WO2018010250A1 - 光学指纹传感器模组 - Google Patents

光学指纹传感器模组 Download PDF

Info

Publication number
WO2018010250A1
WO2018010250A1 PCT/CN2016/095828 CN2016095828W WO2018010250A1 WO 2018010250 A1 WO2018010250 A1 WO 2018010250A1 CN 2016095828 W CN2016095828 W CN 2016095828W WO 2018010250 A1 WO2018010250 A1 WO 2018010250A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
fingerprint sensor
optical fingerprint
sensor module
Prior art date
Application number
PCT/CN2016/095828
Other languages
English (en)
French (fr)
Inventor
凌严
朱虹
Original Assignee
上海箩箕技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海箩箕技术有限公司 filed Critical 上海箩箕技术有限公司
Publication of WO2018010250A1 publication Critical patent/WO2018010250A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses

Definitions

  • the present invention relates to the field of optical fingerprint recognition, and in particular to an optical fingerprint sensor module.
  • Fingerprint imaging recognition technology is a technology that uses an optical fingerprint sensor to collect fingerprint images of the human body and then compares them with existing fingerprint imaging information in the system to determine whether it is correct or not, and thus realizes identity recognition. Due to the convenience of its use and the uniqueness of human fingerprints, fingerprint imaging recognition technology has been widely used in various fields. For example, security inspection departments such as the Public Security Bureau and the Customs, access control systems for buildings, and consumer goods such as personal computers and mobile phones. Fingerprint imaging recognition technology can be realized by various techniques such as optical imaging, capacitive imaging, and ultrasonic imaging. Relatively speaking, optical fingerprint imaging recognition technology has relatively good imaging effect and relatively low equipment cost.
  • the structure of the existing optical fingerprint sensor module needs to be improved, and the performance needs to be improved.
  • the problem solved by the present invention is to provide an optical fingerprint sensor module to optimize the structure of the optical fingerprint sensor module and improve the performance of the optical fingerprint sensor module.
  • an optical fingerprint sensor module including: an optical fingerprint sensor having a device layer, the device layer having a pixel region; the pixel region having a plurality of pixels; a planar backlight; a light collimating layer between the optical fingerprint sensor and the planar backlight; the light collimating layer comprising a bottom-up stack
  • n-layer louver film layer, n is an integer of 2 or more; each of the louver film layers comprises a plurality of light-transmissive slits arranged in parallel and a plurality of light-shielding frame strips, wherein the light-transmissive slits are located adjacent to each other Between the light-shielding frames.
  • the length of the transparent slit extends along the first axial direction; in the louver film layer of the even layer, the length of the transparent slit a second axial extension; the first axial direction being perpendicular to the second axial direction.
  • the cross section of the light transmissive slit is a parallelogram, and the angle of the four corners of the parallelogram ranges from 45 degrees to 135 degrees.
  • the ratio of the height to the average width in the cross section of the transparent slit is 10 or more; the sum of the widths of one of the transparent slit and one of the light shielding frame strips is less than or equal to one of the pixels Half the length of one side.
  • the cross section of the light transmissive slit is an isosceles trapezoid, and the angle of the isosceles trapezoidal midsole angle ranges from 45 degrees to 90 degrees; in the cross section of the light transmissive slit, the height and the bottom
  • the ratio of the width of the sides is 10 or more; the sum of the widths of one of the light-transmissive slits and one of the light-shielding frame strips is less than or equal to half of the length of one side of one of the pixels.
  • At least one of the upper surface and the lower surface of the louver film layer further comprises a protective film.
  • the transparent slit is air, vacuum or a light transmissive medium.
  • the module further includes a protective layer, and the protective layer is a single layer structure or a multi-layer structure.
  • At least one of the upper surface and the lower surface of the protective layer has a filter layer.
  • the optical fingerprint sensor comprises a transparent substrate; the transparent substrate has a first surface directly used for finger fingerprint contact; and the transparent substrate has a device layer Covering the second surface.
  • the first surface has a filter layer.
  • a light collimating layer is disposed between the optical fingerprint sensor and the planar backlight, and the optical collimating layer has a louver film layer.
  • the optical collimating layer has a louver film layer.
  • the optical fingerprint sensor includes only one transparent substrate.
  • the light emitted by the planar backlight only needs to pass through the device layer and a transparent substrate when passing through the optical fingerprint sensor, so that the light passes through the substrate less. Helps to form a clear fingerprint image.
  • the optical fingerprint sensor since the optical fingerprint sensor has a simple structure and a reduced thickness, the structure of the optical fingerprint sensor module is simplified, and the cost is reduced.
  • the light reaching the first surface of the transparent substrate increases, and the entire optical fingerprint sensor module can more accurately realize the identification of the fingerprint image, thereby further improving the fingerprint image. Sharpness and further simplify the structure of the optical fingerprint sensor module, reducing costs.
  • FIG. 1 is a schematic cross-sectional view of an optical fingerprint sensor module according to a first embodiment of the present invention
  • Figure 2 is a top plan view of one of the louver film layers of Figure 1;
  • Figure 3 is a schematic cross-sectional view of the louver film layer of Figure 2;
  • Figure 4 is a partial (partial) enlarged view of the louver film layer of Figure 3;
  • FIG. 5 is a cross-sectional view of an optical fingerprint sensor module according to a second embodiment of the present invention.
  • Figure 6 is a partially enlarged schematic view of one of the louver film layers of Figure 5;
  • FIG. 7 is a cross-sectional view of an optical fingerprint sensor module according to a third embodiment of the present invention.
  • Figure 8 is a partially enlarged schematic view of one of the louver film layers of Figure 7.
  • the light collimation layer is rarely used to adjust the light of the optical fingerprint sensor module. Even if the optical fingerprint sensor module of the light collimation layer is partially used, the light collimation effect is not ideal.
  • the present invention provides a new optical fingerprint sensor module, which adopts a light collimating layer with a multi-layer louver film layer, thereby realizing effective adjustment of light, and making an optical fingerprint sensor The quality of the fingerprint image obtained by the module is improved.
  • the first embodiment of the present invention provides an optical fingerprint sensor module. Please refer to FIG. 1 .
  • the optical fingerprint sensor module includes an optical fingerprint sensor 120 and a planar backlight 140.
  • the planar backlight 140 is located below the optical fingerprint sensor 120.
  • the optical fingerprint sensor module further includes a protective layer 110 .
  • the protective layer 110 is located above the optical fingerprint sensor 120.
  • the optical fingerprint sensor module further includes a light collimating layer 130 , and the light collimating layer 130 is located between the optical fingerprint sensor 120 and the planar backlight 140 .
  • the optical fingerprint sensor 120 has a transparent substrate 121 and a device layer 122.
  • the thickness of the transparent substrate 121 may be 0.4 cm or less, and the transparent substrate 121 is too thin to have poor mechanical strength, and the reliability of the optical fingerprint sensor 120 cannot be ensured.
  • Transparent substrate 121 Too thick the thickness of the entire optical fingerprint sensor module increases, causing various adverse effects.
  • the device layer 122 is located between the transparent substrate 121 and the protective layer 110. Although not shown in the figure, the device layer 122 has a pixel region.
  • the pixel area has a plurality of pixels. Each of the pixels has a light transmissive area and a non-transparent area.
  • the non-transparent region has a photosensitive element. The light transmissive region enables light to pass through the pixel region of device layer 122.
  • the planar backlight 140 includes a point light source (not shown) and a light guide plate (not shown).
  • the point light source may be an LED light.
  • the planar backlight may also be an autonomously illuminated planar light source structure (area array structure), such as an organic light emitting diode surface light source or an electroluminescent surface light source.
  • the point source may also be other suitable sources of light, such as fluorescent lamps.
  • the protective layer 110 has a single layer structure, and the lower surface of the protective layer 110 has a filter layer 111.
  • the filter layer 111 may be a light absorbing layer such as ink, or may be an interference reflection layer of a multilayer film structure.
  • the filter layer 111 is for filtering ambient light or changing the appearance color of the protective layer 110.
  • the protective layer may also be a multi-layer structure, and at least one of the upper surface and the lower surface of the protective layer has a filter layer.
  • the light collimating layer 130 includes two louver film layers stacked from bottom to top, which are a louver film layer 131 and a louver film layer 132, respectively.
  • the light collimating layer may include an n-layer louver film layer, and n is an integer of 2 or more.
  • FIG. 2 shows a top view structure of the louver film layer 131
  • FIG. 3 shows a cross-sectional structure of the louver film layer 131 shown in FIG. 2 taken along the line A-A'.
  • the louver film layer 131 includes a plurality of light-transmissive slits 1311 and a plurality of light-shielding frame strips 1312 arranged in parallel (not shown in FIGS. 2 and 3, please refer to an enlarged schematic view in FIG. 4).
  • the light transmissive slit 1311 is located between adjacent light shielding frame strips 1312.
  • each louver film layer includes a plurality of light-transmitting narrow lines arranged in parallel.
  • the slit and the plurality of light shielding frame strips are disposed between the adjacent light shielding frame strips.
  • the length of the light transmissive slit extends along the first axial direction. From bottom to top, in the louver film layer of the even layer, The length of the light slit extends along the second axial direction. And, the first axial direction is perpendicular to the second axial direction.
  • the louver film layer 131 is the first layer, that is, the louver film layer of the odd-numbered layer.
  • the louver film layer 132 is a second layer, that is, an even-numbered louver film layer.
  • the length of the light-transmitting slit 1311 extends in the first axial direction
  • the length of the light-transmitting slit of the louver film layer 132 extends in the second axial direction. That is, in the plan view direction, after the structure shown in FIG. 2 is rotated by 90 degrees, and then overlapped to the structure before the original rotation, the planar structure of the light alignment layer 130 of the present embodiment is obtained.
  • the above structure is another point of view: in the two louver film layers adjacent in the vertical direction, the light-transmissive slits of the two louver film layers are perpendicular to each other in the same horizontal plane.
  • first axial direction and the second axial direction may be other angles, that is, not perpendicular to each other, and as long as they cross each other, even the first axial direction and the second axial direction may For the same axial direction.
  • the outgoing light of the planar backlight 140 can be changed from a large angular range to a small angular range, which reduces signal crosstalk between different pixels in the optical fingerprint sensor. Improve the sharpness of the fingerprint image.
  • FIG. 4 is a partial enlarged view of the cross-sectional structure shown in FIG. 3, specifically an enlarged view of a portion surrounded by a broken line frame O in FIG.
  • the light-transmitting slit 1311 has a height k1 and an average width m1.
  • the ratio of the height k1 to the average width m1 is 10 or more, thereby ensuring that the light collimating layer 130 achieves effective light collimation.
  • a specific light a black one-way arrow represents light
  • other light rays cannot pass through the louver film layer 131.
  • n1 is set to be less than or equal to one half of one side of one of the pixels, thereby ensuring that each of the pixels receives uniform light (ie, ensuring wear The uniformity of light passing through the light collimating layer 130).
  • the upper surface of the louver film layer 131 includes a protective film 1314
  • the lower surface of the louver film layer 131 includes a protective film 1313.
  • the protective film 1313 and the protective film 1314 can function to protect the light-transmitting slit 1311 and the light-shielding frame strip 1312.
  • only one of the upper surface and the lower surface of the louver film layer may have a protective film.
  • the light-transmitting slit 1311 is air, vacuum or a light-transmitting medium.
  • the light-transmitting slit 1311 is a vacuum or a light-transmitting medium, the light is more transmitted.
  • the present embodiment can employ the protective layer 110 having a larger thickness, thereby increasing the mechanical strength of the protective layer 110.
  • the thickness of the protective layer 110 may be controlled to be 2 mm or less. If there is no light collimating layer 130, it is necessary to control the protective layer 110 below 0.4 mm to clear the fingerprint image. Therefore, providing the light collimating layer 130 enables the thickness of the protective layer 110 to have a larger selection range.
  • the optical collimating layer 130 includes a louver film layer 131 and a louver film layer 132.
  • the vertical arrangement ie, their light-transmissive slits extend in two mutually perpendicular axial directions), so that the light emitted by the planar backlight 140 can be converted into parallel light or near-parallel light after passing through the light collimating layer 130.
  • Near-parallel light refers to light with a maximum angular difference of less than 10 degrees), enabling the optical fingerprint sensor module to acquire a clear fingerprint image.
  • the light collimating layer 130 includes two louver film layers whose two transparent slits are perpendicular to each other, the collimating effect of the light collimating layer 130 is good, and the optical collimating layer 130 has a simple structure and low cost.
  • a second embodiment of the present invention provides another optical fingerprint sensor module. Please refer to FIG. 5.
  • the optical fingerprint sensor module includes an optical fingerprint sensor 210 and a planar backlight 230.
  • the planar backlight 230 is located below the optical fingerprint sensor 210.
  • the optical fingerprint sensor module further includes a light collimating layer 220 disposed between the optical fingerprint sensor 210 and the planar backlight 230.
  • the optical fingerprint sensor 210 has a transparent substrate 211 and a device layer 212. Moreover, the optical fingerprint sensor 210 has one and only one transparent substrate, that is, the transparent substrate 211.
  • the light transmissive substrate 211 has a first surface (not labeled, which is the upper surface in FIG. 5) that is directly used for finger fingerprint contact.
  • the light transmissive substrate has a second surface (not labeled, the lower surface in FIG. 5) covered by the device layer 212.
  • the thickness of the transparent substrate 211 may be 0.4 cm or less, the transparent substrate 211 is too thin, and the mechanical strength is poor, and the reliability of the optical fingerprint sensor 210 cannot be ensured.
  • the transparent substrate 211 is too thick, and the thickness of the entire optical fingerprint sensor module is increased to cause various adverse effects.
  • the device layer 212 is directly located on the lower surface of the transparent substrate 211.
  • the device layer 212 has a pixel region.
  • the pixel area has a plurality of pixels.
  • Each of the pixels has a light transmissive area and a non-transparent area.
  • the non-light transmitting region has a photosensitive member (not shown). The light transmissive region enables light to pass through the pixel region of device layer 212.
  • the first surface of the transparent substrate 211 has a filter layer 213.
  • the filter layer 213 may be an interference reflective layer of a multilayer film structure.
  • the filter layer 213 is for filtering ambient light or changing the appearance color of the protective layer 210.
  • at least one of the first surface and the second surface of the light transmissive substrate may have a filter layer.
  • the filter layer may include at least one of an interference reflective layer and a light absorbing layer.
  • the interference reflection layer can increase the difference of the reflected light between the finger and the fingerless, thereby increasing the image contrast and reducing the interference of the ambient light on the fingerprint image, so as to reduce the influence of the ambient light on the fingerprint imaging.
  • the planar backlight 230 includes a point light source (not shown) and a light guide plate (not shown).
  • the point light source may be an LED light.
  • the planar backlight may also be an autonomously illuminated planar light source structure (area array structure), such as an organic light emitting diode surface light source or an electroluminescent surface light source.
  • the point source may also be other suitable sources of light, such as fluorescent lamps.
  • the light collimating layer 220 includes two layers of louver films stacked from bottom to top.
  • the layers are a louver film layer 221 and a louver film layer 222, respectively.
  • the louver film layer 221 and the louver film layer 222 each include a plurality of light-transmissive slits arranged in parallel and a plurality of light-shielding frame strips, and the light-transmitting slits are located between adjacent light-shielding frame strips.
  • 6 is a partial enlarged view of the louver film layer 221 of FIG. 5, and FIG. 6 shows the light-transmitting slit 2211 and the light-shielding frame strip 2212 of the louver film layer 221.
  • the light transmissive slits 2211 are located between adjacent light shielding frame strips 2212.
  • the length of the light transmissive slit extends along the first axial direction. From bottom to top, in the louver film layer of the even layer, the length of the light transmissive slit extends in the second axial direction. And, the first axial direction is perpendicular to the second axial direction.
  • the louver film layer 221 is an odd-numbered louver film layer
  • the louver film layer 222 is an even-numbered louver film layer.
  • the length of the light-transmitting slit 2211 extends in the first axial direction
  • the length of the light-transmitting slit of the louver film layer 222 extends in the second axial direction.
  • the above structure is another point of view: in the two louver film layers adjacent in the vertical direction, the light-transmissive slits of the two louver film layers are perpendicular to each other in the same horizontal plane.
  • first axial direction and the second axial direction may be other angles, that is, not perpendicular to each other.
  • the cross section of the light transmissive slit 2211 is a parallelogram, and the angle of the four corners of the parallelogram ranges from 45 degrees to 135 degrees.
  • the angle a of one of the bottom angles of the parallelogram is such that the angle a ranges from 45 degrees to 135 degrees. At this time, sufficient parallel rays or near parallel rays are ensured to pass through the transparent slit 2211. .
  • the ratio of the height k2 of the cross-section of the quadrilateral to the average width m2 is 10 or more, thereby ensuring that the light collimating layer 220 achieves effective light collimation.
  • a specific light a black one-way arrow represents light
  • other rays cannot pass through the louver. Window film layer 221.
  • n2 is set to be less than or equal to one half of the length of one side of the pixel, thereby ensuring each place.
  • the pixels receive uniform light (i.e., ensure uniformity of light passing through the light collimating layer 220).
  • the upper surface of the louver film layer 221 includes a protective film 2214, and the lower surface of the louver film layer 221 includes a protective film 2213.
  • the protective film 2213 and the protective film 2214 can function to protect the light-transmitting slit 2211 and the light-shielding frame strip 2212.
  • only one of the upper surface and the lower surface of the louver film layer may have a protective film.
  • the light-transmitting slit 2211 is air, vacuum or a light-transmitting medium.
  • the light-transmitting slit 2211 is a vacuum or a light-transmitting medium, the light is more transmitted.
  • the optical fingerprint sensor module can be formed to form a clearer fingerprint. image.
  • the optical collimating layer 220 includes two layers of louver film layers, which are disposed perpendicular to each other, thereby The emitted light is converted into parallel or near-parallel light to achieve a clear fingerprint image. Due to the addition of the light collimating layer 220, the outgoing light is changed from a large angular range to a small angular range, which reduces the signal crosstalk between different pixels in the optical fingerprint sensor and improves the sharpness of the fingerprint image. .
  • the light collimating layer 220 includes two louver film layers whose two transparent slits are perpendicular to each other, the collimating effect of the optical collimating layer 220 is good, and the optical collimating layer 220 has a simple structure and low cost.
  • the optical fingerprint sensor includes only one transparent substrate 211.
  • the light emitted by the planar backlight 230 only needs to pass through when passing through the optical fingerprint sensor 210.
  • the device layer 212 and a light transmissive substrate 211 therefore, the light passes through fewer substrates, helping to form a clear fingerprint image.
  • the optical fingerprint sensor 210 has a simple structure and a reduced thickness, which simplifies the structure of the optical fingerprint sensor module and reduces the cost.
  • the entire optical fingerprint sensor module can more accurately realize the identification of the fingerprint image, further improving The sharpness of the fingerprint image and further simplify the structure of the optical fingerprint sensor module, reducing the cost.
  • a third embodiment of the present invention provides another optical fingerprint sensor module. Please refer to FIG. 7.
  • the optical fingerprint sensor module includes an optical fingerprint sensor 310 and a planar backlight 330.
  • the planar backlight 330 is located below the optical fingerprint sensor 310.
  • the optical fingerprint sensor module further includes a light collimating layer 320 disposed between the optical fingerprint sensor 310 and the planar backlight 330.
  • the optical fingerprint sensor 310 has a transparent substrate 311 and a device layer 312.
  • the light transmissive substrate 311 has a first surface (not labeled, which is the upper surface in FIG. 7) that is directly used for finger fingerprint contact.
  • the light transmissive substrate has a second surface (not labeled, the lower surface in FIG. 7) covered by the device layer 312.
  • the optical fingerprint sensor 310 has one and only one transparent substrate, that is, the transparent substrate 311.
  • the device layer 312 is directly on the lower surface of the transparent substrate 311.
  • the device layer 312 has a pixel region.
  • the pixel area has a plurality of pixels.
  • Each of the pixels has a light transmissive area and a non-transparent area.
  • the non-light transmitting region has a photosensitive member (not shown). The light transmissive region enables light to pass through the pixel region of device layer 312.
  • the first surface of the transparent substrate 311 has a filter layer 313.
  • the filter layer 313 may be an interference reflective layer of a multilayer film structure.
  • the filter layer 313 is used to filter ambient light or change the appearance color of the protective layer 310.
  • at least one of the first surface and the second surface of the light transmissive substrate may have a filter layer.
  • the filter layer may include at least one of an interference reflective layer and a light absorbing layer.
  • the interference reflection layer can increase the difference of the reflected light between the finger and the fingerless, thereby increasing the image contrast and reducing the interference of the ambient light on the fingerprint image, so as to reduce the influence of the ambient light on the fingerprint imaging.
  • the planar backlight 330 includes a point light source (not shown) and a light guide plate (not shown).
  • the point light source may be an LED light.
  • the planar backlight may also be an autonomously illuminated planar light source structure (area array structure), such as an organic light emitting diode surface light source or an electroluminescent surface light source.
  • the point source may also be other suitable sources of light, such as fluorescent lamps.
  • the light collimating layer 320 includes a three-layer louver film layer stacked from bottom to top, which are a louver film layer 321, a louver film layer 322, and a louver film layer 323, respectively.
  • the louver film layer 321 , the louver film layer 322 and the louver film layer 323 each include a plurality of light-transmissive slits arranged in parallel and a plurality of light-shielding frame strips, and the light-transmissive slits are located between adjacent light-shielding frame strips.
  • FIG. 8 is a partial enlarged view of the louver film layer 321 of FIG. 7, and FIG. 8 shows the light-transmitting slit 3211 and the light-shielding frame strip 3212 of the louver film layer 321.
  • the light transmissive slits 3211 are located between adjacent light shielding frame strips 3212.
  • the length of the light transmissive slit extends along the first axial direction. From bottom to top, in the louver film layer of the even layer, the length of the light transmissive slit extends in the second axial direction. And, the first axial direction is perpendicular to the second axial direction.
  • the louver film layer 321 and the louver film layer 323 are odd-numbered louver film layers, and the louver film layer 322 is an even-numbered louver film layer.
  • the length of the transparent slit 3211 extends along the first axial direction
  • the length of the transparent slit of the louver film layer 322 extends along the second axial direction
  • the length of the transparent slit of the louver film layer 323 is also along the first axis.
  • the above structure is from another point of view: in the three-layer louver film layer adjacent in the vertical direction, the projections of the light-transmissive slits of the adjacent two louver film layers are perpendicular to each other in the same horizontal plane.
  • first axial direction and the second axial direction may be other angles, that is, not perpendicular to each other.
  • the cross section of the light-transmitting slit 3211 is an isosceles trapezoid, and the angle of the mid-bottom angle of the isosceles trapezoid ranges from 45 degrees to 90 degrees, including 45 degrees but not 90 degrees, because it is equal to 90 degrees.
  • the cross section becomes a rectangle as shown in the case of the first embodiment.
  • the base angle of the isosceles trapezoid is an angle b, and the angle b ranges from 45 degrees to 90 degrees.
  • sufficient parallel rays or near parallel rays are ensured to pass through the light transmission slits 3211.
  • the light emitted by the planar backlight 330 is propagated upward, such a lower bottom edge is larger than the cross section of the upper bottom edge to facilitate a better light collimation effect.
  • the ratio of the height k3 to the bottom width m3 (the long side of the upper and lower sides of the light-transmissive slit trapezoid is the bottom side, and the short side is the top side) is 10 Above, thereby ensuring that the light collimating layer 320 achieves effective light collimation.
  • a specific light a black one-way arrow represents light
  • other light rays cannot pass through the louver film layer 321.
  • n3 is set to be less than or equal to half of the length of one side of one of the pixels, thereby ensuring each place.
  • the pixels receive uniform light (ie, ensure uniformity of light passing through the light collimating layer 320).
  • the upper surface of the louver film layer 321 includes a protective film 3214, and the lower surface 2213 of the louver film layer 321 includes a protective film 3213.
  • the protective film 3213 and the protective film 3214 can function to protect the light-transmitting slit 3211 and the light-shielding frame strip 3212.
  • only one of the upper surface and the lower surface of the louver film layer may have a protective film.
  • the light-transmitting slit 3211 is air, vacuum or a light-transmitting medium.
  • the light-transmitting slit 3211 is a vacuum or a light-transmitting medium, the light is more transmitted.
  • the stray light emitted by the planar backlight 330 is adjusted to a light having a small angular range.
  • the optical fingerprint sensor module can be formed to form a clearer fingerprint. image.
  • the planar backlight 330 and the light between the fingerprint sensors 310 is a light collimating layer 320
  • the light collimating layer 320 includes three louver film layers, and the transparent slits of two adjacent louver film layers are arranged perpendicular to each other, thereby converting the emitted light into parallel light or Near parallel light to achieve a clear fingerprint image. Due to the addition of the light collimating layer 320, the outgoing light is changed from a large angular range to a small angular range, which reduces the signal crosstalk between different pixels in the optical fingerprint sensor and improves the sharpness of the fingerprint image. . Meanwhile, since the light collimating layer 320 includes three layers of louver film layers, the collimating effect of the light collimating layer 320 is better.
  • the optical fingerprint sensor includes only one transparent substrate 311.
  • the light emitted by the planar backlight 330 only needs to pass through the optical fingerprint sensor 310.
  • the optical fingerprint sensor 310 since the optical fingerprint sensor 310 has a simple structure and a reduced thickness, the structure of the optical fingerprint sensor module is simplified, and the cost is reduced.
  • the entire optical fingerprint sensor module can more accurately realize the identification of the fingerprint image, thereby further improving.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种光学指纹传感器模组,包括:光学指纹传感器(210),所述光学指纹传感器(210)具有器件层(212),所述器件层(212)具有像素区;所述像素区具有多个像素;面状背光源(230);光准直层(220),位于所述光学指纹传感器(210)和所述面状背光源(230)之间;所述光准直层(220)包括从下到上层叠的n层百叶窗膜层(221、222),每层所述百叶窗膜层(221、222)包括平行排布的多条透光狭缝(2211)和多条遮光框条(2212),所述透光狭缝(2211)位于相邻所述遮光框条(2212)之间;位于奇数层的所述百叶窗膜层(221)中,所述透光狭缝(2211)的长度沿第一轴向延伸;位于偶数层的所述百叶窗膜层(222)中,所述透光狭缝(2211)的长度沿第二轴向延伸;所述第一轴向与所述第二轴向垂直。所述光学指纹传感器模组结构优化,性能提高。

Description

光学指纹传感器模组
本申请要求于2016年07月12日提交中国专利局、申请号为201610545523.3、发明名称为“光学指纹传感器模组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光学指纹识别领域,尤其涉及一种光学指纹传感器模组。
背景技术
指纹成像识别技术,是通过光学指纹传感器采集到人体的指纹图像,然后与系统里的已有指纹成像信息进行比对,来判断正确与否,进而实现身份识别的技术。由于其使用的方便性,以及人体指纹的唯一性,指纹成像识别技术已经大量应用于各个领域。比如公安局和海关等安检领域、楼宇的门禁系统、以及个人电脑和手机等消费品领域等等。指纹成像识别技术的实现方式有光学成像、电容成像、超声成像等多种技术。相对来说,光学指纹成像识别技术成像效果相对较好,设备成本相对较低。
更多有关光学指纹传感器的内容可参考公开号为CN204759454U的中国实用新型专利。
现有光学指纹传感器模组的结构有待改进,性能有待提高。
发明内容
本发明解决的问题是提供一种光学指纹传感器模组,以优化光学指纹传感器模组的结构,提高光学指纹传感器模组的性能。
为解决上述问题,本发明提供一种光学指纹传感器模组,包括:光学指纹传感器,所述光学指纹传感器具有器件层,所述器件层具有 像素区;所述像素区具有多个像素;面状背光源;光准直层,位于所述光学指纹传感器和所述面状背光源之间;所述光准直层包括从下到上层叠的n层百叶窗膜层,n为2以上的整数;每层所述百叶窗膜层包括平行排布的多条透光狭缝和多条遮光框条,所述透光狭缝位于相邻所述遮光框条之间。
可选的,位于奇数层的所述百叶窗膜层中,所述透光狭缝的长度沿第一轴向延伸;位于偶数层的所述百叶窗膜层中,所述透光狭缝的长度沿第二轴向延伸;所述第一轴向与所述第二轴向垂直。
可选的,所述透光狭缝的横截面为平行四边形,所述平行四边形中四个角的角度范围为45度~135度。
可选的,所述透光狭缝的横截面中,高度与平均宽度的比值在10以上;一个所述透光狭缝和一个所述遮光框条的宽度之和小于或等于一个所述像素一条边长的一半。
可选的,所述透光狭缝的横截面为等腰梯形,所述等腰梯形中底角的角度范围为45度~90度;所述透光狭缝的横截面中,高度与底边宽度的比值在10以上;一个所述透光狭缝和一个所述遮光框条的宽度之和小于或等于一个所述像素一条边长的一半。
可选的,所述百叶窗膜层的上表面和下表面的至少其中一个表面还包括保护膜。
可选的,所述透光狭缝内为空气、真空或者透光介质。
可选的,所述模组还包括保护层,所述保护层为单层结构或者多层结构。
可选的,所述保护层的上表面和下表面的至少其中一个表面具有滤光层。
可选的,所述光学指纹传感器包括一个透光基板;所述透光基板具有直接用于手指指纹接触的第一表面;所述透光基板具有被器件层 覆盖的第二表面。
可选的,所述第一表面具有滤光层。
与现有技术相比,本发明的技术方案具有以下优点:
本发明的技术方案所提供的光学指纹传感器模组中,在所述光学指纹传感器和所述面状背光源之间设置光准直层,光准直层具有百叶窗膜层。当斜光照射进入两层以上相互垂直的百叶窗膜层时,只允许角度较为垂直向上的光线透过,从而使光准直层能够实现光准直的效果。使大量光线都以较小的角度范围到达手指指纹表面,并且相应的角度范围与手指指纹表面之间的夹角均接近于直角,从而既减小因入射角范围较大而导致不同角度的反射光的互相干扰,又保证反射光线照射到离其反射点较近的像素,从而提高光学指纹传感器模组所形成的指纹图像的清晰度和准确度。
进一步,光学指纹传感器仅包括一个透光基板,此时,面状背光源发出的光线在穿过光学指纹传感器时,只需要穿过器件层和一个透光基板,因此,光线经过的基板较少,有助于形成清晰的指纹图像。同时,由于光学指纹传感器结构简单,厚度减小,简化了光学指纹传感器模组的结构,降低了成本。此外,面状背光源发出的光线经过器件层和透光基板后,到达透光基板第一表面的光线增加,整个光学指纹传感器模组能够更加准确实现指纹图像的识别,进一步提高了指纹图像的清晰度,并进一步简化光学指纹传感器模组的结构,降低了成本。
附图说明
图1是本发明第一实施例所提供的光学指纹传感器模组剖面示意图;
图2是图1中其中一层百叶窗膜层的俯视示意图;
图3是图2中百叶窗膜层的剖面示意图;
图4是图3中百叶窗膜层的部分(局部)放大示意图;
图5是本发明第二实施例所提供的光学指纹传感器模组剖面示意图;
图6是图5中其中一层百叶窗膜层的部分放大示意图;
图7是本发明第三实施例所提供的光学指纹传感器模组剖面示意图;
图8是图7中其中一层百叶窗膜层的部分放大示意图。
具体实施方式
现有一种光学指纹传感器模组中,很少采用光准直层对光学指纹传感器模组的光线进行调整,即使部分采用光准直层的光学指纹传感器模组,其光准直效果也并不理想。
为此,本发明提供一种新的光学指纹传感器模组,所述光学指纹传感器模组采用一种具有多层百叶窗膜层的光准直层,从而实现对光线的有效调整,使光学指纹传感器模组获得的指纹图像质量提高。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
本发明第一实施例提供一种光学指纹传感器模组,请参考图1。所述光学指纹传感器模组包括光学指纹传感器120和面状背光源140。面状背光源140位于光学指纹传感器120下方。
请参考图1,所述光学指纹传感器模组还包括保护层110。保护层110位于光学指纹传感器120上方。
请参考图1,所述光学指纹传感器模组还包光准直层130,光准直层130位于光学指纹传感器120和面状背光源140之间。
本实施例中,光学指纹传感器120具有透光基板121和器件层122。透光基板121的厚度可以在0.4cm以下,透光基板121太薄了机械强度差,无法保证光学指纹传感器120的可靠性。透光基板121 太厚了,整个光学指纹传感器模组厚度增大,产生各种不利影响。器件层122位于透光基板121和保护层110之间。图中虽未显示,但器件层122具有像素区。所述像素区具有多个像素。每个所述像素具有透光区域和非透光区域。所述非透光区域具有感光元件。所述透光区域使光线能够透过器件层122的所述像素区。
本实施例中,面状背光源140包括点状光源(未示出)和导光板(未示出)。所述点状光源可以是LED灯。在其他实施例中,面状背光源也可以直接是自主发光的面状光源结构(面阵结构),比如是有机发光二极管面光源或者电致发光面光源等。其它实施例中,点状光源也可以是其它合适的灯源,例如为荧光灯。
本实施例中,保护层110为单层结构,保护层110的下表面具有滤光层111。滤光层111可以是油墨等光吸收层,也可以是多层薄膜结构的干涉反射层。滤光层111用于过滤环境光或改变保护层110的外观颜色。需要说明的是,其它实施例中,保护层也可以为多层结构,并且保护层的上表面和下表面的至少其中之一具有滤光层。
本实施例中,光准直层130包括从下到上层叠的两层百叶窗膜层,分别为百叶窗膜层131和百叶窗膜层132。其它实施例中,光准直层可以包括n层的百叶窗膜层,n为2以上的整数。
请参考图2和图3,图2示出了百叶窗膜层131的俯视结构,图3示出了图2所示百叶窗膜层131沿A-A’点划线剖切得到的横截面结构。从图2和图3看到,百叶窗膜层131包括平行排布的多条透光狭缝1311和多条遮光框条1312(图2和图3未标注,请参考图4中的放大示意图)。透光狭缝1311位于相邻遮光框条1312之间。虽然百叶窗膜层132的俯视结构和剖面结构未示出,但其与图2和图3中所示结构相同,即本实施例中,每层百叶窗膜层包括平行排布的多条透光狭缝和多条遮光框条,透光狭缝位于相邻遮光框条之间。
本实施例中,从下到上,位于奇数层的百叶窗膜层中,透光狭缝的长度沿第一轴向延伸。从下到上,位于偶数层的百叶窗膜层中,透 光狭缝的长度沿第二轴向延伸。并且,所述第一轴向与所述第二轴向垂直。具体的,本实施例中,百叶窗膜层131为第一层,即为奇数层的百叶窗膜层。百叶窗膜层132为第二层,即为偶数层的百叶窗膜层。此时,透光狭缝1311的长度沿第一轴向延伸,而百叶窗膜层132的透光狭缝长度沿第二轴向延伸。也就是说,在俯视方向上,当将图2所示结构旋转90度之后,再重叠到原来未旋转前的结构上,即得到本实施例光准直层130的俯视结构。
上述结构从另一个角度上说,就是:在竖直方向上相邻的两层百叶窗膜层中,两层百叶窗膜层的透光狭缝在同一水平面的投影相互垂直。
在其他实施例中,所述第一轴向与所述第二轴向可以是其他角度,即不是相互垂直关系,而只要相互交叉,甚至所述第一轴向与所述第二轴向可以为同一轴向。
由于光准直层130的加入,能够使得面状背光源140的出射光由一个很大的角度范围,变为一个很小的角度范围,降低了光学指纹传感器中不同所述像素间的信号串扰,提高指纹图像的清晰度。
请参考图4,图4为图3所示横截面结构的部分放大图,具体为图3中虚线框O所包围部分的放大图。从图4看到,本实施例中,透光狭缝1311的横截面中,透光狭缝1311具有高度k1和平均宽度m1。
本实施例中,高度k1与平均宽度m1的比值在10以上,从而保证光准直层130实现有效的光准直性。此时,如图4中所示,只有特定光线(黑色单向箭头代表光线)能够穿过百叶窗膜层131,而其它光线,则无法穿过百叶窗膜层131。
图4中还进一步看到,一个透光狭缝1311和一个遮光框条1312的宽度之和为宽度n1。本实施例设置n1小于或等于一个所述像素一条边长的一半,从而保证各个所述像素接收到均匀的光线(即保证穿 过光准直层130的光的均匀性)。
图4中还进一步看到,百叶窗膜层131的上表面包括保护膜1314,百叶窗膜层131的下表面包括保护膜1313。保护膜1313和保护膜1314能够起到保护透光狭缝1311和遮光框条1312的作用。其它实施例中,百叶窗膜层的上表面和下表面中,也可以仅有一个表面具有保护膜。
本实施例中,透光狭缝1311内为空气、真空或者透光介质。当透光狭缝1311内为真空或者透光介质时,更加有利于光线的透过。
本实施例中,由于具有光准直层130,面状背光源140发出的杂散光线会被调整成角度范围较小的光线。角度范围较小的光线有利于光学指纹传感器模组形成更加清晰的指纹图像。而反来,在指纹图像清晰度能够达到所需要求的情况下,本实施例能够采用厚度更大的保护层110,从而增加保护层110的机械强度。当所述像素的边长尺寸小于100μm左右时(例如为50μm),保护层110的厚度可以控制在2mm以下即可。而如果没有光准直层130的时候,需要将保护层110控制在0.4mm以下才能清晰指纹图像。因此,设置光准直层130能够使保护层110的厚度有更大的选择范围。
本实施例所提供的光学指纹传感器模组中,面状背光源140和光学指纹传感器120之间是光准直层130,光准直层130包括百叶窗膜层131和百叶窗膜层132,它们相互垂直设置(即它们的透光狭缝沿两个相互垂直的轴向延伸),从而使面状背光源140发出的光线在经过光准直层130后,能够被转化为平行光或近平行光(近平行光指最大角度差在10度以内的光线),从而使光学指纹传感器模组能够获取清晰的指纹图像。同时,由于光准直层130包括两层透光狭缝相互垂直的百叶窗膜层,因此,光准直层130的准直效果好,且光准直层130结构简单,成本低。
本发明第二实施例提供另一种光学指纹传感器模组,请参考图5。所述光学指纹传感器模组包括光学指纹传感器210和面状背光源 230。面状背光源230位于光学指纹传感器210下方。所述光学指纹传感器模组还包光准直层220,光准直层220位于光学指纹传感器210和面状背光源230之间。
本实施例中,光学指纹传感器210具有透光基板211和器件层212。并且,光学指纹传感器210有且仅有一个透光基板,即透光基板211。透光基板211具有直接用于手指指纹接触的第一表面(未标注,为图5中的上表面)。透光基板具有被器件层212覆盖的第二表面(未标注,为图5中的下表面)。透光基板211的厚度可以在0.4cm以下,透光基板211太薄了机械强度差,无法保证光学指纹传感器210的可靠性。透光基板211太厚了,整个光学指纹传感器模组厚度增大,产生各种不利影响。
本实施例中,器件层212直接位于透光基板211下表面。图中虽未显示,但器件层212具有像素区。所述像素区具有多个像素。每个所述像素具有透光区域和非透光区域。所述非透光区域具有感光元件(未示出)。所述透光区域使光线能够透过器件层212的所述像素区。
本实施例中,透光基板211的所述第一表面具有滤光层213。滤光层213可以是多层薄膜结构的干涉反射层。滤光层213用于过滤环境光或改变保护层210的外观颜色。其它实施例中,透光基板的所述第一表面和所述第二表面的至少其中一个表面可以具有滤光层。所述滤光层可以包括干涉反射层和光吸收层的至少其中之一。其中,干涉反射层可以增加有手指与无手指处的反射光差异,从而增加图像对比度,减小环境光对指纹图像的干扰,以减小环境光对指纹成像的影响。
本实施例中,面状背光源230包括点状光源(未示出)和导光板(未示出)。所述点状光源可以是LED灯。在其他实施例中,面状背光源也可以直接是自主发光的面状光源结构(面阵结构),比如是有机发光二极管面光源或者电致发光面光源等。其它实施例中,点状光源也可以是其它合适的灯源,例如为荧光灯。
本实施例中,光准直层220包括从下到上层叠的两层百叶窗膜 层,分别为百叶窗膜层221和百叶窗膜层222。
百叶窗膜层221和百叶窗膜层222均包括平行排布的多条透光狭缝和多条遮光框条,透光狭缝位于相邻遮光框条之间。图6为图5所示百叶窗膜层221的部分结构放大图,图6显示了百叶窗膜层221的透光狭缝2211和遮光框条2212。透光狭缝2211位于相邻遮光框条2212之间。虽然百叶窗膜层222的部分结构放大图未示出,但其与图6中所示结构相同。
本实施例中,从下到上,位于奇数层的百叶窗膜层中,透光狭缝的长度沿第一轴向延伸。从下到上,位于偶数层的百叶窗膜层中,透光狭缝的长度沿第二轴向延伸。并且,所述第一轴向与所述第二轴向垂直。具体的,本实施例中,百叶窗膜层221即为奇数层的百叶窗膜层,百叶窗膜层222即为偶数层的百叶窗膜层。此时,透光狭缝2211的长度沿第一轴向延伸,而百叶窗膜层222的透光狭缝长度沿第二轴向延伸。
上述结构从另一个角度上说,就是:在竖直方向上相邻的两层百叶窗膜层中,两层百叶窗膜层的透光狭缝在同一水平面的投影相互垂直。
在其他实施例中,所述第一轴向与所述第二轴向可以是其他角度,即不是相互垂直关系。
请参考图6,透光狭缝2211的横截面为平行四边形,平行四边形中四个角的角度范围为45度~135度。具体的,图6中,平行四边形其中一个底角的角度a,令角度a的范围为45度~135度,此时,保证相应有的足够的平行光线或者近平行光线通过透光狭缝2211。
请参考图6,透光狭缝2211的横截面中,横截面的四边形的高度k2与平均宽度m2的比值在10以上,从而保证光准直层220实现有效的光准直性。此时如图6中所示,只有特定光线(黑色单向箭头代表光线)能够穿过百叶窗膜层221,而其它光线,则无法穿过百叶 窗膜层221。
图6中还进一步看到,一个透光狭缝2211和一个遮光框条2212的宽度之和为宽度n2,本实施例设置n2小于或等于一个所述像素一条边长的一半,从而保证各个所述像素接收到均匀的光线(即保证穿过光准直层220的光的均匀性)。
图6中还进一步看到,百叶窗膜层221的上表面包括保护膜2214,百叶窗膜层221的下表面包括保护膜2213。保护膜2213和保护膜2214能够起到保护透光狭缝2211和遮光框条2212的作用。
其它实施例中,百叶窗膜层的上表面和下表面中,也可以仅有一个表面具有保护膜。
本实施例中,透光狭缝2211内为空气、真空或者透光介质。当透光狭缝2211内为真空或者透光介质时,更加有利于光线的透过。
本实施例中,由于具有光准直层220,面状背光源230发出的杂散光线会被调整成角度范围较小的光线,此时,能够有利于光学指纹传感器模组形成更加清晰的指纹图像。
本实施例所提供的光学指纹传感器模组中,面状背光源230和光学指纹传感器210之间是光准直层220,光准直层220包括两层百叶窗膜层,它们相互垂直设置,从而使出射光线转化为平行光或近平行光,从而实现清晰的指纹图像。由于光准直层220的加入,使得出射光由一个很大的角度范围,变为一个很小的角度范围,减低了光学指纹传感器中不同所述像素间的信号串扰,提高指纹图像的清晰度。同时,由于光准直层220包括两层透光狭缝相互垂直的百叶窗膜层,因此,光准直层220的准直效果好,且光准直层220结构简单,成本低。
此外,本实施例所提供的光学指纹传感器模组中,光学指纹传感器仅包括一个透光基板211,此时,面状背光源230发出的光线在穿过光学指纹传感器210时,只需要穿过器件层212和一个透光基板211,因此,光线经过的基板较少,有助于形成清晰的指纹图像。同 时,由于光学指纹传感器210结构简单,厚度减小,简化了光学指纹传感器模组的结构,降低了成本。此外,面状背光源230发出的光线经过器件层212和透光基板211后,到达透光基板211第一表面的光线增加,整个光学指纹传感器模组能够更加准确实现指纹图像的识别,进一步提高了指纹图像的清晰度,并进一步简化光学指纹传感器模组的结构,降低了成本。
本发明第三实施例提供另一种光学指纹传感器模组,请参考图7。所述光学指纹传感器模组包括光学指纹传感器310和面状背光源330。面状背光源330位于光学指纹传感器310下方。所述光学指纹传感器模组还包光准直层320,光准直层320位于光学指纹传感器310和面状背光源330之间。
本实施例中,光学指纹传感器310具有透光基板311和器件层312。透光基板311具有直接用于手指指纹接触的第一表面(未标注,为图7中的上表面)。透光基板具有被器件层312覆盖的第二表面(未标注,为图7中的下表面)。并且,光学指纹传感器310有且仅有一个透光基板,即透光基板311。器件层312直接位于透光基板311下表面。
图中虽未显示,但器件层312具有像素区。所述像素区具有多个像素。每个所述像素具有透光区域和非透光区域。所述非透光区域具有感光元件(未示出)。所述透光区域使光线能够透过器件层312的所述像素区。
本实施例中,透光基板311的所述第一表面具有滤光层313。滤光层313可以是多层薄膜结构的干涉反射层。滤光层313用于过滤环境光或改变保护层310的外观颜色。其它实施例中,透光基板的所述第一表面和所述第二表面的至少其中一个表面可以具有滤光层。所述滤光层可以包括干涉反射层和光吸收层的至少其中之一。其中,干涉反射层可以增加有手指与无手指处的反射光差异,从而增加图像对比度,减小环境光对指纹图像的干扰,以减小环境光对指纹成像的影响。
本实施例中,面状背光源330包括点状光源(未示出)和导光板(未示出)。所述点状光源可以是LED灯。在其他实施例中,面状背光源也可以直接是自主发光的面状光源结构(面阵结构),比如是有机发光二极管面光源或者电致发光面光源等。其它实施例中,点状光源也可以是其它合适的灯源,例如为荧光灯。
本实施例中,光准直层320包括从下到上层叠的三层百叶窗膜层,分别为百叶窗膜层321、百叶窗膜层322和百叶窗膜层323。
百叶窗膜层321、百叶窗膜层322和百叶窗膜层323均包括平行排布的多条透光狭缝和多条遮光框条,透光狭缝位于相邻遮光框条之间。
图8为图7所示百叶窗膜层321的部分结构放大图,图8显示了百叶窗膜层321的透光狭缝3211和遮光框条3212。透光狭缝3211位于相邻遮光框条3212之间。虽然百叶窗膜层322和百叶窗膜层323的部分结构放大图未示出,但其与图8中所示结构相同。
本实施例中,从下到上,位于奇数层的百叶窗膜层中,透光狭缝的长度沿第一轴向延伸。从下到上,位于偶数层的百叶窗膜层中,透光狭缝的长度沿第二轴向延伸。并且,所述第一轴向与所述第二轴向垂直。具体的,本实施例中,百叶窗膜层321和百叶窗膜层323即为奇数层的百叶窗膜层,百叶窗膜层322即为偶数层的百叶窗膜层。此时,透光狭缝3211的长度沿第一轴向延伸,而百叶窗膜层322的透光狭缝长度沿第二轴向延伸,百叶窗膜层323的透光狭缝长度也沿第一轴向延伸。
上述结构从另一个角度上说,就是:在竖直方向上相邻的三层百叶窗膜层中,相邻两层百叶窗膜层的透光狭缝在同一水平面的投影相互垂直。
在其他实施例中,所述第一轴向与所述第二轴向可以是其他角度,即不是相互垂直关系。
请参考图8,透光狭缝3211的横截面为等腰梯形,等腰梯形中底角的角度范围为45度~90度,其中包括45度但不包括90度,因为等于90度时,横截面变为矩形,此时如第一实施例的情况所示。具体的,图8中,等腰梯形的底角为角度b,令角度b范围为45度~90,此时,保证相应有的足够的平行光线或者近平行光线通过透光狭缝3211。并且,由于面状背光源330发出的光线是向上传播的,这种下底边大于上底边的横截面有利于实现更好的光准直效果。
请参考图8,透光狭缝3211的横截面中,高度k3与底边宽度m3(透光狭缝梯形中的上下边中的长边为底边,短边为顶边)的比值在10以上,从而保证光准直层320实现有效的光准直性。此时如图8中所示,只有特定光线(黑色单向箭头代表光线)能够穿过百叶窗膜层321,而其它光线,则无法穿过百叶窗膜层321。
图8中还进一步看到,一个透光狭缝3211和一个遮光框条3212的宽度之和为宽度n3,本实施例设置n3小于或等于一个所述像素一条边长的一半,从而保证各个所述像素接收到均匀的光线(即保证穿过光准直层320的光的均匀性)。
图8中还进一步看到,百叶窗膜层321的上表面包括保护膜3214,百叶窗膜层321的下表面2213包括保护膜3213。保护膜3213和保护膜3214能够起到保护透光狭缝3211和遮光框条3212的作用。
其它实施例中,百叶窗膜层的上表面和下表面中,也可以仅有一个表面具有保护膜。
本实施例中,透光狭缝3211内为空气、真空或者透光介质。当透光狭缝3211内为真空或者透光介质时,更加有利于光线的透过。
本实施例中,由于具有光准直层320,面状背光源330发出的杂散光线会被调整成角度范围较小的光线,此时,能够有利于光学指纹传感器模组形成更加清晰的指纹图像。
本实施例所提供的光学指纹传感器模组中,面状背光源330和光 学指纹传感器310之间是光准直层320,光准直层320包括三层百叶窗膜层,相邻两层百叶窗膜层的透光狭缝相互垂直设置,从而使出射光线转化为平行光或近平行光,从而实现清晰的指纹图像。由于光准直层320的加入,使得出射光由一个很大的角度范围,变为一个很小的角度范围,减低了光学指纹传感器中不同所述像素间的信号串扰,提高指纹图像的清晰度。同时,由于光准直层320包括三层百叶窗膜层,因此,光准直层320的准直效果更好。
此外,本实施例所提供的光学指纹传感器模组中,光学指纹传感器仅包括一个透光基板311,此时,面状背光源330发出的光线在穿过光学指纹传感器310时,只需要穿过器件层312和一个透光基板311,因此,光线经过的基板较少,有助于形成清晰的指纹图像。同时,由于光学指纹传感器310结构简单,厚度减小,简化了光学指纹传感器模组的结构,降低了成本。此外,面状背光源330发出的光线经过器件层312和透光基板311后,到达透光基板311第一表面的光线增加,整个光学指纹传感器模组能够更加准确实现指纹图像的识别,进一步提高了指纹图像的清晰度,并进一步简化光学指纹传感器模组的结构,降低了成本。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (11)

  1. 一种光学指纹传感器模组,包括:
    光学指纹传感器,所述光学指纹传感器具有器件层,所述器件层具有像素区;所述像素区具有多个像素;
    面状背光源;
    光准直层,位于所述光学指纹传感器和所述面状背光源之间;
    其特征在于,
    所述光准直层包括从下到上层叠的n层百叶窗膜层,n为2以上的整数;每层所述百叶窗膜层包括平行排布的多条透光狭缝和多条遮光框条,所述透光狭缝位于相邻所述遮光框条之间。
  2. 如权利要求1所述的光学指纹传感器模组,其特征在于,位于奇数层的所述百叶窗膜层中,所述透光狭缝的长度沿第一轴向延伸;位于偶数层的所述百叶窗膜层中,所述透光狭缝的长度沿第二轴向延伸;所述第一轴向与所述第二轴向垂直。
  3. 如权利要求1所述的光学指纹传感器模组,其特征在于,所述透光狭缝的横截面为平行四边形,所述平行四边形中四个角的角度范围为45度-135度。
  4. 如权利要求3所述的光学指纹传感器模组,其特征在于,所述透光狭缝的横截面中,高度与平均宽度的比值在10以上; 一个所述透光狭缝和一个所述遮光框条的宽度之和小于或等于一个所述像素一条边长的一半。
  5. 如权利要求1所述的光学指纹传感器模组,其特征在于,所述透光狭缝的横截面为等腰梯形,所述等腰梯形中底角的角度范围为45度-90度;所述透光狭缝的横截面中,高度与底边宽度的比值在10以上;一个所述透光狭缝和一个所述遮光框条的宽度之和小于或等于一个所述像素一条边长的一半。
  6. 如权利要求1所述的光学指纹传感器模组,其特征在于,所述百叶窗膜层的上表面和下表面的至少其中一个表面还包括保护膜。
  7. 如权利要求1所述的光学指纹传感器模组,其特征在于,所述透光狭缝内为空气、真空或者透光介质。
  8. 如权利要求1至7任意一项所述的光学指纹传感器模组,其特征在于,还包括保护层,所述保护层为单层结构或者多层结构。
  9. 如权利要求8所述的光学指纹传感器模组,其特征在于,所述保护层的上表面和下表面的至少其中一个表面具有滤光层。
  10. 如权利要求1至7任意一项所述的光学指纹传感器模组,其特征在于,所述光学指纹传感器包括一个透光基板;所述透光基板具有直接用于手指指纹接触的第一表面;所述透光基板具有 被器件层覆盖的第二表面。
  11. 如权利要求10所述的光学指纹传感器模组,其特征在于,所述第一表面具有滤光层。
PCT/CN2016/095828 2016-07-12 2016-08-18 光学指纹传感器模组 WO2018010250A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610545523.3 2016-07-12
CN201610545523.3A CN107609456A (zh) 2016-07-12 2016-07-12 光学指纹传感器模组

Publications (1)

Publication Number Publication Date
WO2018010250A1 true WO2018010250A1 (zh) 2018-01-18

Family

ID=60951648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095828 WO2018010250A1 (zh) 2016-07-12 2016-08-18 光学指纹传感器模组

Country Status (2)

Country Link
CN (1) CN107609456A (zh)
WO (1) WO2018010250A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368612A (zh) * 2018-07-03 2021-02-12 株式会社Lms 指纹识别传感器用光学基板以及包括其的光学滤波器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110096928B (zh) * 2018-01-30 2021-08-06 京东方科技集团股份有限公司 指纹识别装置及显示装置
CN109239938A (zh) 2018-10-11 2019-01-18 京东方科技集团股份有限公司 光学准直结构及其制作方法、指纹识别装置
CN111274844B (zh) * 2018-12-04 2023-04-07 世界先进积体电路股份有限公司 半导体装置及其形成方法
EP4027190A4 (en) 2019-09-04 2022-08-10 BOE Technology Group Co., Ltd. LINE RECOGNITION DEVICE AND DISPLAY DEVICE
CN113625289B (zh) * 2020-05-06 2024-08-30 圣邦微电子(北京)股份有限公司 基于结构光的深度测量装置、测量方法及拍摄设备
CN112817074A (zh) * 2021-01-12 2021-05-18 苏州群烨新材料科技有限公司 光学准直器、其制备方法及具有其的成像设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091708A1 (ja) * 2006-02-10 2007-08-16 Miraial Co., Ltd. 光学シート、画像表示装置及び画像投射装置用スクリーン
CN101169491A (zh) * 2006-10-23 2008-04-30 Nec液晶技术株式会社 光学元件
CN103969720A (zh) * 2014-05-27 2014-08-06 厦门天马微电子有限公司 增亮膜及其制作方法、包括该增亮膜的显示装置
CN105512645A (zh) * 2016-01-19 2016-04-20 上海箩箕技术有限公司 光学指纹传感器模组
CN105550664A (zh) * 2016-01-08 2016-05-04 上海箩箕技术有限公司 光学指纹传感器模组
CN105678255A (zh) * 2016-01-04 2016-06-15 京东方科技集团股份有限公司 一种光学式指纹识别显示屏及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5896999B2 (ja) * 2010-06-28 2016-03-30 パウル・シェラー・インスティトゥート X線装置
CN103226261A (zh) * 2013-03-26 2013-07-31 苏州晶智科技有限公司 一种用于液晶显示器的二维准直背光模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007091708A1 (ja) * 2006-02-10 2007-08-16 Miraial Co., Ltd. 光学シート、画像表示装置及び画像投射装置用スクリーン
CN101169491A (zh) * 2006-10-23 2008-04-30 Nec液晶技术株式会社 光学元件
CN103969720A (zh) * 2014-05-27 2014-08-06 厦门天马微电子有限公司 增亮膜及其制作方法、包括该增亮膜的显示装置
CN105678255A (zh) * 2016-01-04 2016-06-15 京东方科技集团股份有限公司 一种光学式指纹识别显示屏及显示装置
CN105550664A (zh) * 2016-01-08 2016-05-04 上海箩箕技术有限公司 光学指纹传感器模组
CN105512645A (zh) * 2016-01-19 2016-04-20 上海箩箕技术有限公司 光学指纹传感器模组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368612A (zh) * 2018-07-03 2021-02-12 株式会社Lms 指纹识别传感器用光学基板以及包括其的光学滤波器

Also Published As

Publication number Publication date
CN107609456A (zh) 2018-01-19

Similar Documents

Publication Publication Date Title
WO2018010250A1 (zh) 光学指纹传感器模组
TWI798491B (zh) 具有像素結構的顯示裝置與指紋辨識晶片
TWI599801B (zh) 影像感測裝置及其光學膜片
JP5174962B2 (ja) タッチパネル、液晶パネル、液晶表示装置、及びタッチパネル一体型の液晶表示装置
CN110426891B (zh) 一种显示面板及显示装置
CN109784303A (zh) 显示装置
US20210357616A1 (en) Optical structure, display substrate and display device
US20120133618A1 (en) Display device with touch sensor functionality, and light-collecting/blocking film
TWI425262B (zh) 區域性點亮側光式導光板及區域性點亮側光式背光模組
WO2019029206A1 (zh) 纹路识别器件、阵列基板及显示装置
WO2019196724A1 (zh) 指纹识别装置、识别装置和显示设备
WO2019223626A1 (zh) 指纹识别装置
CN111666929A (zh) 显示装置
WO2017156975A1 (zh) 光学指纹传感器模组
US12040350B2 (en) Display device
WO2017118030A1 (zh) 光学指纹传感器模组
JP7320080B2 (ja) スクリーン指紋コンポーネント及び端末機器
WO2017156976A1 (zh) 光学指纹传感器模组
US11740503B2 (en) Display screen and electronic device
CN110955083B (zh) 显示装置
US10921631B2 (en) Display device
WO2018006474A1 (zh) 光学指纹传感器模组
WO2019041214A1 (zh) 显示模组
CN110909720A (zh) 一种彩膜基板、显示面板及显示装置
CN111507273A (zh) 显示面板、显示装置和显示面板的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16908575

Country of ref document: EP

Kind code of ref document: A1