WO2019047330A1 - 光栅波前倾斜色散补偿装置 - Google Patents

光栅波前倾斜色散补偿装置 Download PDF

Info

Publication number
WO2019047330A1
WO2019047330A1 PCT/CN2017/106000 CN2017106000W WO2019047330A1 WO 2019047330 A1 WO2019047330 A1 WO 2019047330A1 CN 2017106000 W CN2017106000 W CN 2017106000W WO 2019047330 A1 WO2019047330 A1 WO 2019047330A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
blazed grating
mirror
incident
light
Prior art date
Application number
PCT/CN2017/106000
Other languages
English (en)
French (fr)
Inventor
唐顺兴
朱宝强
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Publication of WO2019047330A1 publication Critical patent/WO2019047330A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/44Grating systems; Zone plate systems

Definitions

  • the invention relates to an ultra-short super-strong laser, in particular to a grating wavefront tilt dispersion compensation device, which measures a pulse by a grating single autocorrelation method for measuring an ultra-short pulse time characteristic with a pulse width greater than one hundred femtoseconds.
  • Ultrashort pulse measurement has two methods: direct measurement and indirect measurement.
  • the direct measurement scheme adopts the method of fast response photodetector + high speed oscilloscope or measurement with a stripe camera.
  • Indirect measurement schemes include scanning (or single-time) second-order (or third-order) correlation methods, frequency-resolved optical switching methods, and self-referencing spectral phase coherent electric field reconstruction methods.
  • the high-energy tile (10 15 W) laser system uses chirped pulsed parametric amplification (OPCPA) and uses a solid-state laser glass chip amplifier as the gain medium. Due to factors such as thermal wavefront distortion, single-shot mode is currently used. Typical laser energy is about several thousand joules, pulse width is about one picosecond, and peak power is watts. Pulse measurements of such laser systems can only take a single measurement scheme. When the laser pulse is measured by a single autocorrelation method, if two ultrashort pulses are directly generated in the crystal, the autocorrelation signal can be realized only due to various conditions such as optical element diameter, crystal size and measurement sampling laser flux. A measurement range of hundreds of femtoseconds.
  • a laser beam With the grating autocorrelation scheme, a laser beam will obtain the wavefront tilt, so that a wider autocorrelation time window can be obtained in the crystal at the same working aperture, and a larger time measurement can be obtained by using the crystal size of the same aperture. Range, product level typical value is less than 20ps.
  • Theoretical analysis found that the single-time autocorrelation of the grating is equivalent to the pulse width introduced by the grating angle dispersion effect when measuring the picosecond laser of a few nanometers of spectral width.
  • the object of the present invention is to provide a grating wavefront tilt dispersion compensating device which compensates for the time broadening and spatial broadening caused by the grating angular dispersion effect, and ensures that the space-time dispersion of the beam reaching the working surface is zero.
  • the effect of the grating role dispersion effect on the application effect of the wavefront tilting technique is fundamentally eliminated.
  • a grating wavefront tilt dispersion compensating device comprising: a first blazed grating, an Offner optical system and a second blazed grating composed of a concave mirror and a convex mirror, a second blazed grating constant and a first blazed grating constant
  • the concave mirror has a radius of curvature twice that of the convex mirror
  • the concave mirror and the convex mirror have a center of curvature
  • the incident light is diffracted by the first blazed grating a first diffracted beam that is incident on the concave mirror, reflected by the concave mirror, incident on the convex mirror, reflected by the convex mirror, and then reaches the concave mirror again.
  • the concave mirror After being reflected by the concave mirror, it reaches the first blazed grating again, and is diffracted by the first blazed grating to become the second diffracted light, and the second diffracted light is emitted to the second direction in the opposite direction of the incident light.
  • a blazed grating which is diffracted by the second blazed grating to become a third diffracted light, and is transmitted in the diffraction direction to the working surface, the working surface and the grating surface of the second blazed grating Parallel; the incident angle of incident light entering the first blazed grating is equal to the incident angle of the second diffracted light entering the second blazed grating; the vertical distance between the working surface and the first blazed grating is first The illuminating grating is twice the vertical distance between the center points of curvature of the convex mirror.
  • a grating wavefront tilt dispersion compensation device comprising: a first blazed grating, an Offner optical system composed of a concave mirror and a convex mirror, a right angle mirror, the concave reflection
  • the radius of curvature of the mirror is twice that of the convex mirror, and the concave mirror and the center of curvature of the convex mirror coincide; the incident light is diffracted by the first blazed grating to become the first diffracted light.
  • the diffracted light is incident on the concave mirror, is reflected by the concave mirror, is incident on the convex mirror, is reflected by the convex mirror, and reaches the concave mirror again, through the concave mirror After being reflected, the first blazed grating is again reached, and after being diffracted by the first blazed grating, it becomes a second diffracted light, and the diffracted light is emitted to the right-angle mirror in the opposite direction of the incident light, and is reflected by the right-angle mirror.
  • the third time is transmitted to the first blazed grating, and the third time passes through the first blazed grating to become the third diffracted light, and the diffracted light is incident on the working surface, the working surface being parallel to the grating surface of the first blazed grating;
  • the incident angle of the incident light incident on the first blazed grating is equal to the incident angle of the second diffracted light incident from the mirror to the first blazed grating;
  • the vertical distance of the working surface from the first blazed grating is The vertical distance between the first blazed grating and the center point of curvature of the convex mirror is twice.
  • the concave mirror and the convex mirror are both spherical mirrors or cylindrical mirrors.
  • the present invention compensates for the time broadening and spatial broadening caused by the grating angular dispersion effect, and ensures that the space-time dispersion of the beam reaching the working surface is zero.
  • the effect of the grating role dispersion effect on the application effect of the wavefront tilting technique is fundamentally eliminated.
  • the system error of the single autocorrelation device can be reduced, and a reliable solution for high energy ultrashort laser pulse measurement is provided.
  • FIG. 1 is a schematic view showing the optical path of a structure of a grating wavefront tilt dispersion compensation device according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic view showing the structure optical path of the third embodiment of the grating wavefront tilt dispersion compensation device of the present invention.
  • FIG. 3 is a schematic diagram of dispersion pre-compensation of the grating wavefront tilt dispersion compensation device of the present invention.
  • FIG. 4 is a schematic diagram of grating dispersion of the grating wavefront tilt dispersion compensation device of the present invention.
  • FIG. 1 is a schematic view showing the structure of a first embodiment of a grating wavefront tilt dispersion compensating apparatus according to the present invention, and a method of using the wavefront tilt obtaining technique of the present invention will be described with reference to Figs. 1, 3 and 4.
  • the grating wavefront tilt dispersion compensation device of the present invention comprises a first blazed grating 1, an Offner optical system and a second blazed grating 4, and the Offner optical system is composed of a concave mirror 2 and a convex mirror 3,
  • the grating constant of the second blazed grating 4 is equal to the grating constant of the first blazed grating 1, the radius of curvature of the concave mirror 2 is twice the radius of curvature of the convex mirror 3, and the concave mirror is The center of curvature of 2 and the center of curvature of the convex mirror 3 coincide with a point 200; after the incident light 110 is diffracted by the first blazed grating 1, the first diffracted light 120 outputted by the first blazed grating 1 is incident on the object The concave mirror 2 is first reflected by the concave mirror 2 and then incident on the convex mirror 3, and after being reflected by the convex mirror 3 for
  • the third reflected light 130 reaches the first blazed grating 1, and the third reflected light 130 is diffracted by the first blazed grating 1 to form a second diffracted light 140 along the incident light 110.
  • the opposite direction is emitted to the stated Two blazed grating 4, 4 are formed through the second diffraction grating blazed after the third diffracted light 150, 150 in the direction of the third diffraction light is the face 5, parallel to the working surface 5 of the second grating blazed grating surface 4;
  • the incident angle 401 of the incident light 110 incident on the first blazed grating 1 is equal to the incident angle 402 of the second diffracted light 140 incident on the second blazed grating 4; the working surface 5 and the second blazed grating 4
  • the vertical distance is twice the vertical distance between the first blazed grating 1 and the center point 200 of curvature of the convex mirror 3.
  • Both the concave mirror and the convex mirror described in this embodiment are spherical mirrors.
  • the incident beam 110 has a center wavelength of ⁇ 0 , a spectral width of ⁇ , and no wavefront tilt.
  • the second diffracted beam 140 obtains time domain and spatial dispersion precompensation.
  • the beam is diffracted by the second blazed grating and becomes a third diffracted beam 150 at the working surface 5 that is free of dispersion (no broadening in time and space), and the third diffracted beam 150 has a certain wavefront tilt.
  • the incident beam center ray 110 contains all wavelength components in the spectral range of the measured beam, incident at a point 201 on the first blazed grating at a first diffracted incident angle 401, after being diffracted by the first blazed grating.
  • the center wavelength ⁇ 0 light ray 120 is emitted at an angle, and the light rays 121 deviated from the center wavelength d ⁇ are emitted at different angles. They are passed through an Offner optical system composed of a concave mirror and a convex mirror, and the central wavelength ray 130 is incident again at an angle.
  • the light 131 from the center wavelength is again incident at a different angle to the trailing edge 141 of the first blazed grating.
  • the rays 120 are parallel to 130
  • the rays 121 are parallel to 131.
  • the rays 140 and 141 are respectively parallel to the rays 110 and spatially separated.
  • the time deviation amount and the spatial deviation amount of the rays 140 ⁇ 0 and 141 are respectively calculated.
  • the amount of time deviation that is, the amount of time delay of 141 versus 140 in the direction of beam propagation, as a function of wavelength, is as follows:
  • c is the speed of light
  • d 1 is the grating constant of the first blazed grating
  • L gg ' is twice the vertical distance 301 between the first blazed grating and the center point 200 of the curvature of the convex mirror
  • is the first time
  • the diffracted incident angle 401,t is the time required for the second diffracted ray group to transmit to a cross section perpendicular to the direction of propagation. It can be seen that the longer the wavelength, the faster the pulse propagates.
  • the amount of spatial deviation that is, the distance between 141 and 140 and the wavelength is as follows:
  • Div is the distance of the light from the incident light 110. It can be seen that the longer the wavelength, the smaller the distance from the incident light.
  • Figure 4 shows the diffraction effect of the grating on parallel beams.
  • the spatial precompensated beam is incident on the second blazed grating 4 at the incident angle 402 of the third diffraction.
  • the group of different wavelengths emitted from the point 203, the central wavelength ⁇ 0 ray 150 is incident on the second at a certain angle of incidence.
  • the diffracted ray propagates in the direction of 140', and the ray 151 deviated from the center wavelength d ⁇ is incident on the second blazed grating at a different incident angle, and the second diffracted ray propagates in the direction of 141', due to the propagation direction of 140' and 141' Consistent.
  • the incident light groups are diffracted by the second blazed grating 4, and spatial deviation occurs between the different wavelengths of light, that is, the distance of 141' to 140', and the relationship with the wavelength is as follows:
  • d 2 is the grating constant
  • L gc is the vertical axis distance 302 between the working surface position 5 and the second blazed grating surface
  • Div′ is the distance between the outgoing ray and the vertical projection position 204 of the second blazed grating
  • ⁇ ' is the incident angle 402 of the third diffraction.
  • the time delay of the light group after passing through the second blazed grating 4 is calculated according to the following formula:
  • t' is the time required to transmit from 203 points to a certain vertical plane with the 140' transmission direction. It can be seen that the longer the wavelength of the pulse, the slower the transmission of the light beam emitted from the point 203 after being diffracted by the second blazed grating.
  • the light group obtained by pre-compensation in space-time is concentrated at point 203, and the time is not broadened, that is, the time and space of the light of 140 and 140' rays, 141 and 141' are simultaneously coincident, and the following relationship needs to be satisfied:
  • Embodiment 2 The difference between Embodiment 2 and Embodiment 1 is that the concave mirror and the convex mirror are both cylindrical mirrors.
  • FIG. 2 is a schematic diagram of the structure optical path of Embodiment 3 of the grating wavefront tilt dispersion compensation device of the present invention.
  • the grating wavefront tilt dispersion compensation device of the present invention includes a first blazed grating 1, an Offner optical system, and a right angle mirror 4', the Offner optical system is composed of a concave mirror 2 and a convex mirror 3, the radius of curvature of the concave mirror 2 is twice the radius of curvature of the convex mirror 3, and The concave mirror 2 and the convex mirror 3 have a center of curvature coincident with a point 200; after the incident light 110 is diffracted by the first blazed grating 1, the first diffracted light 120 output by the first blazed grating 1 is incident.
  • the concave mirror 2 is incident on the convex mirror 3 after being reflected by the concave mirror 2 for the first time, passes through the convex mirror 3 for the second time, and passes through the concave mirror 2 again.
  • the third reflected light 130 reaches the first blazed grating 1, and the third reflected light 130 is diffracted by the first blazed grating 1 to form the second diffracted light 140 and is emitted in the opposite direction of the incident light 110.
  • the right angle mirror 4' After being reflected by the right angle mirror 4', the third time is transmitted to the first blazed grating 1, and the third time is diffracted by the first blazed grating 1 to form a third diffracted light 150, and the direction along the third diffracted light 150 is the working surface 5.
  • the working surface 5 is parallel to the grating surface of the first blazed grating 1; the incident light 110 is incident on the incident angle 401 of the first blazed grating 1 and the second diffracted light 140 is from the right angle
  • the incident angle 402 of the mirror 4' incident on the first blazed grating 1 is equal; the vertical distance between the working surface 5 and the first blazed grating 1 is the first blazed grating and the center of curvature of the convex mirror 3 Twice the vertical distance between.
  • the concave mirror and the convex mirror described in this embodiment are both spherical mirrors.
  • the method of using the third embodiment in the wavefront tilting technique will be described with reference to Figs. 2, 3 and 4.
  • the operation of the light before reaching the right angle mirror 4' is the same as in the first embodiment.
  • the beam is diffracted by the first blazed grating, and becomes a third diffracted beam 150, 150 at the working surface 5 without dispersion (no time and space). Have a certain wave forward oblique.
  • the beam center ray is selected for raster dispersion analysis to illustrate the working principle of the present invention.
  • the operation of the light before reaching the right angle mirror 4' is the same as in the first embodiment.
  • the spatial position is exchanged up and down and transmitted again to the first blazed grating.
  • the process of reaching the working surface position 5 via the first blazed grating is the same as in the first embodiment.
  • Embodiment 4 The difference between Embodiment 4 and Embodiment 3 is that the concave mirror and the convex mirror are both cylindrical mirrors.
  • the present invention compensates for the time broadening and spatial broadening caused by the grating angular dispersion effect, and ensures that the space-time dispersion of the beam reaching the working surface is zero.
  • the effect of the grating role dispersion effect on the application effect of the wavefront tilting technique is fundamentally eliminated.
  • the system error of the single autocorrelation device can be reduced, and a reliable solution for high energy ultrashort laser pulse measurement is provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种光栅波前倾斜色散补偿装置,包括第一闪耀光栅、Offner光学系统和第二闪耀光栅或直角反射镜。光栅波前倾斜色散补偿装置补偿了光栅角色散效应引起的时间展宽和空间展宽,确保到达工作面上的光束的时空色散为零。与传统的基于光栅波前倾斜获得技术相比,从根本上消除了光栅角色散效应对波前倾斜技术应用效果的影响。

Description

光栅波前倾斜色散补偿装置 技术领域
本发明涉及超短超强激光,特别是一种光栅波前倾斜色散补偿装置,针对脉冲宽度大于百飞秒的超短脉冲时间特性测量时,采用光栅单次自相关法测量脉冲。
背景技术
超短超强激光技术领域,激光脉冲宽度和脉冲信噪比是评价其输出性能的极为重要的参数。超短脉冲测量有直接测量和间接测量两种方式,直接测量方案采用快响应光电探测器+高速示波器的方法或者用条纹相机测量。间接测量方案有,扫描(或单次)二阶(或三阶)相关法,频率分辨光学开关法,自参考光谱位相相干电场重构法等。
高能拍瓦(1015W)激光系统采用啁啾脉冲光参量放大(OPCPA),采用固体激光玻璃片状放大器作为增益介质,由于热致波前畸变等因素,目前均采用单次工作模式。典型激光能量约数千焦耳,脉冲宽度约一皮秒,峰值功率数拍瓦。此类激光系统的脉冲测量只能采取单次测量方案。在采用单次自相关法测量激光脉冲时,如果直接让两束超短脉冲在晶体中产生自相关信号,由于光学元件口径、晶体尺寸和测量取样激光通量等诸多条件限制,只能实现最长数百飞秒的测量范围。采用光栅自相关方案,一束激光将获得波前倾斜,这样,在相同工作口径时,在晶体中可以获得更宽的自相关作用时间窗口,采用相同口径的晶体尺寸可获得更大的时间测量范围,产品级典型值为小于20ps。理论分析发现,光栅单次自相关在测量数纳米光谱宽度皮秒级激 光时,由于光栅角度色散效应引入的系统误差与脉宽相当。
发明内容
本发明的目的是提出一种光栅波前倾斜色散补偿装置,该装置本发明补偿了光栅角度色散效应引起的时间展宽和空间展宽,确保光束到达工作面上光束的时空色散为零。与传统的基于光栅波前倾斜获得技术相比,从根本上消除了光栅角色散效应对波前倾斜技术应用效果的影响。该装置应用到光栅单次自相关超短脉冲测量装置时,可降低单次自相关装置的系统误差,为高能超短激光脉冲测量提供了一种可靠的解决方案。
为实现上述目标,本发明的技术解决方案如下:
一种光栅波前倾斜色散补偿装置,其特点在于:包括第一闪耀光栅,由凹面反射镜和凸面反射镜构成的Offner光学系统和第二闪耀光栅,第二闪耀光栅常数与第一闪耀光栅常数相等,所述凹面反射镜的曲率半径为所述凸面反射镜的2倍,且所述的凹面反射镜和所述的凸面反射镜曲率中心重合;入射光经所述的第一闪耀光栅衍射后,成为第一衍射光束,衍射光入射到所述的凹面反射镜,经该凹面反射镜反射后入射到所述的凸面反射镜,经该凸面反射镜反射后再次到达所述的凹面反射镜,经所述的凹面反射镜反射后再次到达第一闪耀光栅,再次经第一闪耀光栅衍射后成为第二衍射光,第二衍射光沿所述的入射光相反的方向出射到所述的第二闪耀光栅,经第二闪耀光栅衍射后成为第三衍射光,沿衍射方向传输到工作面,该工作面与所述第二闪耀光栅的光栅面平行;所述的入射光射入至第一闪耀光栅的入射角与第二衍射光射入至第二闪耀光栅的入射角相等;所述的工作面与第一闪耀光栅的垂直距离是第一闪耀光栅与所述凸面反射镜曲率中心点之间的垂直距离的两倍。
一种光栅波前倾斜色散补偿装置,其特点在于:包括第一闪耀光栅,由凹面反射镜和凸面反射镜构成的Offner光学系统,直角反射镜,所述凹面反射 镜的曲率半径为所述凸面反射镜的2倍,且所述的凹面反射镜和所述的凸面反射镜曲率中心重合;入射光经所述的第一闪耀光栅衍射后成为第一衍射光,衍射光入射到所述的凹面反射镜,经该凹面反射镜反射后入射到所述的凸面反射镜,经该凸面反射镜反射后再次到达所述的凹面反射镜,经所述的凹面反射镜反射后再次到达第一闪耀光栅,再次经第一闪耀光栅衍射后成为第二衍射光,衍射光沿所述的入射光相反的方向出射到所述的直角反射镜,经该直角反射镜反射后第三次传输到第一闪耀光栅,第三次经过第一闪耀光栅后成为第三衍射光,衍射光入射到工作面,该工作面与所述第一闪耀光栅的光栅面平行;所述的入射光射入至第一闪耀光栅的入射角与第二衍射光从反射镜射入至第一闪耀光栅的入射角相等;所述的工作面与第一闪耀光栅的垂直距离是第一闪耀光栅与所述凸面反射镜曲率中心点之间的垂直距离的两倍。
所述的凹面反射镜和凸面反射镜均为球面反射镜或者柱面反射镜。
本发明的技术效果如下:
通过色散预补偿分析说明,本发明补偿了光栅角度色散效应引起的时间展宽和空间展宽,确保光束到达工作面上光束的时空色散为零。与传统的基于光栅波前倾斜获得技术相比,从根本上消除了光栅角色散效应对波前倾斜技术应用效果的影响。该装置应用到光栅单次自相关超短脉冲测量装置时,可降低单次自相关装置的系统误差,为高能超短激光脉冲测量提供了一种可靠的解决方案。
附图说明
图1是本发明光栅波前倾斜色散补偿装置实施例1的结构光路示意图
图2是本发明光栅波前倾斜色散补偿装置实施例3的结构光路示意图
图3是本发明光栅波前倾斜色散补偿装置色散预补偿原理图。
图4是本发明光栅波前倾斜色散补偿装置光栅色散原理图。
具体实施方式
下面结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
实施例1
图1是本发明光栅波前倾斜色散补偿装置实施例1的结构示意图,以图1、图3和图4说明本发明在波前倾斜获得技术中的使用方法。由图可见,本发明光栅波前倾斜色散补偿装置,包括第一闪耀光栅1、Offner光学系统和第二闪耀光栅4,所述的Offner光学系统由凹面反射镜2和凸面反射镜3构成,第二闪耀光栅4的光栅常数与第一闪耀光栅1的光栅常数相等,所述的凹面反射镜2的曲率半径是所述的凸面反射镜3的曲率半径的2倍,且所述的凹面反射镜2的曲率中心和所述的凸面反射镜3的曲率中心重合于一点200;入射光110经所述的第一闪耀光栅1衍射后,第一闪耀光栅1输出的第一衍射光120入射到所述的凹面反射镜2,经该凹面反射镜2第一次反射后入射到所述的凸面反射镜3,经该凸面反射镜3第二次反射后再次经所述的凹面反射镜2的第三次反射光130到达第一闪耀光栅1,所述的第三次反射光130经第一闪耀光栅1衍射后的形成第二衍射光140,该第二衍射光140沿所述的入射光110相反的方向出射到所述的第二闪耀光栅4,经第二闪耀光栅4衍射后形成第三衍射光150,沿第三衍射光150方向是工作面5,该工作面5与所述第二闪耀光栅4的光栅面平行;
所述的入射光110射入至第一闪耀光栅1的入射角401与第二衍射光140射入至第二闪耀光栅4的入射角402相等;所述的工作面5与第二闪耀光栅4的垂直距离是第一闪耀光栅1与所述凸面反射镜3曲率中心点200之间的垂直距离的两倍。在该实施例中所述的凹面反射镜和凸面反射镜均为球面反射镜。
入射光束110,中心波长为λ0,光谱宽度为Δλ,无波前倾斜。第二衍射 光束140获得时域和空间色散预补偿。该光束经过第二闪耀光栅衍射,在工作面5处成为无色散(时间和空间均无展宽)的第三衍射光束150,第三衍射光束150有一定的波前倾斜。
下面选取光束中心光线进行光栅色散分析说明本发明的工作原理:
如图3所示,入射光束中心光线110含有被测光束的光谱范围内所有波长成分,以第一次衍射的入射角401从第一闪耀光栅上的点201入射,经第一闪耀光栅衍射后,中心波长λ0光线120以一定的角度出射,偏离中心波长dλ的光线121以不同的角度出射,它们经凹面反射镜和凸面反射镜组成的Offner光学系统,中心波长光线130以一定角度再次入射到第一闪耀光栅后沿140方向传输,偏离中心波长的光线131以不同角度再次入射到第一闪耀光栅后沿141方向传输。根据Offner光学系统特性,光线120与130平行,光线121与131平行,根据光栅公式,光线140和141分别与光线110平行,且空间分离。根据几何关系及光栅衍射特性,分别计算光线140λ0和141(λ0+dλ)的时间偏离量和空间偏离量。
时间偏离量,即141相对140在光束传输方向的时间延迟量,随波长的变化关系如下式:
Figure PCTCN2017106000-appb-000001
其中,c是光速,d1是第一闪耀光栅的光栅常数,Lgg’为第一闪耀光栅与所述凸面反射镜曲率中心点200之间的垂直距离301的两倍,γ是第一次衍射的入射角401,t是第二衍射光线组传输到某个与传播方向垂直的截面所需的时间。可以看出,波长越长的脉冲传播得越快。
空间偏离量,即141相对140的距离与波长的关系如下:
Figure PCTCN2017106000-appb-000002
其中,Div是光线偏离入射光线110的距离。可以看出,波长越长的脉冲与入射光线距离越小。
图4表示光栅对平行光束的衍射作用。空间预补偿光束以第三次衍射的入射角402入射第二闪耀光栅4,根据光路可逆原理,从点203发出的不同波长光线组,中心波长λ0光线150以一定的入射角入射到第二闪耀光栅4,衍射光线沿140’方向传播,偏离中心波长dλ的光线151以不同的入射角入射到第二闪耀光栅,第二次衍射光线沿141’方向传播,由于140’和141’传播方向一致。根据几何关系及光栅衍射特性,这些入射光线组经过第二闪耀光栅4衍射后,不同波长光线之间发生空间偏离,即141’相对140’的距离,与波长的关系如下:
Figure PCTCN2017106000-appb-000003
其中,d2是光栅常数,Lgc是工作面位置5与第二闪耀光栅面的垂轴距离302,Div’是出射光线与点203到第二闪耀光栅垂直投影位置204之间的距离,γ’是第三次衍射的入射角402。可以看出,从点203发射出的光线组经第二闪耀光栅4衍射后,波长越长的脉冲与204点的距离越大。
同时按下列公式计算该光线组经过第二闪耀光栅4后的时间延迟与波长的关系:
Figure PCTCN2017106000-appb-000004
其中,t’是从203点传输到与140’传输方向某个垂直面所需的时间。可以看出,从点203发射出的光线组经第二闪耀光栅衍射后,波长越长的脉冲传输的越慢。
根据光路可逆原理,要将获得时空预补偿的光线组汇聚在点203,并且时间无展宽,即同时让140与140’光线,141与141’光线的时空上重合,需要满足以下关系:
Figure PCTCN2017106000-appb-000005
由上式可知,该式成立条件与光线入射位置无关,所以扩展到整个入射光束口径内,其余非中心光线均满足以上关系,即在工作面的时空色散为零。同时为保证Lgc不随波长改变而改变,则必须有d1=d2,且γ=γ’,即当第一光栅1常数与第二闪耀光栅4的光栅常数相同,第一次衍射的入射角401与第三次衍射的入射角402相等时,Lgc=Lgg'。即光束中每一条光线的所有波长成分在工作面5上均只通过同一个点,不同波长之间无时间差,这样,从根本上消除了光栅角色散效应对波前倾斜技术应用效果的影响。
实施例2
实施例2与实施例1的区别在于所述的凹面反射镜和凸面反射镜均为柱面反射镜。
实施例3
请参阅图2,图2是本发明光栅波前倾斜色散补偿装置实施例3的结构光路示意图,由图可见,本发明光栅波前倾斜色散补偿装置,包括第一闪耀光栅1、Offner光学系统和直角反射镜4’,所述的Offner光学系统由凹面反射镜2和凸面反射镜3构成,所述的凹面反射镜2的曲率半径是所述的凸面反射镜3的曲率半径的2倍,且所述的凹面反射镜2和所述的凸面反射镜3曲率中心重合于一点200;入射光110经所述的第一闪耀光栅1衍射后,第一闪耀光栅1输出的第一衍射光120入射到所述的凹面反射镜2,经该凹面反射镜2第一次反射后入射到所述的凸面反射镜3,经该凸面反射镜3第二次反射后再次经所述的凹面反射镜2的第三次反射光130到达第一闪耀光栅1,所述的第三次反射光130经第一闪耀光栅1衍射后的形成第二衍射光140沿所述的入射光110相反的方向出射到所述的直角反射镜4’,经该直角反射镜4’反射后第三次传输到第一闪耀光栅1,第三次经第一闪耀光栅1衍射后形成第三衍射光150,沿第三衍射光150方向是工作面5,该工作面5与所述第一闪耀光栅1的光栅面平行;所述的入射光110射入至第一闪耀光栅1的入射角401与所述的第二衍射光140从所述的直角反射镜4’射入至第一闪耀光栅1的入射角402相等;所述的工作面5与第一闪耀光栅1的垂直距离是第一闪耀光栅与所述凸面反射镜3曲率中心点200之间的垂直距离的两倍。本实施例中所述的凹面反射镜和凸面反射镜均为球面反射镜。
以图2、图3和图4说明本实施例3在波前倾斜技术中的使用方法。光线到达直角反射镜4’之前工作原理同实施例1。光束140经直角反射镜4’后再次到达第一闪耀光栅1,该光束经过第一闪耀光栅衍射,在工作面5处成为无色散(时间和空间均无展宽)的第三衍射光束150,150有一定的波前倾 斜。
选取光束中心光线进行光栅色散分析说明本发明的工作原理。
光线到达直角反射镜4’之前工作原理同实施例1。光线140和141经过直角反射镜后,空间位置上下交换,再次传输到第一闪耀光栅。经第一闪耀光栅到达工作面位置5的过程同实施例1。依据实施例1的分析,公式(5)在本例中由于d2=d1,且第一次衍射的入射角401与第三次衍射的入射角402相等,此时有Lgc=Lgg',即光束中每一条光线的所有波长成分在工作面位置(5)均只通过一个点,且不同波长之间无时间差,这样,从根本上消除了光栅角色散效应对波前倾斜技术应用效果的影响。
实施例4
实施例4与实施例3的区别在于所述的凹面反射镜和凸面反射镜均为柱面反射镜。
通过以上实施例的色散预补偿分析说明,本发明补偿了光栅角度色散效应引起的时间展宽和空间展宽,确保光束到达工作面上光束的时空色散为零。与传统的基于光栅波前倾斜获得技术相比,从根本上消除了光栅角色散效应对波前倾斜技术应用效果的影响。该装置应用到光栅单次自相关超短脉冲测量装置时,可降低单次自相关装置的系统误差,为高能超短激光脉冲测量提供了一种可靠的解决方案。

Claims (3)

  1. 一种光栅波前倾斜色散补偿装置,其特征在于,该装置包括第一闪耀光栅(1)、Offner光学系统和第二闪耀光栅(4),所述的Offner光学系统由凹面反射镜(2)和凸面反射镜(3)构成,第二闪耀光栅(4)的光栅常数与第一闪耀光栅(1)的光栅常数相等,所述的凹面反射镜(2)的曲率半径是所述的凸面反射镜(3)的曲率半径的2倍,且所述的凹面反射镜(2)和所述的凸面反射镜(3)曲率中心重合于一点(200);入射光(110)经所述的第一闪耀光栅(1)衍射后,第一闪耀光栅(1)输出的第一衍射光(120)入射到所述的凹面反射镜(2),经该凹面反射镜(2)第一次反射后入射到所述的凸面反射镜(3),经该凸面反射镜(3)第二次反射后再次经所述的凹面反射镜(2)的第三次反射光(130)到达第一闪耀光栅(1),所述的第三次反射光(130)经第一闪耀光栅(1)衍射后的形成第二衍射光(140)沿所述的入射光(110)相反的方向出射到所述的第二闪耀光栅(4),经第二闪耀光栅(4)衍射后形成第三衍射光(150),沿第三衍射光(150)方向是工作面(5),该工作面(5)与所述第二闪耀光栅(4)的光栅面平行;所述的入射光(110)射入至第一闪耀光栅(1)的入射角(401)与第二衍射光(140)射入至第二闪耀光栅(4)的入射角(402)相等;所述的工作面(5)与第二闪耀光栅(4)的垂直距离是第一闪耀光栅(1)与所述凸面反射镜(3)曲率中心点(200)之间的垂直距离的两倍。
  2. 一种光栅波前倾斜色散补偿装置,其特征在于,该装置包括第一闪耀光栅(1)、Offner光学系统和直角反射镜(4’),所述的Offner光学系统由凹面反射镜(2)和凸面反射镜(3)构成,所述的凹面反射镜(2)的曲率半径是所述的凸面反射镜(3)的曲率半径的2倍,且所述的凹面反射镜(2)和所述的凸面反射镜(3)曲率中心重合于一点(200);入射光(110)经所述的第一闪耀光栅(1)衍射后,第一闪耀光栅(1)输出的第一衍射光(120)入射到所述的凹面反射镜(2),经该凹面反射镜(2)第一次反射后入射到所 述的凸面反射镜(3),经该凸面反射镜(3)第二次反射后再次经所述的凹面反射镜(2)的第三次反射光(130)到达第一闪耀光栅(1),所述的第三次反射光(130)经第一闪耀光栅(1)衍射后的形成第二衍射光(140)沿所述的入射光(110)相反的方向出射到所述的直角反射镜(4’),经该直角反射镜(4’)反射后第三次传输到第一闪耀光栅(1),第三次经第一闪耀光栅(1)衍射后形成第三衍射光(150),沿第三衍射光(150)方向是工作面(5),该工作面(5)与所述第一闪耀光栅(1)的光栅面平行;所述的入射光(110)射入至第一闪耀光栅(1)的入射角(401)与所述的第二衍射光(140)从所述的直角反射镜(4’)射入至第一闪耀光栅(1)的入射角(402)相等;所述的工作面(5)与第一闪耀光栅(1)的垂直距离是第一闪耀光栅与所述凸面反射镜(3)曲率中心点(200)之间的垂直距离的两倍。
  3. 根据权利要求1或2所述光栅波前倾斜色散补偿装置,其特征在于所述的凹面反射镜和凸面反射镜均为球面反射镜或者柱面反射镜。
PCT/CN2017/106000 2017-09-06 2017-10-13 光栅波前倾斜色散补偿装置 WO2019047330A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710793558.3 2017-09-06
CN201710793558.3A CN107727250B (zh) 2017-09-06 2017-09-06 光栅波前倾斜色散补偿装置

Publications (1)

Publication Number Publication Date
WO2019047330A1 true WO2019047330A1 (zh) 2019-03-14

Family

ID=61205683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106000 WO2019047330A1 (zh) 2017-09-06 2017-10-13 光栅波前倾斜色散补偿装置

Country Status (2)

Country Link
CN (1) CN107727250B (zh)
WO (1) WO2019047330A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489819B (zh) * 2018-11-13 2020-12-18 西安理工大学 三次衍射式光栅光谱仪
CN109506793A (zh) * 2019-01-16 2019-03-22 中国工程物理研究院激光聚变研究中心 一种单发次飞秒激光脉冲波形测量装置
CN109682484A (zh) * 2019-02-01 2019-04-26 中国工程物理研究院激光聚变研究中心 一种单发次飞秒激光脉冲波形测量装置
CN109682483A (zh) * 2019-02-01 2019-04-26 中国工程物理研究院激光聚变研究中心 一种单发次皮秒激光脉冲波形测量装置
CN110535008B (zh) * 2019-08-26 2020-10-16 中国科学院上海光学精密机械研究所 基于全反射望远系统离轴补偿构型的消色差光栅展宽器
CN111342322B (zh) * 2020-03-02 2021-03-02 中国科学院上海光学精密机械研究所 啁啾脉冲放大装置
WO2023245606A1 (zh) * 2022-06-24 2023-12-28 深圳优普莱等离子体技术有限公司 一种激光切割系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120176622A1 (en) * 2010-09-03 2012-07-12 University Of Arizona White light sagnac interferometer polarimeters
CN102662287A (zh) * 2012-05-18 2012-09-12 中国科学院上海光学精密机械研究所 飞秒脉冲色散补偿装置
CN103592024A (zh) * 2013-10-29 2014-02-19 中国科学院长春光学精密机械与物理研究所 双衍射级次Offner成像光谱仪
CN103984114A (zh) * 2014-05-30 2014-08-13 中国科学院上海光学精密机械研究所 小型倍密度光栅对飞秒脉冲压缩装置
CN104570221A (zh) * 2014-12-26 2015-04-29 武汉光迅科技股份有限公司 一种基于液晶阵列的灵活栅格可调色散补偿装置
CN104600566A (zh) * 2014-12-11 2015-05-06 北京工业大学 一种高光束质量半导体激光阵列合束装置
CN106767427A (zh) * 2016-11-11 2017-05-31 山东师范大学 利用涡旋光阵列奇异特性测量物体离面位移的方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880834A (en) * 1996-10-16 1999-03-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Convex diffraction grating imaging spectrometer
CN1306334C (zh) * 2004-07-05 2007-03-21 天津大学 补偿再生放大器高材料色散的小型化脉冲展宽器
CN102331299A (zh) * 2011-06-02 2012-01-25 苏州大学 平像场成像光谱仪的分光成像系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120176622A1 (en) * 2010-09-03 2012-07-12 University Of Arizona White light sagnac interferometer polarimeters
CN102662287A (zh) * 2012-05-18 2012-09-12 中国科学院上海光学精密机械研究所 飞秒脉冲色散补偿装置
CN103592024A (zh) * 2013-10-29 2014-02-19 中国科学院长春光学精密机械与物理研究所 双衍射级次Offner成像光谱仪
CN103984114A (zh) * 2014-05-30 2014-08-13 中国科学院上海光学精密机械研究所 小型倍密度光栅对飞秒脉冲压缩装置
CN104600566A (zh) * 2014-12-11 2015-05-06 北京工业大学 一种高光束质量半导体激光阵列合束装置
CN104570221A (zh) * 2014-12-26 2015-04-29 武汉光迅科技股份有限公司 一种基于液晶阵列的灵活栅格可调色散补偿装置
CN106767427A (zh) * 2016-11-11 2017-05-31 山东师范大学 利用涡旋光阵列奇异特性测量物体离面位移的方法及系统

Also Published As

Publication number Publication date
CN107727250A (zh) 2018-02-23
CN107727250B (zh) 2019-06-21

Similar Documents

Publication Publication Date Title
WO2019047330A1 (zh) 光栅波前倾斜色散补偿装置
US8630322B2 (en) Laser system for output manipulation
Pretzler et al. Angular chirp and tilted light pulses in CPA lasers
US8742353B2 (en) Single terahertz wave time-waveform measuring device
JP5216544B2 (ja) テラヘルツ波発生装置
CN107884079B (zh) 单发次超短激光脉冲宽度测量装置及测量方法
US11239626B2 (en) Multi-pass etalon filter
CN107421910B (zh) 基于波面倾斜方法的超短脉冲泵浦的太赫兹强场系统
WO2021036167A1 (zh) 利用回音壁模式激光光源测fp透过率曲线的装置和方法
US5960016A (en) Aberration-free, all-reflective laser pulse stretcher
CN104880258B (zh) 超短光脉冲近场关联脉宽测量装置和测量方法
Osvay et al. Measurement of non-compensated angular dispersion and the subsequent temporal lengthening of femtosecond pulses in a CPA laser
KR102202741B1 (ko) 압축기와 결합된 대형의 하이 에너지 레이저 빔을 샘플링하는 디바이스
CN211262667U (zh) 一种用于退偏器退偏性能高精度检测的光学系统
Dimitrov et al. Pulse front tilt measurement of femtosecond laser pulses
WO2016147253A1 (ja) テラヘルツ波測定装置
CN108387319B (zh) 一种单发宽带太赫兹频谱仪
CN110987199A (zh) 束间同步测量装置
US20120326041A1 (en) Electromagnetic wave detection device
CN111562002B (zh) 高通量高分辨率高对比度的偏振干涉光谱成像装置及方法
CN211527779U (zh) 一种固体隙fp标准具的测试装置
Dimitrov et al. Measuring the relation between pulse-front-tilt angle and beam size for ultrashort laser pulses
CN110186568B (zh) 一种光子混频太赫兹波探测装置
CN112268860A (zh) 一种双波长飞秒抽运探测热反射系统
JP5590562B2 (ja) エタロンフィルタを用いた周波数校正システム、周波数校正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924519

Country of ref document: EP

Kind code of ref document: A1