signal and a third synchronization signal; the second synchronization signal comprising at least two third modulation symbols, the time interval between adjacent symbols in the at least two third modulation symbols being a first time interval; the third synchronization signal comprising at least two fourth modulation symbols, the time interval between adjacent symbols in the at least two fourth modulation symbols being a first time interval; a first offset time exists between a sending time of the second synchronization signal and a sending time of the third synchronization signal; a duration of a symbol in the at least two fourth modulation symbols being shorter than a duration of a symbol in the at least two third modulation symbols;
  • the processing module is used for performing time synchronization according to the second signal.
  • the communication module is further used to: receive second configuration information
  • the second configuration information includes at least one of the following information: a first time interval, a first offset time, sequence information of the second synchronization signal, sequence information of the third synchronization signal, indication information of the second duration, indication information of the third duration, a sending period of the second synchronization signal, and a sending period of the third synchronization signal;
  • the second duration indication information is used to indicate the duration of a symbol in the at least two third modulation symbols
  • the third duration indication information is used to indicate the duration of a symbol in the at least two fourth modulation symbols.
  • a signal transmission device which is applied to a sending device, including:
  • a processing module is used to generate a second signal, wherein the second signal includes a second synchronization signal and a third synchronization signal; the second synchronization signal occupies the last first-category symbol corresponding to at least one second-category symbol in the time domain; the third synchronization signal occupies the cyclic prefix CP corresponding to at least one second-category symbol in the time domain; the signal in the CP is obtained by copying the signal of the last first-category symbol in the second-category symbol corresponding to the CP;
  • the communication module is used to send a second signal.
  • the duration of the first type of symbols is greater than or equal to the duration of the CP.
  • the communication module is further used to: send third configuration information to the receiving device;
  • the third configuration information includes at least one of the following information: the second type of symbols occupied by the second synchronization signal, the second type of symbols occupied by the third synchronization signal, the sending time interval between adjacent modulation symbols in the second synchronization signal, the sending time interval between adjacent modulation symbols in the third synchronization signal, the offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal, sequence information of the second synchronization signal, sequence information of the third synchronization signal, the sending period of the second synchronization signal, and the sending period of the third synchronization signal.
  • a signal transmission device which is applied to a receiving device, including:
  • a communication module is used to receive a second signal, wherein the second signal includes a second synchronization signal and a third synchronization signal; the second synchronization signal occupies the last first-category symbol corresponding to at least one second-category symbol in the time domain; the third synchronization signal occupies the cyclic prefix CP corresponding to at least one second-category symbol in the time domain; the signal in the CP is obtained by copying the signal of the last first-category symbol in the second-category symbol corresponding to the CP;
  • the processing module is used for performing time synchronization according to the second signal.
  • the duration of the first type of symbols is greater than or equal to the duration of the CP.
  • the communication module is further used to: receive third configuration information
  • the third configuration information includes at least one of the following information: the second type of symbols occupied by the second synchronization signal, the second type of symbols occupied by the third synchronization signal, the sending time interval between adjacent modulation symbols in the second synchronization signal, the sending time interval between adjacent modulation symbols in the third synchronization signal, the offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal, sequence information of the second synchronization signal, sequence information of the third synchronization signal, the sending period of the second synchronization signal, and the sending period of the third synchronization signal.
  • a communication device which includes a processor and a memory, the memory is used to store computer program code, the computer program code includes computer instructions, and when the processor executes the computer instructions, it executes a method such as any possible design method of any aspect of the above application.
  • a signal transmission system comprising a sending device and a receiving device according to any of the above aspects.
  • an embodiment of the present application provides a chip system, which is applied to a communication device including the above-mentioned touch screen.
  • the chip system includes one or more interface circuits and one or more processors.
  • the interface circuit and the processor are interconnected by a line.
  • the interface circuit is used to receive a signal from a memory of the communication device and send the signal to the processor, where the signal includes a computer instruction stored in the memory.
  • the processor executes the computer instruction
  • the communication device executes the method of any of the above aspects and any possible implementation thereof.
  • an embodiment of the present application provides a computer-readable storage medium, which includes computer instructions.
  • the computer instructions When the computer instructions are executed on a communication device, the communication device executes a method of any possible implementation method of any aspect.
  • an embodiment of the present application provides a computer program product, which, when executed on a computer, enables the computer to execute the method of any of the above aspects and any possible implementation methods thereof.
  • FIG1A is a schematic diagram of an OOK modulation method provided in an embodiment of the present application.
  • FIG1B is a schematic diagram of an ASK modulation method provided in an embodiment of the present application.
  • FIG1C is a schematic diagram of an FSK modulation method provided in an embodiment of the present application.
  • FIG1D is a schematic diagram of an OFDM modulation method provided in an embodiment of the present application.
  • FIG. 1E is a schematic diagram of an OFDM modulation method provided in an embodiment of the present application.
  • FIG1F is a schematic diagram of a method for generating an OOK signal through an OFDM transmitter provided in an embodiment of the present application
  • FIG1G is a schematic diagram of a method for generating an FSK signal through an OFDM transmitter provided in an embodiment of the present application
  • 1H is a schematic diagram of a receiving end determining synchronization information through a correlation peak according to an embodiment of the present application
  • FIG2 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of a flow chart of a signal transmission method provided in an embodiment of the present application.
  • FIG5A is a schematic diagram of a scenario in which a synchronization signal is sent on non-continuous symbols (with a shorter duration) according to an embodiment of the present application;
  • FIG5B is a schematic diagram of a scenario in which a first synchronization signal is sent on consecutive symbols (with a shorter duration) according to an embodiment of the present application;
  • FIG6 is a schematic flow chart of a method for obtaining a first synchronization signal by modulation according to an embodiment of the present application
  • FIG7 is a schematic diagram of a scenario of determining a correlation peak according to a first synchronization signal provided by an embodiment of the present application.
  • FIG8 is a schematic diagram of a flow chart of a signal transmission method provided in an embodiment of the present application.
  • FIG9A is a schematic diagram of a second synchronization signal and a third synchronization signal provided in an embodiment of the present application.
  • FIG9B is a schematic diagram of a second synchronization signal and a third synchronization signal provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of a second synchronization signal and a third synchronization signal provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of local synchronization signals 1 and 2 provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of a scenario of determining a correlation peak according to a third synchronization signal provided by an embodiment of the present application.
  • FIG13 is a schematic diagram of a scenario of determining a correlation peak according to a second synchronization signal provided by an embodiment of the present application.
  • FIG14 is a schematic diagram of a scenario of determining a correlation peak according to a third synchronization signal provided by an embodiment of the present application.
  • FIG15 is a schematic diagram of a scenario of determining a correlation peak according to a second synchronization signal provided by an embodiment of the present application.
  • FIG16 is a schematic diagram of the structure of a communication device provided in the present application.
  • first and second in the specification and drawings of this application are used to distinguish objects, or to distinguish the processing of the same object.
  • the words “first” and “second” can distinguish the same or similar items with basically the same functions and effects.
  • the first device and the second device are only used to distinguish different devices, and their order is not limited.
  • the words “first” and “second” do not limit the quantity and execution order, and the words “first” and “second” do not necessarily limit them.
  • At least one means one or more, and “plurality” means two or more.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character "/” generally indicates that the previous and next associated objects are in an "or” relationship.
  • At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items.
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or plural.
  • This modulation method uses ON-OFF non-return-to-zero line code to generate a baseband signal according to the information to be modulated, and then uses the carrier signal to multiply the baseband signal to generate an OOK signal.
  • the OOK signal may include one or more OOK symbols in the time domain.
  • the carrier signal can be represented by cos(2 ⁇ f c t+ ⁇ 0 ), where ⁇ 0 is the initial phase of the carrier signal and f c is the frequency of the carrier signal.
  • the waveform of the baseband signal corresponding to the bit information to be sent by the sending device can be as shown in FIG. 1A.
  • the transmission signal (OOK signal) shown in (a-3) of FIG. 1A can be obtained.
  • the transmission device can send the transmission signal shown in (a-3) of FIG. 1A to the receiving device.
  • OOK modulation can be understood as sending a carrier signal when bit information ‘1’ needs to be sent, and not sending a carrier signal when bit information ‘0’ needs to be sent.
  • the receiving device can determine whether the energy of a certain bit information exceeds a threshold (such as but not limited to 0.5). If the energy of the bit information exceeds the threshold, the bit information is determined to be 1; if the energy of the bit information does not exceed the threshold, the bit information is determined to be 0, thereby completing demodulation.
  • a threshold such as but not limited to 0.5
  • the receiving device in the OOK receiving device is usually less complex and has lower power consumption. Therefore, for some low-cost, low-power devices, such as IoT devices, sensors, etc., OOK modulation and demodulation can be used to reduce the complexity and power consumption of the device.
  • a high level represents information bit 1
  • a low level represents information bit 0.
  • the waveform of the baseband signal corresponding to the bit information to be sent by the sending device can be shown as (a-1) in Figure 1B.
  • the sending signal (ASK signal) shown in (a-3) of Figure 1B can be obtained.
  • the sending device can send the ASK signal shown in (a-3) of Figure 1B to the receiving device.
  • the frequency used for sending the signal is used to transmit information.
  • (a-1) of Figure 1C it is an exemplary waveform of an FSKj signal.
  • the waveform of the FSK signal is similar to a cosine function, but the frequency of the FSK signal changes over time.
  • (a-1) of Figure 1C shows the change of the instantaneous frequency of the FSK signal over time as shown in (a-2) of Figure 1C. It can be seen that in the first, three symbols use a higher frequency f1, while the second symbol uses a lower frequency f0.
  • the transmission signal of the nth (n is a positive integer) FSK symbol can be expressed as
  • T sym is the duration of the FSK symbol, is the initial phase of the nth FSK symbol.
  • FSK modulation technology has the advantages of strong noise resistance and constant envelope. In addition, the cost and power consumption of FSK receivers are low.
  • FSK receivers can use a relatively simple frequency discrimination circuit to detect the frequency of the received signal. If the frequency is f_0, the corresponding information bit is judged to be 0, and if the frequency is f_1, the corresponding information bit is judged to be 1.
  • This frequency discrimination circuit usually has low cost and power consumption, and is suitable for some low-rate service terminal devices, such as Internet of Things (IoT) devices.
  • IoT Internet of Things
  • Orthogonal frequency division multiplexing (OFDM) modulation OFDM
  • OFDM modulation technology is another widely used modulation technology.
  • 802.11 Wi-Fi
  • 4G Fifth Generation
  • 5G Fifth Generation
  • OFDM modulation is generally used in mobile broadband (such as enhanced mobile broadband (eMBB)) systems, which can provide high transmission rates through higher communication bandwidth.
  • eMBB enhanced mobile broadband
  • OFDM systems can provide transmission rates of more than 1Mbps.
  • the system bandwidth can be divided into multiple subcarriers, and data is modulated on each subcarrier for transmission.
  • Each subcarrier can have a different frequency.
  • the transmission and reception process of OFDM is shown in Figure 1D.
  • the data bits to be sent (such as 10101) are mapped into complex symbols.
  • the complex symbols can be written as a is the magnitude of the sign,
  • a quadrature amplitude modulation (QAM) mapping method is adopted to map the data bits to be sent into corresponding QAM symbols (a complex symbol).
  • the transmitting device maps the QAM symbols to different subcarriers through serial-to-parallel conversion.
  • the QAM symbols on different subcarriers are transformed into OFDM symbols in the time domain by performing inverse fast Fourier transform (IFFT).
  • IFFT inverse fast Fourier transform
  • the fast inverse Fourier transform operation may also be referred to as a fast inverse Fourier transform operation, or may have other names.
  • the transmitting device can copy the tail signal of the OFDM symbol to the front end of the OFDM symbol.
  • the copied part of the signal is called a cyclic prefix (CP).
  • CP cyclic prefix
  • the cyclic prefix can be used to combat multipath transmission delay in the wireless channel.
  • the transmitting device can perform digital to analog conversion and up-convert the OFDM symbol to obtain an OFDM signal suitable for transmission in a wireless channel, and transmit the OFDM signal through the wireless channel.
  • the receiving device After the receiving device receives the OFDM signal, it can determine the bit information (such as 10101) from the sending device through analog-to-digital conversion, serial-to-parallel conversion, cyclic prefix removal, fast Fourier transform, parallel-to-serial conversion, demodulation and other processes.
  • bit information such as 10101
  • High-speed terminals include but are not limited to: mobile phones, tablets, etc.
  • Mobile broadband services include but are not limited to: video browsing, file downloading and other services.
  • modulation methods such as OFDM to provide a higher transmission rate in order to support mobile broadband services.
  • Low-power devices For low-power devices, because modulation methods such as OFDM are relatively complex, for example, the receiver needs to perform precise time-frequency synchronization and complex signal processing, which requires high cost and power consumption. Therefore, complex modulation methods such as OFDM are not suitable for low-power devices. Low-power devices are more suitable for simple modulation methods (such as OOK, FSK and other simple modulation methods).
  • one method is to set up two sets of transmitters on the base station of the mobile communication network.
  • One set of transmitters in the base station is used to send OFDM signals to serve mobile broadband terminals (such as mobile phones, etc.).
  • the other set of transmitters in the base station is used to send OOK or FSK signals to serve low-rate terminals (such as IoT devices).
  • the base station's transmitter still uses an OFDM transmitter.
  • the OFDM transmitter can generate signals that conform to other modulation formats in certain frequency bands by performing certain signal processing.
  • the OFDM transmitter can generate OOK or FSK signals in certain frequency bands.
  • the signals that should be modulated on the K subcarriers can be pre-calculated based on the waveform of the OOK signal to be generated. After this part of the signal is processed through IFFT operation, the time domain waveform of the generated OFDM symbol will be approximated to the OOK signal to be sent.
  • (a) of Figure 1F first determine the OOK waveform sent by the target, such as 10100101..., which is the waveform shown by the dotted line in (c) of Figure 1F.
  • x [x 0 ,x 1 ,...,x K-1 ].
  • (b) of Figure 1F shows the information modulated on the subcarrier. After the IFFT operation, the information carried by the subcarrier is converted into a time domain signal.
  • the amplitude of the signal they carry will be close to the OOK waveform sent by the target.
  • the dotted line segment is the OOK signal sent by the target
  • the solid curve is the OOK signal generated by the above method. It can be seen that although the signal generated by OOK is not a regular square wave like the ideal target signal, a high-amplitude signal can be formed in the part corresponding to the bit information 1, and a low-amplitude signal can be formed in the part corresponding to the bit information 0, so that the receiving end can still correctly demodulate by judging the signal threshold. For example, if the energy of the bit information exceeds the threshold, it is determined that the bit information is 1, and if the energy of the bit information does not exceed the threshold, it is determined that the bit information is 0, thereby completing the demodulation.
  • an OFDM transmitter can be used to generate an OOK signal. It is also worth noting that this solution can In this way, multiple OOK symbols are sent within the duration of one OFDM symbol. For example, eight OOK symbols are generated within the duration of one OFDM symbol: “ON
  • the OFDM transmitter uses an IFFT of size N IFFT to generate an OFDM signal, and 2K subcarriers are used to generate FSK signals, and the 2K subcarriers can be divided into two subcarrier groups (subcarrier group 0 and subcarrier group 1).
  • the signals to be modulated on the 2K subcarriers can be pre-calculated based on the waveform of the FSK signal to be generated. After the IFFT operation of this part of the signal, the time domain waveform of the generated OFDM symbol will be approximated to the FSK signal to be sent.
  • the FSK signal modulation rule is: if the information bit to be sent is 0, it is sent on subcarrier group 0 with high power, and on subcarrier group 1 with low power. If the information bit to be sent is 1, it is sent on subcarrier group 1 with high power, and on subcarrier group 0 with low power.
  • the FSK signal can be regarded as two parallel OOK signals sent on two subcarrier groups, and at the same time, only one OOK signal is a high-power signal, and the high-power signal can be recorded as ON.
  • ON OFF
  • ON Similarly, the OFDM transmitter can determine that the OOK signal sent on subcarrier group 1 is: "OFF
  • only one signal is a high-power signal 'ON', for example, when the information bit is 0, ON is transmitted on subcarrier group 0, and OFF is transmitted on subcarrier group 1, and only the signal on subcarrier group 0 is a high-power signal.
  • ON is transmitted on subcarrier group 0
  • OFF is transmitted on subcarrier group 1
  • only the signal on subcarrier group 1 is a high-power signal.
  • an OFDM transmitter can be used to generate an FSK signal.
  • this scheme can send multiple FSK signals within the duration of one OFDM symbol.
  • the receiving device After receiving the ASK/OOK/FSK signal, the receiving device needs to perform time synchronization first, that is, find the frame header position of each data frame and the start and end time of the ASK/OOK/FSK symbol from the received ASK/OOK/FSK signal. Only in this way can the signal be demodulated correctly.
  • the sender and receiver can agree on a synchronization signal.
  • the synchronization signal generally has a good autocorrelation characteristic, that is, when the synchronization signal performs sliding correlation (correlation) operation with itself, the correlation value is the largest only when the sequence is exactly aligned, while the correlation values at other times are lower.
  • the transmitting device can carry a synchronization signal in the transmitted OOK signal.
  • the synchronization signal can include one or more OOK symbols in the time domain.
  • the receiving device can perform a correlation operation on the OOK signal and the locally stored synchronization signal to find the peak value of the correlation value, and determine the synchronization information based on the time when the peak value is located.
  • the receiving device uses a bandpass filter to filter out the subcarrier modulated with the OOK signal, and after envelope detection of the subcarrier, the synchronization signal carried by the subcarrier is correlated with the locally stored synchronization signal.
  • the receiving device can use multiple bandpass filters, for example, 2FSK uses 2 bandpass filters, and 4FSK uses 4 bandpass filters, to filter out different subcarriers modulated with the FSK signal (such as the above-mentioned subcarrier group 1 and subcarrier group 0), and after envelope detection of the subcarrier, the synchronization signal carried by the subcarrier is correlated with the locally stored synchronization signal.
  • the demodulation process of each FSK signal is similar to the demodulation process of the OOK signal.
  • FIG. 1H shows an OOK signal received by a receiving device from a transmitting device, and the OOK signal carries a synchronization signal (the synchronization signal is sent on the OOK symbol shown in black filling).
  • the sequence information of the synchronization signal is [1 0 1 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0 0]
  • the sequence length of the synchronization signal is 32 bits
  • the receiving device receives the first modulation symbol in the synchronization signal on OOK symbol No.
  • a modulation symbol is obtained by modulating bit 0 in a sequence, and so on.
  • the receiving device After receiving the OOK signal, the receiving device performs correlation operation on the received OOK signal and the locally stored synchronization signal. Step signal.
  • the correlation result between the OOK signal and the local synchronization signal generally does not have a large correlation value.
  • the correlation result when the synchronization signal in the received OOK signal is aligned with the local synchronization signal of the receiving device, at the alignment moment, the correlation result has a large correlation value.
  • the correlation result when the bits in the synchronization signal are aligned, the correlation result can be regarded as a triangular wave, which can be called a correlation peak.
  • the receiving device can determine the OOK symbol used to send the synchronization signal and the OOK symbol used to send the data information according to the time or time period of the correlation peak, so as to determine the accurate synchronization time. For example, as shown in (b) of Figure 1H, after the receiving device obtains the correlation result of the OOK signal and the local synchronization signal, it can determine that the information on OOK symbols 0, 4, etc. is the synchronization signal according to the time or time period of the correlation peak, and determine the synchronization information such as the starting position (such as OOK symbol 1) and the ending position of the data information accordingly, so as to be able to correctly demodulate the data information from the sending device.
  • FIG. 1H can also be viewed as a process in which, during FSK demodulation, after filtering to obtain a group of subcarriers, one of the multiple bandpass filters performs correlation on the synchronization signals carried by the group of subcarriers.
  • the waveform of the correlation result obtained can be close to a triangular wave, and the bottom width of the triangular wave is twice the bottom width of the square wave.
  • the synchronization signal carried in the OOK signal and the local synchronization signal can be regarded as square waves.
  • the time domain width of the correlation peak (which can be regarded as a triangular wave) obtained is twice the duration of the OOK symbol.
  • the receiving device can still determine the timing information based on the time or time period of the correlation peak (triangle wave), considering the waveform distortion caused by noise, devices, and channels, the time near the peak point of the correlation peak has a certain probability of being judged as the timing point, resulting in reduced timing accuracy.
  • an embodiment of the present application provides a method for sending a synchronization signal, which can be applied to a mobile communication system.
  • Mobile communication systems include but are not limited to third generation (3rd generation, 3G) mobile communication systems, fourth generation (4th generation, 4G) mobile communication systems, (5th generation, 5G) mobile communication systems, and future evolving mobile communication systems.
  • the technical solution of the embodiment of the present application can also be applied to wireless fidelity (wireless fidelity, Wi-Fi), Bluetooth and other wireless communication systems.
  • Figure 2 (a) shows the architecture of a possible communication system to which the embodiment of the present application is applicable.
  • the communication system may include a network device 100 and one or more terminal devices 200 (only one is shown in FIG2(a)) connected to the network device 100. Data can be transmitted between the network device and the terminal device.
  • the network device 100 may be a device that can communicate with the terminal device 200.
  • the network device 100 may be a base station, which may be an evolved Node B (eNB or eNodeB) in LTE, or a base station in NR, or a relay station or access point, or a base station in a future network, etc., which is not limited in the embodiments of the present application.
  • the base station in NR may also be referred to as a transmission reception point (TRP) or gNB.
  • TRP transmission reception point
  • the network device may be an independent network device, such as a base station, or a chip that implements corresponding functions in the network device.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the technical solution provided in the embodiments of the present application is described by taking the device for implementing the functions of the network device as a network device as an example.
  • the terminal device 200 in the embodiment of the present application may also be referred to as a terminal, which may be a device with wireless transceiver functions.
  • the terminal may be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it may also be deployed on the water (such as a ship); it may also be deployed in the air (such as an airplane, a balloon, and a satellite).
  • the terminal device may be a user equipment (user Equipment, UE).
  • UE includes handheld devices, vehicle-mounted devices, wearable devices or computing devices with wireless communication functions.
  • UE can be a mobile phone, a tablet computer or a computer with wireless transceiver function.
  • the terminal device can also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, a wireless terminal in a smart grid, a wireless terminal in a smart city, a wireless terminal in a smart home, and so on.
  • the terminal device can be an independent terminal or a chip in a terminal.
  • the technical solution provided in the embodiment of the present application is described by taking the device for realizing the function of the terminal as an example that the terminal device is an example.
  • the terminal may include a high-speed terminal and a low-power terminal.
  • the high-speed terminal may be a terminal for mobile broadband services, such terminals include mobile phones, tablets and other devices.
  • Such terminals usually require a higher network speed for mobile broadband services to improve the service experience.
  • mobile broadband services include but are not limited to: video browsing, file downloading, etc.
  • Low-power terminals usually require lower communication rates, but have higher requirements for low-cost receivers and power consumption.
  • Low-power terminals include but are not limited to IoT devices, wearable devices (smart watches, etc.), etc.
  • FIG. 2 (a) only exemplifies a possible example of a system architecture applicable to the embodiment of the present application.
  • the system architecture applicable to the embodiment of the present application is not limited thereto.
  • FIG. 2 (b) shows another system architecture.
  • the terminals 200 can communicate directly with each other.
  • the system shown in FIG. 2 (b) can be a sidelink system.
  • the network device 100 or terminal device 200 in (a) of Figure 2 of the embodiment of the present application can be implemented by a device or a functional module in a device, and the embodiment of the present application does not specifically limit this. It is understandable that the above functions can be network elements in hardware devices, software functions running on dedicated hardware, virtualization functions instantiated on a platform (e.g., a cloud platform), or chip systems. In the embodiment of the present application, the chip system can be composed of chips, or it can include chips and other discrete devices.
  • a device for implementing the functions of a terminal device provided in an embodiment of the present application or a device for implementing the functions of a network device can be implemented by the device 300 in Figure 3.
  • Figure 3 is a schematic diagram of the hardware structure of the device 300 provided in an embodiment of the present application.
  • the device 300 includes at least one processor 301 for implementing the functions of a terminal device or a network device provided in an embodiment of the present application.
  • the device 300 may also include a bus 302 and at least one communication interface 304.
  • the device 300 may also include a memory 303.
  • the processor may be a central processing unit (CPU), a general processor, a network processor (NP), a digital signal processor (DSP), a microprocessor, a microcontroller, a programmable logic device (PLD), or any combination thereof.
  • the processor may also be any other device having a processing function, such as a circuit, a device, or a software module.
  • the bus 302 may be used to transmit information between the above-mentioned components.
  • the communication interface 304 is used to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), etc.
  • the communication interface 304 can be an interface, circuit, transceiver or other device capable of communication, which is not limited in this application.
  • the communication interface 304 can be coupled to the processor 301.
  • the coupling in the embodiment of the present application is an indirect coupling or communication connection between devices, units or modules, which can be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the memory may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory may exist independently or be coupled to the processor, for example, through bus 302.
  • the memory may also be integrated with the processor.
  • the memory 303 is used to store program instructions, and can be controlled by the processor 301 to execute, so as to implement the synchronization signal transmission method provided in the following embodiments of the present application.
  • the processor 301 is used to call and execute the instructions stored in the memory 303, so as to implement the synchronization signal transmission method provided in the following embodiments of the present application.
  • the computer instructions in the embodiments of the present application may also be referred to as program codes, which is not specifically limited in the embodiments of the present application.
  • the memory 303 may be included in the processor 301 .
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3 .
  • the apparatus 300 may include multiple processors, such as the processor 301 and the processor 307 in FIG3 .
  • processors may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • the above-mentioned device 300 may be a general device or a special device.
  • the device 300 may be a device having a similar structure as shown in FIG3.
  • the embodiment of the present application does not limit the type of the device 300.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art can appreciate that with the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • an embodiment of the present application provides a synchronization signal transmission method, including:
  • a sending device generates a first signal.
  • the sending device is a network device (such as a base station, etc.) or a terminal.
  • the receiving device may be a network device or a terminal.
  • the sending device is a terminal
  • the receiving device may be a network device or a terminal.
  • the technical solution of the embodiment of the present application may be applicable to the process of sending and receiving information between network devices, or sending and receiving information between terminals, or sending and receiving information between a network device and a terminal.
  • the first signal includes data information and a first synchronization signal; the first synchronization signal includes at least two first modulation symbols, the data information includes at least two second modulation symbols, and the duration of the symbols in the at least two first modulation symbols is shorter than the duration of the symbols in the at least two second modulation symbols.
  • the first synchronization signal can be sent on time-discontinuous symbols.
  • the transmitting device generates an OOK signal as shown in FIG5A, which carries the first synchronization signal and data information.
  • the duration of the OOK symbol in the first synchronization signal is shorter than the duration of the OOK symbol in the data information.
  • the symbols occupied by the first synchronization signal include OOK symbols No. 0, No. 4, No. 8, and No. 12, and the symbols occupied by the data information include OOK symbols No. 1-3, No. 5-7, No. 9-11, and No. 13-15.
  • the duration of each OOK symbol in OOK symbols No. 0, No. 4, No. 8, and No. 12 is shorter than the duration of each OOK symbol in OOK symbols No. 1-3, No. 5-7, No. 9-11, and No. 13-15.
  • the first synchronization signal can also be sent on time-continuous symbols, and the sending device generates an OOK signal as shown in Figure 5B, which carries the first synchronization signal and data information.
  • the duration of the OOK symbol in the first synchronization signal is less than the duration of the OOK symbol in the data information.
  • the first modulation symbol (first modulation symbol) in the first synchronization signal occupies OOK symbol No. 1
  • the second modulation symbol (first modulation symbol) in the first synchronization signal occupies OOK symbol No. 2
  • the third modulation symbol in the first synchronization signal occupies OOK symbol No. 3, and so on.
  • the first synchronization signal can also occupy OOK symbols No. 4, No. 5, No. 6, etc.
  • the modulation symbol (second modulation symbol) in the data information includes consecutive OOK symbols No. 7-22, wherein the duration of each symbol in OOK symbols No. 1-6 is less than the duration of each symbol in OOK symbols No. 7-22.
  • the above mainly takes the same duration of each modulation symbol in the first synchronization signal as an example.
  • the durations of different modulation symbols in the first synchronization signal may be different.
  • the durations of different modulation symbols in the data information may be the same or different.
  • Figure 6 shows the process of the transmitting device generating the first signal.
  • the transmitting device modulates the first synchronization signal and the data sequence respectively.
  • the transmitting device uses a code element with a time domain width of Td to represent the first synchronization signal.
  • the transmitting device multiplies the first synchronization signal with the carrier signal to obtain the modulated first synchronization signal as shown in (a-3) of Figure 6.
  • the modulated first synchronization signal carries the information of the modulation symbol.
  • the transmitting device can send the modulated first synchronization signal on the corresponding OOK symbol of the wireless frame.
  • the transmitting device modulates the data sequence using a code element with a time domain width of Tc, where Td is less than Tc.
  • the transmitting device multiplies the data sequence with the carrier signal to obtain the modulated data information as shown in (b-3) of Figure 6.
  • the modulated data information carries at least one bit of information in the data sequence.
  • the transmitting device can send the modulated data information on the corresponding OOK symbol of the wireless frame.
  • Figure 6 illustrates that the sending device uses an OOK transmitter to generate the first signal.
  • the sending device can also generate an OOK signal through an OFDM transmitter.
  • the embodiments of the present application do not limit the type of transmitter that generates the first signal or the specific implementation method of generating the first signal.
  • the sending device sends the first signal to the receiving device.
  • the receiving device receives the first signal from the sending device.
  • S103 The receiving device performs time synchronization according to the first synchronization signal.
  • the receiving device may obtain the first configuration information and generate a local synchronization signal according to the first configuration information, wherein the local synchronization signal is used for time synchronization.
  • the receiving device performs a correlation operation on the first signal and the local synchronization signal and determines the time synchronization information according to the correlation result.
  • the first configuration information includes at least one of the following information: indication information of the first duration, sequence information of the first synchronization signal, and a sending period of the first synchronization signal.
  • the first duration is the duration of the first modulation symbol (such as an OOK symbol or an ASK symbol or an FSK symbol) in the first synchronization signal
  • the indication information of the first duration is used to indicate the duration of the symbol in the at least two first modulation symbols.
  • the first configuration information may indicate the duration T1 of the first modulation symbol in the first synchronization signal (occupying OOK symbols No.
  • the sending period T2 of the first synchronization signal the sending period T2 of the first synchronization signal, and the sequence information of the first synchronization signal [1 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0].
  • the receiving device may receive the first configuration information from the network device.
  • the network device may indicate any of the above information in a direct or indirect manner.
  • the ratio between the duration of the first modulation symbol in the first synchronization signal and the duration of the second modulation symbol in the data information may be indicated, for example, the duration of the first modulation symbol in the first synchronization signal is 1/8, 1/4, etc. of the duration of the second modulation symbol in the data information.
  • Another exemplary embodiment directly indicates that the duration of the first modulation symbol in the first synchronization signal is x microseconds.
  • the first configuration information may be pre-configured in the receiving device, for example, the first configuration information is pre-defined by a protocol and is configured in the receiving device when the receiving device leaves the factory.
  • the receiving device After the receiving device receives the OOK signal, it correlates the OOK signal with the local synchronization signal.
  • the receiving device can obtain the corresponding correlation peak according to the correlation result.
  • the receiving device can determine that OOK symbols 0, 4, 124, etc. are used to carry the first synchronization signal, and can determine the starting position of the data information based on this, and then demodulate the data information.
  • the duration of the first modulation symbol in the first synchronization signal in the OOK signal is short (equivalent to the narrow bottom width of the square wave), therefore, according to the above correlation result principle, the width of the correlation peak obtained by correlating the OOK signal with the local synchronization signal is narrow, which helps to improve the timing accuracy of the receiving device.
  • the above scheme takes into account that when the receiving device performs time synchronization, the width of the correlation peak used to determine the time synchronization information is affected by the time width of the OOK symbol. Therefore, the transmitting device uses a shorter code element to modulate the first synchronization signal so that the transmitting device can send the first synchronization signal within the shorter OOK symbol. In this way, when the receiving end performs time domain correlation (through correlation operation), it can obtain a narrower correlation peak so as to determine the timing information from a narrower time range, which helps to improve the timing accuracy.
  • the embodiment of the present application also provides a synchronization signal transmission method, as shown in FIG8 , the method comprising:
  • a sending device generates a second signal.
  • the second signal includes a second synchronization signal and a third synchronization signal;
  • the second synchronization signal It includes at least two third modulation symbols, and the time interval between adjacent symbols in the at least two third modulation symbols is the first time interval;
  • the third synchronization signal includes at least two fourth modulation symbols, and the time interval between adjacent symbols in the at least two fourth modulation symbols is the first time interval; there is a first offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal; the duration of the symbols in the at least two fourth modulation symbols is shorter than the duration of the symbols in the at least two third modulation symbols.
  • the OOK signal includes a second synchronization signal, a third synchronization signal, and data information.
  • the time interval between two adjacent third modulation symbols in the second synchronization signal (shown as filled with diagonal lines) is T3 (first time interval).
  • the transmitting device transmits the first modulation symbol in the second synchronization signal in the 5th OOK symbol as shown in FIG9A , transmits the second modulation symbol in the second synchronization signal in the 15th OOK symbol, and so on, transmits the third modulation symbol in the second synchronization signal in the 25th OOK symbol.
  • the transmitting device sends the first modulation symbol in the third synchronization signal (shown in black fill) within OOK symbol No. 0 as shown in Figure 9A, sends the second modulation symbol in the third synchronization signal within OOK symbol No. 10, and so on, sends the third modulation symbol in the third synchronization signal within OOK symbol No. 20... It can be seen that the time interval between two adjacent fourth modulation symbols in the third synchronization signal is the first time interval T3.
  • the duration (T1) of the fourth modulation symbol in the third synchronization signal is shorter than the duration (T1’) of the third modulation symbol in the second synchronization signal.
  • the second signal includes a second synchronization signal and a third synchronization signal.
  • the second synchronization signal occupies the last first-category symbol corresponding to at least one second-category symbol in the time domain;
  • the third synchronization signal occupies the cyclic prefix CP corresponding to the at least one second-category symbol in the time domain;
  • the signal in the CP is obtained by duplicating the signal of the last first-category symbol in the second-category symbol corresponding to the CP.
  • the transmitting device generates an OOK signal through an OFDM transmitter.
  • the transmitter generates 4 OOK symbols in each OFDM symbol.
  • the signal at the end of each OFDM symbol will be copied to the head end of the OFDM symbol.
  • the transmitter copies the synchronization signal of the end of OFDM symbol No. 1 (i.e., OOK symbol No. 4) to the head end of OFDM symbol No. 1 (i.e., the black filling position in front of OOK symbol No. 1 in FIG9B ), and copies the synchronization signal of the end of OFDM symbol No. 3 (i.e., OOK symbol No. 12) to the head end of OFDM symbol No. 3 (i.e., the black filling position in front of OOK symbol No. 9 in FIG9B ).
  • the transmitting device sends the third synchronization signal in the CP corresponding to OFDM symbols 1, 3, 4, and 5, and sends the second synchronization signal in the last OOK symbol corresponding to OFDM symbols 1, 3, 4, and 5.
  • the second synchronization signal occupies the last OOK symbol corresponding to at least one OFDM symbol (OFDM symbols 1, 3, 4, and 5) in the time domain;
  • the third synchronization signal occupies the CP corresponding to each of the above at least one OFDM symbol (CP corresponding to OFDM symbols 1, 3, 4, and 5) in the time domain.
  • the OOK signal (an example of the first signal) generated by the transmitting device carries two synchronization signals (such as the second synchronization signal and the third synchronization signal).
  • the sequence information carried by the two synchronization signals is the same, and the corresponding bits in the two synchronization signals are transmitted at different times.
  • the modulation symbol of one synchronization signal is transmitted within the last OOK symbol of the corresponding OFDM symbol, and the corresponding modulation symbol of the other synchronization signal is transmitted within the CP of the corresponding OFDM symbol.
  • the transmitting device transmits the first modulation symbol in the second synchronization signal in OOK symbol No. 4 (assuming that it is the modulation symbol corresponding to the first bit 1 in the sequence), and OOK symbol No. 4 corresponds to the last part of OFDM symbol No. 1.
  • the transmitting device transmits the second modulation symbol in the second synchronization signal in OOK symbol No. 12 (the modulation symbol corresponding to the second bit 0 in the sequence), and OOK symbol No.
  • the transmitting device can transmit other modulation symbols in the second synchronization signal in the last OOK symbol of the corresponding OFDM symbol. It can be seen that the symbols occupied by the second synchronization signal in the time domain include the last OOK symbol of OFDM symbol No. 1 and the last OOK symbol of OFDM symbol No. 3.
  • the sequence information of the third synchronization signal is also [1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0], in one example, the transmitting device can transmit the first modulation symbol in the third synchronization signal in the CP of OFDM symbol No. 1 (assuming that it is the modulation symbol corresponding to the first bit 1 in the above sequence), and transmit the second modulation symbol in the third synchronization signal in the CP of OFDM symbol No.
  • the transmitting device can copy the signal in the last OOK symbol of the corresponding OFDM symbol to the head end of the OFDM symbol to form the CP of the OFDM symbol, and transmit the corresponding modulation symbol of the third synchronization signal in the CP.
  • the third synchronization signal occupies the CP of OFDM symbols No. 1, No. 3, etc. in the time domain.
  • the duration of the OOK symbol is greater than or equal to the duration of the CP.
  • the transmitting device can only copy the synchronization bit in the last OOK symbol of the corresponding OFDM symbol to the head end of the OFDM symbol, and does not copy other bits (such as data bits) in other OOK symbols to the head end of the OFDM symbol, which helps the receiving device to obtain an accurate synchronization signal from the CP.
  • the shorter duration of the CP means that the duration of the synchronization bit carried by the CP is shorter, so that the receiving device can obtain a narrower correlation peak, which helps to improve timing accuracy.
  • the sending device sends the second signal.
  • S203 The receiving device performs time synchronization according to the second signal
  • the receiving device acquires second configuration information, and generates a second local synchronization signal and/or a third local synchronization signal according to the second configuration information.
  • the receiving device may determine the time synchronization information according to the second signal and according to the third local synchronization signal and/or the second local synchronization signal. Specifically, the receiving device may determine the time synchronization information according to the third local synchronization signal and the second signal. Alternatively, the receiving device may determine the time synchronization information according to the second local synchronization signal and the second signal. Alternatively, the receiving device may determine the time synchronization information according to the third local synchronization signal, the second local synchronization signal, and the second signal.
  • the second configuration information includes at least one of the following information: the first time interval, the first offset time, sequence information of the second synchronization signal, sequence information of the third synchronization signal, indication information of the second duration, indication information of the third duration, a sending period of the second synchronization signal, and a sending period of the third synchronization signal;
  • the indication information of the second duration is used to indicate the duration of a symbol in the at least two third modulation symbols
  • the indication information of the third duration is used to indicate the duration of a symbol in the at least two fourth modulation symbols.
  • the receiving device may receive the second configuration information from the network device, or predefine the second configuration information according to a protocol.
  • the receiving device obtains the third configuration information, and generates the second local synchronization signal and/or the third local synchronization signal according to the third configuration information.
  • the receiving device may determine the time synchronization information according to the third local synchronization signal and/or the second local synchronization signal and the second signal.
  • the third configuration information includes at least one of the following information: the second type of symbols occupied by the second synchronization signal, the second type of symbols occupied by the third synchronization signal, the sending time interval between adjacent modulation symbols in the second synchronization signal, the sending time interval between adjacent modulation symbols in the third synchronization signal, the offset time between the sending time of the second synchronization signal and the sending time of the third synchronization signal, sequence information of the second synchronization signal, sequence information of the third synchronization signal, the sending period of the second synchronization signal, and the sending period of the third synchronization signal.
  • the receiving device may receive the third configuration information from the network device, or predefine the third configuration information according to a protocol.
  • the receiving device generates a local synchronization signal 1 and a local synchronization signal 2.
  • the duration of each modulation symbol is T2, and T2 is the duration of an OOK symbol.
  • the local synchronization signal 1 corresponds to the second synchronization signal carried by the OOK symbol shown in Figure 9B (or corresponds to the second synchronization signal shown in Figure 9A).
  • the duration of each modulation symbol is T1
  • T1 is the duration of a CP.
  • the local synchronization signal 2 corresponds to the third synchronization signal carried by the CP shown in Figure 9B (or corresponds to the third synchronization signal shown in Figure 9A). Both the local synchronization signal 1 and the local synchronization signal 2 are discrete-time synchronization signals.
  • the receiving device can correlate the local synchronization signal 2 with the received OOK signal (including the second synchronization signal and the third synchronization signal) to obtain at least one correlation peak.
  • the width of the correlation peak is twice T1 (i.e., T1+T1, denoted as 2T1).
  • the second synchronization signal carried by the OOK symbol (such as OOK symbols 5 and 12) is aligned with the local synchronization signal 2
  • the width of the correlation peak is T1+T2.
  • the receiving device can determine the synchronization information based on the time at which at least one correlation peak is obtained in Figure 12, so as to determine the starting position of the data information.
  • the receiving device may correlate the local synchronization signal 1 with the received OOK signal (including the second synchronization signal and the third synchronization signal) to obtain at least one correlation peak.
  • the third synchronization signal carried by the CP duration T1
  • the width of the correlation peak is T1+T2.
  • the second synchronization signal carried by the OOK symbol such as OOK symbol No. 5
  • the width of the correlation peak is 2T2.
  • the receiving device can determine the synchronization information based on the time of at least one correlation peak obtained in FIG13, so as to determine the starting position of the data information.
  • the receiving device may correlate the local synchronization signal 1 and the local synchronization signal 2 with the received OOK signal, respectively, to obtain at least one correlation peak.
  • the receiving device may determine the synchronization information according to the time at which at least one correlation peak obtained in Figures 12 and 13 is located, so as to determine the starting position of the data information.
  • the correlation peaks obtained can be divided into three categories, and the widths of the three correlation peaks are different.
  • the width of the first type of correlation peak is 2T1 (the correlation peak obtained when the third synchronization signal carried by the CP is aligned with the local synchronization signal 2)
  • the width of the second type of correlation peak is T1+T2
  • the width of the third type of correlation peak is 2T2.
  • the width of the first type of correlation peak is the narrowest, and at the time of the first type of correlation peak, the receiving device can obtain the most accurate timing time.
  • the widths of the second type of correlation peak and the third type of correlation peak are wider than the widths of the first type of correlation peak, and the corresponding signal energy is higher, which helps to increase the probability of the receiving device successfully detecting the second type of correlation peak and the third type of correlation peak.
  • the above scheme uses the second synchronization signal with a longer modulation symbol duration for synchronization. Since the modulation symbol duration of the second synchronization signal is longer, the energy of the second synchronization signal is higher, which can improve the probability of successful synchronization of the receiving end. For example, in some communication scenarios with poor channel environment, the receiving end can also detect the second synchronization signal and then perform time synchronization according to the second synchronization signal.
  • Figures 12 and 13 are illustrated by taking the duration of the OOK symbols (for example, both are T2) as the same example.
  • the duration of the OOK symbol used to send the synchronization signal and the duration of the OOK symbol used to send the data information may be different.
  • the duration of the OOK symbol used to send the data information is T3, and the duration of the OOK symbol used to send the synchronization signal is T2, and T3 is greater than T2.
  • T2 is greater than the duration of the CP.
  • the receiving device uses the local synchronization signal 2 to perform time domain correlation on the received OOK signal. In this way, the receiving device can obtain a narrower correlation peak when performing correlation operations, which helps to improve timing accuracy.
  • the duration of the OOK symbol used to send data information is T3
  • the duration of the OOK symbol used to send the synchronization signal is T2
  • T3 is greater than T2.
  • the receiving device uses the local synchronization signal 1 to perform time domain correlation on the received OOK signal.
  • the duration of the OOK symbol used to send data information is T3, and the duration of the OOK symbol used to send the synchronization signal is T2, and T3 is greater than T2.
  • the receiving device uses local synchronization signal 1 and local synchronization signal 2 to perform time domain correlation on the received OOK signals respectively.
  • the above OOK symbols may be referred to as first-class symbols, and OFDM symbols may be referred to as second-class symbols. It should be understood that the first-class symbols may also include other types of symbols, such as but not limited to ASK, FSK symbols, etc. Similarly, the second-class symbols may also include other types of symbols. The embodiments of the present application do not limit the specific types of the first-class symbols, the second-class symbols, and the specific types of applicable communication systems.
  • steps in the method embodiment may be equivalently replaced by other possible steps.
  • some steps in the method embodiment may be optional and may be deleted in certain usage scenarios.
  • other possible steps may be added to the method embodiment.
  • some steps in the above embodiments are performed by the first electronic device, and some steps are performed by the second electronic device or other electronic devices.
  • the smart shoe calculates the weight correction value and reports the weight correction value to the watch, and the watch calculates the body composition based on the weight correction value.
  • the watch (or the first electronic device such as a mobile phone) calculates the weight correction value based on the calibration coefficient and the parameters measured by the smart shoe pressure sensor.
  • the smart shoe calculates the weight correction value, calculates the body composition based on the weight correction value, and reports the body composition to the watch.
  • the device in the embodiment of the present application includes a hardware structure and/or software module corresponding to each function in order to realize the above functions.
  • the embodiment of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the technical solution of the embodiment of the present application.
  • the embodiment of the present application can divide the electronic device into functional units according to the above method example.
  • each functional unit can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated unit can be implemented in the form of hardware or in the form of software functional units. It should be noted that the division of units in the embodiment of the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • FIG 16 shows a schematic block diagram of a communication device provided in an embodiment of the present application, and the communication device may be the above-mentioned sending device or receiving device or other communication device.
  • the communication device 1700 may exist in the form of software, or may be a chip that can be used for a device.
  • the communication device 1700 includes: a processing module 1702 and a communication module 1703.
  • the communication module 1703 may also be divided into a sending unit (not shown in Figure 16) and a receiving unit (not shown in Figure 16).
  • the sending unit is used to support the communication device 1700 to send information to other devices.
  • the receiving unit is used to support the communication device 1700 to receive information from other devices.
  • the communication device 1700 may further include a storage module 1701 for storing program codes and data of the communication device 1700 .
  • the data may include but are not limited to original data or intermediate data.
  • the processing module 1702 can be used to support the sending device to generate the first signal/second signal, and/or other processes of the scheme described herein.
  • the communication module 1703 is used to support communication between the sending device and other devices (such as the above-mentioned receiving device, etc.), for example, to support the sending device to perform S102 in Figure 4, etc.
  • the processing module 1702 can be used to control the receiving device to perform S103 of Figure 4 and/or other processes for the solution described herein.
  • the communication module 1703 is used to support communication between the receiving device and other devices (such as the above-mentioned sending device, etc.).
  • the processing module 1702 may be a controller or the processor 301 and/or the processor 307 shown in FIG. 3 , for example, a central processing unit (CPU), a general-purpose processor, a digital signal processing (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute various exemplary logic blocks, modules and circuits described in conjunction with the disclosure of the present application.
  • the processor may also be a combination that implements a computing function, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1703 may be the communication interface 304 shown in FIG. 3 , or may be a transceiver circuit, a transceiver, a radio frequency device, etc.
  • the storage module 1701 may be the memory 303 shown in FIG. 3 .
  • the embodiment of the present application also provides a communication device, including one or more processors and one or more memories.
  • the one or more memories are coupled to the one or more processors, and the one or more memories are used to store computer program codes, and the computer program codes include computer instructions.
  • the communication device executes the above-mentioned related method steps to implement the signal transmission method in the above-mentioned embodiment.
  • An embodiment of the present application also provides a chip system, including: a processor, the processor is coupled to a memory, the memory is used to store programs or instructions, when the program or instructions are executed by the processor, the chip system implements the method in any of the above method embodiments.
  • the processor in the chip system may be one or more.
  • the processor may be implemented by hardware or by software.
  • the processor may be a logic circuit, an integrated circuit, etc.
  • the processor may be a general-purpose processor implemented by reading software code stored in a memory.
  • the memory in the chip system may be one or more.
  • the memory may be integrated with the processor or may be separately provided with the processor, which is not limited in the present application.
  • the memory may be a non-transient processor, such as a read-only memory ROM, which may be integrated with the processor on the same chip or may be provided on different chips.
  • the present application does not specifically limit the type of memory and the arrangement of the memory and the processor.
  • the chip system can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processing unit (CPU), a network processor (NP), a digital signal processing circuit (DSP), a microcontroller unit (MCU), a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller unit
  • PLD programmable logic device
  • each step in the above method embodiment can be completed by an integrated logic circuit of hardware in a processor or by instructions in the form of software.
  • the method steps disclosed in the embodiments of the present application can be directly embodied as being executed by a hardware processor, or by a combination of hardware and software modules in a processor.
  • An embodiment of the present application also provides a computer-readable storage medium, in which computer instructions are stored.
  • the computer instructions When the computer instructions are executed on an electronic device, the electronic device executes the above-mentioned related method steps to implement the signal transmission method in the above-mentioned embodiment.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product When the computer program product is run on a computer, the computer is enabled to execute the above-mentioned related steps to implement the signal transmission method in the above-mentioned embodiment.
  • an embodiment of the present application also provides a device, which may specifically be a component or a module, and the device may include a connected processor and a memory; wherein the memory is used to store computer-executable instructions, and when the device is running, the processor may execute the computer-executable instructions stored in the memory so that the device executes the signal transmission method in the above-mentioned method embodiments.
  • the electronic device, computer-readable storage medium, computer program product or chip provided in the embodiments of the present application are all used to execute the corresponding methods provided above. Therefore, the beneficial effects that can be achieved can refer to the beneficial effects in the corresponding methods provided above, and will not be repeated here.
  • the electronic device includes hardware and/or software modules corresponding to the execution of each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods to implement the described functions for each specific application in combination with the embodiments, but such implementation should not be considered to be beyond the scope of the present application.
  • the electronic device can be divided into functional modules according to the above method example.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated module can be implemented in the form of hardware. It should be noted that the division of modules in this embodiment is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • the disclosed method can be implemented in other ways.
  • the terminal device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be an indirect coupling or communication connection through some interface, module or unit, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into a processing module, or each unit can exist physically separately, or two or more units can be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: flash memory, mobile hard disk, read-only memory, random access memory, disk or optical disk and other media that can store program instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信号传输方法及装置,涉及通信技术领域。该方法包括:生成第一信号,并向接收装置发送所述第一信号。所述第一信号包括数据信息和第一同步信号;所述第一同步信号包括至少两个第一调制符号,所述数据信息包括至少两个第二调制符号,所述至少两个第一调制符号中的符号的时长短于所述至少两个第二调制符号中的符号的时长。该方案可以尽可能降低无线信道的噪声、畸变的影响,获得准确的同步信息。

Description

信号传输方法及装置
本申请要求于2022年10月9日提交国家知识产权局、申请号为202211230510.9、发明名称为“一种发送信号的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2022年12月2日提交国家知识产权局、申请号为202211537885.X、发明名称为“信号传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及信号传输方法及装置。
背景技术
目前,为了使接收端与发送端之间的时间对齐,发送端和接收端可以执行时间同步的相关步骤。在一些方案中,发送端向接收端发送信号,该信号携带同步信号和数据,接收端接收信号之后,将信号与本地存储的同步信号进行时域相关运算,以获得时间同步信息。
虽然目前的方案能够获得一定的同步效果,但是,受到无线信道的噪声、信道畸变等因素的影响,目前的同步方案,获得的同步信息并不准确。
发明内容
本申请提供信号传输方法及装置,能够尽可能降低无线信道的噪声、畸变的影响,获得准确的同步信息。
为了实现上述目的,本申请实施例提供了以下技术方案:
第一方面,提供一种信号传输方法,该方法可应用于发送装置,该方法包括:生成第一信号,向接收装置发送所述第一信号。所述第一信号包括数据信息和第一同步信号;所述第一同步信号包括至少两个第一调制符号,所述数据信息包括至少两个第二调制符号,所述至少两个第一调制符号中的符号的时长短于所述至少两个第二调制符号中的符号的时长。
上述方案,考虑到所述接收装置进行时间同步时,用于确定时间同步信息(也可以称为定时信息)的相关峰的宽度受所述第一同步信号中调制符号的时间宽度影响,因此,发送装置在生成所述第一同步信号时,使得所述第一同步信号中的第一调制符号的时长比所述数据信息中的第二调制符号的时长更短。如此,接收装置在根据所述第一同步信号进行时域相关时,能够获得宽度更窄的相关峰,以便从更窄的时间范围内确定同步信息,有助于提升同步的精度。
结合第一方面,在一种可能的设计中,方法还包括:
向所述接收装置发送第一配置信息;
所述第一配置信息包括如下至少一项信息:第一时长的指示信息、所述第一同步信号的序列信息、所述第一同步信号的发送周期;所述第一时长的指示信息用于指示所述至少两个第一调制符号中的符号的时长。
如此,所述接收装置可根据所述第一配置信息生成用于进行时间同步的第一本地同步信号,并将第一本地同步信号与接收的第一同步信号进行相关运算,以确定相关峰,并根据相关峰确定同步信息。其中,由于所述第一同步信号中所述第一调制符号的时长较短(短于所述数据信息中所述第二调制符号的时长),因此,所述接收装置能够通过相关运算得到更窄的相关峰,以提升同步的精度。
结合第一方面,在一种可能的设计中,方法还包括:
生成第二信号,所述第二信号包括第二同步信号和第三同步信号;所述第二同步信号包括至少两个第三调制符号,所述至少两个第三调制符号中相邻符号之间的时间间隔为第一时间间隔;所述第三同步信号包括至少两个第四调制符号,所述至少两个第四调制符号中相邻符号之间的时间间隔为所述第一时间间隔;所述第二同步信号的发送时间与所述第三同步信 号的发送时间存在第一偏置时间;所述至少两个第四调制符号中的符号的时长短于所述至少两个第三调制符号中的符号的时长;
发送所述第二信号。
其中,所述第二信号包括第二同步信号和第三同步信号,可以理解为第二信号承载第二同步信号和第三同步信号。
示例性的,如图9A,OOK信号(第二信号的一个示例)包括第二同步信号(以斜线填充示出)、第三同步信号(以黑色填充示出)和数据信息。第二同步信号包括5号OOK符号,15号OOK符号。以此类推,第二同步信号还可以包括25号OOK符号等OOK符号。可以看出,第二同步信号(以斜线填充示出)中相邻两个符号之间的时间间隔为T3(第一时间间隔)。
示例性的,如图9A,第三同步信号包括0号OOK符号、10号OOK符号。以此类推,第三同步信号还可包括20号OOK符号等符号。可以看出,第三同步信号中相邻两个符号之间的时间间隔为第一时间间隔T3。
示例性的,如图9A,第二同步信号(占用斜线填充的OOK符号)中首个调制符号的发送时间与第三同步信号(占用黑色填充的OOK符号)中首个调制符号的发送时间存在第一偏置时间T4。可以看出,第二同步信号的发送时间与第三同步信号的发送时间存在第一偏置时间T4。
示例性的,仍如图9A,第三同步信号中第四调制符号的时长(T1)短于第二同步信号中第三调制符号的时长(T1’)。
如此一来,所述接收装置可根据第二同步信号和第三同步信号进行同步。示例性的,如图12和图13,接收设备可将本地同步信号1(第三同步信号的一个示例)、本地同步信号2(第三同步信号的一个示例)分别与接收的OOK信号进行相关,得到相应的相关峰。接收设备可以根据图12、图13得到的相应相关峰所在的时间,确定同步信息,以便确定数据信息的起始位置。其中,如图12,图13得到的相关峰可分为三类,第一类相关峰的宽度为2T1,第二类相关峰的宽度为T1+T2(T1的时长短于T2的时长),第三类相关峰的宽度为2T2。其中,第一类相关峰的宽度(2T1)最窄,则在第一类相关峰所在时间,接收设备可获得最为准确的定时时间。
上述方案,所述第二信号中所述第二同步信号的调制符号的时长较长,因此,所述第二同步信号的信号能量较高,因此,使用能量较高的所述第二同步信号进行同步,能够提升所述接收装置进行同步的成功概率。比如,在一些信道环境差的通信场景中,所述接收装置也能检测出所述第二同步信号,进而根据所述第二同步信号进行时间同步。
此外,由于所述第二信号中所述第三同步信号的调制符号的时长较短,因此,能够通过所述第三同步信号(调制符号的时长较短)提升同步的精度。
结合第一方面,在一种可能的设计中,方法还包括:
向所述接收装置发送第二配置信息;
所述第二配置信息包括如下至少一项信息:所述第一时间间隔、所述第一偏置时间、所述第二同步信号的序列信息、所述第三同步信号的序列信息、第二时长的指示信息、第三时长的指示信息、所述第二同步信号的发送周期、所述第三同步信号的发送周期;
其中,所述第二时长的指示信息用于指示所述至少两个第三调制符号中的符号的时长,所述第三时长的指示信息用于指示所述至少两个第四调制符号中的符号的时长。
如此,所述接收装置可根据所述第二配置信息生成第二本地同步信号和第三本地同步信号,并根据第二本地同步信号和第三本地同步信号进行时间同步。其中,由于所述第二同步信号中调制符号的时长较长,因此,所述第二同步信号的能量较高,可抵御信道环境的畸变、噪声,提升所述第二同步信号被接收端接收的概率,同时,由于所述第三同步信号中调制符号的时长较短,因此,所述接收装置可根据所述第三同步信号得到更窄的相关峰,进而提升同步的精度。
结合第一方面,在一种可能的设计中,方法还包括:
生成第二信号,所述第二信号包括第二同步信号和第三同步信号;所述第二同步信号在 时域上占用至少一个第二类符号对应的最后一个第一类符号;所述第三同步信号在时域上占用所述至少一个第二类符号对应的循环前缀CP;所述CP内的信号由所述CP所对应第二类符号内最后一个第一类符号的信号经复制得到;
发送所述第二信号。
示例性的,如图9B,发送设备通过OFDM发射机生成OOK信号。发射机在每个OFDM符号内生成4个OOK符号。其中,按照OFDM发射机的工作机制,每个OFDM符号中末尾部分的信号将被复制到OFDM符号的头端。比如,如图9B,发射机将1号OFDM符号的末尾部分(即4号OOK符号)的同步信号复制到1号OFDM符号的头端(即图9B中1号OOK符号前面的黑色填充位置),将3号OFDM符号的末尾部分(即12号OOK符号)的同步信号复制到3号OFDM符号的头端(即图9B中9号OOK符号前面的黑色填充位置)。
再示例性的,如图10,发送设备在1、3、4、5号OFDM符号对应的CP内发送第三同步信号,在1、3、4、5号OFDM符号对应的最后一个OOK符号内发送第二同步信号。可以看出,第二同步信号在时域上占用至少一个OFDM符号(1、3、4、5号OFDM符号)各自对应的最后一个OOK符号;第三同步信号在时域上占用上述至少一个OFDM符号各自对应的CP(1、3、4、5号OFDM符号对应的CP)。
如此,所述第二信号可包括所述第二同步信号和所述第三调制符号。所述接收装置可利用两个同步信号进行时间同步,提升时间同步的精度。
结合第一方面,在一种可能的设计中,所述第一类符号的时长大于或等于所述CP的时长。
如此,所述第二信号可包括调制符号较长的所述第二同步信号和调制符号较短的所述第三调制符号。其中,由于所述第二同步信号中调制符号的时长较长,因此,所述第二同步信号的能量较高,可抵御信道环境的畸变、噪声,提升所述第二同步信号被接收端接收的概率,同时,由于所述第三同步信号中调制符号的时长较短,因此,接收端可根据所述第三同步信号得到更窄的相关峰,进而提升同步的精度。
结合第一方面,在一种可能的设计中,方法还包括:
向所述接收装置发送第三配置信息;
所述第三配置信息包括如下至少一项信息:所述第二同步信号占用的第二类符号、所述第三同步信号占用的第二类符号、所述第二同步信号中相邻调制符号的发送时间间隔、所述第三同步信号中相邻调制符号的发送时间间隔、所述第二同步信号的发送时间与所述第三同步信号的发送时间之间的偏置时间、所述第二同步信号的序列信息、所述第三同步信号的序列信息、所述第二同步信号的发送周期、所述第三同步信号的发送周期。
结合第一方面,在一种可能的设计中,所述生成第二信号,包括:
通过正交频分复用OFDM发射机生成所述第二信号。
此种方案,可利用所述发送装置中已有的所述OFDM发射机生成、发送所述第二信号,无需对所述发送装置进行硬件升级,可降低成本。
结合第一方面,在一种可能的设计中,所述第一类符号包括如下至少一类符号:开关键控OOK符号、幅度键控ASK符号、频率键控FSK符号;所述第二类符号包括OFDM符号。
第二方面,提供一种信号传输方法,应用于接收装置,该方法包括:
从发送装置接收第一信号;所述第一信号包括数据信息和第一同步信号;所述第一同步信号包括至少两个第一调制符号,所述数据信息包括至少两个第二调制符号,所述至少两个第一调制符号中的符号的时长短于所述至少两个第二调制符号中的符号的时长;
根据所述第一同步信号进行时间同步。
结合第二方面,在一种可能的设计中,所述方法还包括:
获取第一配置信息;所述第一配置信息包括如下至少一项信息:第一时长的指示信息、所述第一同步信号的序列信息、所述第一同步信号的发送周期;所述第一时长的指示信息用于指示所述至少两个第一调制符号中的符号的时长;
根据所述第一配置信息生成第一本地同步信号,所述第一本地同步信号用于时间同步。
示例性的,如图7,接收端可根据第一配置信息生成本地同步信号3。本地同步信号3的波形与第一同步信号的波形一致。
结合第二方面,在一种可能的设计中,所述第一配置信息是预配置的,或,所述第一配置信息是由所述发送装置配置的。
结合第二方面,在一种可能的设计中,根据所述第一同步信号进行时间同步,包括:
根据所述第一本地同步信号和所述第一同步信号进行时间同步。
结合第二方面,在一种可能的设计中,所述方法还包括:
接收第二信号,所述第二信号包括第二同步信号和第三同步信号;所述第二同步信号包括至少两个第三调制符号,所述至少两个第三调制符号中相邻符号之间的时间间隔为第一时间间隔;所述第三同步信号包括至少两个第四调制符号,所述至少两个第四调制符号中相邻符号之间的时间间隔为所述第一时间间隔;所述第二同步信号的发送时间与所述第三同步信号的发送时间存在第一偏置时间;所述至少两个第四调制符号中的符号的时长短于所述至少两个第三调制符号中的符号的时长;
根据所述第二同步信号和所述第三同步信号进行时间同步。
结合第二方面,在一种可能的设计中,所述方法还包括:
从所述发送装置接收第二配置信息;所述第二配置信息包括如下至少一项信息:所述第一时间间隔、所述第一偏置时间、所述第二同步信号的序列信息、所述第三同步信号的序列信息、第二时长的指示信息、第三时长的指示信息、所述第二同步信号的发送周期、所述第三同步信号的发送周期;其中,所述第二时长的指示信息用于指示所述至少两个第三调制符号中的符号的时长,所述第三时长的指示信息用于指示所述至少两个第四调制符号中的符号的时长;
根据所述第二配置信息生成第二本地同步信号和第三本地同步信号。
结合第二方面,在一种可能的设计中,所述方法还包括:
接收第二信号,所述第二信号包括第二同步信号和第三同步信号;所述第二同步信号在时域上占用至少一个第二类符号对应的最后一个第一类符号;所述第三同步信号在时域上占用所述至少一个第二类符号对应的循环前缀CP;所述CP内的信号由所述CP所对应第二类符号内最后一个第一类符号的信号经复制得到;
根据所述第二同步信号和所述第三同步信号进行时间同步。
结合第二方面,在一种可能的设计中,所述方法还包括:
从所述发送装置接收第三配置信息,所述第三配置信息包括如下至少一项信息:所述第二同步信号占用的第二类符号、所述第三同步信号占用的第二类符号、所述第二同步信号中相邻调制符号的发送时间间隔、所述第三同步信号中相邻调制符号的发送时间间隔、所述第二同步信号的发送时间与所述第三同步信号的发送时间之间的偏置时间、所述第二同步信号的序列信息、所述第三同步信号的序列信息、所述第二同步信号的发送周期、所述第三同步信号的发送周期;
根据所述第三配置信息生成第二本地同步信号和第三本地同步信号。
结合第二方面,在一种可能的设计中,所述第一类符号的时长大于所述CP的时长。
结合第二方面,在一种可能的设计中,根据所述第二同步信号和所述第三同步信号进行时间同步,包括:
根据所述第二本地同步信号、所述第二同步信号和所述第三同步信号,确定所述第二同步信号对应的第一定时时间和所述第三同步信号对应的第二定时时间。
示例性的,如图13,接收装置将本地同步信号1(第二本地同步信号的一个示例)与第二同步信号、第三同步信号进行相关,得到第二类相关峰和第三类相关峰,并根据第二类相关峰(第三同步信号对应的相关峰)确定第二定时时间,根据第三类相关峰确定第一定时时间。
结合第二方面,在一种可能的设计中,根据所述第二同步信号和所述第三同步信号进行时间同步,包括:
根据所述第三本地同步信号、所述第二同步信号和所述第三同步信号,确定所述第二同步信号对应的第三定时时间和所述第三同步信号对应的第四定时时间;所述第三定时时间对应第一相关峰,所述第四定时时间对应第二相关峰,所述第一相关峰的时域宽度大于所述第二相关峰的时域宽度。
示例性的,如图12,接收装置将本地同步信号2(第三本地同步信号的一个示例)与第二同步信号、第三同步信号进行相关,得到第二类相关峰和第一类相关峰,并根据第一类相关峰(第三同步信号对应的相关峰)确定第四定时时间,根据第二类相关峰(第二同步信号对应的相关峰)确定第三定时时间。其中,第一类相关峰的时域宽度(2T1)小于第二类相关峰的时域宽度(T1+T2)。
第三方面,提供一种信号传输方法,应用于发送装置,该方法包括:
生成第二信号,第二信号包括第二同步信号和第三同步信号;第二同步信号包括至少两个第三调制符号,所述至少两个第三调制符号中相邻符号之间的时间间隔为第一时间间隔;第三同步信号包括至少两个第四调制符号,所述至少两个第四调制符号中相邻符号之间的时间间隔为第一时间间隔;第二同步信号的发送时间与第三同步信号的发送时间存在第一偏置时间;所述至少两个第四调制符号中符号的时长短于所述至少两个第三调制符号中符号的时长;
发送第二信号。
在一种可能的设计中,方法还包括:
向接收装置发送第二配置信息;
第二配置信息包括如下至少一项信息:第一时间间隔、第一偏置时间、第二同步信号的序列信息、第三同步信号的序列信息、第二时长的指示信息、第三时长的指示信息、第二同步信号的发送周期、第三同步信号的发送周期。
其中,第二时长的指示信息用于指示所述至少两个第三调制符号中的符号的时长,第三时长的指示信息用于指示所述至少两个第四调制符号中的符号的时长。
第四方面,提供一种信号传输方法,应用于接收装置,该方法包括:
接收第二信号,第二信号包括第二同步信号和第三同步信号;第二同步信号包括至少两个第三调制符号,所述至少两个第三调制符号中相邻符号之间的时间间隔为第一时间间隔;第三同步信号包括至少两个第四调制符号,所述至少两个第四调制符号中相邻符号之间的时间间隔为第一时间间隔;第二同步信号的发送时间与第三同步信号的发送时间存在第一偏置时间;所述至少两个第四调制符号中的符号的时长短于所述至少两个第三调制符号中的符号的时长;
根据第二信号进行时间同步。
在一种可能的设计中,方法还包括:
接收第二配置信息;
第二配置信息包括如下至少一项信息:第一时间间隔、第一偏置时间、第二同步信号的序列信息、第三同步信号的序列信息、第二时长的指示信息、第三时长的指示信息、第二同步信号的发送周期、第三同步信号的发送周期。
其中,第二时长的指示信息用于指示所述至少两个第三调制符号中的符号的时长,第三时长的指示信息用于指示所述至少两个第四调制符号中的符号的时长。
第五方面,提供一种信号传输方法,应用于发送装置,方法包括:
生成第二信号,第二信号包括第二同步信号和第三同步信号;第二同步信号在时域上占用至少一个第二类符号对应的最后一个第一类符号;第三同步信号在时域上占用至少一个第二类符号对应的循环前缀CP;CP内的信号由CP所对应第二类符号内最后一个第一类符号的信号经复制得到;
发送第二信号。
在一种可能的设计中,第一类符号的时长大于或等于CP的时长。
在一种可能的设计中,方法还包括:
向接收装置发送第三配置信息;
第三配置信息包括如下至少一项信息:第二同步信号占用的第二类符号、第三同步信号占用的第二类符号、第二同步信号中相邻调制符号的发送时间间隔、第三同步信号中相邻调制符号的发送时间间隔、第二同步信号的发送时间与第三同步信号的发送时间之间的偏置时间、第二同步信号的序列信息、第三同步信号的序列信息、第二同步信号的发送周期、第三同步信号的发送周期。
第六方面,提供一种信号传输方法,应用于接收装置,方法包括:
接收第二信号,第二信号包括第二同步信号和第三同步信号;第二同步信号在时域上占用至少一个第二类符号对应的最后一个第一类符号;第三同步信号在时域上占用至少一个第二类符号对应的循环前缀CP;CP内的信号由CP所对应第二类符号内最后一个第一类符号的信号经复制得到;
根据第二信号进行时间同步。
在一种可能的设计中,第一类符号的时长大于或等于CP的时长。
在一种可能的设计中,方法还包括:
接收第三配置信息;
第三配置信息包括如下至少一项信息:第二同步信号占用的第二类符号、第三同步信号占用的第二类符号、第二同步信号中相邻调制符号的发送时间间隔、第三同步信号中相邻调制符号的发送时间间隔、第二同步信号的发送时间与第三同步信号的发送时间之间的偏置时间、第二同步信号的序列信息、第三同步信号的序列信息、第二同步信号的发送周期、第三同步信号的发送周期。
第七方面,提供一种信号传输装置,应用于发送装置,该装置包括:
处理模块,用于生成第一信号,第一信号包括数据信息和第一同步信号;第一同步信号包括至少两个第一调制符号,数据信息包括至少两个第二调制符号,所述至少两个第一调制符号中的符号的时长短于所述至少两个第二调制符号中的符号的时长;
通信模块,用于向接收装置发送第一信号。
在一种可能的设计中,通信模块,还用于向接收装置发送第一配置信息;
第一配置信息包括如下至少一项信息:第一时长的指示信息、第一同步信号的序列信息、第一同步信号的发送周期;第一时长的指示信息用于指示所述至少两个第一调制符号中的符号的时长。
在一种可能的设计中,处理模块,还用于:生成第二信号,第二信号包括第二同步信号和第三同步信号;第二同步信号包括至少两个第三调制符号,所述至少两个第三调制符号中相邻符号之间的时间间隔为第一时间间隔;第三同步信号包括至少两个第四调制符号,所述至少两个第四调制符号中相邻符号之间的时间间隔为第一时间间隔;第二同步信号的发送时间与第三同步信号的发送时间存在第一偏置时间;所述至少两个第四调制符号中的符号的时长短于所述至少两个第三调制符号中的符号的时长;
通信模块,还用于发送第二信号。
在一种可能的设计中,通信模块,还用于:向接收装置发送第二配置信息;
第二配置信息包括如下至少一项信息:第一时间间隔、第一偏置时间、第二同步信号的序列信息、第三同步信号的序列信息、第二时长的指示信息、第三时长的指示信息、第二同步信号的发送周期、第三同步信号的发送周期;
其中,第二时长的指示信息用于指示所述至少两个第三调制符号中的符号的时长,第三时长的指示信息用于指示所述至少两个第四调制符号中的符号的时长。
在一种可能的设计中,处理模块,还用于:生成第二信号,第二信号包括第二同步信号和第三同步信号;第二同步信号在时域上占用至少一个第二类符号对应的最后一个第一类符号;第三同步信号在时域上占用至少一个第二类符号对应的循环前缀CP;CP内的信号由CP所对应第二类符号内最后一个第一类符号的信号经复制得到;
通信模块,还用于发送第二信号。
在一种可能的设计中,第一类符号的时长大于或等于CP的时长。
在一种可能的设计中,通信模块,还用于:向接收装置发送第三配置信息;
第三配置信息包括如下至少一项信息:第二同步信号占用的第二类符号、第三同步信号占用的第二类符号、第二同步信号中相邻调制符号的发送时间间隔、第三同步信号中相邻调制符号的发送时间间隔、第二同步信号的发送时间与第三同步信号的发送时间之间的偏置时间、第二同步信号的序列信息、第三同步信号的序列信息、第二同步信号的发送周期、第三同步信号的发送周期。
在一种可能的设计中,生成第二信号,包括:
通过正交频分复用OFDM发射机生成第二信号。
在一种可能的设计中,第一类符号包括如下至少一类符号:开关键控OOK符号、幅度键控ASK符号、频率键控FSK符号;第二类符号包括OFDM符号。
第八方面,提供一种信号传输装置,应用于接收装置,包括:
通信模块,用于从发送装置接收第一信号;第一信号包括数据信息和第一同步信号;第一同步信号包括至少两个第一调制符号,数据信息包括至少两个第二调制符号,所述至少两个第一调制符号中的符号的时长短于所述至少两个第二调制符号中的符号的时长;
处理模块,用于根据第一同步信号进行时间同步。
在一种可能的设计中,处理模块,还用于:
获取第一配置信息;第一配置信息包括如下至少一项信息:第一时长的指示信息、第一同步信号的序列信息、第一同步信号的发送周期;第一时长的指示信息用于指示所述至少两个第一调制符号中的符号的时长;
根据第一配置信息生成第一本地同步信号,第一本地同步信号用于时间同步。
在一种可能的设计中,第一配置信息是预配置的,或,第一配置信息是由发送装置配置的。
在一种可能的设计中,根据第一同步信号进行时间同步,包括:
根据第一本地同步信号和第一同步信号进行时间同步。
在一种可能的设计中,通信模块,还用于:接收第二信号,第二信号包括第二同步信号和第三同步信号;第二同步信号包括至少两个第三调制符号,所述至少两个第三调制符号中相邻符号之间的时间间隔为第一时间间隔;第三同步信号包括至少两个第四调制符号,所述至少两个第四调制符号中相邻符号之间的时间间隔为第一时间间隔;第二同步信号的发送时间与第三同步信号的发送时间存在第一偏置时间;所述至少两个第四调制符号中的符号的时长短于所述至少两个第三调制符号中的符号的时长;
处理模块,还用于根据第二同步信号和第三同步信号进行时间同步。
在一种可能的设计中,通信模块,还用于:从发送装置接收第二配置信息;第二配置信息包括如下至少一项信息:第一时间间隔、第一偏置时间、第二同步信号的序列信息、第三同步信号的序列信息、第二时长的指示信息、第三时长的指示信息、第二同步信号的发送周期、第三同步信号的发送周期;其中,第二时长的指示信息用于指示所述至少两个第三调制符号中的符号的时长,第三时长的指示信息用于指示所述至少两个第四调制符号中的符号的时长;
处理模块,还用于根据第二配置信息生成第二本地同步信号和第三本地同步信号。
在一种可能的设计中,通信模块,还用于:接收第二信号,第二信号包括第二同步信号和第三同步信号;第二同步信号在时域上占用至少一个第二类符号对应的最后一个第一类符号;第三同步信号在时域上占用至少一个第二类符号对应的循环前缀CP;CP内的信号由CP所对应第二类符号内最后一个第一类符号的信号经复制得到;
处理模块,还用于根据第二同步信号和第三同步信号进行时间同步。
在一种可能的设计中,通信模块,还用于:从发送装置接收第三配置信息,第三配置信息包括如下至少一项信息:第二同步信号占用的第二类符号、第三同步信号占用的第二类符号、第二同步信号中相邻调制符号的发送时间间隔、第三同步信号中相邻调制符号的发送时 间间隔、第二同步信号的发送时间与第三同步信号的发送时间之间的偏置时间、第二同步信号的序列信息、第三同步信号的序列信息、第二同步信号的发送周期、第三同步信号的发送周期;
处理模块,还用于根据第三配置信息生成第二本地同步信号和第三本地同步信号。
在一种可能的设计中,第一类符号的时长大于CP的时长。
在一种可能的设计中,根据第二同步信号和第三同步信号进行时间同步,包括:
根据第二本地同步信号、第二同步信号和第三同步信号,确定第二同步信号对应的第一定时时间和第三同步信号对应的第二定时时间。
在一种可能的设计中,根据第二同步信号和第三同步信号进行时间同步,包括:
根据第三本地同步信号、第二同步信号和第三同步信号,确定第二同步信号对应的第三定时时间和第三同步信号对应的第四定时时间;第三定时时间对应第一相关峰,第四定时时间对应第二相关峰,第一相关峰的时域宽度大于第二相关峰的时域宽度。
第九方面,提供一种信号传输装置,应用于发送装置,包括:
处理模块,用于生成第二信号,第二信号包括第二同步信号和第三同步信号;第二同步信号包括至少两个第三调制符号,所述至少两个第三调制符号中相邻符号之间的时间间隔为第一时间间隔;第三同步信号包括至少两个第四调制符号,所述至少两个第四调制符号中相邻符号之间的时间间隔为第一时间间隔;第二同步信号的发送时间与第三同步信号的发送时间存在第一偏置时间;所述至少两个第四调制符号中的符号的时长短于所述至少两个第三调制符号中的符号的时长;
通信模块,用于发送第二信号。
在一种可能的设计中,通信模块,还用于:向接收装置发送第二配置信息;
第二配置信息包括如下至少一项信息:第一时间间隔、第一偏置时间、第二同步信号的序列信息、第三同步信号的序列信息、第二时长的指示信息、第三时长的指示信息、第二同步信号的发送周期、第三同步信号的发送周期;
其中,第二时长的指示信息用于指示所述至少两个第三调制符号中的符号的时长,第三时长的指示信息用于指示所述至少两个第四调制符号中的符号的时长。
第十方面,提供一种信号传输装置,应用于接收装置,包括:
通信模块,用于接收第二信号,第二信号包括第二同步信号和第三同步信号;第二同步信号包括至少两个第三调制符号,所述至少两个第三调制符号中相邻符号之间的时间间隔为第一时间间隔;第三同步信号包括至少两个第四调制符号,所述至少两个第四调制符号中相邻符号之间的时间间隔为第一时间间隔;第二同步信号的发送时间与第三同步信号的发送时间存在第一偏置时间;所述至少两个第四调制符号中的符号的时长短于所述至少两个第三调制符号中的符号的时长;
处理模块,用于根据第二信号进行时间同步。
在一种可能的设计中,通信模块,还用于:接收第二配置信息;
第二配置信息包括如下至少一项信息:第一时间间隔、第一偏置时间、第二同步信号的序列信息、第三同步信号的序列信息、第二时长的指示信息、第三时长的指示信息、第二同步信号的发送周期、第三同步信号的发送周期;
其中,第二时长的指示信息用于指示所述至少两个第三调制符号中的符号的时长,第三时长的指示信息用于指示所述至少两个第四调制符号中的符号的时长。
第十一方面,提供一种信号传输装置,应用于发送装置,包括:
处理模块,用于生成第二信号,第二信号包括第二同步信号和第三同步信号;第二同步信号在时域上占用至少一个第二类符号对应的最后一个第一类符号;第三同步信号在时域上占用至少一个第二类符号对应的循环前缀CP;CP内的信号由CP所对应第二类符号内最后一个第一类符号的信号经复制得到;
通信模块,用于发送第二信号。
在一种可能的设计中,第一类符号的时长大于或等于CP的时长。
在一种可能的设计中,通信模块,还用于:向接收装置发送第三配置信息;
第三配置信息包括如下至少一项信息:第二同步信号占用的第二类符号、第三同步信号占用的第二类符号、第二同步信号中相邻调制符号的发送时间间隔、第三同步信号中相邻调制符号的发送时间间隔、第二同步信号的发送时间与第三同步信号的发送时间之间的偏置时间、第二同步信号的序列信息、第三同步信号的序列信息、第二同步信号的发送周期、第三同步信号的发送周期。
第十二方面,提供一种信号传输装置,应用于接收装置,包括:
通信模块,用于接收第二信号,第二信号包括第二同步信号和第三同步信号;第二同步信号在时域上占用至少一个第二类符号对应的最后一个第一类符号;第三同步信号在时域上占用至少一个第二类符号对应的循环前缀CP;CP内的信号由CP所对应第二类符号内最后一个第一类符号的信号经复制得到;
处理模块,用于根据第二信号进行时间同步。
在一种可能的设计中,第一类符号的时长大于或等于CP的时长。
在一种可能的设计中,通信模块,还用于:接收第三配置信息;
第三配置信息包括如下至少一项信息:第二同步信号占用的第二类符号、第三同步信号占用的第二类符号、第二同步信号中相邻调制符号的发送时间间隔、第三同步信号中相邻调制符号的发送时间间隔、第二同步信号的发送时间与第三同步信号的发送时间之间的偏置时间、第二同步信号的序列信息、第三同步信号的序列信息、第二同步信号的发送周期、第三同步信号的发送周期。
第十三方面,提供一种通信设备,该通信设备包括处理器和存储器,存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当处理器执行计算机指令时,执行如本申请上述任一方面任一种可能的设计方式的方法。
第十四方面,提供一种信号传输系统,包括上述任一方面的发送装置以及接收装置。
第十五方面,本申请实施例提供一种芯片系统,该芯片系统应用于包括上述触摸屏的通信设备。该芯片系统包括一个或多个接口电路和一个或多个处理器。该接口电路和处理器通过线路互联。该接口电路用于从通信设备的存储器接收信号,并向处理器发送该信号,该信号包括存储器中存储的计算机指令。当处理器执行计算机指令时,通信设备执行上述任意方面及其任一种可能的实施方式的方法。
第十六方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质包括计算机指令,当计算机指令在通信设备上运行时,使得通信设备执行任意方面任一种可能的实施方式的方法。
第十七方面,本申请实施例提供一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述任意方面及其任一种可能的实施方式的方法。
第二方面至第十七方面所述的技术方案的技术效果可以参考第一方面所述的通信方法的技术效果,此处不再赘述。
附图说明
图1A为本申请实施例提供的OOK调制方法的示意图;
图1B为本申请实施例提供的ASK调制方法的示意图;
图1C为本申请实施例提供的FSK调制方法的示意图;
图1D为本申请实施例提供的OFDM调制方法的示意图;
图1E为本申请实施例提供的OFDM调制方法的示意图;
图1F为本申请实施例提供的通过OFDM发射机生成OOK信号方法的示意图;
图1G为本申请实施例提供的通过OFDM发射机生成FSK信号方法的示意图;
图1H为本申请实施例提供的接收端通过相关峰确定同步信息的示意图;
图2为本申请实施例提供的通信系统的架构示意图;
图3为本申请实施例提供的通信装置的结构示意图;
图4为本申请实施例提供的信号传输方法的流程示意图;
图5A为本申请实施例提供的在非连续符号(时长较短)上发送同步信号的场景示意图;
图5B为本申请实施例提供的在连续符号(时长较短)上发送第一同步信号的场景示意图;
图6为本申请实施例提供的调制得到第一同步信号的方法的流程示意图;
图7为本申请实施例提供的根据第一同步信号确定相关峰的场景示意图;
图8为本申请实施例提供的信号传输方法的流程示意图;
图9A为本申请实施例提供的第二同步信号、第三同步信号的示意图;
图9B为本申请实施例提供的第二同步信号、第三同步信号的示意图;
图10为本申请实施例提供的第二同步信号、第三同步信号的示意图;
图11为本申请实施例提供的本地同步信号1、2的示意图;
图12为本申请实施例提供的根据第三同步信号确定相关峰的场景示意图;
图13为本申请实施例提供的根据第二同步信号确定相关峰的场景示意图;
图14为本申请实施例提供的根据第三同步信号确定相关峰的场景示意图;
图15为本申请实施例提供的根据第二同步信号确定相关峰的场景示意图;
图16为本申请提供的一种通信装置的结构示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别对象,或者用于区别对同一对象的处理。“第一”、“第二”等字样可以对功能和作用基本相同的相同项或相似项进行区分。例如,第一设备和第二设备仅仅是为了区分不同的设备,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
“至少一个”是指一个或者多个,“多个”是指两个或两个以上。
“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
首先,对本申请实施例涉及的技术术语进行介绍:
1、开关键控(on-off-keying,OOK)调制
此种调制方式,按照需要调制的信息,使用开关非归零线路码(ON-OFF non-return-to-zero line code)生成基带信号,然后使用载波信号与基带信号相乘,来生成OOK信号。OOK信号在时域上可包括一个或多个OOK符号。
假设基带信号表示为snrz(t),载波信号可以表示为cos(2πfct+φ0),其中φ0是载波信号的初始相位,fc为载波信号的频率。通过OOK调制生成的OOK信号(可记作sOOK(t))可以表示为:
sOOK(t)=snrz(t)*cos(2πfct+φ0);
假设在ON-OFF NRZ线路码中,高电平表示信息比特1,用零电平表示信息比特0,待发送的比特信息是10101,则发送设备待发送比特信息对应的基带信号的波形可以如图1A的 (a-1)所示。采用图1A的(a-1)所示的基带信号与图1A的(a-2)所示的载波信号相乘,可得到图1A的(a-3)所示的发送信号(OOK信号)。发送设备可向接收设备发送图1A的(a-3)所示的发送信号。
由图1A,可以看出,OOK调制可以理解为,在需要发送比特信息‘1’时,发送载波信号,在需要发送比特信息‘0’时,不发送载波信号。
接收设备从发送设备接收发送信号之后,可以判断某个比特信息的能量是否超过门限(比如但不限于是0.5)。若比特信息的能量超过门限,则确定该比特信息是1,若该比特信息的能量未超过门限,则确定该比特信息是0,从而完成解调。
可选的,OOK接收设备中的接收器件通常复杂度较低、功耗较低,因此,对于一些低成本、低功耗的设备,例如物联设备,传感器等,可以采用OOK调制、解调方式,以降低设备的复杂度和功耗。
2、幅度键控(amplitude shift keying,ASK)调制
在ASK调制方式中,高电平表示信息比特1,用低电平(非零)表示信息比特0。假设待发送的比特信息是10101,则发送设备待发送比特信息对应的基带信号的波形可以如图1B的(a-1)所示。采用图1B的(a-1)所示的基带信号与图1B的(a-2)所示的载波信号相乘,可得到图1B的(a-3)所示的发送信号(ASK信号)。发送设备可向接收设备发送图1B的(a-3)所示的ASK信号。
3、频率键控(frequency shift keying,FSK)调制
FSK调制方式中,利用发送信号使用的频率,来传递信息。例如图1C的(a-1)所示,为一个示例性的FSKj信号的波形。该FSK信号的波形类似余弦函数,但是FSK信号的频率随时间发生变化。图1C的(a-1)示出了如图1C的(a-2)所示FSK信号的瞬时频率随时间的变化。可以看出在第一,三个符号使用了较高的频率f1,而在第二个符号使用了较低的频率f0。
假设需要传输的信息比特为0,1组成的序列,则发送频率为f0的信号可以表示信息比特‘0’,而发送频率为f1的信号可以表示传输的是信息比特‘1’。所以第n(n为正整数)个FSK符号的发送信号可以表示成这里Tsym是FSK符号的时长,是第n个FSK符号的初始相位。
FSK调制技术具有抗噪能力强,包络恒定等优点。此外,FSK接收机成本和功耗均较低。例如FSK接收机可以使用较为简单的鉴频电路,检测接收信号的频率,频率为f_0则判断对应的信息比特为0,频率为f_1则判断对应的信息比特为1。这种鉴频电路通常成本和功耗都很低,适合一些低速率业务的终端设备,例如物联(IoT)设备。
4、正交频分复用(orthogonal frequency division multiplexing,OFDM)调制
OFDM调制技术是另一种广泛采用的调制技术,例如802.11(Wi-Fi),4G,5G等系统都使用OFDM调制技术。OFDM调制一般应用在移动宽带(比如增强移动宽带(enhanced mobile broadband,eMBB))的系统中,可通过更高的通信带宽,提供高传输速率。比如,大部分的部署场景下,OFDM系统可以提供1Mbps以上的传输速率。
OFDM调制方式中,可将系统带宽划分为多个子载波,并在每个子载波上分别调制数据进行发送。其中,每个子载波可以有不同的频率。OFDM的发射和接收流程如图1D所示,首先,经调制,待发送的数据比特(比如10101)被映射为复数符号。其中,复数符号可以写为a为符号的幅度,为符号的相位。作为一种可能的实现方式,采用正交振幅调制(quadrature amplitude modulation,QAM)映射的方式,将待发送的数据比特映射为相应的QAM符号(一种复数符号)。
然后,发送设备通过串并转换,将QAM符号分别映射到不同的子载波上。对不同子载波上的QAM符号进行快速反傅里叶运算(inverse fast Fourier transform,IFFT),转变成时域上的OFDM符号。
本申请实施例中,快速反傅里叶运算还可以称为快速傅里叶逆变换运算,或者还可以有其他名称。
作为一种可能的实现方式,如图1E,得到OFDM符号之后,发送设备可以将OFDM符号的尾部信号复制到OFDM符号的前端,复制的该部分信号称为循环前缀(cyclic prefix,CP)。循环前缀可用于对抗无线信道中的多径传输时延。
如图1D,在为OFDM符号添加循环前缀之后,发送设备可以将OFDM符号进行数模转换(digital to analog conversion)和上变频,得到适于在无线信道中传输的OFDM信号,并通过无线信道发射该OFDM信号。
接收设备接收OFDM信号之后,经过模数转换、串并转换、去除循环前缀、快速傅里叶变换、并串转换、解调等处理,可确定来自发送设备的比特信息(比如10101)。
5、高速率终端和低功耗终端
目前,存在使用移动宽带业务(mobile broad band,MBB)的终端,这类终端通常需要较高的网速来支持流畅的数据业务。这类终端可称为高速率终端,或有其他名称。高速率终端包括但不限于:手机,平板等。移动宽带业务包括但不限于:视频浏览,文件下载等业务。对于高速率终端,其适合使用OFDM等调制方式来提供较高的传输速率,以便支持移动宽带业务。
网络中的另一些设备,例如物联设备,可穿戴设备(智能手表)等,这些设备通常需要的通信速率很低,但是对于接收机低成本,低功耗却有较高要求。这些设备可称为低功耗设备,或其他名称。对于低功耗设备而言,因为OFDM等调制方式比较复杂,比如接收机需要做精确的时频同步和复杂的信号处理,需要较高的成本和功耗,因此,OFDM等复杂的调制方式并不适用于低功耗设备。低功耗设备更适用简单的调制方式(比如OOK、FSK等简单的调制方式)。
6、适配不同类型终端的方案
6.1基站配套不同类型的硬件
为了达到服务不同类型终端的目的,一种方法是,可以在移动通信网络的基站上,设置两套发射机。基站的一套发射机用来发送OFDM信号,服务移动宽带的终端(比如手机等)。基站的另外一套发射机用来发送OOK或FSK信号,服务低速率终端(比如物联网设备)。
但是,此种方法需要对于基站进行硬件升级,成本较高。
6.2通过OFDM发射机发送OOK信号
此种方法中,基站的发射机仍使用OFDM发射机。OFDM发射机通过进行一定的信号处理,可以在某些频段上,生成符合其他调制格式的信号。例如OFDM发射机可以在某些频段上生成OOK或FSK信号。
以OFDM发射机生成OOK信号为例,作为一种可能的实现方式,可以根据希望生成的OOK信号的波形,预先计算确定K个子载波上应该调制的信号,这部分信号经过IFFT运算之后,生成的OFDM符号的时域波形,会被近似为需要发送的OOK信号。
例如,如图1F的(a),OFDM发射机可使用NIFFT=512点的IFFT运算生成OFDM信号,其中K=32个子载波用于生成OOK信号。
如图1F的(a),首先确定目标发送的OOK波形,例如10100101…,也就是图1F的(c)中虚线所示的波形。OFDM发射机可以通过预先的运算,得到在分配的子载波上,需要调制的信息为x=[x0,x1,…,xK-1]。这样在进行OFDM信号调制时,其他的子载波,调制其他信息,而分配的32个子载波上,发送x=[x0,x1,…,xK-1]。例如图1F的(b)示出了在子载波上调制的信息。经过IFFT运算之后,子载波携带的信息被转换为时域信号。如果通过滤波器将中间32个子载波过滤出来,则其所携带信号的幅度会与目标发送的OOK波形接近。例如图1F的(c)中,虚线段为目标发送的OOK信号,而实曲线是采用上述方法生成的OOK信号。可以看出,虽然生成OOK的信号不是像理想的目标信号那样规则的方波,但是可以在比特信息1对应的部分形成高幅度信号,在比特信息0对应的部分形成低幅度信号,这样接收端仍然可以通过判断信号门限正确解调。比如,若比特信息的能量超过门限,则确定该比特信息是1,若该比特信息的能量未超过门限,则确定该比特信息是0,从而完成解调。
通过上述的方法,可以用OFDM发射机生成OOK信号。另外值得注意的是,这种方案可 以使得在一个OFDM符号的时长内发送多个OOK符号,例如一个OFDM符号的时长内,生成8个OOK符号:“ON|OFF|ON|OFF|OFF|ON|OFF|ON”。其中,ON可以对应比特信息1,OFF可以对应比特信息0。
6.3通过OFDM发射机发送FSK信号
示例性的,如图1G,OFDM发射机使用大小为NIFFT的IFFT来生成OFDM信号,而其中2K个子载波用于生成FSK信号,这2K个子载波可分为两个子载波组(子载波组0与子载波组1)。可以根据希望生成的FSK信号的波形,预先计算确定2K个子载波上应该调制的信号,这部分信号经过IFFT运算之后,生成的OFDM符号的时域波形,会被近似为需要发送的FSK信号。
假设FSK信号调制的规则为:若需发送的信息比特为0,则使用高功率在子载波组0上进行发送,而使用低功率在子载波组1上进行发送。若需要发送的信息比特为1,则使用高功率在子载波组1上进行发送,而使用低功率在子载波组0上进行发送。这样,FSK信号可以看做是分别在两个子载波组上发送的两路并行的OOK信号,且在同一时间,只有一路OOK信号是高功率信号,高功率信号可以记作ON。
示例性的,例如一个OFDM发射机使用NIFFT=512点的FFT来生成OFDM信号,其中2K=2×32个子载波用于生成FSK信号,需要发送的信息bit为‘01011010’,则OFDM发射机可以确定在子载波组0上发送的OOK信号为:“ON(高功率)|OFF(低功率)|ON|OFF|OFF|ON|OFF|ON”。同样,OFDM发射机可以确定在子载波组1上发送的OOK信号为:“OFF|ON|OFF|ON|ON|OFF|ON|OFF”。可以看出,在同一时刻,只有1路信号为高功率信号‘ON’,比如当信息bit为0时,在子载波组0上发射ON,在子载波组1上发射OFF,只有子载波组0上的信号为高功率信号。当信息bit为1时,在子载波组0上发射OFF,在子载波组1上发射ON,只有子载波组1上的信号为高功率信号。
这样,在进行OFDM信号调制时,OFDM发射机在其他的子载波,调制其他数据,而在分配的子载波组0上,发送x=[x0,x1,…,xK-1],在分配的子载波组1上,发送y=[y0,y1,…,yK-1]。
通过上述的方法,可以用OFDM发射机生成FSK信号。另外,这种方案可以使得在一个OFDM符号的时长内发送多个FSK信号。
7、ASK/OOK/FSK接收机的时域同步
接收设备在接收ASK/OOK/FSK信号之后,需要首先进行时间同步,也就是从接收到的ASK/OOK/FSK信号中,找到每个数据帧的帧头位置,ASK/OOK/FSK符号的起始和结束的时间。如此,才能正确解调信号。
相关技术中,为了实现时间同步,收发双方可以约定一个同步信号。同步信号一般有较好的自相关特性,也就是同步信号在和自身做滑动相关(相关)运算时,只有序列正好对齐的时刻相关值最大,而其他时刻的相关值较低。
以OOK信号的同步为例,发送设备可以在发送的OOK信号中携带同步信号。同步信号在时域上可包括一个或多个OOK符号。接收设备接收OOK信号之后,可以将OOK信号与本地存储的同步信号进行相关运算,找到相关值的峰值,并根据峰值所在时刻确定同步信息。
作为一种可能的实现方式,接收设备使用带通滤波器,将调制了OOK信号的子载波滤出,对子载波进行包络检波后,将子载波携带的同步信号与本地存储的同步信号进行相关。在一些实施例中,如果采用FSK调制方式,则接收设备可以使用多个带通滤波器,例如2FSK采用2个带通滤波器,4FSK采用4个带通滤波器,分别将调制了FSK信号的不同路子载波(比如上述子载波组1、子载波组0)滤出,对子载波进行包络检波后,将子载波携带的同步信号与本地存储的同步信号进行相关。其中,每一路FSK信号的解调过程与OOK信号的解调过程类似。
例如,图1H的(a)示出了接收设备从发送设备接收的OOK信号,OOK信号中携带同步信号(在黑色填充所示的OOK符号上发送同步信号)。假设该同步信号的序列信息是[1 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0],该同步信号的序列长度为32位,接收设备在0号OOK符号上接收同步信号中的第一个调制符号(比如对序列中的比特1进行调制后得到的调制符号),在4号OOK符号上接收同步信号中的第二个调制符号(比 如对序列中的比特0进行调制后得到的调制符号),以此类推。
接收设备接收到OOK信号之后,将接收的OOK信号与本地存储的同步信号进行相关运算,步信号。
如图1H的(a),当接收的OOK信号中的同步信号与接收设备的本地同步信号没有对齐时,OOK信号与本地同步信号的相关结果通常不存在较大的相关值。如图1H的(b),当接收的OOK信号中的同步信号与接收设备的本地同步信号对齐时,在对齐时刻,相关结果存在较大的相关值。其中,同步信号中的比特对齐时,相关结果可视为三角波,该三角波可称为相关峰。
接收设备可以根据相关峰所在的时刻或时段,确定用于发送同步信号的OOK符号和用于发送数据信息的OOK符号,以便确定精确的同步时间。比如,如图1H的(b),接收设备得到OOK信号与本地同步信号的相关结果之后,可以根据相关峰所在的时刻或时段,确定0号、4号等OOK符号上的信息为同步信号,并据此确定数据信息的起始位置(比如1号OOK符号)、结束位置等同步信息,以便能够正确解调来自发送设备的数据信息。
图1H的示例也可以看做是FSK解调时,多个带通滤波器中一个滤波器在滤波得到一组子载波后,对该组子载波携带的同步信号进行相关的过程。
8、相关峰宽度问题
根据相关的运算机制,两个方波进行相关,得到的相关结果的波形可接近于三角波,该三角波的底边宽度为方波底边宽度的两倍。具体到使用OOK信号和本地同步信号进行相关,OOK信号中携带的同步信号,本地同步信号均可视为方波,那么,OOK信号与本地同步信号进行相关,得到的相关峰(可视为三角波)的时域宽度为OOK符号的时长的两倍。例如,在图1H的(b)中,假设一个OOK符号的时长为Tc,那么,OOK信号r(t)与本地同步信号g(t)进行相关,得到的相关结果C(t)是一个三角波,三角波的底边宽度为2Tc
虽然接收设备仍可根据相关峰(三角波)所在的时刻或时段确定定时信息,但是,考虑到噪声、器件、信道带来的波形畸变等问题,相关峰的峰值点邻近的时间都有一定的概率被判断为定时点,导致定时精度降低。
为了提升接收端的定时精度,本申请实施例提供一种同步信号的发送方法,该方法可适用于移动通信系统中。移动通信系统包括但不限于第三代(3rd generation,3G)移动通信系统,第四代(4th generation,4G)移动通信系统,(5th generation,5G)移动通信系统,以及未来演进的移动通信系统等。本申请实施例的技术方案也可以应用于无线保真(wireless fidelity,Wi-Fi),蓝牙等无线通信系统中。图2的(a)示出了本申请实施例所适用的一种可能的通信系统的架构。
如图2的(a),该通信系统可包括网络设备100以及与网络设备100连接的一个或多个终端设备200(图2的(a)仅示出1个)。网络设备和终端设备之间可以进行数据传输。
网络设备100可以是能和终端设备200通信的设备。例如,网络设备100可以为基站,该基站可以是LTE中的演进型节点B(evolved NodeB,eNB或eNodeB),还可以是NR中的基站,或者中继站或接入点,或者未来网络中的基站等,本申请实施例不做限定。其中,NR中的基站还可以称为发送接收点(transmission reception point,TRP)或gNB。本申请实施例中,网络设备可以是独立的网络设备,例如基站,也可以是网络设备中实现相应功能的芯片。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
其中,本申请实施例中的终端设备200还可以称为终端,可以是一种具有无线收发功能的设备,终端可以被部署在陆地上,包括室内或室外、手持或车载;也可以被部署在水面上(如轮船等);还可以被部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user  equipment,UE)。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。示例性地,UE可以是手机(mobile phone)、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请实施例中,终端设备可以是独立的终端,也可以是终端中的芯片。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
按照终端的能力类型,终端可包括高速率终端和低功耗终端。可选的,高速率终端可以是移动宽带业务的终端,此类终端包括手机,平板等设备。此类终端进行移动宽带业务通常需要较高网速,以提升业务体验。可选的,移动宽带业务包括但不限于:视频浏览,文件下载等。
低功耗终端需要的通信速率通常较低,但是对于接收机低成本,功耗却有较高要求。低功耗终端包括但不限于物联网设备,可穿戴设备(智能手表等)等。
图2的(a)仅示例性示出了本申请实施例所适用的系统架构的一种可能示例。本申请实施例适用的系统架构不限于此。比如,图2的(b)示出了另一种系统架构。该系统中,终端200之间可以直接通信。示例性的,图2的(b)所示系统可以是sidelink系统。
本申请实施例图2的(a)中的网络设备100或终端设备200,可以由一个设备实现,也可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能,或者是芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
例如,用于实现本申请实施例提供的终端设备的功能的装置或用于实现网络设备功能的装置可以通过图3中的装置300来实现。图3所示为本申请实施例提供的装置300的硬件结构示意图。该装置300中包括至少一个处理器301,用于实现本申请实施例提供的终端设备或网络设备的功能。可选地,装置300中还可以包括总线302以及至少一个通信接口304。可选地,装置300中还可以包括存储器303。
在本申请实施例中,处理器可以是中央处理器(central processing unit,CPU),通用处理器、网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器还可以是其它任意具有处理功能的装置,例如电路、器件或软件模块。
总线302可用于在上述组件之间传送信息。
通信接口304,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口304可以是接口、电路、收发器或者其它能够实现通信的装置,本申请不做限制。通信接口304可以和处理器301耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
在本申请实施例中,存储器可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,也可以与处理器耦合,例如通过总线302。存储器也可以和处理器集成在一起。
其中,存储器303用于存储程序指令,并可以由处理器301来控制执行,从而实现本申请下述实施例提供的同步信号传输方法。处理器301用于调用并执行存储器303中存储的指令,从而实现本申请下述实施例提供的同步信号传输方法。
可选的,本申请实施例中的计算机指令也可以称之为程序代码,本申请实施例对此不作具体限定。
可选地,存储器303可以包括于处理器301中。
在具体实现中,作为一种实施例,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,装置300可以包括多个处理器,例如图3中的处理器301和处理器307。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
上述的装置300可以是一个通用设备或者是一个专用设备。在具体实现中,装置300可以是有图3中类似结构的设备。本申请实施例不限定装置300的类型。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例中部分场景以图2的(a)、图2的(b)所示的通信系统中的场景为例进行说明。应当指出的是,本申请实施例中的方案还可以应用于其他移动通信系统中,相应的名称也可以用其他移动通信系统中的对应功能的名称进行替代。
为了便于理解,以下结合附图对本申请实施例提供的同步信号传输方法进行具体介绍。
如图4所示,本申请实施例提供一种同步信号传输方法,包括:
S101、发送设备生成第一信号。
可选的,发送设备为网络设备(比如基站等)或者终端。相应的,发送设备为网络设备时,接收设备可以为网络设备或终端。发送设备为终端时,接收设备可以为网络设备或终端。本申请实施例的技术方案可适用于网络设备之间收发信息,或者终端之间收发信息,或者网络设备与终端之间收发信息的过程。
其中,所述第一信号包括数据信息和第一同步信号;所述第一同步信号包括至少两个第一调制符号,所述数据信息包括至少两个第二调制符号,所述至少两个第一调制符号中的符号的时长短于所述至少两个第二调制符号中的符号的时长。
示例性的,第一同步信号可以在时间非连续的符号上发送,示例性的,发送设备生成如图5A所示的OOK信号,该OOK信号携带第一同步信号和数据信息。其中,第一同步信号中OOK符号的时长短于数据信息中OOK符号的时长。比如,第一同步信号占用的符号包括0号、4号、8号、12号OOK符号,数据信息占用的符号包括1-3、5-7、9-11、13-15号OOK符号,0号、4号、8号、12号OOK符号中每个OOK符号的时长短于1-3、5-7、9-11、13-15号OOK符号中每个OOK符号的时长。
示例性的,第一同步信号也可以在时间连续的符号上发送,发送设备生成如图5B所示的OOK信号,该OOK信号携带第一同步信号和数据信息。其中,第一同步信号中OOK符号的时长小于数据信息中OOK符号的时长。比如,第一同步信号中的第一个调制符号(第一调制符号)占用1号OOK符号、第一同步信号中的第二个调制符号(第一调制符号)占用2号OOK符号、第一同步信号中的第三个调制符号占用3号OOK符号,以此类推,第一同步信号还可以占用4号、5号、6号等OOK符号,数据信息中的调制符号(第二调制符号)包括7-22号连续的OOK符号,其中,1-6号OOK符号中每个符号的时长小于7-22号OOK符号中每个符号的时长。
上述主要以第一同步信号中每个调制符号的时长相同为例,在另一些实施例中,第一同步信号中不同调制符号的时长还可以不同。类似的,数据信息中不同调制符号的时长可以相同或不同。
以第一信号为OOK信号为例,图6示出了发送设备生成第一信号的过程。如图6,发送设备对第一同步信号和数据序列分别进行调制。其中,如图6的(a-1),发送设备使用时域宽度为Td的码元表示第一同步信号。如图6的(a-2),发送设备将第一同步信号与载波信号相乘,得到如图6的(a-3)所示调制后的第一同步信号。调制后的该第一同步信号携带调制符号的信息。发送设备可以在无线帧的相应OOK符号上发送调制后的第一同步信号。
如图6的(b-1),发送设备使用时域宽度为Tc的码元对数据序列进行调制,Td小于Tc。如图6的(b-2),发送设备将数据序列与载波信号相乘,得到如图6的(b-3)所示调制后的数据信息。调制后的该数据信息携带数据序列中至少一个比特的信息。发送设备可以在无线帧的相应OOK符号上发送调制后的数据信息。
图6以发送设备采用OOK发射机生成第一信号进行说明,在另一些实施例中,发送设备还可以通过OFDM发射机生成OOK信号,本申请实施例对生成第一信号的发射机的类型、生成第一信号的具体实现方式不做限制。
S102、发送设备向接收设备发送所述第一信号。
相应的,接收设备从发送设备接收第一信号。
S103、接收设备根据所述第一同步信号进行时间同步。
可选的,接收设备可以获取第一配置信息,并根据所述第一配置信息生成本地同步信号,所述本地同步信号用于时间同步。作为一种可能的实现方式,接收设备将第一信号与本地同步信号进行相关运算,并根据相关结果确定时间同步信息。
所述第一配置信息包括如下至少一项信息:所述第一时长的指示信息、所述第一同步信号的序列信息、所述第一同步信号的发送周期。其中,第一时长是所述第一同步信号中第一调制符号(比如OOK符号或ASK符号或FSK符号)的时长,所述第一时长的指示信息用于指示所述至少两个第一调制符号中的符号的时长。示例性的,如图5A,第一配置信息可以指示第一同步信号(占用黑色填充的0、4、8、12号OOK符号)中第一调制符号的时长T1、第一同步信号的发送周期T2、第一同步信号的序列信息[1 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0]。
可选的,接收设备可以从网络设备接收第一配置信息。可选的,网络设备可以通过直接或间接的方式来指示上述任一项信息。示例性的,可指示第一同步信号中第一调制符号的时长与数据信息中第二调制符号的时长之间的比例,例如第一同步信号中第一调制符号的时长是数据信息中第二调制符号的时长的1/8,1/4等。再示例性的,直接指示第一同步信号中第一调制符号的时长为x微秒。
或者,接收设备中可以预先配置第一配置信息,比如协议预定义第一配置信息,并在接收设备出厂时配置在接收设备中。
以第一信号为OOK信号为例,示例性的,如图7,接收设备接收OOK信号之后,将OOK信号与本地同步信号进行相关,在OOK信号中的第一同步信号与本地同步信号对齐的情况下,接收设备可根据相关结果得到相应的相关峰。如图7,根据相关峰在时域上的位置,接收设备可确定0号、4号、124号OOK符号等用于承载第一同步信号,并可以据此确定数据信息的起始位置,进而对数据信息进行解调。此过程中,由于OOK信号中第一同步信号中第一调制符号的时长较短(相当于方波的底边宽度较窄),因此,根据上文的相关结果原理,OOK信号与本地同步信号进行相关所得到相关峰的宽度较窄,有助于提升接收设备的定时精度。
上述方案,考虑到接收设备进行时间同步时,用于确定时间同步信息的相关峰的宽度受OOK符号的时间宽度影响,因此,发送设备使用更短的码元来调制得到第一同步信号,以使得发送设备能够在时长更短的OOK符号内发送第一同步信号。如此,接收端在进行时域相关(通过相关运算)时,能够获得宽度更窄的相关峰,以便从更窄的时间范围内确定定时信息,有助于提升定时精度。
本申请实施例还提供一种同步信号传输方法,如图8,该方法包括:
S201、发送设备生成第二信号。
在一些实施例中,所述第二信号包括第二同步信号和第三同步信号;所述第二同步信号 包括至少两个第三调制符号,所述至少两个第三调制符号中相邻符号之间的时间间隔为第一时间间隔;所述第三同步信号包括至少两个第四调制符号,所述至少两个第四调制符号中相邻符号之间的时间间隔为所述第一时间间隔;所述第二同步信号的发送时间与所述第三同步信号的发送时间存在第一偏置时间;所述至少两个第四调制符号中的符号的时长短于所述至少两个第三调制符号中的符号的时长。
示例性的,如图9A,OOK信号包括第二同步信号、第三同步信号和数据信息。第二同步信号(以斜线填充示出)中相邻两个第三调制符号之间的时间间隔为T3(第一时间间隔)。比如,发送设备在如图9A所示的5号OOK符号内发送第二同步信号中的第一个调制符号,在15号OOK符号内发送第二同步信号中的第二个调制符号,以此类推,在25号OOK符号内发送第二同步信号中的第三个调制符号…
示例性的,发送设备在如图9A所示的0号OOK符号内发送第三同步信号(以黑色填充示出)中的第一个调制符号,在10号OOK符号内发送第三同步信号中的第二个调制符号,以此类推,在20号OOK符号内发送第三同步信号中的第三个调制符号…可以看出,第三同步信号中相邻两个第四调制符号之间的时间间隔为第一时间间隔T3。
示例性的,如图9A,第二同步信号(占用斜线填充的OOK符号)中首个调制符号的发送时间与第三同步信号(占用黑色填充的OOK符号)中首个调制符号的发送时间存在第一偏置时间T4。可以看出,第二同步信号的发送时间与第三同步信号的发送时间存在第一偏置时间T4。
示例性的,仍如图9A,第三同步信号中第四调制符号的时长(T1)短于第二同步信号中第三调制符号的时长(T1’)。
在另一些实施例中,所述第二信号包括第二同步信号和第三同步信号。所述第二同步信号在时域上占用至少一个第二类符号对应的最后一个第一类符号;所述第三同步信号在时域上占用所述至少一个第二类符号对应的循环前缀CP;所述CP内的信号由所述CP所对应第二类符号内最后一个第一类符号的信号经复制得到。
示例性的,如图9B,发送设备通过OFDM发射机生成OOK信号。发射机在每个OFDM符号内生成4个OOK符号。其中,按照OFDM发射机的工作机制,每个OFDM符号中末尾部分的信号将被复制到OFDM符号的头端。比如,如图9B,发射机将1号OFDM符号的末尾部分(即4号OOK符号)的同步信号复制到1号OFDM符号的头端(即图9B中1号OOK符号前面的黑色填充位置),将3号OFDM符号的末尾部分(即12号OOK符号)的同步信号复制到3号OFDM符号的头端(即图9B中9号OOK符号前面的黑色填充位置)。
再示例性的,如图10,发送设备在1、3、4、5号OFDM符号对应的CP内发送第三同步信号,在1、3、4、5号OFDM符号对应的最后一个OOK符号内发送第二同步信号。可以看出,所述第二同步信号在时域上占用至少一个OFDM符号(1、3、4、5号OFDM符号)各自对应的最后一个OOK符号;所述第三同步信号在时域上占用上述至少一个OFDM符号各自对应的CP(1、3、4、5号OFDM符号对应的CP)。
如此一来,发送设备生成的OOK信号(第一信号的一个示例)中携带两个同步信号(比如第二同步信号和第三同步信号)。这两个同步信号携带的序列信息是相同的,两个同步信号中对应的比特在不同时机中传输。其中一个同步信号的调制符号在相应OFDM符号的最后一个OOK符号内传输,另外一个同步信号的相应调制符号在相应OFDM符号的CP内传输。仍以图9B为例,假设第二同步信号的序列信息为[1 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0],在一个示例中,发送设备在4号OOK符号内传输第二同步信号中的第一个调制符号(假设是序列中第一个比特1对应的调制符号),4号OOK符号对应1号OFDM符号的最后部分。发送设备在12号OOK符号内传输第二同步信号中的第二个调制符号(序列中第二个比特0对应的调制符号),12号OOK符号对应3号OFDM符号的最后部分。以此类推,发送设备可以在相应OFDM符号的最后一个OOK符号内传输第二同步信号中的其他调制符号。可以看出,第二同步信号在时域上占用的符号包括1号OFDM符号的最后一个OOK符号以及3号OFDM符号的最后一个OOK符号。
第三同步信号的序列信息同样为[1 0 1 0 0 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 0],在一个示例中,发送设备可以在1号OFDM符号的CP传输第三同步信号中的第一个调制符号(假设是上述序列中第一个比特1对应的调制符号)、在3号OFDM符号的CP内传输第三同步信号中的第二个调制符号(假设是上述序列中第二个比特0对应的调制符号),以此类推,发送设备可以将相应OFDM符号的最后一个OOK符号内的信号复制到该OFDM符号的头端,形成该OFDM符号的CP,并在该CP内传输第三同步信号的相应调制符号。可以看出,所述第三同步信号在时域上占用了1号、3号等OFDM符号的CP。
可选的,所述OOK符号的时长大于或等于所述CP的时长。例如CP的时长T1=2.34μs,OOK符号的时长是T2=8.33μs。如此一来,发送设备可以仅将相应OFDM符号的最后一个OOK符号内的同步比特复制到该OFDM符号的头端,不将其他OOK符号内的其他比特(比如数据比特)复制到OFDM符号的头端,有助于接收设备从CP中获取准确的同步信号。此外,CP的时长较短,意味着,CP携带的同步比特的持续时长较短,如此,能够使得接收设备获得更窄的相关峰,有助于提升定时精度。
S202、发送设备发送所述第二信号。
S203、接收设备根据所述第二信号进行时间同步
在一些实施例中,接收设备获取第二配置信息,并根据所述第二配置信息生成第二本地同步信号和/或第三本地同步信号。
接收设备可以根据第二信号,并且根据第三本地同步信号和/或第二本地同步信号,确定时间同步信息。具体的,接收设备可以根据第三本地同步信号以及第二信号,确定时间同步信息。或者,接收设备可以根据第二本地同步信号以及第二信号,确定时间同步信息。或者,接收设备可以根据第三本地同步信号、第二本地同步信号以及第二信号,确定时间同步信息。
可选的,所述第二配置信息包括如下至少一项信息:所述第一时间间隔、所述第一偏置时间、所述第二同步信号的序列信息、所述第三同步信号的序列信息、第二时长的指示信息、第三时长的指示信息、所述第二同步信号的发送周期、所述第三同步信号的发送周期;
其中,所述第二时长的指示信息用于指示所述至少两个第三调制符号中的符号的时长,所述第三时长的指示信息用于指示所述至少两个第四调制符号中的符号的时长。
可选的,接收设备可以从网络设备接收第二配置信息,或者,根据协议预定义第二配置信息。
在另一些实施例中,接收设备获取第三配置信息,并根据所述第三配置信息生成第二本地同步信号和/或第三本地同步信号。接收设备可以根据第三本地同步信号和/或第二本地同步信号以及第二信号,确定时间同步信息。
可选的,所述第三配置信息包括如下至少一项信息:所述第二同步信号占用的第二类符号、所述第三同步信号占用的第二类符号、所述第二同步信号中相邻调制符号的发送时间间隔、所述第三同步信号中相邻调制符号的发送时间间隔、所述第二同步信号的发送时间与所述第三同步信号的发送时间之间的偏置时间、所述第二同步信号的序列信息、所述第三同步信号的序列信息、所述第二同步信号的发送周期、所述第三同步信号的发送周期。
可选的,接收设备可以从网络设备接收第三配置信息,或者,根据协议预定义第三配置信息。
示例性的,如图11,接收设备生成本地同步信号1和本地同步信号2。其中,本地同步信号1中,每个调制符号的时长为T2,T2为一个OOK符号的时长。本地同步信号1对应图9B所示OOK符号携带的第二同步信号(或者对应图9A所示的第二同步信号)。本地同步信号2中,每个调制符号的时长为T1,T1为一个CP的时长。本地同步信号2对应图9B所示CP携带的第三同步信号(或者对应图9A所示的第三同步信号)。本地同步信号1和本地同步信号2均为离散时间的同步信号。
如图12,接收设备可将本地同步信号2与接收的OOK信号(包括第二同步信号和第三同步信号)进行相关,得到至少一个相关峰。其中,当CP(时长为T1)携带的第三同步信号 与本地同步信号2对齐时,得到相关峰的宽度为2倍的T1(即T1+T1,记作2T1)。当OOK符号(比如5、12号OOK符号)携带的第二同步信号与本地同步信号2对齐时,得到相关峰的宽度为T1+T2。接收设备可以根据图12得到的至少一个相关峰所在的时间,确定同步信息,以便确定数据信息的起始位置。
或者,如图13,接收设备可将本地同步信号1与接收的OOK信号(包括第二同步信号和第三同步信号)进行相关,得到至少一个相关峰。其中,当CP(时长为T1)携带的第三同步信号与本地同步信号1对齐时,得到相关峰的宽度为T1+T2。当OOK符号(比如5号OOK符号)携带的第二同步信号与本地同步信号1对齐时,得到相关峰的宽度为2T2。接收设备可以根据图13得到的至少一个相关峰所在的时间,确定同步信息,以便确定数据信息的起始位置。
或者,如图12和图13,接收设备可将本地同步信号1、本地同步信号2分别与接收的OOK信号进行相关,得到至少一个相关峰。接收设备可以根据图12、图13得到的至少一个相关峰所在的时间,确定同步信息,以便确定数据信息的起始位置。其中,如图12,图13得到的相关峰可分为三类,三类相关峰的宽度不同。第一类相关峰的宽度为2T1(CP携带的第三同步信号与本地同步信号2对齐时得到的相关峰),第二类相关峰的宽度为T1+T2,第三类相关峰的宽度为2T2。其中,第一类相关峰的宽度最窄,则在第一类相关峰所在时间,接收设备可获得最为准确的定时时间。第二类相关峰、第三类相关峰的宽度比第一类相关峰的宽度更宽,相应的信号能量更高,有助于提升接收设备成功检测到第二类相关峰、第三类相关峰的概率。
上述方案,使用调制符号时长较长的第二同步信号进行同步,由于第二同步信号的调制符号的时长较长,使得第二同步信号的能量较高,如此,能够提升接收端进行同步的成功概率。比如,在一些信道环境差的通信场景中,接收端也能检测出第二同步信号,进而根据第二同步信号进行时间同步。
上述实施例主要以传输OOK信号为例进行说明,在另一些实施例中,收发设备之间还可以采用其他调制方式,比如采用ASK(或FSK)调制方式,传输ASK(或FSK)信号。
图12、图13以OOK符号的时长(比如均为T2)均相同为例进行说明,在另一些实施例中,用于发送同步信号的OOK符号的时长,用于发送数据信息的OOK符号的时长,可以不同。示例性的,如图14,用于发送数据信息的OOK符号的时长为T3,用于发送同步信号的OOK符号的时长为T2,T3大于T2。可选的,T2大于CP的时长。接收设备使用本地同步信号2对接收的OOK信号进行时域相关。如此,接收设备可以在进行相关运算时,获得更窄的相关峰,有助于提升定时精度。
再示例性的,如图15,用于发送数据信息的OOK符号的时长为T3,用于发送同步信号的OOK符号的时长为T2,T3大于T2。接收设备使用本地同步信号1对接收的OOK信号进行时域相关。
再示例性的,用于发送数据信息的OOK符号的时长为T3,用于发送同步信号的OOK符号的时长为T2,T3大于T2。接收设备使用本地同步信号1、本地同步信号2分别对接收的OOK信号进行时域相关。
上述OOK符号可称为第一类符号,OFDM符号可称为第二类符号。应理解,第一类符号还可以包括其他类型的符号,比如但不限于ASK、FSK符号等。类似的,第二类符号也可以包括其他类型的符号,本申请实施例对第一类符号、第二类符号的具体类型,以及所适用的通信系统的具体类型等不做限制。
需要说明的是,可以对上述多个实施例进行组合,并实施组合后的方案。可选的,各方法实施例的流程中的一些操作任选地被组合,并且/或者一些操作的顺序任选地被改变。并且,各流程的步骤之间的执行顺序仅是示例性的,并不构成对步骤之间执行顺序的限制,各步骤之间还可以是其他执行顺序。并非旨在表明所述执行次序是可以执行这些操作的唯一次序。本领域的普通技术人员会想到多种方式来对本文所述的操作进行重新排序。另外,应当指出的是,本文某个实施例涉及的过程细节同样以类似的方式适用于其他实施例,或者,不同实施例之间可以组合使用。
此外,方法实施例中的某些步骤可等效替换成其他可能的步骤。或者,方法实施例中的某些步骤可以是可选的,在某些使用场景中可以删除。或者,可以在方法实施例中增加其他可能的步骤。
并且,上述各方法实施例之间可以单独实施,或结合起来实施。
示例性的,在上述系统中,上述实施例中的一些步骤通过第一电子设备执行,一些步骤通过第二电子备或其他电子设备执行。比如,智能鞋计算体重修正值,并将体重修正值上报至手表,手表根据体重修正值计算身体成分。再比如,手表(或手机等第一电子设备)根据校准系数和智能鞋压力传感器测得的参数计算出体重修正值。再比如,智能鞋计算体重修正值,并根据体重修正值计算身体成分,并将身体成分上报至手表。
可以理解的是,本申请实施例中的设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对电子设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图16示出了本申请实施例中提供的通信装置的一种示意性框图,该通信装置可以为上述的发送设备或接收设备或其他通信设备。该通信装置1700可以以软件的形式存在,还可以为可用于设备的芯片。通信装置1700包括:处理模块1702和通信模块1703。可选的,通信模块1703还可以划分为发送单元(并未在图16中示出)和接收单元(并未在图16中示出)。其中,发送单元,用于支持通信装置1700向其他设备发送信息。接收单元,用于支持通信装置1700从其他设备接收信息。
可选的,通信装置1700还可以包括存储模块1701,用于存储通信装置1700的程序代码和数据,数据可以包括不限于原始数据或者中间数据等。
若通信装置1700为发送设备,处理模块1702可以用于支持发送设备生成第一信号/第二信号,和/或用于本文所描述的方案的其它过程。通信模块1703用于支持发送设备和其他设备(例如上述接收设备等)之间的通信,例如支持发送设备执行诸如图4中的S102等。
若通信装置1700为接收设备,处理模块1702可以用于控制接收设备执行诸如图4的S103,和/或用于本文所描述的方案的其它过程。通信模块1703用于支持接收设备和其他设备(例如上述发送设备等)之间的通信。
一种可能的方式中,处理模块1702可以是控制器或图3所示的处理器301和/或处理器307,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理(Digital Signal Processing,DSP),应用专用集成电路(Application Specific Integrated Circuit,ASIC),现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
一种可能的方式中,通信模块1703可以是图3所示的通信接口304、还可以是收发电路、收发器、射频器件等。
一种可能的方式中,存储模块1701可以是图3所示的存储器303。
本申请实施例还提供一种通信设备,包括一个或多个处理器以及一个或多个存储器。该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得通信设备执行上述相关方法步骤实现上述实施例中的信号传输方法。
本申请实施例还提供一种芯片系统,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该芯片系统实现上述任一方法实施例中的方法。
可选地,该芯片系统中的处理器可以为一个或多个。该处理器可以通过硬件实现也可以通过软件实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等。当通过软件实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现。
可选地,该芯片系统中的存储器也可以为一个或多个。该存储器可以与处理器集成在一起,也可以和处理器分离设置,本申请并不限定。示例性的,存储器可以是非瞬时性处理器,例如只读存储器ROM,其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请对存储器的类型,以及存储器与处理器的设置方式不作具体限定。
示例性的,该芯片系统可以是现场可编程门阵列(field programmable gatearray,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processorunit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
应理解,上述方法实施例中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当该计算机指令在电子设备上运行时,使得电子设备执行上述相关方法步骤实现上述实施例中的信号传输方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的信号传输方法。
另外,本申请的实施例还提供一种装置,该装置具体可以是组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行时,处理器可执行存储器存储的计算机执行指令,以使装置执行上述各方法实施例中的信号传输方法。
其中,本申请实施例提供的电子设备、计算机可读存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
可以理解的是,为了实现上述功能,电子设备包含了执行各个功能相应的硬件和/或软件模块。结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本实施例可以根据上述方法示例对电子设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块可以采用硬件的形式实现。需要说明的是,本实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法,可以通过其它的方式实现。例如,以上所描述的终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集 成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序指令的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种信号传输方法,其特征在于,应用于发送装置,包括:
    生成第一信号,所述第一信号包括数据信息和第一同步信号;所述第一同步信号包括至少两个第一调制符号,所述数据信息包括至少两个第二调制符号,所述至少两个第一调制符号中的符号的时长短于所述至少两个第二调制符号中的符号的时长;
    向接收装置发送所述第一信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述接收装置发送第一配置信息;
    所述第一配置信息包括如下至少一项信息:第一时长的指示信息、所述第一同步信号的序列信息、所述第一同步信号的发送周期;所述第一时长的指示信息用于指示所述至少两个第一调制符号中的符号的时长。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    生成第二信号,所述第二信号包括第二同步信号和第三同步信号;所述第二同步信号包括至少两个第三调制符号,所述至少两个第三调制符号中相邻符号之间的时间间隔为第一时间间隔;所述第三同步信号包括至少两个第四调制符号,所述至少两个第四调制符号中相邻符号之间的时间间隔为所述第一时间间隔;所述第二同步信号的发送时间与所述第三同步信号的发送时间存在第一偏置时间;所述至少两个第四调制符号中的符号的时长短于所述至少两个第三调制符号中的符号的时长;
    发送所述第二信号。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    向所述接收装置发送第二配置信息;
    所述第二配置信息包括如下至少一项信息:所述第一时间间隔、所述第一偏置时间、所述第二同步信号的序列信息、所述第三同步信号的序列信息、第二时长的指示信息、第三时长的指示信息、所述第二同步信号的发送周期、所述第三同步信号的发送周期;
    其中,所述第二时长的指示信息用于指示所述至少两个第三调制符号中的符号的时长,所述第三时长的指示信息用于指示所述至少两个第四调制符号中的符号的时长。
  5. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    生成第二信号,所述第二信号包括第二同步信号和第三同步信号;所述第二同步信号在时域上占用至少一个第二类符号对应的最后一个第一类符号;所述第三同步信号在时域上占用所述至少一个第二类符号对应的循环前缀CP;所述CP内的信号由所述CP所对应第二类符号内最后一个第一类符号的信号经复制得到;
    发送所述第二信号。
  6. 根据权利要求5所述的方法,其特征在于,所述第一类符号的时长大于或等于所述CP的时长。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    向所述接收装置发送第三配置信息;
    所述第三配置信息包括如下至少一项信息:所述第二同步信号占用的第二类符号、所述第三同步信号占用的第二类符号、所述第二同步信号中相邻调制符号的发送时间间隔、所述第三同步信号中相邻调制符号的发送时间间隔、所述第二同步信号的发送时间与所述第三同步信号的发送时间之间的偏置时间、所述第二同步信号的序列信息、所述第三同步信号的序列信息、所述第二同步信号的发送周期、所述第三同步信号的发送周期。
  8. 根据权利要求3-7任一项所述的方法,其特征在于,所述生成第二信号,包括:
    通过正交频分复用OFDM发射机生成所述第二信号。
  9. 根据权利要求5或6所述的方法,其特征在于,所述第一类符号包括如下至少一类符号:开关键控OOK符号、幅度键控ASK符号、频率键控FSK符号;所述第二类符号包括OFDM符号。
  10. 一种信号传输方法,其特征在于,应用于接收装置,包括:
    从发送装置接收第一信号;所述第一信号包括数据信息和第一同步信号;所述第一同步信号包括至少两个第一调制符号,所述数据信息包括至少两个第二调制符号,所述至少两个第一调制符号中的符号的时长短于所述至少两个第二调制符号中的符号的时长;
    根据所述第一同步信号进行时间同步。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    获取第一配置信息;所述第一配置信息包括如下至少一项信息:第一时长的指示信息、所述第一同步信号的序列信息、所述第一同步信号的发送周期;所述第一时长的指示信息用于指示所述至少两个第一调制符号中的符号的时长;
    根据所述第一配置信息生成第一本地同步信号,所述第一本地同步信号用于时间同步。
  12. 根据权利要求11所述的方法,其特征在于,所述第一配置信息是预配置的,或,所述第一配置信息是由所述发送装置配置的。
  13. 根据权利要求11或12所述的方法,其特征在于,根据所述第一同步信号进行时间同步,包括:
    根据所述第一本地同步信号和所述第一同步信号进行时间同步。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述方法还包括:
    接收第二信号,所述第二信号包括第二同步信号和第三同步信号;所述第二同步信号包括至少两个第三调制符号,所述至少两个第三调制符号中相邻符号之间的时间间隔为第一时间间隔;所述第三同步信号包括至少两个第四调制符号,所述至少两个第四调制符号中相邻符号之间的时间间隔为所述第一时间间隔;所述第二同步信号的发送时间与所述第三同步信号的发送时间存在第一偏置时间;所述至少两个第四调制符号中的符号的时长短于所述至少两个第三调制符号中的符号的时长;
    根据所述第二同步信号和所述第三同步信号进行时间同步。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    从所述发送装置接收第二配置信息;所述第二配置信息包括如下至少一项信息:所述第一时间间隔、所述第一偏置时间、所述第二同步信号的序列信息、所述第三同步信号的序列信息、第二时长的指示信息、第三时长的指示信息、所述第二同步信号的发送周期、所述第三同步信号的发送周期;其中,所述第二时长的指示信息用于指示所述至少两个第三调制符号中的符号的时长,所述第三时长的指示信息用于指示所述至少两个第四调制符号中的符号的时长;
    根据所述第二配置信息生成第二本地同步信号和第三本地同步信号。
  16. 根据权利要求10-13任一项所述的方法,其特征在于,所述方法还包括:
    接收第二信号,所述第二信号包括第二同步信号和第三同步信号;所述第二同步信号在时域上占用至少一个第二类符号对应的最后一个第一类符号;所述第三同步信号在时域上占用所述至少一个第二类符号对应的循环前缀CP;所述CP内的信号由所述CP所对应第二类符号内最后一个第一类符号的信号经复制得到;
    根据所述第二同步信号和所述第三同步信号进行时间同步。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    从所述发送装置接收第三配置信息,所述第三配置信息包括如下至少一项信息:所述第二同步信号占用的第二类符号、所述第三同步信号占用的第二类符号、所述第二同步信号中相邻调制符号的发送时间间隔、所述第三同步信号中相邻调制符号的发送时间间隔、所述第二同步信号的发送时间与所述第三同步信号的发送时间之间的偏置时间、所述第二同步信号的序列信息、所述第三同步信号的序列信息、所述第二同步信号的发送周期、所述第三同步信号的发送周期;
    根据所述第三配置信息生成第二本地同步信号和第三本地同步信号。
  18. 根据权利要求14所述的方法,其特征在于,所述第一类符号的时长大于所述CP的时长。
  19. 根据权利要求15或17所述的方法,其特征在于,根据所述第二同步信号和所述第三同步信号进行时间同步,包括:
    根据所述第二本地同步信号、所述第二同步信号和所述第三同步信号,确定所述第二同步信号对应的第一定时时间和所述第三同步信号对应的第二定时时间。
  20. 根据权利要求16或17所述的方法,其特征在于,根据所述第二同步信号和所述第三同步信号进行时间同步,包括:
    根据所述第三本地同步信号、所述第二同步信号和所述第三同步信号,确定所述第二同步信号对应的第三定时时间和所述第三同步信号对应的第四定时时间;所述第三定时时间对应第一相关峰,所述第四定时时间对应第二相关峰,所述第一相关峰的时域宽度大于所述第二相关峰的时域宽度。
  21. 一种通信设备,其特征在于,所述通信设备包括存储器和一个或多个处理器;所述存储器和所述处理器耦合;所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述处理器执行所述计算机指令时,使所述一个或多个所述处理器执行如权利要求1-9任一项所述的方法,或者,使所述一个或多个所述处理器执行如权利要求10-20任一项所述的方法。
  22. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,其特征在于,当所述指令在通信设备上运行时,使得所述通信设备执行如权利要求1-9中任一项所述的方法,或者,使得所述通信设备执行如权利要求10-20中任一项所述的方法。
PCT/CN2023/122688 2022-10-09 2023-09-28 信号传输方法及装置 WO2024078363A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211230510.9 2022-10-09
CN202211230510 2022-10-09
CN202211537885.X 2022-12-02
CN202211537885.XA CN117857277A (zh) 2022-10-09 2022-12-02 信号传输方法及装置

Publications (1)

Publication Number Publication Date
WO2024078363A1 true WO2024078363A1 (zh) 2024-04-18

Family

ID=90534968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122688 WO2024078363A1 (zh) 2022-10-09 2023-09-28 信号传输方法及装置

Country Status (2)

Country Link
CN (1) CN117857277A (zh)
WO (1) WO2024078363A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017107712A1 (zh) * 2015-12-22 2017-06-29 中兴通讯股份有限公司 信息的发送方法及装置
WO2022067703A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 一种通信方法及装置
WO2022111324A1 (zh) * 2020-11-30 2022-06-02 华为技术有限公司 一种数据处理方法及其设备
CN114785654A (zh) * 2022-05-11 2022-07-22 上海金卓科技有限公司 Ofdm系统参考符号编码及噪声功率估计和信道估计的方法
WO2022174717A1 (zh) * 2021-02-19 2022-08-25 华为技术有限公司 无线通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017107712A1 (zh) * 2015-12-22 2017-06-29 中兴通讯股份有限公司 信息的发送方法及装置
WO2022067703A1 (zh) * 2020-09-30 2022-04-07 华为技术有限公司 一种通信方法及装置
WO2022111324A1 (zh) * 2020-11-30 2022-06-02 华为技术有限公司 一种数据处理方法及其设备
WO2022174717A1 (zh) * 2021-02-19 2022-08-25 华为技术有限公司 无线通信方法及装置
CN114785654A (zh) * 2022-05-11 2022-07-22 上海金卓科技有限公司 Ofdm系统参考符号编码及噪声功率估计和信道估计的方法

Also Published As

Publication number Publication date
CN117857277A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
EP3488641A1 (en) Efficient concurrent transmission of a wake-up signal and user data
CN110603794A (zh) 针对单用户和多用户传输的波形编码以及调制
JP6356819B2 (ja) アップリンクアクセス方法、装置、およびシステム
EP3488640A1 (en) Envelope modulation for concurrent transmission of a wake-up signal and user data
US11146440B2 (en) Coexistence of OFDM and on-off keying (OOK) signals in WLAN
EP3769566A1 (en) Methods for frequency division multiplexed on-off keying signals for wake-up radios
US20180337760A1 (en) Pilot signal sending method, channel estimation method, and device
JP7371162B2 (ja) 無線通信システムにおけるアップリンク制御信号に対する復調参照信号を送信するための方法、及びこのための装置
RU2679725C1 (ru) Способ и устройство для индикации структуры кадра передачи и система
WO2016150241A1 (zh) 一种数据传输方法及装置
WO2017152407A1 (zh) 一种参考信号产生方法及装置
WO2017107716A1 (zh) 一种数据帧实现方法和装置
WO2016054525A1 (en) Systems and methods for multiuser interleaving and modulation
JP2020174302A (ja) 通信装置並びにその通信方法、情報処理装置並びにその制御方法、及び、プログラム
US20140198705A1 (en) Orthogonal frequency division multiple access (OFDMA) and duplication signaling within wireless communications
US10999108B2 (en) Wireless communication method, apparatus, and system
CA3201536A1 (en) Methods and apparatus for defining source of bits in trigger frame for disregard bits and releasing redundant beamformed bit
WO2014146302A1 (zh) 上行数据传输方法及装置
WO2024078363A1 (zh) 信号传输方法及装置
WO2022174717A1 (zh) 无线通信方法及装置
CN116266806A (zh) 一种通信方法及装置
WO2024114563A1 (zh) 一种通信方法及装置
CN107872868B (zh) 信号处理的方法、设备和系统
WO2022161224A1 (zh) 数据发送方法、数据接收方法及相关装置
JP6382134B2 (ja) 基地局装置、端末装置、通信システムおよび通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23876566

Country of ref document: EP

Kind code of ref document: A1