WO2019047832A1 - 一种热塑性树脂组合物与金属的接合体及其制造方法 - Google Patents

一种热塑性树脂组合物与金属的接合体及其制造方法 Download PDF

Info

Publication number
WO2019047832A1
WO2019047832A1 PCT/CN2018/104043 CN2018104043W WO2019047832A1 WO 2019047832 A1 WO2019047832 A1 WO 2019047832A1 CN 2018104043 W CN2018104043 W CN 2018104043W WO 2019047832 A1 WO2019047832 A1 WO 2019047832A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
polyester resin
joined body
modified polyester
body according
Prior art date
Application number
PCT/CN2018/104043
Other languages
English (en)
French (fr)
Inventor
宋婷婷
左璞晶
陈斌
加藤公哉
田中毅
横江牧人
Original Assignee
东丽先端材料研究开发(中国)有限公司
东丽株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东丽先端材料研究开发(中国)有限公司, 东丽株式会社 filed Critical 东丽先端材料研究开发(中国)有限公司
Priority to CN201880003605.2A priority Critical patent/CN109757104B/zh
Publication of WO2019047832A1 publication Critical patent/WO2019047832A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof

Definitions

  • the present invention belongs to the field of composites of polymers and metals, and specifically discloses a bonded body of a thermoplastic resin composition and a metal and a method for producing the same.
  • the metal/plastic hybrid composite combines the high strength of metal with the light weight of plastic, while meeting the mechanical strength requirements and lightweight requirements of automotive structural components.
  • the joint between the metal member and the plastic is mainly joined by mechanical riveting and adhesive bonding to form a hybrid composite material, but in these joining methods, the plastic component and the metal component need to be processed separately, and then riveted and glued. They are joined together to form a complete part.
  • the above bonding method has problems such as complicated process and easy deterioration of the adhesive.
  • Japanese Patent Application Publication No. JP2003-103563 discloses a group from polyalkylene terephthalate, a copolymer mainly comprising polyalkylene terephthalate or a polyalkylene terephthalate.
  • specific examples of the copolymer mainly composed of polyalkylene terephthalate are not described.
  • WO 2017/073506 discloses a terminally modified polybutylene terephthalate resin bonded to a compound having a polyether structure. However, the joint of the end group-modified polybutylene terephthalate resin and the metal is not described.
  • Patent Document 1 International Patent Application Publication No. WO 2013/137307
  • Patent Document 2 Japanese Patent Application Publication No. JP2003-103563
  • Patent Document 3 International Patent Application Publication No. WO2017/073506
  • An object of the present invention is to provide a bonded body of a thermoplastic resin composition containing a polyester resin having a polyether chain introduced at its end, thereby improving the thermoplastic resin composition and the metal, in order to solve the above problems. Joint strength.
  • the present invention also provides a method for producing a bonded body of the thermoplastic resin composition and a metal, which is capable of efficiently preparing a joint of a metal and a resin, and laying a foundation for continuous production.
  • the invention consists of the following:
  • a bonded body of a thermoplastic resin composition comprising a terminal-modified polyester resin, the terminal-modified polyester resin being contained in an amount of 5 to 100% by weight based on the total weight of the thermoplastic resin composition.
  • the terminal modified polyester resin has an end structure represented by Formula I,
  • n is an integer of 2 to 100
  • R 1 is the same or different, and is an alkylene group having 2 to 10 carbon atoms
  • R 2 is an alkyl group having 1 to 30 carbon atoms
  • the content in the polyester resin is 0.05 to 20% by weight based on the total weight of the terminal-modified polyester resin.
  • n is an integer of from 4 to 50.
  • n is an integer of from 8 to 25.
  • R 1 is the same or different and is an alkylene group having 2 to 4 carbon atoms.
  • R 2 is an alkyl group having 1 to 20 carbon atoms.
  • R 2 is a methyl group.
  • thermoplastic resin composition has a tensile shear strength of ⁇ 15 MPa measured at a tensile speed of 5 mm/min according to the joint test strip specified in ISO19095.
  • thermoplastic resin composition further contains an inorganic filler in an amount of from 5 to 80% by weight based on the total mass of the thermoplastic resin composition.
  • thermoplastic resin composition of the present invention can be used for automobile parts, electronic parts, electrical product parts, structural materials, and the like.
  • thermoplastic resin composition used in the joined body of the present invention comprises a terminal-modified polyester resin having a terminal structure represented by Formula I, and the content of the terminal-modified polyester resin is 5 to 100% by weight based on the total weight of the thermoplastic resin composition.
  • n is an integer of 2 to 100
  • R 1 is the same or different, and is an alkylene group having 2 to 10 carbon atoms
  • R 2 is an alkyl group having 1 to 30 carbon atoms
  • the content in the polyester resin is 0.05 to 20% by weight based on the total weight of the terminal-modified polyester resin.
  • thermoplastic resin composition when the thermoplastic resin composition contains only a single component of the terminal-modified polyester resin, it is also defined as a thermoplastic resin composition.
  • the present invention is not particularly limited to the kind of the terminal-modified polyester resin main chain structure to be used.
  • the monomer raw material constituting the main chain structure of the terminal-modified polyester resin may be a dicarboxylic acid component, a diol, an ester-forming derivative thereof or the like, and specific examples thereof are exemplified but not limited to the following examples: p-benzoic acid Formic acid, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, naphthalene-1,5-dicarboxylic acid, 4,4'-dicarboxyl Benzene, hydrazine dicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, diphenoxyethane dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 5-sulfoisophthalic acid An aromatic dicarboxy
  • the dicarboxylic acid, the diol, and the ester-forming derivative thereof may be used singly or in combination of two or more.
  • the main chain of the terminal-modified polyester resin used in the present invention may specifically be a homopolymer structure prepared from the above monomers, or a copolymerized structure prepared from the above monomers.
  • the polyester backbone structure of the terminal modified polyester resin may be exemplified by, but not limited to, the following examples: polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate Alcohol ester, poly(cyclohexanedimethylene terephthalate), terephthalic acid poly(terephthalate), polyethylene isophthalate, poly(propylene isophthalate), polyisophthalic acid Glycol ester, poly(cyclohexane) dimethanol ester, poly(p-phenylene terephthalate), polyethylene naphthalate, propylene glycol naphthalate, butylene glycol naphthalate Ester, polynaphthalene dicyclohexane dimethanol ester, polyphthalic acid terephthalate, polyisophthalic acid / ethylene terephthalate, polyisophthalic acid / propylene terephthalate , polyisophthalic acid / butylene tere
  • the polyester main chain structure of the above end-modified polyester resin is preferably polyethylene terephthalate, polytrimethylene terephthalate or polyparaphenyl, in view of heat resistance, moldability, fluidity and mechanical properties.
  • An aromatic polyester structure such as polytrimethylene terephthalate/propylene naphthalate or polybutylene terephthalate/butylene naphthalate, further preferably polyethylene terephthalate structure, polyparaphenylene
  • the butylene dicarboxylate structure is most preferably
  • the polyester main chain structure of the terminal-modified polyester resin may be composed of one of the above-described polyester main chain structures, or may be composed of two or more of the above-described main chain structures.
  • 80 mol% or more of the main chain repeating unit of the terminal-modified polyester resin used in the present invention is composed of the structural unit derived from the above-mentioned monomer raw material (the number of repeating units of the polyester main chain structure is 100 mol%). In view of heat resistance and crystallinity, it is preferably 90 mol% or more, and most preferably 100 mol%.
  • the terminally modified polyester resin used in the present invention has improved the mobility of the molecular chain as a whole by introducing a flexible polyether structure represented by Formula I at the end of the polyester, thereby lowering the melt viscosity. Therefore, when the thermoplastic resin containing the terminal-modified polyester resin is brought into contact with the metal in a molten state, the resin melt is more effectively infiltrated into minute pores of the metal surface, so that it can be better bonded to the metal surface.
  • n is an integer of from 2 to 100.
  • n is less than 2, the effect of lowering the melt viscosity of the thermoplastic resin composition is deteriorated.
  • n is 4 or more, and it is more preferable that n is 8 or more, and most preferably n is 12 or more.
  • n is more than 100, the heat resistance of the terminal structure represented by Formula I is deteriorated.
  • n is 70 or less, more preferably n is 50 or less, and most preferably n is 25 or less.
  • R 1 is the same or different and is an alkylene group having 2 to 10 carbon atoms.
  • R 1 include -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH(CH 3 )-CH 2 -, -CH 2 -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -CH 2 - or -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -.
  • R 1 is preferably an alkylene group having 2 to 6 carbon atoms, and more preferably an alkylene group having 2 to 4 carbon atoms.
  • R 1 may be a combination of different alkylene groups, preferably -CH 2 -CH 2 -.
  • R 2 is an alkyl group having 1 to 30 carbon atoms.
  • the smaller the number of carbon atoms in R 2 the higher the affinity with the polyester main chain structure. Therefore, R 2 is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • the alkyl group is more preferably an alkyl group having 1 to 5 carbon atoms, and most preferably a methyl group.
  • the affinity of the polyether end to the polyester main chain is preferably high, and -X- is preferably -O-.
  • the structure represented by the above formula I may specifically be exemplified by, but not limited to, the following examples: methoxylated polydimethylene ether, methoxylated polytetramethylene ether, ethoxylated polydimethylene ether, Ethoxylated polytetramethylene ether and the like.
  • the content of the terminal structure represented by the formula I in the terminal-modified polyester resin used in the present invention is 0.05 to 20% by weight based on the total weight of the terminal-modified polyester resin, and the terminal structure is considered for the purpose of lowering the melt viscosity and improving the moldability.
  • the content in the terminally modified polyester resin is preferably 0.1% by weight or more, further preferably 0.5% by weight or more, still more preferably 1.5% by weight or more, and most preferably 2% by weight or more; on the other hand, by making the terminal of Formula I
  • the content of the structure is 20% by weight or less, and the crystallinity and mechanical properties of the terminal-modified polyester resin can be more preferably maintained, and are preferably 15% by weight or less, more preferably 10% by weight or less, still more preferably 5% by weight or less, most preferably It is preferably 4% by weight or less.
  • the content (wt%) of the polyether segment represented by the above formula I with respect to the terminal-modified polyester resin was obtained by 1 H-NMR (nuclear magnetic resonance) test.
  • the terminal-modified polyester resin of the present invention may further contain a catalyst, and the catalyst may be exemplified by, but not limited to, the following examples.
  • the metal catalyst may, for example, be a metal compound of a metal such as barium, titanium, aluminum, tin, antimony, magnesium, manganese, calcium, cobalt or zinc.
  • the ruthenium compound may, for example, be a ruthenium oxide, a ruthenium carboxylate or an alkoxide of ruthenium, and specifically may be antimony trioxide, antimony pentoxide, antimony acetate, antimony oxalate, antimony tartrate, antimony tri-n-butoxide or triethanol. antimony.
  • titanium compound examples include a titanium alkoxide such as a titanium complex, isopropyl titanate, n-tetrabutyl titanate, or tetrabutyl titanate tetramer, a titanium oxide obtained by hydrolysis of a titanium alkoxide, and acetylacetone.
  • Titanium or the like is preferably a titanium complex formed of a chelating agent such as a polyvalent carboxylic acid, a hydroxycarboxylic acid or a polyhydric alcohol and titanium, in view of thermal stability of the polymer and prevention of deterioration of color tone.
  • the chelating agent include lactic acid and citric acid. Mannitol, tripentaerythritol, and the like.
  • Examples of the aluminum compound include aluminum carboxylate, aluminum alkoxide, chelate aluminum, and basic aluminum compound, and specific examples thereof include aluminum acetate, aluminum hydroxide, aluminum carbonate, aluminum ethoxide, aluminum isopropoxide, and acetyl. Acetone aluminum, alkaline aluminum acetate, and the like.
  • Examples of the tin compound include monobutyltin oxide, dibutyltin oxide, methylphenyltin oxide, tetraethyltin oxide, hexaethyltin oxide, triethyltin hydroxide, and monobutylhydroxyl. Tin oxide, butyltin trichloride, dibutyltin sulfide, and the like.
  • Examples of the ruthenium compound include an oxide of ruthenium, an alkoxide of ruthenium, and the like, and specific examples thereof include ruthenium dioxide, ruthenium tetroxide, ruthenium tetraethoxide, and ruthenium tetrabutoxide.
  • Examples of the magnesium compound include magnesium oxide, magnesium hydroxide, magnesium alkoxide, magnesium acetate, and magnesium carbonate.
  • the manganese compound include manganese chloride, manganese bromide, manganese nitrate, manganese carbonate, manganese acetylacetonate, and manganese acetate.
  • Examples of the calcium compound include calcium oxide, calcium hydroxide, calcium alkoxide, calcium acetate, calcium carbonate, and the like.
  • Examples of the cobalt compound include cobalt chloride, cobalt nitrate, cobalt carbonate, cobalt acetylacetonate, cobalt naphthenate, and cobalt acetate tetrahydrate.
  • Examples of the zinc compound include zinc oxide, an alkoxide of zinc, zinc acetate, and the like. Further, a hydrate of the above metal compound can also be used.
  • the weight-average molecular weight (Mw) of the terminal-modified polyester resin having the terminal structure represented by Formula I in the present invention is preferably 10,000 or more. When the Mw reaches 10,000 or more, the mechanical properties and metal bonding properties are improved. Mw is more preferably 12,000 or more, still more preferably 15,000 or more. Further, Mw is preferably 100,000 or less. When the Mw is 100,000 or less, the melt viscosity is low, and during the process of manufacturing the joined body, the resin melt can sufficiently wet the minute holes of the metal surface, thereby bringing the thermoplastic resin composition into close contact with the metal surface, improving the metal bonding property. Mw is further preferably 50,000 or less, and still more preferably 30,000 or less. The weight average molecular weight (Mw) can be determined by gel permeation chromatography (GPC).
  • the present invention is intended to obtain a joined body having good heat resistance, and therefore the melting point (Tm) of the terminal modified polyester resin having the terminal structure represented by Formula I is preferably 215 ° C or higher, and further preferably the melting point of the terminal modified polyester resin. (Tm) is above 218 °C.
  • Tm melting point
  • the introduction of a flexible structure into a polyester resin by copolymerization causes a decrease in the melting point of the polyester resin, but the present invention selectively introduces a polyether having a specific structure at the end of the resin to a polyester phase which does not contain a polyether end structure.
  • the decrease in the melting point of the polyester resin into which the polyether end is introduced is controlled to the minimum.
  • the melting point is preferably not more than 5 ° C, and further preferably the melting point is not more than 3 ° C.
  • the melting point of the polyester resin described herein is determined by differential scanning calorimetry (DSC): the polyester resin is accurately weighed 5 to 7 mg, and the temperature is raised from 20 ° C at a heating rate of 20 ° C / min under a nitrogen atmosphere.
  • Tm melting point
  • thermoplastic resin composition used in the present invention other kinds of polymers, fillers, and various additives may be added in addition to the terminal-modified polyester resin.
  • the other types of polymers in the thermoplastic resin composition may be, but not limited to, the following examples: polyolefins such as polyethylene and polypropylene; modified polyolefins such as copolymers obtained by polymerizing olefins and/or conjugated diene compounds; Amide, polycarbonate, polyphenylene ether, polyphenylene sulfide, liquid crystal polymer, polysulfone, polyethersulfone, ABS resin, SAN resin, polystyrene, polyunsity other than the terminal unmodified polyester resin of the present invention Ester resin and the like.
  • polyolefins such as polyethylene and polypropylene
  • modified polyolefins such as copolymers obtained by polymerizing olefins and/or conjugated diene compounds
  • thermoplastic resin composition used in the present invention in order to improve the impact resistance of the molded article obtained by the thermoplastic resin composition used in the present invention and to reduce the shrinkage ratio, it is preferred to use a polymer obtained by polymerizing an olefin and/or a conjugated diene compound (or copolymerization).
  • An impact modifier such as a modified polyolefin.
  • the impact modifier include polyethylene, polypropylene, ethylene/propylene copolymer, acid-modified ethylene/propylene copolymer, ethylene/propylene/non-conjugated diene copolymer, and acid-modified ethylene/propylene/ Non-conjugated diene copolymer, ethylene/1-butene copolymer, acid-modified ethylene/1-butene copolymer, ethylene/acrylic acid copolymer and alkali metal salt thereof (also called ionomer), ethylene/ Glycidyl acrylate copolymer, ethylene/glycidyl methacrylate copolymer, ethylene/alkyl acrylate copolymer (for example, ethylene/ethyl acrylate copolymer, ethylene/butyl acrylate copolymer), diene rubber (for example) Polybutadiene, polyisoprene, polychloroprene) and copolymer,
  • the polymer other than the terminal-modified polyester resin in the above thermoplastic resin composition may be added singly or in combination of two or more kinds.
  • the addition amount is preferably 0% by weight or more and 80% by weight or less (100% by weight of the thermoplastic resin composition), and by controlling the amount of addition to the above range, the fluidity at the time of melting the thermoplastic resin composition can be further improved. It is further preferably 60% by weight or less, and still more preferably 50% by weight or less.
  • the thermoplastic resin composition of the present invention may further contain a filler, and the filler may be exemplified by, but not limited to, the following examples: glass fiber, carbon fiber, titanic acid whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, a fibrous inorganic or organic filler such as alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, gypsum fiber or metal fiber; the cross-sectional shape of the fibrous filler is not particularly limited, and may be circular or flat. .
  • the filler may be exemplified by, but not limited to, the following examples: glass fiber, carbon fiber, titanic acid whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, a fibrous inorganic or organic filler such as alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, gypsum fiber or metal fiber; the cross-sectional shape of the fibrous filler is not particularly limited, and may be circular or flat. .
  • Non-fibrous such as calcium carbonate, magnesium carbonate, dolomite, calcium sulfate, barium sulfate, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, glass beads, ceramic beads, boron nitride, silicon carbide or silicon dioxide Inorganic filler.
  • the filler may be hollow, and the filler may be treated with a coupling agent such as an isocyanate compound, an organosilane compound, an organic titanate compound, an organoborane compound or an epoxy compound.
  • a coupling agent such as an isocyanate compound, an organosilane compound, an organic titanate compound, an organoborane compound or an epoxy compound.
  • the above montmorillonite may also be an organic montmorillonite obtained by cation exchange of interlamellar ions through an organic ammonium salt.
  • the above filler is preferably a fibrous inorganic filler, and more preferably glass fiber or carbon fiber. Further, the above fillers may be added singly or in combination of two or more.
  • the content of the above filler in the thermoplastic resin composition is preferably from 5 to 80% by weight based on the total weight of the thermoplastic resin composition, and when the filler is added in an amount of 5% by weight or more, the shrinkage ratio of the thermoplastic resin composition is reduced, and the joint body is produced.
  • the filler is added in a total amount of the thermoplastic resin composition.
  • the weight is 10% by weight or more, more preferably 20% by weight or more, and most preferably 30% by weight or more.
  • the amount of the filler added is 80% by weight or less, the melt of the thermoplastic resin composition has good fluidity, more preferably 60% by weight or less, still more preferably 50% by weight or less.
  • thermoplastic resin composition used in the present invention may further contain various additives.
  • antioxidants and heat stabilizers hindered phenols, hydroquinones, phosphites, phosphates and substituted products, copper halides, iodine compounds, etc.
  • weathering agents resorcinol, water
  • Salicylic acid resorcinol, water
  • benzotriazole diphenyl ketone or sterically hindered amines
  • mold release agents and lubricants fatty alcohols, aliphatic amides, aliphatic diamides or diureas or polyethylene waxes, etc.
  • pigment calcium sulfide, phthalocyanine or carbon black, etc.
  • dye aniline black, etc.
  • plasticizer n-octyl p-hydroxybenzoate or N-butylbenzenesulfonamide
  • antistatic agent alkyl sulfate
  • a salt type anionic antistatic agent a 4-stage ammoni
  • the present invention is intended to obtain a joined body having excellent bonding properties between a thermoplastic resin composition and a metal, and therefore it is preferred to use a stretched shear of a thermoplastic resin composition comprising a terminally modified polyester resin having a terminal structure of the formula I bonded to aluminum.
  • the tensile shear strength is defined as the value measured at a tensile speed of 5 mm/min according to the joint test strip (Fig. 1) specified in ISO 19095.
  • the surface of the aluminum used herein has a microporous structure having an average pore diameter of 10 to 100 nm, and the uneven structure of the aluminum surface can be observed by an electron scanning microscope. More preferably, the tensile shear strength is 20 MPa or more, and the thermoplastic resin composition having a tensile shear strength of 25 MPa or more is most preferable.
  • the joined body in the present invention can be obtained by directly bonding a thermoplastic resin composition to a metal, that is, the thermoplastic resin composition and the metal can be directly joined without passing through an intermediate layer such as another bonding material.
  • the metal may be surface-treated or not surface-treated, and the type of the metal is not particularly limited, and examples thereof include iron, copper, silver, gold, aluminum, zinc, lead, tin, magnesium, and the like.
  • An oxide layer may be present on the metal surface, or a surface structure may be formed by a surface treatment, or an organic functional group or a low molecular weight organic compound may be introduced into the metal surface to form a chemical structure layer.
  • the surface treatment method of the above metal may be exemplified by immersing the metal surface in a corrosive liquid, immersing the fine concavo-convex structure on the surface, immersing it in an aqueous solution of the nitrogen-containing compound, or fumigation using a nitrogen-containing compound gas to make the metal surface a method of attaching a chemical substance; immersing a metal surface in a corrosive liquid, and forming a fine uneven structure on the surface of the metal by anodization on the surface of the metal, and attaching a chemical substance to the surface of the metal; etching the groove by laser processing The method of the slot, etc.
  • the NMT surface treatment method of Dacheng PLAS Corporation and the TRI surface treatment method of the East Asia Electrochemical Company can be exemplified.
  • the corrosive liquid used for the surface treatment may, for example, be an alkaline aqueous solution (pH>7), an acidic aqueous solution (pH ⁇ 7), an aqueous solution containing a nitrogen compound, or the like, wherein the alkaline aqueous solution may, for example, be sodium hydroxide or hydroxide.
  • an acidic aqueous solution may, for example, be an aqueous solution of hydrochloric acid, sulfuric acid, nitric acid or hydrofluoric acid;
  • the nitrogen-containing compound may be ammonia, hydrazine or a water-soluble amine, and the water-soluble amine may specifically be methylamine.
  • the metal surface anodizing treatment method may be exemplified by using a metal as an anode and passing an electric current in the electrolytic solution to form an oxide film on the metal surface.
  • the water-soluble amine composition may be used as an electrolytic solution for anodizing the metal surface.
  • Examples of the chemical substance to be attached to the metal surface include ammonia, hydrazine, a water-soluble amine, and a triazine dithiol compound.
  • the above method of etching the groove by laser processing can specifically exemplify the technique of manufacturing micropores by metal surface etching by the DLAMP technology developed by Daicel Corporation of Japan and Daicel Plastics Co., Ltd.
  • the nano-scale uneven structure of the above metal surface is a nano-scale microporous structure under an electron scanning microscope, and preferably has an average pore diameter of 10 to 100 nm, and more preferably has a pore diameter of 10 to 80 nm.
  • the present invention also provides a process for producing a bonded body of a thermoplastic resin composition of the present invention and a metal.
  • the method for producing the joined body of the present invention is not particularly limited, and the method for producing the joined body will be exemplified below.
  • thermoplastic resin composition It is considered to improve the bonding property of the thermoplastic resin composition and the metal and the efficiency in the actual manufacturing process, and it is preferable to perform injection molding or welding by laser irradiation.
  • the method of injection molding can specifically exemplify a method in which a thermoplastic resin composition is heated and melted and then injection-molded into a mold placed in advance in a metal to obtain a joined body.
  • the mold temperature is not particularly limited, but is preferably 100 ° C or more and 180 ° C or less.
  • the moldability of the thermoplastic resin composition to the metal can be further improved by controlling the mold temperature to 100 ° C or higher, and more preferably 110 ° C or higher, and still more preferably 120 ° C or higher; on the other hand, the thermoplastic resin combination when the mold temperature is 180 ° C or lower
  • the material can be more effectively cured and formed, and is more preferably 160 ° C or lower, still more preferably 140 ° C or lower.
  • the method of welding by laser irradiation may be carried out by laminating and fixing a molded article obtained by using a thermoplastic resin composition, and then irradiating with a laser from the resin side or the metal side to melt the resin in the vicinity of the interface between the resin and the metal material.
  • a method of joining a resin molded article and a metal material may be carried out by laminating and fixing a molded article obtained by using a thermoplastic resin composition, and then irradiating with a laser from the resin side or the metal side to melt the resin in the vicinity of the interface between the resin and the metal material.
  • thermoplastic resin composition of the present invention has high bonding property with a metal joined body, and is suitable for use in the fields of automotive parts, electronic parts, electronic parts, structural materials, and the like which require metal joining.
  • Fig. 1 is a resin-metal bonded spline used for testing the adhesion of a resin to a metal in an embodiment of the present invention.
  • the terminal structure content represented by Formula I the polyester resin having the terminal structure represented by the above formula I used in each of the Examples and Comparative Examples, dissolved in deuterated HFIP (hexafluoroisopropyl) at a concentration of 50 mg/ml In the alcohol), a 1 H-NMR nuclear magnetic test was carried out using Japanese Electron JEOL ECX 400P under the conditions of 256 scans.
  • the terminal structure content of the formula (I) in the polyester resin is calculated by the peak area obtained by integrating each peak and the number of hydrogen atoms contained in each structure.
  • thermoplastic resin composition used in each of the examples and the comparative examples was accurately weighed 5 to 7 mg by a differential scanning calorimeter (DSC Q2000) of TA Corporation, and the temperature was raised from 20 ° C at a heating rate of 20 ° C / min under a nitrogen atmosphere. Start heating up to a temperature 30 ° C higher than the temperature T0 of the endothermic peak that appears, and then thermostat at this temperature for 2 min, then cool down to 20 ° C at a temperature drop rate of 20 ° C / min, and then thermostatically at 20 ° C for 2 min. The temperature increase rate of 20 ° C / min was raised to a temperature 30 ° C higher than T0 to obtain a melting point T m .
  • T m is the temperature corresponding to the peak tip of the endothermic peak during the secondary temperature rise.
  • polyester resin particles obtained in each of the production examples or the resin portion of the joined body obtained after injection molding in each of the examples and the comparative examples were dissolved in 4 ml of hexafluoroisopropanol containing 0.0075 N of sodium trifluoroacetate. After the filtration, the number average molecular weight Mn and the weight average molecular weight Mw were measured by filtration through a 0.45 ⁇ m filter, and the measurement conditions were as follows:
  • the polyester resin particles obtained in Preparation Examples 1 to 5 were dried in a vacuum oven at 80 ° C for 12 hours or more, and then formed into a film (film thickness: 0.7 mm) by a laminator and then cut into a diameter of 25 mm.
  • the melt viscosity was measured by a rotary rheometer (manufactured by Antonpas, MCR302, ⁇ 25 parallel plate) by the following method: The sample was melted at 260 ° C (Preparation Examples 1 to 5) for 5 minutes under a nitrogen atmosphere, and the parallel plate was used. The pitch was 0.5 mm, the vibration mode was measured, the frequency was 0.5 to 6.88 Hz, 50 points (0.5 minutes) were measured, and the amplitude was 1%. The complex viscosity measurement at a frequency of 1 Hz was used as the melt viscosity.
  • the metal piece was placed in a cavity of the mold, and after the mold was held for 1 minute, the melt of the thermoplastic resin composition was metered and injected into the mold. After the melt is cooled and solidified, the mold is opened to obtain a joined body.
  • Mold temperature 120 ° C (Example 2, Comparative Example 2), 140 ° C (Examples 1, 3 to 8, Comparative Examples 1, 3, 4), 50 ° C (Comparative Example 5)
  • the bondability of the resin to the metal is characterized by tensile shear strength, tested according to the ISO 19095 standard, the spline size is the specified size in ISO 19095 shown in Figure 1, and the joint area is 0.5 cm 2 using Shimadzu AG-IS 1KN
  • the tensile modulus was tested, the test temperature was 23 ° C, the humidity was 50% RH, the stretching speed was 5 mm/min, and the jig pitch was 3 mm.
  • the tensile shear strength results are taken as the average of the five spline test results.
  • the spline fracture morphology was characterized in that the resin and the metal were peeled off from the joint surface and the resin itself was broken.
  • the joint property was evaluated by the tensile shear strength calculated from the area where the resin was bonded to the metal. Further, in the case where the resin itself is broken, it is explained that the tensile shear strength of the joint of the resin and the metal is larger than the breaking strength of the resin itself, and thus the original metal bondability cannot be evaluated, so the tensile strength evaluation using the cross-sectional area of the resin itself is evaluated. Bonding.
  • the ratio of the number of broken samples of the resin itself was recorded, that is, the total number of splines of the tensile shear strength test was 5, and the number of broken samples of the resin itself was 3 in the tensile shear strength test. When, it is expressed in 3/5.
  • the spline size is Type IV in ASTM D638, and the end-modified polyester resin obtained in the Shimadzu AG-IS1KN test preparation example 2 and the polyester resin elastomer used in Comparative Examples 4 and 5 were pulled.
  • the tensile modulus results are taken as the average of the five spline test results.
  • the injection molding conditions for the spline are as follows:
  • Screw temperature 210 ° C (polyester elastomer), 250 ° C (end modified polyester resin)
  • Mold temperature 50 ° C (polyester elastomer), 80 ° C (end modified polyester resin)
  • TPA Terephthalic acid
  • TBT Tetrabutyl titanate
  • BDO 1,4-butanediol
  • TBT n-tetrabutyl titanate
  • the catalyst solution obtained by the above method was added to the product (at this time, the amount of TBT added was 0.05 wt% when the mass of the terminal modified polyester produced was 100 wt%), at 245
  • the polycondensation reaction was carried out under the conditions of ° C and 100 Pa.
  • the torque of the agitator reaches a desired value, the polycondensation reaction is stopped, and the obtained polymer melt is discharged into a long strip shape through a discharge valve and cooled by cooling water to be pelletized to obtain product particles.
  • the surface-treated metal sheet (NMT treatment, Shenzhen Baoyuanjin Co., Ltd.) was placed in a ST10S2V (NISSEI) injection molding machine mold, and the injection molding machine completed the measurement of the end-modified polyester resin obtained in Preparation Example 2 and The resin melt was injected into the mold to obtain a joined body.
  • the screw temperature was 260 ° C
  • the mold temperature was 140 ° C
  • the cooling time was 15 s.
  • the joined body obtained by the above method was subjected to metal bonding performance test at a tensile speed of 5 mm/min in accordance with ISO 19095, and the results are shown in Table 2.
  • the surface-treated metal sheet (NMT treatment, Shenzhen Baoyuanjin Co., Ltd.) was placed in a ST10S2V (manufactured by NISSEI) injection molding machine mold, and the unmodified polyester resin melt obtained in Preparation Example 5 was injected. In the mold, a joined body was obtained. During the molding process, the screw temperature was 260 ° C, the mold temperature was 140 ° C, and the cooling time was 15 s. The joined body obtained by the above method was subjected to metal bonding performance test at a tensile speed of 5 mm/min in accordance with ISO 19095, and the results are shown in Table 2.
  • Example 4 The operation was the same as in Example 1 except that 28 parts by mass of the terminal-modified polyester resin obtained in Preparation Example 4 and 72 parts by mass of the terminal unmodified polyester resin obtained in Preparation Example 5 were blended.
  • the properties of the resulting joined body are shown in Table 4.
  • the obtained joined body also had high bondability.
  • the surface treated metal sheet (NMT treatment, Shenzhen Baoyuanjin Co., Ltd.) was placed in the ST10S2V (NISSEI) injection molding machine mold, and the injection molding machine completed the metering of the polyester elastomer ( 4057N, manufactured by Toray-Dupont), the melt was injected into the mold, the cooling time was 15 s, and the mold was opened to obtain a joined body.
  • the screw temperature was 260 ° C and the mold temperature was 120 ° C.
  • the resin could not be sufficiently cured in the mold, and deformation occurred during demolding, so that test strips could not be obtained.
  • Hytrel 4057N (PBT/PBI-PTMG interpolymer) in JP2015-224258 [0058] and the content of PTMG (soft segment) in WO2013/137370 [0020], Hytrel 4057N in [0054] Record.
  • the metal-bonding property of the terminal-modified polyester resin of Example 2 was higher than that of the polyester elastomer of Comparative Example 5. Further, the tensile strength and tensile modulus of the terminal-modified polyester resin of Example 2 were significantly superior to those of Comparative Example 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种具有优良接合性能的热塑性树脂组合物与金属的接合体及其制造方法。所述热塑性树脂组合物含有末端改性聚酯树脂,所述末端改性聚酯树脂在热塑性树脂组合物中的含量为热塑性树脂组合物总质量的5-100wt%,所述末端改性聚酯树脂具有式(I)所示末端结构,-X-(R1-O)n-R2(式(I)),上述式(I)中,n为2-100的整数,R1相同或不同,为碳原子数为2-10的亚烷基,R2为碳原子数为1-30的烷基,-X-为-O-、-NH-、-C(=O)-、-C(=O)-NH-或-CH(OH)-CH2-中的任一种;式(I)所示结构在末端改性聚酯树脂中的含量为末端改性聚酯树脂总重量的0.05-20wt%。

Description

一种热塑性树脂组合物与金属的接合体及其制造方法 技术领域
本发明属于聚合物与金属的复合体领域,具体公开了一种热塑性树脂组合物与金属的接合体及其制造方法。
背景技术
随着能源、安全、环保三大问题日益突出,汽车轻量化越来越受到重视。由于比重远小于金属,工程塑料在汽车上的应用逐渐增加,但在某些结构部件中,工程塑料其本身的机械强度仍难以满足需求。金属/塑料杂化复合材料兼具金属高强度与塑料轻质的特点,同时满足了汽车结构部件的机械强度需求和轻量化需求。
目前,金属构件与塑料之间的接合主要通过机械铆接、胶黏剂粘结接合到一起构成杂化复合材料,但这些接合方式中塑料部件与金属部件需要分别加工后,再通过铆接、胶接等接合到一起构成完整部件。上述接合方式有着工艺复杂、胶黏剂易劣化等问题。
近年来,将树脂直接通过注塑成型与金属进行接合的方法也得到了越来越多的研究。国际专利申请公开公报WO2013/137370公开了一种热塑性聚酯弹性体树脂组合物与金属接合的复合成形体,但在通过注塑成型得到的该热塑性聚酯弹性体与金属的接合体时,存在热塑性聚酯弹性体在模具内固化速度慢和成型周期变长的问题。同时,热塑性聚酯弹性体与金属的接合性不好。
日本专利申请公开公报JP2003-103563公开了一种从聚对苯二甲酸亚烷基酯、主要包含聚对苯二甲酸亚烷基酯的共聚物或含有聚对苯二甲酸亚烷基酯作为组分的热塑性树脂中选出的1种以上与金属的复合成型体。然而,没 有描述主要由聚对苯二甲酸亚烷基酯组成的共聚物的具体实例。
国际专利申请公开公报WO 2017/073506公开了一种末端与具有聚醚结构的化合物接合的末端改性聚对苯二甲酸丁二醇酯树脂。然而,没有描述端基改性的聚对苯二甲酸丁二醇酯树脂与金属的接合体。
现有技术文献
专利文献1:国际专利申请公开公报WO2013/137307
专利文献2:日本专利申请公开公报JP2003-103563
专利文献3:国际专利申请公开公报WO2017/073506
发明内容
本发明的目的是为解决上述课题而提供一种热塑性树脂组合物与金属的接合体,所述热塑性树脂组合物含有末端导入了聚醚链的聚酯树脂,从而提升了热塑性树脂组合物与金属的接合强度。
本发明还提供了所述热塑性树脂组合物与金属的接合体的制造方法,该方法能高效制备金属与树脂的接合体,为连续化生产奠定基础。
本发明由以下内容构成:
1、一种热塑性树脂组合物与金属的接合体,所述热塑性树脂组合物含有末端改性聚酯树脂,所述末端改性聚酯树脂的含量为热塑性树脂组合物总重量的5~100wt%,所述末端改性聚酯树脂具有式I所示末端结构,
-X-(R 1-O)n-R 2  式I
上述式I中,n为2~100的整数,R 1相同或不同,为碳原子数为2~10的亚烷基,R 2为碳原子数为1~30的烷基,-X-为-O-、-NH-、-C(=O)-、-C(=O)-NH- 或-CH(OH)-CH 2-中的任一种;式I所示结构在末端改性聚酯树脂中的含量为末端改性聚酯树脂总重量的0.05~20wt%。
2、根据上述1所述的接合体,上述式I所示末端结构中,n为4~50的整数。
3、根据上述1所述的接合体,上述式I所示末端结构中,n为8~25的整数。
4、根据上述1所述的接合体,上述式I所示末端结构中,R 1相同或不同,为碳原子数为2~4的亚烷基。
5、根据上述1所述的接合体,上述式I所示末端结构中,R 1为-CH 2-CH 2-。
6、根据上述1所述的接合体,上述式I所示末端结构中,R 2为碳原子数为1~20的烷基。
7、根据上述1所述的接合体,上述式I所示末端结构中,R 2为甲基。
8、根据上述1所述的接合体,上述式I所示末端结构中,-X-为-O-。
9、根据上述1所述的接合体,上述式I所示末端结构在末端改性聚酯树脂中的含量为末端改性聚酯树脂总重量的0.1~15wt%。
10、根据上述1所述的接合体,上述式I所示末端结构在末端改性聚酯树脂中的含量为末端改性聚酯树脂总重量的0.1~10wt%。
11、根据上述1所述的接合体,上述末端改性聚酯树脂的聚酯主链结构单元的80mol%以上选自聚对苯二甲酸乙二醇酯或聚对苯二甲酸丁二醇酯结构单元。
12、根据上述1所述的接合体,所述热塑性树脂组合物根据ISO19095规定的接合体试验样条在5mm/min的拉伸速度下测得的拉伸剪切强度≥15MPa。
13、根据上述1所述的接合体,所述接合体由热塑性树脂组合物与金属直接接合得到。
14、根据上述1所述的接合体,所述具有式I所示末端结构的末端改性聚酯树脂用凝胶渗透色谱测得的重均分子量Mw的范围为10,000~100,000。
15、根据上述1所述的接合体,所述具有式I所示末端结构的末端改性聚酯树脂的熔点为215℃以上。
16、根据上述1所述的接合体,所述热塑性树脂组合物还含有无机填料,所述无机填料的含量为热塑性树脂组合物总重量的5~80wt%。
17、一种上述1~16中任意一项所述接合体的制造方法,所述接合体由热塑性树脂组合物加热熔融后与预先放入模具的金属注塑成型。
18、根据上述17所述的制造方法,所述接合体在注塑成型过程中,模具温度在100~180℃之间。
19、一种上述1~16中任意一项所述接合体的制造方法,其特征在于:所述接合体由热塑性树脂组合物的成型品和金属通过激光照射焊接得到。
本发明的热塑性树脂组合物与金属的接合体,可以用于汽车部件,电子、电器产品部件,结构材料等。
下面对上述发明内容进行详细说明:
本发明接合体中所使用的热塑性树脂组合物包含具有式I所示末端结构的末端改性聚酯树脂,所述末端改性聚酯树脂的含量为热塑性树脂组合物总重量的5~100wt%,
-X-(R 1-O)n-R 2  式I
上述式I中,n为2~100的整数,R 1相同或不同,为碳原子数为2~10的亚烷基,R 2为碳原子数为1~30的烷基,-X-为-O-、-NH-、-C(=O)-、-C(=O)-NH- 或-CH(OH)-CH 2-中的任一种;式I所示结构在末端改性聚酯树脂中的含量为末端改性聚酯树脂总重量的0.05~20wt%。
本发明中,当热塑性树脂组合物只含有末端改性聚酯树脂这一单一组份时,也将其定义为热塑性树脂组合物。
本发明对所使用的末端改性聚酯树脂主链结构的种类没有特殊的限制。构成末端改性聚酯树脂主链结构的单体原料可以是二元羧酸成分、二元醇以及它们的酯形成性衍生物等,具体可以举出以下实例但不仅限于以下实例:对苯二甲酸、间苯二甲酸、邻苯二甲酸、萘-2,6-二羧酸、萘-2,7-二羧酸、萘-1,5-二羧酸、4,4′-二羧基二苯甲烷、蒽二羧酸、二苯基-4,4’-二羧酸、二苯氧基乙烷二羧酸、4,4’-二苯基醚二羧酸、5-磺基间苯二甲酸和3-磺基间苯二甲酸钠等芳香族二羧酸;1,3-环己烷二羧酸、1,4-环己烷二羧酸、环戊烷二羧酸、4,4’-二环己基二羧酸等脂环族二羧酸;草酸、丁二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十二烷二酮酸、二聚酸等脂肪族二羧酸;上述二羧酸相应的烷基二酯和二酰氯作为构成末端改性聚酯树脂主链结构的单体原料也被例举;乙二醇、丙二醇、1,4-丁二醇、新戊二醇、1,5-戊二醇、1,6-己二醇、癸二醇等脂肪族二醇;1,1-环己烷二甲醇、1,4-环己烷二醇、1,4-环己烷二甲醇、1,4-二环己烷二甲醇、三环癸烷二甲醇等脂环族二醇;苯二甲醇、双(对羟基)联苯、双(对羟基)二苯基丙烷、2,2-双[4-(2-羟基乙氧基)苯基]丙烷、双[4-(2-羟基乙氧基)苯基]砜、1,1-双[4-(2-羟基乙氧基)苯基]环己烷、4,4-二羟基对三联苯、4,4-二羟基对四联苯等芳香族二醇;所述二醇也可以以酯形成性衍生物、例如乙酰化物、碱金属盐等的形式使用。上述二羧酸、二醇及其酯形成性衍生物可以单独使用也可以两种以上并用。此外,本发明所使用的末端改性聚酯树脂的主链具体来说可以例举出由上述单体制备的均聚 结构,也可以是由上述单体制备的共聚结构。
具体地,对于末端改性聚酯树脂的聚酯主链结构可以举出但不仅限于以下实例:聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酸环己烷二甲醇酯、聚对苯二甲酸对苯二甲酯、聚间苯二甲酸乙二醇酯、聚间苯二甲酸丙二醇酯、聚间苯二甲酸丁二醇酯、聚间苯二甲酸环己烷二甲醇酯、聚间苯二甲酸对苯二甲酯、聚萘二甲酸乙二醇酯、聚萘二甲酸丙二醇酯、聚萘二甲酸丁二醇酯、聚萘二甲酸环己烷二甲醇酯、聚萘二甲酸对苯二甲醇酯、聚间苯二甲酸/对苯二甲酸乙二醇酯、聚间苯二甲酸/对苯二甲酸丙二醇酯、聚间苯二甲酸/对苯二甲酸丁二醇酯、聚对苯二甲酸/萘二甲酸乙二醇酯、聚对苯二甲酸/萘二甲酸丙二醇酯、聚对苯二甲酸/萘二甲酸丁二醇酯、聚对苯二甲酸/癸二酸丁二醇酯、聚对苯二甲酸乙二醇酯/聚对苯二甲酸环己烷二甲醇酯、聚对苯二甲酸/5-磺酸钠间苯二甲酸乙二醇酯、聚对苯二甲酸/5-磺酸钠间苯二甲酸丙二醇酯、聚对苯二甲酸/5-磺酸钠间苯二甲酸丁二醇酯、聚对苯二甲酸乙二醇酯/聚乙二醇、聚对苯二甲酸丙二醇酯/聚乙二醇、聚对苯二甲酸丁二醇酯/聚乙二醇、聚对苯二甲酸乙二醇酯/聚丁二醇、聚对苯二甲酸丙二醇酯/聚丁二醇、聚对苯二甲酸丁二醇酯/聚丁二醇、聚对苯二甲酸/间苯二甲酸乙二醇酯/聚丁二醇、聚对苯二甲酸/间苯二甲酸丙二醇酯/聚丁二醇、聚对苯二甲酸/间苯二甲酸丁二醇酯/聚丁二醇、聚对苯二甲酸/丁二酸乙二醇酯、聚对苯二甲酸/丁二酸丙二醇酯、聚对苯二甲酸/丁二酸丁二醇酯、聚对苯二甲酸/己二酸乙二醇酯、聚对苯二甲酸/己二酸丙二醇酯、聚对苯二甲酸/己二酸丁二醇酯、聚对苯二甲酸/癸二酸乙二醇酯、聚对苯二甲酸/癸二酸丙二醇酯、聚对苯二甲酸/癸二酸丁二醇酯、聚对苯二甲酸/间苯二甲酸/己二酸乙二醇酯、聚对苯二甲酸/间苯二甲酸/己二酸丙二醇酯、 聚对苯二甲酸/间苯二甲酸/丁二酸丁二醇酯、聚对苯二甲酸/间苯二甲酸/己二酸丁二醇酯、聚对苯二甲酸/间苯二甲酸/癸二酸丁二醇酯等芳香族聚酯结构;聚乙二酸乙二醇酯、聚乙二酸丙二醇酯、聚乙二酸丁二醇酯、聚丁二酸乙二醇酯、聚丁二酸丙二醇酯、聚丁二酸丁二醇酯、聚己二酸乙二醇酯、聚己二酸丙二醇酯、聚己二酸丁二醇酯、聚己二酸新戊二醇酯、聚癸二酸乙二醇酯、聚癸二酸丙二醇酯、聚癸二酸丁二醇酯、聚丁二酸/己二酸乙二醇酯、聚丁二酸/己二酸丙二醇酯、聚丁二酸/己二酸丁二醇酯等脂肪族聚酯树脂结构。这里的“/”代表共聚结构,下同。
考虑到耐热性、成型性、流动性和机械性能,上述末端改性聚酯树脂的聚酯主链结构优选聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二醇酯、聚对苯二甲酸丁二醇酯、聚对苯二甲酸环己烷二甲醇酯、聚萘二甲酸乙二醇酯、聚萘二甲酸丙二醇酯、聚萘二甲酸丁二醇酯、聚间苯二甲酸/对苯二甲酸乙二醇酯、聚间苯二甲酸/对苯二甲酸丙二醇酯、聚间苯二甲酸/对苯二甲酸丁二醇酯、聚对苯二甲酸/萘二甲酸乙二醇酯、聚对苯二甲酸/萘二甲酸丙二醇酯、聚对苯二甲酸/萘二甲酸丁二醇酯等芳香族聚酯结构,进一步优选为聚对苯二甲酸乙二醇酯结构、聚对苯二甲酸丁二醇酯结构,最优选为聚对苯二甲酸丁二醇酯结构。
所述末端改性聚酯树脂的聚酯主链结构可以由上述聚酯主链结构中的一种单独构成,也可以由上述主链结构中的两种以上组合构成。本发明所使用的末端改性聚酯树脂的主链重复单元中80mol%以上由上述例举的单体原料由来的结构单元构成(以聚酯主链结构的重复单元数为100mol%)。考虑到耐热性和结晶性,优选为90mol%以上,最优选为100mol%。
本发明所使用的末端改性聚酯树脂通过在聚酯末端引入式I所示柔性聚 醚结构,提高了分子链整体的运动性,从而降低了熔融粘度。因此,当含有末端改性聚酯树脂的热塑性树脂在熔融状态下与金属接触时,树脂熔体更有效的浸润入金属表面微小的孔洞内,从而能够更好的与金属表面紧密接合。
上述式I中,n为2~100的整数。n小于2时,热塑性树脂组合物熔融粘度降低效果变差。优选n为4以上,进一步优选n为8以上,最优选n为12以上。另一方面,n大于100时,式I所示末端结构的耐热性变差。优选n为70以下,进一步优选n为50以下,最优选n为25以下。
上述式I中,R 1相同或不同,为碳原子数2~10的亚烷基。R 1具体可以举出-CH 2-CH 2-、-CH 2-CH 2-CH 2-、-CH(CH 3)-CH 2-、-CH 2-CH 2-CH 2-CH 2-、-CH 2-CH 2-CH 2-CH 2-CH 2-或-CH 2-CH 2-CH 2-CH 2-CH 2-CH 2-等。考虑到与聚酯主链结构的亲和性,优选R 1为碳原子数2~6的亚烷基,进一步优选碳原子数2~4的亚烷基。R 1可以由不同的亚烷基组合而成,优选为-CH 2-CH 2-。
上述式I中,R 2为碳原子数1~30的烷基。R 2中碳原子数越少,其与聚酯主链结构的亲和性也就越高,因此R 2优选碳原子数为1~20的烷基,进一步优选碳原子数为1~10的烷基,更进一步优选碳原子数为1~5的烷基,最优选甲基。
上述式I中,-X-为-O-、-NH-、-C(=O)-、-C(=O)-NH-或-CH(OH)-CH 2-中的任一种,为了使本发明所使用的热塑性树脂组合物具有较低的熔融粘度,聚醚末端与聚酯主链的亲和力较高为好,-X-优选-O-。
上述式I所示结构具体可以例举出但不仅限于以下实例:甲氧基化聚二亚甲基醚、甲氧基化聚四亚甲基醚、乙氧基化聚二亚甲基醚、乙氧基化聚四亚甲基醚等。
本发明所使用的末端改性聚酯树脂中式I所示末端结构的含量为末端改 性聚酯树脂总重量的0.05~20wt%,考虑到降低熔融粘度、提高成型加工性的目的,该末端结构在所述末端改性聚酯树脂中的含量优选0.1wt%以上,进一步优选0.5wt%以上,更进一步优选1.5wt%以上,最优选2wt%以上;另一方面,通过使式I所示末端结构的含量为20wt%以下,可以使末端改性聚酯树脂的结晶性和机械性能得到更好的保持,优选为15wt%以下,进一步优选为10wt%以下,更进一步优选为5wt%以下,最优选4wt%以下。在这里,上述式I所示的聚醚链段相对于所述末端改性聚酯树脂的含量(wt%)通过 1H-NMR(核磁氢谱)测试得到。
本发明的末端改性聚酯树脂中还可以含有催化剂,催化剂可以列举出但不仅限于以下实例。作为金属催化剂可以例举出锑、钛、铝、锡、锗、镁、锰、钙、钴、锌等金属的金属化合物。其中锑化合物可以列举出锑氧化物、羧酸锑、锑的醇盐等,具体可以为三氧化二锑、五氧化二锑、乙酸锑、草酸锑、酒石酸锑、三正丁醇锑、三乙醇锑。对于钛化合物可以列举出:钛络合物、钛酸异丙酯、钛酸正四丁酯、钛酸正四丁酯四聚体等的钛醇盐、钛醇盐水解得到的钛氧化物、乙酰丙酮钛等,考虑到聚合物的热稳定性和防止色调恶化,优选多元羧酸、羟基羧酸或多元醇等螯合剂与钛形成的钛络合物,上述螯合剂可以举出乳酸、柠檬酸、甘露醇、三季戊四醇等。对于铝化合物可以列举出:羧酸铝、铝的醇盐、螯合物铝、碱性铝化合物等,具体可以列举出乙酸铝、氢氧化铝、碳酸铝、乙醇铝、异丙醇铝、乙酰丙酮铝、碱性乙酸铝等。对于锡化合物可以列举出:单丁基氧化锡、二丁基氧化锡、甲基苯基氧化锡、四乙基氧化锡、六乙基氧化二锡、三乙基氢氧化锡、单丁基羟基氧化锡、三氯化丁基锡、二丁基锡硫化物等。对于锗化合物可以列举出:锗的氧化物、锗的醇盐等,具体可以举出二氧化锗、四氧化锗、四乙氧基锗、四 丁醇锗等。对于镁化合物可以列举出:氧化镁、氢氧化镁、烷氧基镁、乙酸镁、碳酸镁等。对于锰化合物可以列举出:氯化锰、溴化锰、硝酸锰、碳酸锰、乙酰丙酮锰、乙酸锰等。对于钙化合物可以列举出:氧化钙、氢氧化钙、钙的醇盐、乙酸钙、碳酸钙等。对于钴化合物可以列举出:氯化钴、硝酸钴、碳酸钴、乙酰丙酮钴、环烷酸钴、四水合乙酸钴等。对于锌化合物可以列举出:氧化锌、锌的醇盐、乙酸锌等。另外,还可以使用上述金属化合物的水合物。
本发明中具有式I所示末端结构的末端改性聚酯树脂的重均分子量(Mw)优选在10,000以上。当Mw达到10,000以上时,机械性能及金属接合性能提高。Mw进一步优选12,000以上,更进一步优选15,000以上。另外,Mw优选100,000以下。当Mw为100,000以下时,熔融粘度较低,在制造接合体的过程中,树脂熔体能充分浸润金属表面微小的孔洞,从而使得热塑性树脂组合物与金属表面紧密接合,提高金属接合性能。Mw进一步优选50,000以下,更进一步优选30,000以下。重均分子量(Mw)可以通过凝胶渗透色谱(GPC)测定。
本发明旨在得到耐热性好的接合体,因此具有式I所示末端结构的末端改性聚酯树脂的熔点(Tm)以215℃以上为好,进一步优选末端改性聚酯树脂的熔点(Tm)在218℃以上。一般来说通过共聚向聚酯树脂引入柔性结构会使聚酯树脂的熔点下降,但本发明通过选择性的在树脂末端导入特定结构的聚醚,使得与不含有聚醚末端结构的聚酯相比,导入了聚醚末端的聚酯树脂熔点的下降控制在最小的范围。熔点下降优选不超过5℃,进一步优选熔点下降不超过3℃。这里所述的聚酯树脂的熔点是由示差扫描量热仪(DSC)测定得到:将聚酯树脂精确称量5~7mg,在氮气气氛下以20℃/min的升温速 率从20℃开始升温至比所出现的吸热峰的温度T0高出30℃的温度,在此温度下恒温2min,随后以20℃/min的降温速率降温至20℃后再次以20℃/min的升温速率升温至比T0高出30℃的温度,将第二次升温过程中出现的吸热峰的温度定义为熔点(Tm)。
本发明使用的热塑性树脂组合物中,除末端改性聚酯树脂以外还可以添加其他种类的聚合物、填料以及各种添加剂进行复配。
上述热塑性树脂组合物中其他种类的聚合物可以举出但不仅限于以下例子:聚乙烯、聚丙烯等聚烯烃;烯烃和/或共轭二烯烃化合物聚合得到的共聚体等改性聚烯烃;聚酰胺、聚碳酸酯、聚苯醚、聚苯硫醚、液晶聚合物、聚砜、聚醚砜、ABS树脂、SAN树脂、聚苯乙烯、本发明的末端未改性的聚酯树脂以外的聚酯树脂等。
作为上述其他种类的聚合物,为了提高本发明使用的热塑性树脂组合物所得到的成型品抗冲击性并降低收缩率,优选使用烯烃和/或共轭二烯烃化合物聚合得到的聚合物(或共聚物)等改性聚烯烃等抗冲改性剂。
抗冲改性剂具体可以举出:聚乙烯、聚丙烯、乙烯/丙烯共聚物、酸改性乙烯/丙烯共聚物、乙烯/丙烯/非共轭二烯共聚物、酸改性乙烯/丙烯/非共轭二烯共聚物、乙烯/1-丁烯共聚物、酸改性乙烯/1-丁烯共聚物、乙烯/丙烯酸共聚物及其碱金属盐(也称作离聚物)、乙烯/丙烯酸缩水甘油酯共聚物、乙烯/甲基丙烯酸缩水甘油酯共聚物、乙烯/丙烯酸烷基酯共聚物(例如乙烯/丙烯酸乙酯共聚物、乙烯/丙烯酸丁酯共聚物)、二烯橡胶(例如聚丁二烯、聚异戊二烯、聚氯丁二烯)和二烯和乙烯基单体的共聚物(例如苯乙烯/丁二烯无规共聚物、苯乙烯/丁二烯嵌段共聚物、苯乙烯/丁二烯/苯乙烯嵌段共聚物、苯乙烯/异戊二烯无规共聚物、苯乙烯/异戊二烯嵌段共聚物、苯乙烯/异戊二烯/ 苯乙烯嵌段共聚物)、苯乙烯/乙烯/丁烯/苯乙烯共聚物、甲基丙烯酸甲酯/丁二烯/苯乙烯共聚物、甲基丙烯酸甲酯/丙烯腈/丁二烯/苯乙烯共聚物、丙烯腈/苯乙烯共聚物、丙烯腈/丁二烯/苯乙烯共聚物、聚异丁烯和异丁烯与丁二烯或异戊二烯的共聚物、天然橡胶、聚硫橡胶、丙烯酸橡胶、聚氨酯橡胶、聚醚橡胶、氯醚橡胶等。
上述热塑性树脂组合物中除末端改性聚酯树脂以外的聚合物可以单独添加,也可以选取两种以上配合添加。其添加量优选为0wt%以上,80wt%以下(以热塑性树脂组合物为100wt%),通过将添加量控制在上述范围,能够使热塑性树脂组合物熔融时的流动性更好。进一步优选60wt%以下,更进一步优选50wt%以下。
本发明的热塑性树脂组合物中还可以含有填料,填料可以举出但不仅限于以下实例:玻璃纤维、碳纤维、钛钾酸晶须、氧化锌晶须、硼酸铝晶须、芳香族聚酰胺纤维、氧化铝纤维、碳化硅纤维、陶瓷纤维、石棉纤维、石膏纤维或金属纤维等纤维状无机或有机填料;所述纤维状填料的断面形状没有特别的限定,可以为圆形,也可以为扁平形。硅灰石、沸石、绢云母、高岭土、云母、滑石、粘土、叶蜡石、膨润土、蒙脱土、石棉、硅酸盐、氧化铝、氧化硅、氧化镁、氧化锆、氧化钛、氧化铁、碳酸钙、碳酸镁、白云石、硫酸钙、硫酸钡、氢氧化镁、氢氧化钙、氢氧化铝、玻璃微珠、陶瓷微珠、氮化硼、碳化硅或二氧化硅等非纤维状无机填料。上述填料可以为中空的,另外,上述填料也可经异氰酸系化合物、有机硅烷化合物、有机钛酸盐系化合物、有机硼烷化合物或环氧化合物等偶联剂处理。上述蒙脱土也可以是片层间离子通过有机铵盐进行阳离子交换后的有机化蒙脱土。考虑到热塑性树脂组合物的机械性能提高、成形收缩率降低,上述填料优选纤维状的无机填料, 进一步优选玻璃纤维或碳纤维。另外,上述填料可以单独添加,也可以选取两种以上配合添加。
上述填料在热塑性树脂组合物中的含量优选为热塑性树脂组合物总重量的5~80wt%,当填料的添加量在5wt%以上时,由于热塑性树脂组合物收缩率减少,在制造接合体过程中,热塑性树脂组合物熔体与金属接触并冷却后,热塑性树脂组合物与金属的界面剥离被抑制,从而使得热塑性树脂组合物与金属的接合性增强,进一步优选填料添加量为热塑性树脂组合物总重量的10wt%以上,更进一步优选20wt%以上,最优选30wt%以上。另一方面,填料的添加量在80wt%以下时,热塑性树脂组合物熔体具有良好的流动性,进一步优选60wt%以下,更进一步优选50wt%以下。
本发明使用的热塑性树脂组合物中,还可以含有各种添加剂。例如,抗氧化剂和热稳定剂(受阻酚系、对苯二酚系、亚磷酸酯系、磷酸酯系及其取代产物、卤化铜、碘化合物等)、耐候剂(间苯二酚系、水杨酸系、苯并三唑系、二苯基甲酮系或位阻胺系等)、脱模剂和润滑剂(脂肪醇、脂肪族酰胺、脂肪族二酰胺或二脲或聚乙烯蜡等)、颜料(硫化钙、酞菁或炭黑等)、染料(苯胺黑等)、塑化剂(对羟基苯甲酸正辛酯或N-丁基苯磺酰胺)、抗静电剂(烷基硫酸盐型阴离子系抗静电剂、4级铵盐型阳离子系抗静电剂、聚氧乙烯脱水山梨糖醇单硬脂酸酯等非离子系抗静电剂或三甲基甘氨酸系两性抗静电剂)、阻燃剂(三聚氰胺氰脲酸盐,氢氧化镁、氢氧化铝等氢氧化物,聚磷酸铵,溴化聚苯乙烯、溴化聚苯醚、溴化聚碳酸酯、溴化环氧树脂等溴系阻燃剂或上述溴系阻燃剂与三氧化二锑的组合物)。上述添加剂可以单独使用,也可以选择2种以上复配。
本发明旨在获得热塑性树脂组合物与金属间具有优良接合性能的接合体, 因此优选使用包含具有式I所示末端结构的末端改性聚酯树脂的热塑性树脂组合物与铝接合的拉伸剪切强度为15MPa以上的热塑性树脂组合物。所述拉伸剪切强度定义为根据ISO19095规定的接合体试验样条(图1)在5mm/min的拉伸速度下测得的值。这里使用的铝的表面具有平均孔径为10~100nm的微孔结构,铝表面的凹凸结构可以通过电子扫描显微镜观察。进一步优选拉伸剪切强度20MPa以上,最优选拉伸剪切强度为25MPa以上的热塑性树脂组合物。
本发明中的接合体可以由热塑性树脂组合物与金属直接接合得到,也就是热塑性树脂组合物与金属之间不通过其他粘接材料等中间层也可以直接进行接合。所述金属可以是经过表面处理,也可以是没有经过表面处理的,同时对于金属的种类没有特殊限制,可以例举出铁、铜、银、金、铝、锌、铅、锡、镁以及上述金属的合金,例如不锈钢。所述金属表面可以存在氧化层,也可以通过表面处理使其表面形成凹凸结构,还可以在金属表面导入有机官能团或低分子量有机化合物形成化学结构层。
上述金属的表面处理方法可以例举出将金属表面在腐蚀性液体中进行浸渍处理,在表面刻蚀出微细的凹凸结构后浸入含氮化合物水溶液中或采用含氮化合物气体进行熏蒸,使金属表面附着化学物质的方法;将金属表面在腐蚀性液体中进行浸渍处理,并在金属表面通过阳极氧化使金属表面形成微细的凹凸结构,在金属表面附着化学物质的方法;通过激光加工刻蚀出沟槽的方法等。具体来说可以例举出大成PLAS公司的NMT表面处理方法和东亚电化公司的TRI表面处理方法等。
上述用于表面处理的腐蚀性液体可以例举出碱性水溶液(pH>7)、酸性水溶液(pH<7),含氮化合物水溶液等,其中碱性水溶液可以例举出氢氧化 钠、氢氧化钾、碳酸钠等的水溶液;酸性水溶液可以例举出盐酸、硫酸、硝酸、氢氟酸等的水溶液;含氮化合物可以是氨、肼或水溶性胺,水溶性胺具体可以举出甲胺、二甲胺、三甲胺、乙胺、二乙胺、三乙胺、乙二胺、烯丙胺、乙醇胺、二乙醇胺、三乙醇胺、苯胺以及其他胺类。
上述金属表面阳极氧化处理方法可以例举出以金属为阳极,在电解液中通过电流,在金属表面形成氧化膜,例如水溶性胺组合物可以作为电解液用于金属表面的阳极氧化处理。
金属表面附着的化学物质可以举出氨、肼、水溶性胺、三嗪二硫醇化合物等。
上述通过激光加工刻蚀沟槽的方法具体可以例举出日本的大赛璐公司和大赛璐塑料公司开发的DLAMP技术,通过金属表面蚀刻来制造微孔的技术。
上述金属表面的纳米级凹凸结构在电子扫描显微镜下为纳米级微孔结构,优选平均孔径在10~100nm,进一步优选孔径在10~80nm。
本发明还提供一种本发明的热塑性树脂组合物与金属的接合体的制备方法。本发明对接合体的制造方法没有特殊限定,下面,对该接合体的制备方法进行举例说明。
考虑提高热塑性树脂组合物和金属的接合性以及实际制造过程中的高效,优选注塑成型或通过激光照射进行焊接。
注塑成型的方法具体可以例举出将热塑性树脂组合物加热熔融后注塑成型到预先放入金属的模具内,从而得到接合体的方法。上述注塑成型过程中,模具温度没有特别限定,但优选为100℃以上、180℃以下。通过将模具温度控制在100℃以上能够使热塑性树脂组合物与金属的接合性更好,进一步优选110℃以上,更进一步优选120℃以上;另一方面,模具温度在180℃以下 时热塑性树脂组合物能够更有效地固化成型,进一步优选160℃以下,更进一步优选140℃以下。
通过激光照射进行焊接的方法具体可以例举出将热塑性树脂组合物制得的成型品和金属重叠并固定后,从树脂侧或金属侧用激光照射,使得树脂与金属材料接触界面附近的树脂熔融从而将树脂成型品和金属材料接合的方法。
本发明的热塑性树脂组合物与金属的接合体有较高的接合性,适合需要金属接合的汽车部件,电子、电器产品部件,结构材料等领域。
附图说明
图1:本发明实施例中测试树脂与金属的接合性所使用的树脂与金属的接合样条。
具体实施方式
下面结合实施例对本发明作进一步说明,但这并不说明本发明仅限于这些实施例。
实施例和比较例中涉及的测试的说明如下:
(1)式I所示末端结构含量:各实施例和比较例中所使用的具有上述式I所示末端结构的聚酯树脂,以50mg/ml的浓度溶于氘代HFIP(六氟异丙醇)中,在扫描次数为256次的条件下采用日本电子JEOL ECX 400P进行 1H-NMR核磁测试。对 1H-NMR谱图中上述式I中的末端结构上与氧相邻的亚甲基(-CH 2-O-)上的氢对应的峰、以及作为主成份的聚酯主链重复单元上的氢对应的峰进行归属后,通过对各峰进行积分所得的峰面积以及各结构所含有的氢原子数计算得到聚酯树脂中式(I)所示末端结构含量。
(2)热性能
采用TA公司的示差扫描量热仪(DSC Q2000),各实施例及比较例中所使用的热塑性树脂组合物精确称量5~7mg,在氮气气氛下以20℃/min的升温速率从20℃开始升温至比所出现的吸热峰的温度T0高出30℃的温度,并在此温度下恒温2min,随后以20℃/min的降温速率降温至20℃,20℃下恒温2min后再次以20℃/min的升温速率升温至比T0高出30℃的温度,得到熔点T m。T m为二次升温过程中吸热峰的峰尖对应的温度。
(3)分子量
取各制造例中所得到的聚酯树脂粒子或各实施例和比较例中注塑成型后所得到的接合体的树脂部分2.5mg溶于4ml含0.0075N的三氟乙酸钠的六氟异丙醇中后,用0.45μm的过滤器过滤后测定数均分子量Mn和重均分子量Mw,测定条件如下:
泵:e-Alliance GPC system(Waters制)
检测器:示差检测器Waters 2414(Waters制)
色谱柱:Shodex HFIP-806M(2根)+HFIP-LG
溶剂:六氟异丙醇(添加0.0075N的三氟乙酸钠)
流速:0.5ml/min
样品注入量:0.1ml
温度:40℃
分子量校正:聚甲基丙烯酸甲酯。
(4)熔融粘度
将制备例1~5中所得到的聚酯树脂粒子置于真空干燥箱中在80℃下干燥12小时以上后,用压膜机热压成膜(膜厚0.7mm)后裁剪成直径25mm的圆片,用旋转流变仪(Antonpaar制、MCR302、φ25平行板)采用以下的方法测定熔融粘度:在氮气氛下,将上述样品在260℃(制备例1~5)熔融5分钟、平行板间距0.5mm、振动模式测定、频率0.5~6.88Hz、测定50个点(0.5分钟)、振幅1%。采用频率为1Hz时的复数粘度测定值作为熔融粘度。
(5)金属片
铝片A6061(45mm*10mm*1.5mm)昆山鑫达模具有限公司。
委托铝片处理公司:深圳宝元金股份有限公司(NMT処理);
深圳金宏欣科技有限公司(TRI处理)。
(6)接合体注塑成型
将金属片置于模具的模腔内,合模保持1分钟后,对热塑性树脂组合物的熔体进行计量并注入模具中。待熔体冷却固化后,打开模具,获得接合体。
注塑成型机:ST10S2V(NISSEI制)
螺杆温度:260℃
模具温度:120℃(实施例2、比较例2)、140℃(实施例1、3~8,比较例1、3、4)、50℃(比较例5)
(7)接合性
树脂与金属的接合性采用拉伸剪切强度表征,根据ISO 19095标准测试,样条尺寸为附图1所示ISO 19095中的规定尺寸,接合面积为0.5cm 2,采用岛津AG-IS 1KN测试拉伸模量,测试温度23℃,湿度50%RH,拉伸速度5mm/min,夹具间距3mm。拉伸剪切强度的结果取5根样条测试结果的平均值。拉伸剪切强度测试时样条破坏形态有树脂与金属从接合面剥离和树脂自身断裂两种形态。树脂与金属从接合面剥离的情况下,采用树脂与金属接合的面积计算得到的拉伸剪切强度评价接合性。另外,树脂自身断裂的情况下,说明树脂与金属接合的拉伸剪切强度大于树脂自身的破坏强度,因而无法评价原本的金属接合性,故采用树脂自身的横截面积计算的拉伸强度评价接合性。在每个实施例、比较例中记录树脂自身断裂样条数比例,即拉伸剪切强度测试的样条总数为5根,假设拉伸剪切强度测试时树脂自身断裂样条数为3根时,用3/5表示。
(8)拉伸强度/拉伸模量
根据ASTM D638标准测试,样条尺寸为ASTM D638中的TypeIV,采用岛津AG-IS1KN测试制备例2获得的末端改性聚酯树脂及比较例4、5所使用的聚酯树脂弹性体的拉伸模量,测试温度23℃,湿度50%RH,拉伸速度10mm/min,夹具间距60mm。拉伸模量的结果取5根样条测试结果的平均值。样条的注塑条件如下:
注塑成型机:ST10S2V(NISSEI制)
螺杆温度:210℃(聚酯弹性体)、250℃(末端改性聚酯树脂)
模具温度:50℃(聚酯弹性体)、80℃(末端改性聚酯树脂)
对于未经末端改性聚酯树脂及含有式I所示结构的末端改性聚酯树脂的制备方法,说明如下:
制备例中使用的原料:
对苯二甲酸(TPA):Aladdin
1,4-丁二醇(BDO):Alfa
聚乙二醇单甲醚:日本乳化剂株式会社的聚乙二醇单甲醚(Mn=700),结构如式II所示:
Figure PCTCN2018104043-appb-000001
钛酸正四丁酯(TBT):aladdin
制备例1
将100g的1,4-丁二醇(BDO)与11.2g钛酸正四丁酯(TBT)混合以得到催化剂溶液。
将780g对苯二甲酸(TPA)、760g的1,4-丁二醇(BDO)、11g式II所示的聚乙二醇单甲醚、4.66g的上述方法得到的催化剂溶液加入到精馏塔反应器内。160℃、93KPa的减压状态下酯化反应开始后,慢慢升高温度,最终温度达到225℃的条件下进行酯化反应。作为所得反应物的缩合反应催化剂向产物中添加上述方法得到的催化剂溶液5.18g后(此时TBT的添加量以生成的末端改性聚酯的质量为100wt%时为0.05wt%),在245℃、100Pa的条件下进行缩聚反应。当搅拌器的扭矩达到需要的数值时停止缩聚反应,所得聚合物熔体经吐出阀吐出成长条状并通过冷却水冷却后进行切粒得到产物粒子。
制备例2~5
除原料添加量按照表1所示的更改,其他操作均和制备例1一样。
表1
Figure PCTCN2018104043-appb-000002
实施例1
将经过表面处理的金属片(NMT处理,深圳宝元金股份有限公司)置于ST10S2V(NISSEI制)注塑成型机模具中,注塑机完成计量制备例2所获得的末端改性聚酯树脂并将树脂熔体注入模具中,得到接合体,成型过程中,螺杆温度为260℃,模具温度为140℃,冷却时间为15s。将上述方法得到的接合体,按照ISO19095,在5mm/min拉伸速度下进行金属接合性能测试,结 果如表2所示。
实施例2
除了按照表2所示更改注塑成型时模具温度以外,其他操作均和实施例1一样,所得接合体性能如表2所示。
比较例1
将经过表面处理的金属片(NMT处理,深圳宝元金股份有限公司)置于ST10S2V(NISSEI制)注塑成型机模具中,将制备例5得到的未经末端改性聚酯树脂熔体射入模具中,得到接合体,成型过程中,螺杆温度为260℃,模具温度为140℃,冷却时间为15s。将上述方法得到的接合体,按照ISO19095,在5mm/min拉伸速度下进行金属接合性能测试,结果如表2所示。
比较例2
除了按照表2所示的更改注塑成型时模具温度,其他操作均和比较例1一样,所得接合体性能如表2所示。
表2
Figure PCTCN2018104043-appb-000003
实施例1、2与比较例1、2相比,可以看到末端改性聚酯树脂与金属的接合性优于未末端改性的聚酯树脂,且与模具温度120℃下成型的实施例2相比,模具温度140℃下成型的实施例1金属接合性提升明显。
实施例3、6
除了按照表3所示的更改末端改性聚酯中式I所示结构含量,其他操作均和实施例1一样,所得接合体性能如表3所示。
实施例4、5、7
除了按照表3所示更改末端改性聚酯中式I所示结构含量及金属表面处理方法(TRI处理,深圳金宏欣科技有限公司)外,其他操作均和实施例1一样,所得接合体性能如表3所示。
比较例3
除了按照表3所示采用经过不同表面处理方法(TRI处理,深圳金宏欣科技有限公司)处理金属片外,其他操作均和比较例1一样,所得接合体性能如表3所示。
表3
Figure PCTCN2018104043-appb-000004
根据实施例3、1、6比较的结果以及实施例4、5、7比较的结果可知,含有2.5wt%式I所示结构末端改性聚酯树脂时,金属接合性最好。
实施例8
除了将28质量份制备例4中得到末端改性聚酯树脂和72质量份制备例5中得到末端未改性聚酯树脂共混后使用外,其它操作均和实施例1一样。所得接合体性能如表4所示。
表4
Figure PCTCN2018104043-appb-000005
从实施例8可见,将末端改性聚酯树脂和末端未改性聚酯树脂共混后的情况下,所得到的接合体也具有高的接合性。
比较例4
将经过表面处理的金属片(NMT处理,深圳宝元金股份有限公司)置于ST10S2V(NISSEI制)注射成型机模具中,注塑机完成计量聚酯弹性体(
Figure PCTCN2018104043-appb-000006
4057N,Toray-Dupont制)后将其熔体注入模具中,冷却时间为15s,开模,得到接合体,成型过程中,螺杆温度为260℃,模具温度为120℃。但是树脂在模具内无法充分固化,脱模时发生变形,从而无法得到试验样条。
比较例5
除了更改注射成型过程中模具温度至50℃外,其他操作均和比较例4一致。将上述方法的得到的接合体,按照ISO19095,在5mm/min拉伸速度下进行金属接合性能测试,结果如表5所示。
表5
Figure PCTCN2018104043-appb-000007
*数据来源于JP2015-224258[0058]中对于Hytrel 4057N的构造(PBT/PBI-PTMG共聚体)的记载和WO2013/137370[0020]中对于PTMG(软段)含量、[0054]中对于Hytrel 4057N的记载。
与比较例5的聚酯弹性体相比,实施例2的末端改性聚酯树脂的金属接合性更高。另外,实施例2的末端改性聚酯树脂的拉伸强度和拉伸模量明显优于比较例5中的聚酯弹性体。

Claims (19)

  1. 一种热塑性树脂组合物与金属的接合体,其特征在于:所述热塑性树脂组合物含有末端改性聚酯树脂,所述末端改性聚酯树脂的含量为热塑性树脂组合物总重量的5~100wt%,所述末端改性聚酯树脂具有式I所示末端结构,
    -X-(R 1-O)n-R 2      式I
    上述式I中,n为2~100的整数,R 1相同或不同,为碳原子数为2~10的亚烷基,R 2为碳原子数为1~30的烷基,-X-为-O-、-NH-、-C(=O)-、-C(=O)-NH-或-CH(OH)-CH 2-中的任一种;式I所示结构在末端改性聚酯树脂中的含量为末端改性聚酯树脂总重量的0.05~20wt%。
  2. 根据权利要求1所述的接合体,其特征在于:上述式I所示末端结构中,n为4~50的整数。
  3. 根据权利要求1所述的接合体,其特征在于:上述式I所示末端结构中,n为8~25的整数。
  4. 根据权利要求1所述的接合体,其特征在于:上述式I所示末端结构中,R 1相同或不同,为碳原子数为2~4的亚烷基。
  5. 根据权利要求1所述的接合体,其特征在于:上述式I所示末端结构中,R 1为-CH 2-CH 2-。
  6. 根据权利要求1所述的接合体,其特征在于:上述式I所示末端结构中,R 2为碳原子数为1~20的烷基。
  7. 根据权利要求1所述的接合体,其特征在于:上述式I所示末端结构中,R 2为甲基。
  8. 根据权利要求1所述的接合体,其特征在于:上述式I所示末端结构中,-X-为-O-。
  9. 根据权利要求1所述的接合体,其特征在于:上述式I所示末端结构在末端改性聚酯树脂中的含量为末端改性聚酯树脂总重量的0.1~15wt%。
  10. 根据权利要求1所述的接合体,其特征在于:上述式I所示末端结构在末端改性聚酯树脂中的含量为末端改性聚酯树脂总重量的0.1~10wt%。
  11. 根据权利要求1所述的接合体,其特征在于:上述末端改性聚酯树脂的聚酯主链结构单元中的80mol%以上选自聚对苯二甲酸乙二醇酯或聚对苯二甲酸丁二醇酯结构单元。
  12. 根据权利要求1所述的接合体,其特征在于:所述热塑性树脂组合物根据ISO19095规定的接合体试验样条在5mm/min的拉伸速度下测得的拉伸剪切强度≥15MPa。
  13. 根据权利要求1所述的接合体,其特征在于:所述接合体由热塑性树脂组合物与金属直接接合得到。
  14. 根据权利要求1所述的接合体,其特征在于:所述具有式I所示末端结构的末端改性聚酯树脂用凝胶渗透色谱测得的重均分子量Mw的范围为10,000~100,000。
  15. 根据权利要求1所述的接合体,其特征在于:所述具有式I所示末端结构的末端改性聚酯树脂的熔点为215℃以上。
  16. 根据权利要求1所述的接合体,其特征在于:所述热塑性树脂组合物还含有填料,所述填料的含量为热塑性树脂组合物总重量的5~80wt%。
  17. 一种权利要求1~16中任意一项所述接合体的制造方法,其特征在于:所述接合体由热塑性树脂组合物加热熔融后与预先放入模具的金属注塑成型。
  18. 根据权利要求17所述的制造方法,其特征在于:所述接合体在注塑 成型过程中,模具温度在100~180℃之间。
  19. 一种权利要求1~16中任意一项所述接合体的制造方法,其特征在于:所述接合体由热塑性树脂组合物的成型品和金属通过激光照射焊接得到。
PCT/CN2018/104043 2017-09-08 2018-09-05 一种热塑性树脂组合物与金属的接合体及其制造方法 WO2019047832A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880003605.2A CN109757104B (zh) 2017-09-08 2018-09-05 一种热塑性树脂组合物与金属的接合体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710807432 2017-09-08
CN201710807432.7 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019047832A1 true WO2019047832A1 (zh) 2019-03-14

Family

ID=65634733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104043 WO2019047832A1 (zh) 2017-09-08 2018-09-05 一种热塑性树脂组合物与金属的接合体及其制造方法

Country Status (2)

Country Link
CN (1) CN109757104B (zh)
WO (1) WO2019047832A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11065724B1 (en) * 2020-04-20 2021-07-20 Chang Chun Plastics Co., Ltd. Laser weldable compositions, products and uses thereof
CN113527647B (zh) * 2021-08-04 2022-11-01 中国科学院长春应用化学研究所 一种液晶聚合物及其制备方法,以及液晶聚合物薄膜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103563A (ja) * 2001-07-25 2003-04-09 Taisei Plas Co Ltd 金属と樹脂の複合体とその製造方法
CN101903170A (zh) * 2007-12-21 2010-12-01 胜技高分子株式会社 复合成形体
CN104169364A (zh) * 2012-03-15 2014-11-26 杜邦-东丽株式会社 热塑性弹性体树脂组合物和复合成形体
WO2017073506A1 (ja) * 2015-10-30 2017-05-04 東レ株式会社 末端変性ポリブチレンテレフタレート樹脂、それを含む熱可塑性樹脂組成物、および成形品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104845297B (zh) * 2015-05-11 2019-06-18 深圳华力兴新材料股份有限公司 一种用于nmt技术的pbt工程塑料组合物
CN106893269B (zh) * 2015-12-17 2019-06-25 比亚迪股份有限公司 一种树脂组合物及其制备方法、金属树脂复合体
CN106243668B (zh) * 2016-08-10 2018-03-27 王田军 一种应用于nmt的树脂组合物
CN106317807B (zh) * 2016-08-31 2019-03-01 上海中镭新材料科技有限公司 一种用于nmt技术的高流动聚酯工程塑料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103563A (ja) * 2001-07-25 2003-04-09 Taisei Plas Co Ltd 金属と樹脂の複合体とその製造方法
CN101903170A (zh) * 2007-12-21 2010-12-01 胜技高分子株式会社 复合成形体
CN104169364A (zh) * 2012-03-15 2014-11-26 杜邦-东丽株式会社 热塑性弹性体树脂组合物和复合成形体
WO2017073506A1 (ja) * 2015-10-30 2017-05-04 東レ株式会社 末端変性ポリブチレンテレフタレート樹脂、それを含む熱可塑性樹脂組成物、および成形品

Also Published As

Publication number Publication date
CN109757104A (zh) 2019-05-14
CN109757104B (zh) 2023-10-13

Similar Documents

Publication Publication Date Title
CN110959026B (zh) 用于纳米成型技术(nmt)的低介电常数(dk)和耗散系数(df)材料
US6512027B2 (en) Polyester resin composition
TWI419907B (zh) Polyester, its composition and its film
TW200804482A (en) Biaxial aligned polyarylenesulfide film
JP2001234046A (ja) ポリブチレンテレフタレート樹脂組成物及びその成形品
WO2019047832A1 (zh) 一种热塑性树脂组合物与金属的接合体及其制造方法
JPS6254073A (ja) 表面金属処理した樹脂成形品
JP6420061B2 (ja) 熱可塑性樹脂組成物及び成形品
EP3274124A1 (en) Use of dynamic cross-linked polymer compositions in soldering applications
US20180118899A1 (en) Fibrillated dynamic cross-linked polymer compositions and methods of their manufacture and use
JP2002249609A (ja) 光学用被覆フィルム
EP3320043A1 (en) Fibrillated dynamic cross-linked polymer compositions and methods of their manufacture and use
JP5132890B2 (ja) 液晶性樹脂成形品及びその製造方法
JPH06116486A (ja) 金属板貼合わせ用共重合ポリエステル組成物及びフィルム
WO2019020065A1 (zh) 一种热塑性树脂组合物与金属的接合体及其制造方法
JP2001200038A (ja) ポリエステル樹脂、ポリエステル系樹脂組成物および押出成形品
JP2007126596A (ja) ポリエステル樹脂組成物、それよりなる延伸フィルム・シート及びそれを用いた包装材料
JP5005593B2 (ja) 金属被覆樹脂成形品及びその製造方法
JP2001181491A (ja) 難燃性ポリエステル樹脂組成物
JP2006328266A (ja) 延伸フィルム・シート及びそれを用いた包装材料
JP3593436B2 (ja) ポリエステル系樹脂組成物およびその製造方法
JP3484857B2 (ja) 複合粒子強化樹脂組成物の製造方法
JP2001181489A (ja) ポリエステル樹脂組成物
JP2013159701A (ja) 共重合ポリエステル樹脂組成物
JP2002294042A (ja) ポリエステル樹脂組成物およびポリエステル樹脂製光反射体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853149

Country of ref document: EP

Kind code of ref document: A1