WO2019047678A1 - 光学结构及其制作方法、显示基板及显示装置 - Google Patents

光学结构及其制作方法、显示基板及显示装置 Download PDF

Info

Publication number
WO2019047678A1
WO2019047678A1 PCT/CN2018/100403 CN2018100403W WO2019047678A1 WO 2019047678 A1 WO2019047678 A1 WO 2019047678A1 CN 2018100403 W CN2018100403 W CN 2018100403W WO 2019047678 A1 WO2019047678 A1 WO 2019047678A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
sub
layer
optical structure
opaque
Prior art date
Application number
PCT/CN2018/100403
Other languages
English (en)
French (fr)
Inventor
顾品超
董学
王海生
刘英明
许睿
李昌峰
郭玉珍
赵利军
贾亚楠
秦云科
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/327,939 priority Critical patent/US11341766B2/en
Publication of WO2019047678A1 publication Critical patent/WO2019047678A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • the present disclosure relates to the field of display technology, for example, to an optical structure and a method of fabricating the same, a display substrate, and a display device.
  • the optical image acquisition process when the distance between the object and the optical sensing unit is too large, the acquired image is blurred. Moreover, the light of the acquired object has a crosstalk problem, and a clear image of the object cannot be obtained.
  • An optical structure comprising:
  • the optical structure is configured to project light passing through each of the plurality of vias to a light receiving area that corresponds one-to-one with the via.
  • the opaque layer comprises:
  • first sub-opaque layer disposed on the first surface of the first dielectric layer, wherein the first sub-opaque layer has a plurality of first vias therein;
  • a second sub-opaque layer disposed on a second surface of the first dielectric layer opposite to the first surface, wherein the second sub-opaque layer has a plurality of second vias therein;
  • one of the plurality of first vias and one of the plurality of second vias have an orthographic projection on the first dielectric layer or completely coincide.
  • the optical structure further includes a transparent second dielectric layer, wherein the second dielectric layer is located on a light exiting side of the first dielectric layer;
  • n 1 is the refractive index of the first dielectric layer
  • n 2 is the refractive index of the second dielectric layer
  • h is the thickness of the first dielectric layer
  • L is the period of the via
  • d is the The pore size of the via
  • n 1 is greater than n 2 .
  • the opaque layer includes a third sub-opaque layer
  • the first dielectric layer includes at least two sub-media layers
  • the third sub-media layer is disposed between any two adjacent sub-media layers
  • An opaque layer, the third sub-opaque layer has a plurality of third vias, and one of the plurality of third vias, and the plurality of second vias
  • a second via and one of the plurality of first vias have an orthographic projection on the first dielectric layer or completely coincide.
  • the optical structure further includes a transparent second dielectric layer, wherein the second dielectric layer is located on a light exiting side of the first dielectric layer, and the first dielectric layer includes m sub-media layers;
  • the optical structure satisfies the following conditions: Wherein the refractive indices of the m sub-media layers are all n 1 , n 2 is the refractive index of the second dielectric layer, h is the thickness of the first dielectric layer, and L is the period of the via, d For the pore size of the via, n 1 is greater than n 2 and m is greater than or equal to 2.
  • the at least two sub-media layers have the same thickness.
  • the plurality of vias in the opaque layer are equally spaced.
  • the first dielectric layer is a glass layer or a polyimide layer.
  • a display substrate comprising a substrate and an optical structure as described above, wherein the optical structure is disposed on the substrate.
  • the first dielectric layer is the same structure as the substrate.
  • the substrate is provided with an array structure, and the optical structure is disposed on a side of the substrate remote from the array structure.
  • the display substrate is an organic light emitting diode OLED display substrate or a quantum dot light emitting diode QLED display substrate.
  • a display device comprising:
  • each of the plurality of optical sensing units configured to receive light reflected by the object to be detected and passing through the display substrate and the optical structure, wherein each of the plurality of optical sensing units Each of the plurality of via holes is disposed one by one in the light receiving area;
  • control unit connected to the plurality of optical sensing units, configured to acquire a graphic of the object to be detected according to light received by the plurality of optical sensing units.
  • a method of fabricating an optical structure comprising:
  • a plurality of via holes are formed on the opaque layer by a patterning process.
  • Figure 1 is a schematic view showing the structure of an optical structure in some embodiments
  • Figure 2 is a schematic view showing the structure of an optical structure in other embodiments
  • Figure 3 is a schematic view showing the structure of an optical structure in other embodiments.
  • 4A is a schematic structural view showing a display substrate in some embodiments.
  • 4B is a block diagram showing the structure of a display device including the optical structure illustrated in FIG. 3 in some embodiments;
  • Figure 5 is a schematic view showing the structure of an optical structure in other embodiments.
  • Figure 6 is a block diagram showing the structure of a display device including the optical structure illustrated in Figure 5 in some embodiments;
  • Figure 7 is a flow chart showing a method of fabricating an optical structure in some embodiments.
  • an optical structure is provided that is configured to acquire an optical image of an object.
  • the optical structure includes an opaque layer 1 and a transparent first dielectric layer 2.
  • the opaque layer 1 is disposed on the first dielectric layer 2, and the opaque layer 1 has a plurality of vias 4.
  • the transparent first dielectric layer 2 refers to a dielectric layer that is capable of transmitting 60% or more of light.
  • the optical structure is arranged such that light rays passing through each of the via holes 4 are projected to the light receiving region 101 in one-to-one correspondence with the via holes 4, and the via holes 4 are arranged to limit the angle ⁇ of the light rays projected to the light receiving region 101.
  • the optical structure is configured to provide an opaque layer having a plurality of via holes, and project light passing through each of the via holes to a light receiving region corresponding to the via hole, thereby avoiding light passing through the different via holes on the light receiving side Crosstalk occurs and the light passing through each via can be individually detected.
  • the optical sensing unit disposed in the light receiving region receives the light projected through the corresponding via.
  • a clear image of the object can be obtained because crosstalk is no longer generated by light passing through different vias.
  • the via hole limits the angle at which the light of the object reaches the optical sensing unit, reduces the distance between the object and the optical sensing unit, and thins the thickness of the entire module.
  • the display device when the optical structure is applied to a display device, acquires a fingerprint image of the user touching the display screen, performs fingerprint recognition, and performs a corresponding operation, such as unlocking.
  • the plurality of via holes 4 in the opaque layer 1 are equally spaced to achieve uniform distribution of light transmitted through the opaque layer 1.
  • the acquired optical image is more uniform, improving the quality of the acquired optical image.
  • the opaque layer 1 includes a first sub-opaque layer 11 and a second sub-opaque layer 12.
  • the first sub-opaque layer 11 is disposed on the first surface of the first dielectric layer 2 , and the first sub-opaque layer 11 has a plurality of first vias 41 .
  • the second sub-opaque layer 12 is disposed on a second surface of the first dielectric layer 2 opposite to the first surface, and the second sub-opaque layer 12 has a plurality of second vias 42 therein.
  • the orthographic projections of the first via 41 and the second via 42 on the first dielectric layer completely coincide, that is, the opening sizes of the first via 41 and the second via 42 the same.
  • the orthographic portions of the first via 41 and the second via 42 on the first dielectric layer coincide, that is, the opening sizes of the first via 41 and the second via 42 Not the same.
  • the opening sizes of the first through hole 41 and the second through hole 42 are set in accordance with the desired angle ⁇ at which the light reaches the light receiving area.
  • the via holes in the opaque layer 1 include a first via 41 and a second via 42 in a one-to-one correspondence.
  • the opaque layer includes two sub-opaque layers, and one-to-one corresponding via holes are disposed in the two sub-opaque layers, and the light is sequentially projected through two via holes corresponding to the positions of the two sub-opaque layers.
  • Light receiving area Since the opening size of the via holes in the two sub-opaque layers and the distance between the two sub-opaque layers are controllable, the angle ⁇ of the light reaching the light receiving region is better controlled, and the distribution precision of the acquired light is adjusted.
  • the first via holes 41 of the first sub-opaque layer 11 are disposed at equal intervals, and the second via holes 42 of the second sub-opaque layer 12 are also equally spaced to realize transmission through the opaque layer.
  • the light of 1 is evenly distributed.
  • the optical structure is capable of projecting light passing through each of the via holes to a light receiving region corresponding to the via holes, so that light passing through the different via holes does not crosstalk.
  • the optical structure further includes a transparent second dielectric layer 3.
  • the transparent second dielectric layer 3 is located on the light exit side of the first dielectric layer 2.
  • the refractive index n 1 of the first dielectric layer 2 is greater than the refractive index n 2 of the second dielectric layer 3, so that the light transmitted through the other via holes cannot be projected into and transmitted through the opaque layer 1 due to total reflection.
  • One-to-one corresponding light receiving area 101 of a via For example, the light 1 in the drawing cannot be projected to the light receiving region 101 corresponding to a via one by one due to total reflection at the interface between the first dielectric layer 2 and the second dielectric layer 3.
  • the optical structure described above limits the angle at which light is projected to the light receiving region by providing an opaque layer having a plurality of vias. And providing a transparent second dielectric layer on the light-emitting side of the first dielectric layer, and using the principle of total reflection, the light passing through the other vias cannot be projected to and through a via hole in the opaque layer due to total reflection.
  • a corresponding light receiving area prevents crosstalk of light passing through different vias, and the light of each light incident region can be separately detected.
  • the first dielectric layer 2 is a glass layer having a refractive index n 1 of 1.5 or a polyimide layer having a refractive index of 1.8 to 1.9.
  • the second dielectric layer 3 is an air layer (ie, the third dielectric layer 3 is air). Since the refractive index n 2 of the air layer 3 is 1, the light incident from the side of the first dielectric layer 2 can be totally reflected at the interface of the first dielectric layer 2 and the second dielectric layer 3. Since the air layer does not need to be fabricated by a separate process, the process can be simplified and the cost can be reduced.
  • the second dielectric layer is made of a transparent material having a lower refractive index than the first dielectric layer.
  • the optical structure comprises an opaque layer 1 and a first dielectric layer 2 and a second dielectric layer 3 that are transparent and disposed opposite each other.
  • the opaque layer 1 has a two-layer structure, and includes a first sub-opaque layer 11 and a second sub-opaque layer 12 .
  • the first sub-opaque layer 11 is disposed between the first dielectric layer 2 and the second dielectric layer 3, and has a plurality of first via holes 41 in the first sub-opaque layer 11.
  • the second sub-opaque layer 12 is disposed on a side of the first dielectric layer 2 facing away from the second dielectric layer 3, and has a plurality of second via holes 42 in the second sub-opaque layer 12.
  • the optical structure satisfies the following conditions:
  • n 1 is the refractive index of the first dielectric layer 2
  • n 2 is the refractive index of the second dielectric layer 3
  • h is the thickness of the first dielectric layer 2
  • d is the aperture of the via
  • n 1 is greater than n 2 .
  • the refractive index of the first dielectric layer and the second dielectric layer to satisfy the above formula 1), it can be ensured that light passing through other vias cannot be projected into the non-transmissive layer due to total reflection.
  • a light-receiving area corresponding to one via hole avoids crosstalk on the light receiving side through different light rays.
  • the opaque layer as a two-layer structure, the angle ⁇ of the light reaching the light receiving region can be better controlled, and the distribution precision of the acquired light is adjusted.
  • n 1 is the refractive index of the first dielectric layer 2
  • n 2 is the refractive index of the second dielectric layer 3
  • h is the thickness of the first dielectric layer 2
  • L is the period of the via in the opaque layer 1
  • d Is the pore size of the via.
  • the first via 41 and the second via 42 are provided with the same aperture.
  • the total reflection principle can be utilized to avoid crosstalk of light passing through different vias on the light receiving side.
  • the L value is too large, it will cause The acquisition of optical images is not fine enough.
  • the object to be detected is a fingerprint
  • the distance between the valley and the ridge of the fingerprint is between 200um and 300um
  • the L value is less than 200um.
  • the L value is selected from the range of 25 um to 50 um.
  • the h value is 100um, when it is larger than (Ld), it will cause The value is relatively large, much larger than 2, because the refractive index ratio between materials is generally not much larger than 2, and as a result, it is difficult to find a suitable material to prepare the first dielectric layer and the second dielectric layer.
  • the opaque layer 1 is provided in a multi-layer structure, including at least three sub-opaque layers, and the sub-opaque layer located in the middle can also form a barrier so that even light passing through some vias The non-conformity is also blocked by the intermediate sub-opaque layer, and cannot be projected to the light receiving area corresponding to the other vias.
  • the first dielectric layer 2 is disposed to include at least two sub-media layers 21, and the third sub-media layers 21 are disposed between the adjacent two sub-media layers 21 In the layer 13, the third sub-opaque layer 13 has a plurality of third via holes 43 therein. The orthographic projection portions of the third via hole 43, the second via hole 42 and the first via hole 41 on the first dielectric layer are completely coincident.
  • the via hole in the opaque layer 1 includes a first via hole 41, a second via hole 42, and a third via hole 43 corresponding in position.
  • the opening size of the third via hole 43 is not smaller than the opening size of the first via hole 41 and the second via hole 42 so as not to affect the angle at which the first via hole 41 and the second via hole 42 restrict the light from reaching the light receiving region 101. ⁇ .
  • At least one third sub-opaque layer is disposed between the first sub-opaque layer and the second sub-opaque layer, and is opened at a position corresponding to the via hole in the third sub-opaque layer. a third via hole, so that the third sub-opaque layer can also form a barrier without blocking the angle ⁇ of the first sub-opaque layer and the second sub-opaque layer to limit the light reaching the light receiving region
  • Light passing through some of the vias e.g., light 1 in Fig. 5
  • is projected onto a light-receiving area corresponding to a via which overcomes the material selection limitations of the first dielectric layer and the second dielectric layer.
  • all of the sub-media layers 21 of the first dielectric layer 2 are disposed to have the same thickness.
  • the aperture of the third via 43 is reduced, and the aperture is increased.
  • the third sub-opaque layer 13 blocks the effect of light, and it is easier to realize the principle of total reflection to realize that the light passing through other vias cannot be projected to a light-receiving area corresponding to a via.
  • At least two third sub-opaque layers 13 when there are at least two third sub-opaque layers 13 between the first sub-opaque layer 11 and the second sub-opaque layer 12, at least two third sub-opaque layers 13
  • the spacing between the first sub-opaque layer 11 and the second sub-opaque layer 12 is equally spaced, which is advantageous for reducing the aperture of the third via 43 in all of the third sub-opaque layers 13.
  • the at least two sub-media layers 21 of the first dielectric layer 2 have the same refractive index. In some embodiments, the refractive indices of at least two of the sub-dielectric layers 21 of the first dielectric layer 2 are different.
  • the sub-media layer 21 in contact with the second dielectric layer 3 has a refractive index greater than that of the second dielectric layer 3.
  • the optical structure will be described below by taking the opaque layer as a three-layer structure as an example.
  • the light passing through the via holes in the opaque layer 1 is projected to the light receiving region 101 corresponding to the via holes one by one.
  • the first dielectric layer 2 includes two sub-media layers 21 of the same refractive index.
  • n 1 is the refractive index of the first dielectric layer 2
  • n 2 is the refractive index of the second dielectric layer 3
  • n 1 is greater than n 2
  • h is the thickness of the first dielectric layer
  • L is the opaque layer 1
  • the period of the hole, d is the aperture of the via.
  • the light passing through some vias does not need to satisfy the condition of total reflection and does not project to the light receiving area corresponding to the other vias one by one, Causes light crosstalk.
  • Light passing through other vias passes through the via holes in the opaque layer, but also because the incident angle ⁇ is large, achieving total reflection and cannot be projected to other vias.
  • One-to-one corresponding light receiving areas do not cause crosstalk of light.
  • (2L-d) is large, the minimum value for n 2 /n 1 becomes small, which is advantageous for finding the materials of the first dielectric layer and the second dielectric layer required for achieving total reflection.
  • the optical structure satisfies the following formula:
  • n 1 is the refractive index of the first dielectric layer 2
  • n 2 is the refractive index of the second dielectric layer 3
  • n 1 is greater than n 2
  • h is the thickness of the first dielectric layer
  • L is the opaque layer 1
  • the period of the hole, d is the aperture of the via.
  • the optical structure includes an opaque layer 1, a first dielectric layer 2, and a second dielectric layer 3.
  • the first dielectric layer 2 and the second dielectric layer 3 are both transparent and the first dielectric layer 2 and the second dielectric layer 3 are stacked, and the second dielectric layer 3 is located on the light exiting side of the first dielectric layer 2.
  • the opaque layer 1 has a plurality of via holes, and light passing through each of the via holes is projected to the light receiving region 101 in one-to-one correspondence with the via holes.
  • the opaque layer 1 includes a first sub-opaque layer 11 and a second sub-opaque layer 12 .
  • the first sub-opaque layer 11 is disposed between the first dielectric layer 2 and the second dielectric layer 3, and has a plurality of first via holes 41 in the first sub-opaque layer 11.
  • the second sub-opaque layer 12 is disposed on a side of the first dielectric layer 2 facing away from the second dielectric layer 3, and has a plurality of second via holes 42 in the second sub-opaque layer 12.
  • the opaque layer 1 further includes a third sub-opaque layer 13 including two sub-dielectric layers 21 of the same thickness and the same refractive index, and a third interposed between the two adjacent sub-media layers 21
  • the sub-opaque layer 13 and the third sub-opaque layer 13 have a plurality of third via holes 43 therein.
  • the orthographic projections of the third via hole 43, the second via hole 42 and the first via hole 41 on the first dielectric layer 2 completely coincide.
  • the via holes in the opaque layer 1 are composed of the first via holes 41, the second via holes 42, and the third via holes 43 corresponding in position.
  • optical structure satisfies the following formula:
  • n 1 is the refractive index of the first dielectric layer 2
  • n 2 is the refractive index of the second dielectric layer 3
  • n 1 is greater than n 2
  • h is the thickness of the first dielectric layer 2
  • L is the opaque layer 1
  • the period of the via, d is the aperture of the via.
  • the optical structure is provided with a first dielectric layer comprising two identical sub-media layers, and the third sub-opaque layer is disposed between the two sub-media layers, and the third sub-opaque layer is added to the light.
  • the blocking effect is such that the light passing through some of the via holes is not blocked by the blocking effect of the third sub-opaque layer to the light receiving region corresponding to one via hole, thereby avoiding crosstalk caused by light passing through different via holes.
  • the first via and the second via corresponding to the positions in the first sub-opaque layer and the second sub-opaque layer can better control the angle of the light reaching the light receiving region, and adjust the distribution precision of the acquired light.
  • some embodiments provide a display substrate including a substrate and an optical structure of any of the above embodiments, and an optical structure disposed on the substrate, and a display device on.
  • the display device includes the display substrate.
  • the display device includes a first substrate and a second substrate of the pair of boxes, the first substrate is disposed adjacent to the display side, and the second substrate is a display substrate.
  • the display light is irradiated to the user's finger 10 on the display side, and the light reflected by the finger 10 is projected to the light receiving region through the optical structures on the first substrate, the second substrate, and the second substrate.
  • the display device further includes a control unit 60 and a plurality of optical sensing units 50.
  • the optical sensing unit 50 is disposed in the light receiving area 101 in one-to-one correspondence with the through holes of the optical structure, and the optical sensing unit 50 is configured to receive the reflected substrate and the reflective substrate and pass through the display substrate and the The light of the optical structure.
  • the control unit 60 is connected to the optical sensing unit 50, and the control unit 60 is configured to acquire a graphic of the object to be detected according to the light received by the optical sensing unit 50.
  • the object to be detected 10 is a finger of a user
  • the control unit acquires a fingerprint pattern of the user according to the light received by the optical sensing unit.
  • the optical structure by providing the optical structure, the angle of the finger light to the optical sensing unit can be restricted by the via hole, and the distance between the finger and the optical sensing unit can be reduced to reduce the thickness of the entire display module.
  • the optical structure is capable of projecting light passing through each of the via holes to a light receiving region corresponding to the via holes, such that light reflected by different regions of the finger is projected through the different via holes to the via holes.
  • One-to-one corresponding light receiving areas prevent crosstalk and obtain a clear image of the fingerprint.
  • the display substrate is an Organic Light-Emitting Diode (OLED) display substrate.
  • the display substrate is a Quantum Dot Light Emitting Diode (QLED) display substrate.
  • the display substrate further includes an array structure 201 disposed on the substrate to effect a display process.
  • the array structure 201 includes a thin film transistor, an anode, a light emitting layer, and a cathode. Light reflected by the object to be detected is projected to the optical structure through a gap between the array structures.
  • the first dielectric layer 2 of the optical structure is the same structure as the substrate to simplify the structure and reduce the thickness of the module.
  • the optical structure is disposed on a side of the substrate that is remote from the array structure.
  • the display device in conjunction with FIGS. 4A, 4B, and 6, includes a display substrate 200, a plurality of optical sensing units 50, a control unit 60, and optical structures in any of the above embodiments.
  • the optical structure is disposed on a side of the display substrate 200 facing away from the display side, and the light reflected by the finger 10 touched by the user on the display substrate 200 passes through the display panel and is incident on the optical structure.
  • Each of the optical sensing units 50 is disposed in a light-receiving area 101 in one-to-one correspondence with a via of the optical structure, and the optical sensing unit 50 is configured to receive a portion of the fingerprint of the finger through the display panel and the light structure. .
  • the control unit 60 is connected to the optical sensing unit 50, and the control unit 60 is arranged to acquire a fingerprint pattern of the user according to the light received by the optical sensing unit 50.
  • the angle of the light from the fingerprint to the optical sensing unit is limited, and the distance between the finger and the optical sensing unit can be reduced, so that the thickness of the entire module is thin.
  • the distance between the valley and the ridge based on the fingerprint is between 200 um and 300 um, and the period of the via hole in the opaque layer of the optical structure is set to L ⁇ 200 um. In order to obtain finer fingerprints for improved security, set 25um ⁇ L ⁇ 50um.
  • the opaque layer 1 of the optical structure is a three-layer structure, and the opaque layer 1 includes: a first sub-opaque layer 11 and a second sub- The light transmissive layer 12 and the third sub-opaque layer 13 are provided.
  • the first sub-opaque layer 11 is disposed between the first dielectric layer 2 and the second dielectric layer 3, and has a plurality of first via holes 41 in the first sub-opaque layer 11.
  • the second sub-opaque layer 12 is disposed on a side of the first dielectric layer 2 facing away from the second dielectric layer 3, and has a plurality of second via holes 42 in the second sub-opaque layer 12.
  • the first dielectric layer 2 includes two sub-dielectric layers 21 of the same thickness and refractive index, and a third sub-opaque layer 13 is disposed between the adjacent two sub-dielectric layers 21, and the third sub-opaque layer 13 has A plurality of third vias 43.
  • the orthographic projection of the third via hole 43, the second via hole 42 and the first via hole 41 on the first dielectric layer 2 completely coincides, and the via hole in the opaque layer 1 is corresponding to the first via hole 41 corresponding to the position.
  • the second via hole 42 and the third via hole 43 are composed.
  • the above display device comprises the first dielectric layer comprising two identical sub-media layers, and the third sub-opaque layer is disposed between the two sub-media layers, the third sub-opaque layer is added to the light
  • the blocking effect avoids the phenomenon of crosstalk caused by light, and is more conducive to the use of the principle of total reflection to avoid crosstalk caused by light, and to find the materials of the first dielectric layer and the second dielectric layer required for real reflection.
  • the first via and the second via corresponding to the positions in the first sub-opaque layer and the second sub-opaque layer can better control the angle of the light reaching the light receiving region, and adjust the distribution precision of the acquired light. Improve the accuracy of the acquired fingerprint image.
  • optical structure in the above embodiments is suitable for the recognition of human faces or other biological features, or the acquisition of optical images of other objects.
  • Some embodiments provide a method of fabricating an optical structure. Referring to FIG. 7, the method includes step 110, step 120, and step 130.
  • step 110 a first dielectric layer is provided.
  • step 120 an opaque layer is formed on the first dielectric layer.
  • step 130 a plurality of vias are formed on the opaque layer by a patterning process.
  • the opaque layer is made of a black resin material, and a via hole on the opaque layer can be formed by one patterning process.
  • the patterning process includes steps of exposure and development.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种光学结构及其制作方法、显示基板及显示装置。所述光学结构包括透明的第一介质层(2)和设置在所述第一介质层(2)上的具有多个过孔(4)的不透光层(1)。所述光学结构配置为使经过每一个过孔的光线投射至与所述过孔(4)一一对应的光线接收区域(101)。

Description

光学结构及其制作方法、显示基板及显示装置
相关申请的交叉引用
本申请主张在2017年9月7日在中国提交的中国专利申请号No.201710801654.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,例如,涉及一种光学结构及其制作方法、显示基板及显示装置。
背景技术
在光学图像获取过程中,当物体与光学传感单元的距离过大的时候,会造成获取的图像模糊的问题。而且获取的物体的光线存在串扰问题,无法获取物体的清晰图像。
发明内容
一种光学结构,包括:
透明的第一介质层;以及
设置在所述第一介质层上的不透光层,其中,所述不透光层中具有多个过孔;
其中,所述光学结构配置为使经过所述多个过孔中的每一个过孔的光线投射至与所述过孔一一对应的光线接收区域。
一些实施例中,所述不透光层包括:
设置在所述第一介质层的第一表面上的第一子不透光层,其中,所述第一子不透光层中具有多个第一过孔;以及
设置在所述第一介质层的与所述第一表面相对的第二表面上的第二子不透光层,其中,所述第二子不透光层中具有多个第二过孔;
其中,所述多个第一过孔中的一个第一过孔和所述多个第二过孔中的一个第二过孔在所述第一介质层上的正投影部分或完全重合。
一些实施例中,所述光学结构还包括透明的第二介质层,其中,所述第二介质层位于所述第一介质层的出光侧;
所述光学结构满足以下条件:
Figure PCTCN2018100403-appb-000001
n 1为所述第一介质层的折射率,n 2为所述第二介质层的折射率,h为所述第一介质层的厚度,L为所述过孔的周期,d为所述过孔的孔径,以及n 1大于n 2
一些实施例中,所述不透光层包括第三子不透光层,所述第一介质层包括至少两个子介质层,任意相邻的两个子介质层之间设置有所述第三子不透光层,所述第三子不透光层中具有多个第三过孔,以及所述多个第三过孔中的一个第三过孔、所述多个第二过孔中的一个第二过孔和所述多个第一过孔中的一个第一过孔在所述第一介质层上的正投影部分或完全重合。
一些实施例中,所述光学结构还包括透明的第二介质层,其中,所述第二介质层位于所述第一介质层的出光侧,所述第一介质层包括m个子介质层;
所述光学结构满足以下条件:
Figure PCTCN2018100403-appb-000002
其中,所述m个子介质层的折射率均为n 1,n 2为所述第二介质层的折射率,h为所述第一介质层的厚度,L为所述过孔的周期,d为所述过孔的孔径,n 1大于n 2,以及m大于或等于2。
一些实施例中,25um≤L≤50um。
一些实施例中,所述至少两个子介质层的厚度相同。
一些实施例中,所述不透光层中的所述多个过孔等间距设置。
一些实施例中,所述第一介质层为玻璃层或聚酰亚胺层。
一种显示基板,包括基底和如上任一所述的光学结构,其中,所述光学结构设置在所述基底上。
一些实施例中,所述第一介质层与所述基底为同一结构。
一些实施例中,所述基底上设置有阵列结构,以及所述光学结构设置在所述基底上远离所述阵列结构的一侧。
一些实施例中,所述显示基板是有机发光二极管OLED显示基板或量子点发光二极管QLED显示基板。
一种显示装置,包括:
如上任一所述的显示基板;
多个光学传感单元,设置为接收经过待检测物体反射后且经过所述显示基板和所述光学结构的光线,其中,所述多个光学传感单元中的每一个光学传感单元与所述多个过孔中的每一个过孔一一对应设置在光线接收区域;以及
控制单元,与所述多个光学传感单元连接,设置为根据所述多个光学传感单元接收的光线来获取所述待检测物体的图形。
一种光学结构的制作方法,包括:
提供第一介质层;
在所述第一介质层上形成不透光层;以及
通过构图工艺在所述不透光层上形成多个过孔。
附图说明
图1表示一些实施例中光学结构的结构示意图;
图2表示另一些实施例中光学结构的结构示意图;
图3表示另一些实施例中光学结构的结构示意图;
图4A表示一些实施例中显示基板的结构示意图;
图4B表示一些实施例中包括图3示意的光学结构的显示装置的结构示意图;
图5表示另一些实施例中光学结构的结构示意图;
图6表示一些实施例中包括图5示意的光学结构的显示装置的结构示意图;以及
图7表示一些实施例中光学结构的制作方法的流程示意图。
具体实施方式
结合图1、图2、图3和图4B,一些实施例中提供一种光学结构,该光学结构设置为获取物体的光学图像。
所述光学结构包括不透光层1和透明的第一介质层2。
其中,不透光层1设置在所述第一介质层2上,以及所述不透光层1中 具有多个过孔4。
一些实施例中,透明的第一介质层2是指能透过60%及以上的光的介质层。
所述光学结构设置为使经过每一个过孔4的光线投射至与所述过孔4一一对应的光线接收区域101,过孔4设置为限制投射至光线接收区域101的光线的角度α。
上述光学结构,通过设置具有多个过孔的不透光层,并使经过每一个过孔的光线投射至与过孔对应的光线接收区域,避免了透过不同过孔的光线在光线接收侧发生串扰,能够对透过每一过孔的光线进行单独检测。
当上述实施例中的光学结构应用于光学图像获取装置上时,设置在光线接收区域的光学传感单元,接收透过对应的过孔投射的光线。由于透过不同过孔的光线不再发生串扰,能够获得物体的清晰图像。而且所述过孔限制了物体的光线到达光学传感单元的角度,减小了物体与光学传感单元的距离,使整个模组的厚度变薄。
一些实施例中,当上述光学结构应用于显示装置上时,该显示装置获取用户触摸显示屏的指纹图像,进行指纹识别,执行相应的操作,如:解锁。
一些实施例中,不透光层1中的多个过孔4等间距设置,实现透过不透光层1的光线均匀分布。当上述光学结构应用于光学图像获取装置上时,获取的光学图像更加均匀,提升了获取的光学图像的质量。
一些实施例中,如图3所示,不透光层1包括第一子不透光层11以及第二子不透光层12。
其中,第一子不透光层11设置在第一介质层2的第一表面上,以及第一子不透光层11中具有多个第一过孔41。
第二子不透光层12设置在第一介质层2的与所述第一表面相对的第二表面上,以及第二子不透光层12中具有多个第二过孔42。
一些实施例中,所述第一过孔41和所述第二过孔42在所述第一介质层上的正投影完全重合,即,第一过孔41和第二过孔42的开口尺寸相同。一些实施例中,所述第一过孔41和所述第二过孔42在所述第一介质层上的正投影部分重合,即,第一过孔41和第二过孔42的开口尺寸不相同。第一过 孔41和第二过孔42的开口尺寸根据光线到达光线接收区域的所需角度α来设置。
不透光层1中的过孔包括位置一一对应的第一过孔41和第二过孔42。
上述不透光层包括两个子不透光层,并在两个子不透光层中设置位置一一对应的过孔,光线依次经过两个子不透光层中位置对应的两个过孔投射至光线接收区域。由于两个子不透光层中过孔的开口尺寸及两个子不透光层的距离可控,因此,更好地控制了光线到达光线接收区域的角度α,调整获取的光线的分布精度。当上述光学结构应用于光学图像获取装置上时,有利于提高光学图像的获取精度,提升光学图像的质量。
一些实施例中,设置第一子不透光层11的第一过孔41等间距设置,第二子不透光层12的第二过孔42也等间距设置,实现透过不透光层1的光线均匀分布。当上述光学结构应用于光学图像获取装置上时,使获取的光学图像更加均匀,提升了获取的光学图像的质量。
上述实施例中,所述光学结构能够使经过每一个所述过孔的光线投射至与该过孔一一对应的光线接收区域,实现透过不同过孔的光线不会发生串扰。
一些实施例中,所述光学结构还包括透明的第二介质层3。
透明的第二介质层3位于第一介质层2的出光侧。
其中,第一介质层2的折射率n 1大于第二介质层3的折射率n 2,以使透过其它过孔的光线因全反射作用无法投射至与透过不透光层1中的一过孔的一一对应的光线接收区域101。例如:附图中的光线1因在第一介质层2和第二介质层3的界面上发生全反射而无法投射至与一过孔一一对应的光线接收区域101。
上述光学结构通过设置具有多个过孔的不透光层,来限制光线投射至光线接收区域的角度。并在第一介质层的出光侧设置透明的第二介质层,利用全反射原理,使透过其它过孔的光线因全反射作用无法投射至与透过不透光层中的一过孔一一对应的光线接收区域,避免透过不同过孔的光线发生串扰,能够对每一光线入射区域的光线进行单独检测。
一些实施例中,第一介质层2为折射率n 1为1.5的玻璃层或折射率为1.8到1.9聚酰亚胺层。一些实施例中,第二介质层3为空气层(即,第三介质 层3为空气)。由于空气层3的折射率n 2为1,从第一介质层2所在侧入射的光线在第一介质层2和第二介质层3的界面上能够发生全反射。由于空气层不需要通过单独的工艺来制作,能够简化工艺,降低成本。
一些实施例中,所述第二介质层由折射率小于第一介质层的透明材料制得。
在一个实施方式中,所述光学结构包括不透光层1以及透明且相对设置的第一介质层2和第二介质层3。
其中,不透光层1为双层结构,包括:第一子不透光层11和第二子不透光层12。
第一子不透光层11设置在第一介质层2和第二介质层3之间,以及第一子不透光层11中具有多个第一过孔41。
第二子不透光层12设置在第一介质层2的背离第二介质层3的一侧,以及第二子不透光层12中具有多个第二过孔42。
所述第一过孔41和所述第二过孔42在第一介质层2上的正投影部分或完全重合。
所述光学结构满足以下条件:
Figure PCTCN2018100403-appb-000003
其中,n 1为第一介质层2的折射率,n 2为第二介质层3的折射率,h为第一介质层2的厚度,L为所述过孔的周期(即,L=一个过孔的孔径+与该过孔相邻的一个不透光层在平行于介质层的平面方向的宽度),d为所述过孔的孔径,n 1大于n 2
上述实施例中,通过设置第一介质层和第二介质层的折射率满足上述公式1),能够保证透过其它过孔的光线由于发生全反射而不能投射至与不透过光层中的一过孔一一对应的光线接收区域,避免透过不同的光线在光线接收侧发生串扰。同时,通过设置不透光层为双层结构能够更好地控制光线到达光线接收区域的角度α,调整获取的光线的分布精度。
上述公式1)的推导原理为:
为了保证透过其它过孔的光线(例如光线1和光线2)不能投射至与不透过光层中的一过孔一一对应的光线接收区域,需要设置β≥C,其中,C为全反射角,即当入射至第一介质层2和第二介质层3的界面上的光线入射角 大于或等于C时,发生全反射。
利用三角函数关系tanβ≥tanC,sinC=n 2/n 1,tanβ=(L-d)/h,计算可得:
其中,n 1为第一介质层2的折射率,n 2为第二介质层3的折射率,h为第一介质层2的厚度,L为不透光层1中过孔的周期,d为所述过孔的孔径。
一些实施例中,设置第一过孔41和第二过孔42的孔径相同。
上述实施例中,当满足公式1)的时候才能利用全反射原理避免透过不同过孔的光线在光线接收侧发生串扰,在实际应用于光学图像的获取时,L值如果太大,会造成光学图像的获取不够精细,例如:待检测物体是指纹,指纹的谷和脊之间的距离在200um到300um之间,L值就要小于200um,为了更精细的获取指纹的纹路提高安全性,L值选取25um到50um的范围。当h值为100um时,比(L-d)大的比较多的时候,会造成
Figure PCTCN2018100403-appb-000005
数值比较大,远大于2,因为材料之间的折射率比值一般不会比2大很多,结果就是很难找到合适的材料来制备第一介质层和第二介质层。
一些实施例中,设置所述不透光层1为多层结构,包括至少三个子不透光层,则位于中间的子不透光层还能够形成阻挡,使得透过一些过孔的光线即使不符合全反射也因为被中间的子不透光层所阻挡,而无法投射至与其它过孔一一对应的光线接收区域。
具体可以为:
在上述具体实施方式的基础上,一些实施例中,参见图5,设置第一介质层2包括至少两个子介质层21,相邻的两个子介质层21之间设置有第三子不透光层13,第三子不透光层13中具有多个第三过孔43。所述第三过孔43、所述第二过孔42和所述第一过孔41在所述第一介质层上的正投影部分或完全重合。
不透光层1中过孔包括位置对应的第一过孔41、第二过孔42和第三过孔43。
其中,第三过孔43的开口尺寸不小于第一过孔41和第二过孔42的开口尺寸,以不影响第一过孔41和第二过孔42限制光线到达光线接收区域101 的角度α。
上述技术方案,通过在第一子不透光层和第二子不透光层之间设置至少一个第三子不透光层,并在第三子不透光层中对应过孔的位置开设第三过孔,从而在不影响第一子不透光层和第二子不透光层限制光线到达光线接收区域的角度α的前提下,第三子不透光层还能够形成阻挡,阻挡透过一些过孔的光线(例如图5中的光线1)投射至一过孔一一对应的光线接收区域,克服第一介质层和第二介质层在材料选择上的局限性。
一些实施例中,设置第一介质层2的所有子介质层21的厚度相同。一些实施例中,当第一子不透光层11和第二子不透光层12之间仅具有一层第三子不透光层13时,缩小第三过孔43的孔径,增加了第三子不透光层13阻挡光线的效果,更容易实现利用全反射原理来实现透过其它过孔的光线无法投射至一过孔一一对应的光线接收区域。
一些实施例中,当第一子不透光层11和第二子不透光层12之间具有至少两层第三子不透光层13时,至少两层第三子不透光层13等间隔设置在第一子不透光层11和第二子不透光层12之间,有利于减小所有第三子不透光层13中第三过孔43的孔径。
一些实施例中,第一介质层2的至少两个子介质层21的折射率相同。一些实施例中,第一介质层2的至少两个子介质层21的折射率不同。与第二介质层3接触的子介质层21的折射率大于第二介质层3的折射率。
如图5所示,下面以所述不透光层为三层结构为例,来介绍光学结构。
其中,经过不透光层1中的过孔的光线投射至与所述过孔一一对应的光线接收区域101。第一介质层2包括两个折射率相同的子介质层21。
利用三角函数关系tanβ≥tanC,sinC=n 2/n 1,tanβ=(2L-d)/h,计算可得:
Figure PCTCN2018100403-appb-000006
其中,n 1为第一介质层2的折射率,n 2为第二介质层3的折射率,n 1大于n 2,h为第一介质层的厚度,L为不透光层1中过孔的周期,d为所述过孔的孔径。
对于三层结构的不透光层,经过一些过孔的光线(例如图5中的光线1)不需要满足全反射的条件也不会投射至其它过孔一一对应的光线接收区域, 不会导致光线串扰。而透过另一些过孔的光线(例如图5中的光线2)虽然会透过不透光层中的过孔,但也因入射角α大,实现全反射,无法投射至与其它过孔一一对应的光线接收区域,不会导致光线串扰。另外,因为(2L-d)大,对于n 2/n 1的最小值会变小,有利于找到实现全反射所需要的第一介质层和第二介质层的材料。
当第一介质层包括m个子介质层,并在相邻两个子介质层之间均设置所述第三子不透光层时,其中,m≥3,为正整数。所述光学结构满足以下公式:
Figure PCTCN2018100403-appb-000007
其中,n 1为第一介质层2的折射率,n 2为第二介质层3的折射率,n 1大于n 2,h为第一介质层的厚度,L为不透光层1中过孔的周期,d为所述过孔的孔径。
当m≥3时,由于(mL-d)比(2L-d)更大,n 2/n 1的最小值更小,更容易找到实现全反射所需要的第一介质层和第二介质层的材料。
一些实施例中,如图5所示,所述光学结构包括不透光层1、第一介质层2和第二介质层3。
第一介质层2和第二介质层3均透明且第一介质层2和第二介质层3层叠设置,第二介质层3位于第一介质层2的出光侧。
不透光层1中具有多个过孔,经过每一个过孔的光线投射至与该过孔一一对应的光线接收区域101。
其中,不透光层1包括第一子不透光层11和第二子不透光层12。
第一子不透光层11设置在第一介质层2和第二介质层3之间,以及第一子不透光层11中具有多个第一过孔41。
第二子不透光层12设置在第一介质层2的背离第二介质层3的一侧,以及第二子不透光层12中具有多个第二过孔42。
不透光层1还包括第三子不透光层13,第一介质层2包括两个厚度相同且折射率相同的子介质层21,相邻的两个子介质层21之间设置有第三子不透光层13,以及第三子不透光层13中具有多个第三过孔43。
所述第三过孔43、所述第二过孔42和所述第一过孔41在第一介质层2上的正投影完全重合。不透光层1中的过孔由位置对应的第一过孔41、第二 过孔42和第三过孔43组成。
所述光学结构满足以下公式:
Figure PCTCN2018100403-appb-000008
其中,n 1为第一介质层2的折射率,n 2为第二介质层3的折射率,n 1大于n 2,h为第一介质层2的厚度,L为不透光层1中过孔的周期,d为所述过孔的孔径。
上述光学结构设置第一介质层包括两个相同的子介质层,并在两个子介质层之间设置所述第三子不透光层,增加了所述第三子不透光层对光线的阻挡效果,使得经过一些过孔的光线因第三子不透光层的阻挡作用而不会投射至与一过孔一一对应的光线接收区域,避免出现经过不同过孔的光线产生串扰。而且更有利于利用全反射原理来避免出现经过不同过孔的光线产生串扰,便于找到实现全反射所需要的第一介质层和第二介质层的材料。同时,第一子不透光层和第二子不透光层中位置对应的第一过孔和第二过孔能够更好控制光线到达光线接收区域的角度,调整获取的光线的分布精度。
结合图4B和图6所示,一些实施例提供了一种显示基板和显示装置,所述显示基板200包括基底和上述实施例中任一种的光学结构,所述光学结构设置在所述基底上。所述显示装置包括所述显示基板。
一些实施例中,所述显示装置包括对盒的第一基板和第二基板,所述第一基板靠近显示侧设置,所述第二基板为显示基板。当用户触摸显示装置时,显示光线照射到位于显示侧的用户手指10,手指10反射的光线经过所述第一基板、第二基板和第二基板上的光学结构后投射至光线接收区域。
一些实施例中,所述显示装置还包括控制单元60和多个光学传感单元50。所述光学传感单元50与所述光学结构的过孔一一对应设置在光线接收区域101,所述光学传感单元50设置为接收经过待检测物体10反射后且经过所述显示基板和所述光学结构的光线。所述控制单元60与所述光学传感单元50连接,所述控制单元60设置为根据所述光学传感单元50接收的光线来获取所述待检测物体的图形。
一些实施例中,所述待检测物体10是用户的手指,控制单元根据光学传感单元接收的光线获取用户的指纹图形。
上述技术方案的显示装置,通过设置所述光学结构,能够通过过孔限制手指的光线到达光学传感单元的角度,减小手指与光学传感单元的距离,以减小整个显示模组的厚度。而且所述光学结构能够使经过每一个过孔的光线投射至与所述过孔一一对应的光线接收区域,从而使得手指的不同区域反射的光线经过不同的过孔投射至与所述过孔一一对应的光线接收区域,防止发生串扰,获取指纹的清晰图像。
一些实施例中,所述显示基板为有机发光二极管(Organic Light-Emitting Diode,OLED)显示基板。一些实施例中,所述显示基板为量子点发光二极管(Quantum Dot Light Emitting Diode,QLED)显示基板。一些实施例中,参见图4A,所述显示基板还包括设置在所述基底上的阵列结构201,以便实现显示过程。例如,所述阵列结构201包括薄膜晶体管、阳极、发光层和阴极。经过待检测物体反射的光线通过阵列结构之间的缝隙投射至光学结构。
一些实施例中,所述光学结构的第一介质层2与所述基底为同一结构,以简化结构,减小模组的厚度。
一些实施例中,将所述光学结构设置在所述基底上远离所述阵列结构的一侧。
一些实施例中,结合图4A、图4B和图6所示,显示装置包括显示基板200、多个光学传感单元50、控制单元60以及上述任一实施例中的光学结构。
其中,所述光学结构设置在显示基板200的背离显示侧的一侧,用户触摸显示基板200的手指10反射的光线经过显示面板后入射至所述光学结构。
每个光学传感单元50与所述光学结构的一个过孔一一对应设置在光线接收区域101,光学传感单元50设置为接收手指指纹的一区域经过所述显示面板和光线结构投射的光线。
控制单元60与所述光学传感单元50连接,控制单元60设置为根据所述光学传感单元50接收的光线来获取用户的指纹图形。上述显示装置,通过采用上述任一实施例中的光学结构来限制来自指纹的光线到达光学传感单元的角度,能够减小手指与光学传感单元的距离,使整个模组的厚度薄。同时,还能够避免来自手指的不同区域的光线投射至同一光线接收区域的光学传感单元,避免光线串扰,获得手指指纹的清晰图像。
基于指纹的谷和脊之间的距离在200um到300um之间,设置所述光学结构的不透光层中的过孔的周期L≤200um。为了更精细的获取指纹的纹路提高安全性,设置25um≤L≤50um。
一些实施例中,结合图4B和图6所示,设置所述光学结构的不透光层1为三层结构,不透光层1包括:第一子不透光层11、第二子不透光层12以及第三子不透光层13。
第一子不透光层11设置在第一介质层2和第二介质层3之间,以及第一子不透光层11中具有多个第一过孔41。
第二子不透光层12设置在第一介质层2的背离第二介质层3的一侧,以及第二子不透光层12中具有多个第二过孔42。
第一介质层2包括两个厚度相同且折射率的子介质层21,相邻的两个子介质层21之间设置有第三子不透光层13,第三子不透光层13中具有多个第三过孔43。
其中,第三过孔43、第二过孔42和第一过孔41在第一介质层2上的正投影完全重合,不透光层1中的过孔由位置对应的第一过孔41、第二过孔42和第三过孔43组成。
上述显示装置通过设置第一介质层包括两个相同的子介质层,并在两个子介质层之间设置所述第三子不透光层,增加了所述第三子不透光层对光线的阻挡效果,以避免出现光线产生串扰的现象,而且更有利于利用全反射原理来避免出现光线产生串扰的现象,便于找到实现全反射所需要的第一介质层和第二介质层的材料。同时,第一子不透光层和第二子不透光层中位置对应的第一过孔和第二过孔能够更好控制光线到达光线接收区域的角度,调整获取的光线的分布精度,提高获取的指纹图像的精度。
上述实施例中的光学结构适用于人脸或其他生物特征的识别,或其他物体的光学图像的获取。
一些实施例提供了一种光学结构的制作方法,参见图7,该方法包括步骤110、步骤120以及步骤130。
在步骤110中,提供第一介质层。
在步骤120中,在所述第一介质层上形成不透光层。
在步骤130中,通过构图工艺在所述不透光层上形成多个过孔。
例如,所述不透光层由黑色树脂材料制成,可通过一次构图工艺形成不透光层上的过孔。一些实施例中,所述构图工艺包括曝光和显影等步骤。

Claims (15)

  1. 一种光学结构,包括:
    透明的第一介质层;以及
    设置在所述第一介质层上的不透光层,其中,所述不透光层中具有多个过孔;
    其中,所述光学结构配置为使经过所述多个过孔中的每一个过孔的光线投射至与所述过孔一一对应的光线接收区域。
  2. 根据权利要求1所述的光学结构,其中,所述不透光层包括:
    设置在所述第一介质层的第一表面上的第一子不透光层,其中,所述第一子不透光层中具有多个第一过孔;以及
    设置在所述第一介质层的与所述第一表面相对的第二表面上的第二子不透光层,其中,所述第二子不透光层中具有多个第二过孔;
    其中,所述多个第一过孔中的一个第一过孔和所述多个第二过孔中的一个第二过孔在所述第一介质层上的正投影部分或完全重合。
  3. 根据权利要求2所述的光学结构,还包括透明的第二介质层,其中,所述第二介质层位于所述第一介质层的出光侧;
    所述光学结构满足以下条件:
    Figure PCTCN2018100403-appb-100001
    n 1为所述第一介质层的折射率,n 2为所述第二介质层的折射率,h为所述第一介质层的厚度,L为所述过孔的周期,d为所述过孔的孔径,以及n 1大于n 2
  4. 根据权利要求2所述的光学结构,其中,所述不透光层包括第三子不透光层,所述第一介质层包括至少两个子介质层,任意相邻的两个子介质层之间设置有所述第三子不透光层,所述第三子不透光层中具有多个第三过孔,以及所述多个第三过孔中的一个第三过孔、所述多个第二过孔中的一个第二过孔和所述多个第一过孔中的一个第一过孔在所述第一介质层上的正投影部分或完全重合。
  5. 根据权利要求4所述的光学结构,还包括,透明的第二介质层,
    其中,所述第二介质层位于所述第一介质层的出光侧,所述第一介质层包括m个子介质层;
    所述光学结构满足以下条件:
    Figure PCTCN2018100403-appb-100002
    其中,所述m个子介质层的折射率均为n 1,n 2为所述第二介质层的折射率,h为所述第一介质层的厚度,L为所述过孔的周期,d为所述过孔的孔径,n 1大于n 2,以及m大于或等于2。
  6. 根据权利要求5所述的光学结构,其中,25um≤L≤50um。
  7. 根据权利要求5所述的光学结构,其中,所述至少两个子介质层的厚度相同。
  8. 根据权利要求1所述的光学结构,其中,所述不透光层中的所述多个过孔等间距设置。
  9. 根据权利要求1所述的光学结构,其中,所述第一介质层为玻璃层或聚酰亚胺层。
  10. 一种显示基板,包括基底和权利要求1-9任一项所述的光学结构,其中,所述光学结构设置在所述基底上。
  11. 根据权利要求10所述的显示基板,其中,所述第一介质层与所述基底为同一结构。
  12. 根据权利要求10所述的显示基板,其中,所述基底上设置有阵列结构,以及所述光学结构设置在所述基底上远离所述阵列结构的一侧。
  13. 根据权利要求10所述的显示基板,其中,所述显示基板是有机发光二极管OLED显示基板或量子点发光二极管QLED显示基板。
  14. 一种显示装置,包括:
    权利要求10-13任一项所述的显示基板;
    多个光学传感单元,设置为接收经过待检测物体反射后且经过所述显示基板和所述光学结构的光线,其中,所述多个光学传感单元中的每一个光学传感单元与所述多个过孔中的每一个过孔一一对应设置在光线接收区域;以及
    控制单元,与所述多个光学传感单元连接,设置为根据所述多个光学传感单元接收的光线来获取所述待检测物体的图形。
  15. 一种光学结构的制作方法,包括:
    提供第一介质层;
    在所述第一介质层上形成不透光层;以及
    通过构图工艺在所述不透光层上形成多个过孔。
PCT/CN2018/100403 2017-09-07 2018-08-14 光学结构及其制作方法、显示基板及显示装置 WO2019047678A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/327,939 US11341766B2 (en) 2017-09-07 2018-08-14 Optical structure, display substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710801654.8A CN107423728B (zh) 2017-09-07 2017-09-07 光学结构及其制作方法、显示基板及显示装置
CN201710801654.8 2017-09-07

Publications (1)

Publication Number Publication Date
WO2019047678A1 true WO2019047678A1 (zh) 2019-03-14

Family

ID=60432881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100403 WO2019047678A1 (zh) 2017-09-07 2018-08-14 光学结构及其制作方法、显示基板及显示装置

Country Status (3)

Country Link
US (1) US11341766B2 (zh)
CN (1) CN107423728B (zh)
WO (1) WO2019047678A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107423728B (zh) * 2017-09-07 2024-02-02 京东方科技集团股份有限公司 光学结构及其制作方法、显示基板及显示装置
WO2019119245A1 (zh) * 2017-12-18 2019-06-27 深圳市为通博科技有限责任公司 光学通路调制器及制造方法、图像识别传感器和电子设备
CN108171199B (zh) * 2018-01-12 2021-01-22 京东方科技集团股份有限公司 触控面板及触控装置
CN108227230B (zh) 2018-02-05 2021-01-22 京东方科技集团股份有限公司 一种准直结构、其制作方法及显示装置
CN109034089B (zh) * 2018-08-07 2020-11-20 武汉天马微电子有限公司 一种显示装置以及电子设备
CN108960208B (zh) * 2018-08-09 2021-03-02 京东方科技集团股份有限公司 光线准直结构及其制造方法以及光学指纹识别装置
WO2020118640A1 (zh) * 2018-12-13 2020-06-18 深圳市汇顶科技股份有限公司 光学采集装置和电子设备
CN109740556B (zh) * 2019-01-10 2021-02-02 京东方科技集团股份有限公司 基于准直光取出的光学结构的指纹识别模块及其制备方法
CN110720106B (zh) * 2019-01-22 2021-04-23 深圳市汇顶科技股份有限公司 指纹识别的装置和电子设备
CN112043285A (zh) * 2019-06-05 2020-12-08 上海耕岩智能科技有限公司 光线探测结构、指纹模组及终端
CN110287920B (zh) * 2019-06-29 2021-11-19 厦门天马微电子有限公司 一种显示面板及显示装置
CN113555377A (zh) * 2020-04-26 2021-10-26 上海箩箕技术有限公司 滤光组件及其形成方法
CN114747017A (zh) * 2020-09-23 2022-07-12 京东方科技集团股份有限公司 一种有机发光显示面板及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104317060A (zh) * 2014-11-11 2015-01-28 京东方科技集团股份有限公司 一种双视场显示面板和双视场显示器
CN106066742A (zh) * 2016-08-04 2016-11-02 京东方科技集团股份有限公司 传感器和显示装置
CN106203408A (zh) * 2016-08-31 2016-12-07 上海箩箕技术有限公司 光学指纹传感器模组
CN106886341A (zh) * 2017-03-28 2017-06-23 京东方科技集团股份有限公司 显示基板及显示装置
CN106980850A (zh) * 2017-06-02 2017-07-25 京东方科技集团股份有限公司 一种纹路检测装置及其纹路检测方法
CN107068704A (zh) * 2016-02-03 2017-08-18 旭景科技股份有限公司 接触式影像传感器
CN107423728A (zh) * 2017-09-07 2017-12-01 京东方科技集团股份有限公司 光学结构及其制作方法、显示基板及显示装置
CN207367230U (zh) * 2017-09-07 2018-05-15 京东方科技集团股份有限公司 光学结构、显示基板及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10460188B2 (en) * 2014-08-26 2019-10-29 Gingy Technology Inc. Bio-sensing apparatus
CN105654852B (zh) * 2016-01-25 2019-06-07 京东方科技集团股份有限公司 显示装置和显示装置的显示控制方法
CN106526944A (zh) * 2017-01-24 2017-03-22 京东方科技集团股份有限公司 显示基板及显示装置
CN106646727B (zh) * 2017-03-17 2020-02-18 京东方科技集团股份有限公司 一种透明显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104317060A (zh) * 2014-11-11 2015-01-28 京东方科技集团股份有限公司 一种双视场显示面板和双视场显示器
CN107068704A (zh) * 2016-02-03 2017-08-18 旭景科技股份有限公司 接触式影像传感器
CN106066742A (zh) * 2016-08-04 2016-11-02 京东方科技集团股份有限公司 传感器和显示装置
CN106203408A (zh) * 2016-08-31 2016-12-07 上海箩箕技术有限公司 光学指纹传感器模组
CN106886341A (zh) * 2017-03-28 2017-06-23 京东方科技集团股份有限公司 显示基板及显示装置
CN106980850A (zh) * 2017-06-02 2017-07-25 京东方科技集团股份有限公司 一种纹路检测装置及其纹路检测方法
CN107423728A (zh) * 2017-09-07 2017-12-01 京东方科技集团股份有限公司 光学结构及其制作方法、显示基板及显示装置
CN207367230U (zh) * 2017-09-07 2018-05-15 京东方科技集团股份有限公司 光学结构、显示基板及显示装置

Also Published As

Publication number Publication date
CN107423728B (zh) 2024-02-02
US20210357616A1 (en) 2021-11-18
US11341766B2 (en) 2022-05-24
CN107423728A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2019047678A1 (zh) 光学结构及其制作方法、显示基板及显示装置
WO2018153065A1 (zh) 一种显示装置
CN107103307B (zh) 触控面板和显示装置
WO2019114572A1 (zh) 阵列基板、其制备方法、指纹识别方法及显示装置
TWI650875B (zh) 積體化感測模組、積體化感測組件及其製造方法
CN107422788B (zh) 嵌入有光学成像传感器的平板显示器
WO2018145461A1 (zh) 显示装置
US20190156097A1 (en) Touch panel and display apparatus
WO2018176819A1 (zh) 显示基板及显示装置
CN110286514B (zh) 一种显示面板及显示装置
WO2019137002A1 (zh) 显示面板和显示装置
CN107451518A (zh) 一种显示屏
WO2020118699A1 (zh) 指纹识别装置和电子设备
JP7413021B2 (ja) 表示モジュール及び表示装置
US20200320267A1 (en) Image acquisition device and fingerprint acquisition apparatus
WO2019196724A1 (zh) 指纹识别装置、识别装置和显示设备
WO2018010250A1 (zh) 光学指纹传感器模组
CN108258017A (zh) 显示面板和显示装置
CN111666929A (zh) 显示装置
WO2021249380A1 (zh) 指纹识别组件和显示基板
WO2018188670A1 (zh) 一种检测装置及终端设备
US11328531B2 (en) Apparatus for optically directly recording skin prints for mobile applications
WO2021012117A1 (zh) 屏下光学指纹识别装置及系统、扩散膜和液晶显示屏
WO2021203622A1 (zh) 屏内光学生物特征感测装置
CN114625264A (zh) 显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.08.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18853442

Country of ref document: EP

Kind code of ref document: A1