WO2019047081A1 - 一种在铝表面形成硒杂类石墨相碳化氮纳米膜的方法 - Google Patents

一种在铝表面形成硒杂类石墨相碳化氮纳米膜的方法 Download PDF

Info

Publication number
WO2019047081A1
WO2019047081A1 PCT/CN2017/100783 CN2017100783W WO2019047081A1 WO 2019047081 A1 WO2019047081 A1 WO 2019047081A1 CN 2017100783 W CN2017100783 W CN 2017100783W WO 2019047081 A1 WO2019047081 A1 WO 2019047081A1
Authority
WO
WIPO (PCT)
Prior art keywords
selenium
film
graphite phase
forming
aluminum surface
Prior art date
Application number
PCT/CN2017/100783
Other languages
English (en)
French (fr)
Inventor
俞磊
陆朝晖
杨钰帆
陆朝阳
Original Assignee
深圳市同富达电子科技有限公司
扬州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市同富达电子科技有限公司, 扬州大学 filed Critical 深圳市同富达电子科技有限公司
Priority to PCT/CN2017/100783 priority Critical patent/WO2019047081A1/zh
Publication of WO2019047081A1 publication Critical patent/WO2019047081A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition

Definitions

  • the invention relates to a method for forming a selenium-based graphite phase carbonized carbide nanofilm on an aluminum surface.
  • selenium compounds have certain catalytic activity; selenium is an essential trace element in human body, and selenium compounds also have anti-inflammatory and bactericidal activity; in addition, some inorganic or organic selenium-containing composite materials have good acoustic and optical properties. Electrical performance. Therefore, the development of selenium-containing materials has great application value in the fields of chemical industry, medicine, electronics and so on.
  • the metal indicates the formation of nano-films containing selenium composites, which can change the acoustic, optical and electrical properties of metals and prevent metal corrosion.
  • selenium-containing nano-films can be widely used in some human contact.
  • the product such as headphones
  • nano-films containing selenium composites can be applied to the development of some advanced industrial catalysts.
  • graphite-like phase carbonitride is a new type of material developed in recent years, which has good photoactivity and catalytic properties.
  • the selenium-like graphite phase carbonized nitrogen formed after doping with selenium has higher photoactivity, can catalyze a series of chemical reactions (including photodegradation of pollutants), and has certain anti-inflammatory activity. Therefore, as described above, the formation of a selenium-based graphite phase carbonitride nitrogen nanofilm on a metal surface can develop a series of important new materials and is a key technology.
  • the difficulty in achieving this technology lies in the control of the thickness of the metal film (controlled to nanoscale; the performance of the film exceeding the nanometer thickness is degraded, and the resource utilization is insufficient), and the coating distribution control (control complete coverage; if not complete) Covering, the exposed metal is easily corroded, which tends to cause the film material to fall off).
  • the present invention provides a method for forming a selenium-like graphite phase carbonized carbon nanofilm on a surface of a metal aluminum, which provides key materials for the development and manufacture of various human wearing devices and advanced industrial catalysts, and the method is simple and easy.
  • a nanometer-thickness film material can be formed and complete coverage of the metal surface can be achieved.
  • the invention proposes that the aluminum product is immersed in an ethanol mixed solution of a trimeric nitrile amine and a 2-phenyl-2-selenoxoacetic acid at a temperature of 20 to 50 ° C for 6 to 24 hours. It is baked at 400 to 600 ° C for 1 to 5 hours.
  • the invention has simple formula and simple steps. Therefore, it is suitable for large-scale production and has a good application prospect.
  • the concentration of the trimeric nitrileamine in the impregnating mixed solution of the present invention is 0.01 to 0.05 mol/L, and the preferred concentration is 0.03 mol/L. In this concentration range, it is possible to control the formation of a nanoscale film, and the realization of the metal indicates complete coverage of the film.
  • the concentration of ⁇ -selenocarbonylphenylacetic acid in the impregnating mixed solution of the present invention is 0.005 to 0.009 mol/L, and the preferred concentration is 0.007 mol/L. In this concentration range, uniform distribution of selenium elements is achieved.
  • the immersion temperature is 20 to 50 ° C, preferably 30 ° C; the immersion time is 6 to 24 h, preferably 12 h; the baking temperature is 400 to 600 ° C, preferably 500 ° C; and the baking time is 1 to 5 h, preferably 3 h.
  • the selenium-like graphite phase carbonized nitrogen nanofilms in the prepared materials have the most uniform distribution during the immersion and baking temperature, and the most thin film materials can be obtained under the condition of sufficient coverage.
  • the invention provides a method for forming a selenium-like graphite phase carbonized carbon nanofilm on a surface of a metal aluminum, and provides a key material for the development and manufacture of various human wearing equipments and advanced industrial catalysts.
  • the method is simple and easy to implement, and can form nanometers.
  • an aluminum piece (1 cm ⁇ 1 cm) was immersed in 10 mL of a mixture solution of melamine (0.03 mol / L) and ⁇ -selenocarbonyl phenylacetic acid (0.007 mol / L) in ethanol for 12 h at 500 ° C. After calcination for 3 h, an aluminum-based selenium-like graphite phase carbonitride nitrogen nanofilm can be obtained. The thickness of the film on the material was 1.2 nm and the film coverage was 100% by electron microscopy, mapping and other analytical tests.
  • Example 2 Other conditions were the same as in Example 1, and films were prepared using different concentrations of ⁇ -selenocarbonylphenylacetic acid. The experimental results are shown in Table 2.
  • the immersion temperature is low and the film coverage is incomplete (No. 1).
  • the immersion temperature is optimal at 30 ° C (No. 3, Example 1). When the immersion temperature is raised, the film starts to fall off easily and the coverage is incomplete (No. 6).
  • the immersion time was short and the film coverage was incomplete (No. 1).
  • the immersion time is optimal at 12 h (No. 4, Example 1). Prolonging the immersion time increases the film thickness, but too long immersion time causes the film to fall off and the coverage is incomplete (No. 9).
  • the baking temperature is low and the film thickness is thick (No. 1).
  • the calcination temperature is preferably 500 ° C (No. 3, Example 1). When the calcination temperature is raised, the film starts to fall off easily and the coverage is incomplete (No. 6).
  • the membrane material has a certain catalytic activity and can catalyze the oxidation of cyclohexene by air.
  • one piece of the above material is put into a 1 mol/L cyclohexene acetonitrile solution, and under visible light (LED white light), air is introduced (0.88 mL/ s) 24 hours, gas spectrum analysis determined that the yield of important industrial intermediate 1,2-transcyclohexanediol was 92%.
  • the catalyst material can be conveniently recovered (taken out with tweezers) and reintroduced into the same reaction with a gas chromatographic yield of 90%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

本发明提出一种在金属铝表面形成硒杂类石墨相碳化氮纳米膜的方法,以为各种人体穿戴设备与先进工业催化剂的开发与制造提供关键材料,该方法步骤简单易行,可形成纳米级厚度的膜材料,并可实现金属表面的完全覆盖。

Description

一种在铝表面形成硒杂类石墨相碳化氮纳米膜的方法 技术领域
本发明涉及一种在铝表面形成硒杂类石墨相碳化氮纳米膜的方法。
背景技术
我国硒资源丰富,开发硒资源的新应用,能够发挥我国的资源优势,有重要的战略意义。我们最近发现,硒化合物具有一定的催化活性;硒元素是人体必需的微量元素,硒化合物还具有消炎杀菌的活性;此外,一些无机或有机的含硒复合材料,具有很好的声学、光学与电学性能。因此,开发含硒材料,在化工、医药、电子等领域,有重大的应用价值。
在金属表明形成含硒复合材料纳米膜,能够改变金属的声学、光学以及电学性能,防止金属腐蚀;此外,由于硒元素化合物的消炎杀菌活性,含硒纳米膜还可以广泛应用于一些与人体接触的产品上(例如耳机),从而抑制使用过程中的细菌滋生;利用硒的催化性能,含硒复合材料纳米膜可应用于一些先进工业催化剂的开发上。
另一方面,类石墨相碳化氮是近年来发展出的一类新型材料,具有很好的光活性和催化性能。掺杂硒元素后形成的硒杂类石墨相碳化氮,具有更高的光活性,可催化一系列化学反应(包括污染物的光降解反应),并具有一定的消炎杀菌活性。因此,如前文所述,在金属表面形成硒杂类石墨相碳化氮纳米膜,能够开发出一系列重要的新材料,是关键技术。而实现这一技术的难点在于金属膜厚度控制(控制为纳米级;超过纳米级厚度的膜各项性能会下降,并且资源利用不充分),以及涂层分布控制(控制完全覆盖;如果非完全覆盖,暴露的金属容易腐蚀,从而易导致膜材料的脱落)。
发明内容
为了解决上述问题,本发明提出一种在金属铝表面形成硒杂类石墨相碳化氮纳米膜的方法,以为各种人体穿戴设备与先进工业催化剂的开发与制造提供关键材料,该方法步骤简单易行,可形成纳米级厚度的膜材料,并可实现金属表面的完全覆盖。
本发明通过以下技术方案实现的:
本发明提出先在20~50℃环境温度条件下,将铝制品在三聚腈胺、α-硒羰基苯乙酸(2-phenyl-2-selenoxoacetic acid)的乙醇混合溶液中浸渍6~24h后,在400~600℃焙烧1~5h。
本发明配方简单,步骤简洁。因此,适合大规模生产,有较好的应用前景。
进一步地,本发明所述浸渍混合溶液中三聚腈胺浓度为0.01~0.05mol/L,优选的浓度为0.03mol/L。在该浓度范围类,可控制生成纳米级的膜,并且实现金属表明膜的完全覆盖。
本发明所述浸渍混合溶液中α-硒羰基苯乙酸浓度为0.005~0.009mol/L,优选的浓度为0.007mol/L。在该浓度范围类,实现硒元素的均匀分布。
所述浸渍温度为20~50℃,优选30℃;浸渍时间为6~24h,优选12h;烘焙温度为400~600℃,优选500℃;烘焙时间为1~5h,优选3h。在此浸渍、烘焙温度时间下所制备材料中硒杂类石墨相碳化氮纳米膜分布最均匀,且可在充分覆盖的前提下获得最薄膜材料。
本发明的有益效果:
本发明提出一种在金属铝表面形成硒杂类石墨相碳化氮纳米膜的方法,以为各种人体穿戴设备与先进工业催化剂的开发与制造提供关键材料,该方法步骤简单易行,可形成纳米级厚度的膜材料,并可实现金属表面的完全覆盖。
具体实施方式
下面的实施例对本发明进行更详细的阐述,而不是对本发明的进一步限定。
实施例1
30℃下,将一块铝片(1cm×1cm)在10mL三聚腈胺(0.03mol/L)、α-硒羰基苯乙酸(0.007mol/L)的乙醇混合溶液中浸渍12h后,在500℃下焙烧3h,可制得铝质基础的硒杂类石墨相碳化氮纳米膜。通过电镜,Mapping等分析测试手段鉴定得知该材料上膜厚度为1.2nm,膜覆盖率为100%。
实施例2
其他条件同实施例1,使用不同浓度的三聚腈胺制备膜,实验结果见表1。
表1 不同浓度的三聚腈胺制备膜的实验结果
Figure PCTCN2017100783-appb-000001
由上述结果可知,三聚腈胺浓度低于0.01mol/L时,不能实现膜的完全覆盖,其中,浓度为0.005mol/L时,覆盖率仅43%(编号1)。而当三聚腈胺浓度达到0.03mol/L时,开始实现完全覆盖(编号4),并且膜厚度最薄,为1.2 nm。而增加三聚腈胺浓度会使得膜变厚。当三聚腈胺浓度超过0.05时,膜会显著变厚(编号7)。
实施例3
其他条件同实施例1,使用不同浓度的α-硒羰基苯乙酸制备膜,实验结果见表2。
表2 不同浓度的α-硒羰基苯乙酸制备膜的实验结果
Figure PCTCN2017100783-appb-000002
由上述结果可知,α-硒羰基苯乙酸浓度低于0.005mol/L时,膜的厚度较厚,但硒元素分布很不均匀(编号1)。α-硒羰基苯乙酸浓度达到0.005mol/L时,硒元素开始均匀分布,并且膜的厚度减小到2nm以内(编号2)。而当α-硒羰基苯乙酸浓度为0.007mol/L时,效果最佳(编号4)。α-硒羰基苯乙酸浓度超过0.009mol/L,镀膜容易脱落,覆盖率显著下降(编号7)。
实施例4
其他条件同实施例1,使用不同浸渍温度制备膜,实验结果见表3。
表3 不同浸渍温度制备膜的实验结果
Figure PCTCN2017100783-appb-000003
由上述结果可知,浸渍温度较低,膜覆盖不完全(编号1)。浸渍温度30℃时最佳(编号3,实施例1)。浸渍温度升高,膜开始容易脱落,覆盖不完全(编号6)。
实施例5
其他条件同实施例1,使用不同浸渍时间制备膜,实验结果见表4。
表4 不同浸渍时间制备膜的实验结果
Figure PCTCN2017100783-appb-000004
Figure PCTCN2017100783-appb-000005
由上述结果可知,浸渍时间较短,膜覆盖不完全(编号1)。浸渍时间以12h最佳(编号4,实施例1).延长浸渍时间可增加膜厚度,但过长浸渍时间会导致膜脱落,从而覆盖不完全(编号9)。
实施例6
其他条件同实施例1,使用不同焙烧温度制备膜,实验结果见表5。
表5 不同焙烧温度制备膜的实验结果
Figure PCTCN2017100783-appb-000006
由上述结果可知,焙烧温度较低,膜厚度较厚(编号1)。焙烧温度500℃时最佳(编号3,实施例1)。焙烧温度升高,膜开始容易脱落,覆盖不完全(编号6)。
实施例7
其他条件同实施例1,使用不同焙烧时间制备膜,实验结果见表6。
表6 不同焙烧时间制备膜的实验结果
Figure PCTCN2017100783-appb-000007
由上述结果可知,焙烧时间较短,膜厚度较厚(编号1)。焙烧时间以3h最佳(编号4,实施例1).延长焙烧时间可降低膜厚度,但过长焙烧时间会导致膜脱落,从而覆盖不完全(编号7)。
应用实例:
该膜材料具有一定催化活性,可催化空气氧化环己烯,例如,将1片上述材料投入到1mol/L环己烯乙腈溶液中,可见光照射下(LED白光),通入空气(0.88mL/s)24小时,气谱分析确定重要工业中间体1,2-反式环己二醇产率为92%。该催化剂材料可方便地回收(用镊子取出)并再次投入同样反应,气谱产率90%。

Claims (13)

  1. 一种在铝表面形成硒杂类石墨相碳化氮纳米膜的方法,其特征在于:将铝制品在三聚腈胺、α-硒羰基苯乙酸(2-phenyl-2-selenoxoacetic acid)的乙醇混合溶液中浸渍后,再加以焙烧,即可在其表面形成硒杂类石墨相碳化氮纳米膜。
  2. 根据权利要求1所述在铝表面形成硒杂类石墨相碳化氮纳米膜的方法,其特征在于:所述三聚腈胺乙醇溶液浓度为0.01~0.05mol/L。
  3. 根据权利要求2所述在铝表面形成硒杂类石墨相碳化氮纳米膜的方法,其特征在于:所述三聚腈胺乙醇溶液浓度为0.03mol/L。
  4. 根据权利要求1所述在铝表面形成硒杂类石墨相碳化氮纳米膜的方法,其特征在于:所述α-硒羰基苯乙酸乙醇溶液浓度为0.005~0.009mol/L。
  5. 根据权利要求4所述在铝表面形成硒杂类石墨相碳化氮纳米膜的方法,其特征在于:所述α-硒羰基苯乙酸乙醇溶液浓度为0.007mol/L。
  6. 根据权利要求1所述在铝表面形成硒杂类石墨相碳化氮纳米膜的方法,其特征在于:浸渍温度为20~50℃。
  7. 根据权利要求6所述在铝表面形成硒杂类石墨相碳化氮纳米膜的方法,其特征在于:浸渍温度为30℃。
  8. 根据权利要求1所述在铝表面形成硒杂类石墨相碳化氮纳米膜的方法,其特征在于:浸渍时间为6~24h。
  9. 根据权利要求8所述在铝表面形成硒杂类石墨相碳化氮纳米膜的方法,其特征在于:浸渍时间为12h。
  10. 根据权利要求1所述在铝表面形成硒杂类石墨相碳化氮纳米膜的方法,其特征在于:烘焙温度为400~600℃。
  11. 根据权利要求10所述在铝表面形成硒杂类石墨相碳化氮纳米膜的方法,其特征在于:烘焙温度为500℃。
  12. 根据权利要求1所述在铝表面形成硒杂类石墨相碳化氮纳米膜的方法,其特征在于:烘焙时间为1~5h。
  13. 根据权利要求12所述在铝表面形成硒杂类石墨相碳化氮纳米膜的方法,其特征在于:烘焙时间为3h。
PCT/CN2017/100783 2017-09-06 2017-09-06 一种在铝表面形成硒杂类石墨相碳化氮纳米膜的方法 WO2019047081A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100783 WO2019047081A1 (zh) 2017-09-06 2017-09-06 一种在铝表面形成硒杂类石墨相碳化氮纳米膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100783 WO2019047081A1 (zh) 2017-09-06 2017-09-06 一种在铝表面形成硒杂类石墨相碳化氮纳米膜的方法

Publications (1)

Publication Number Publication Date
WO2019047081A1 true WO2019047081A1 (zh) 2019-03-14

Family

ID=65633318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100783 WO2019047081A1 (zh) 2017-09-06 2017-09-06 一种在铝表面形成硒杂类石墨相碳化氮纳米膜的方法

Country Status (1)

Country Link
WO (1) WO2019047081A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264277A1 (en) * 2007-04-17 2009-10-22 Dr. Rishi Raj Picoscale catalysts for hydrogen catalysis
US20130157838A1 (en) * 2008-06-18 2013-06-20 Board Of Trustees Of The University Of Arkansas Doped-carbon composites, synthesizing methods and applications of the same
CN105331949A (zh) * 2015-11-12 2016-02-17 西南交通大学 一种制备氮化碳薄膜的方法
CN106423245A (zh) * 2016-10-17 2017-02-22 扬州大学 一种碳化氮负载铜催化剂的合成方法
CN106732738A (zh) * 2017-02-15 2017-05-31 东华大学 一种石墨烯/g‑C3N4三维网络复合薄膜及其制备和应用
CN106824249A (zh) * 2017-03-14 2017-06-13 扬州大学 一种类石墨相碳化氮负载硒催化材料的制备方法
CN106861739A (zh) * 2015-12-11 2017-06-20 中国科学院大连化学物理研究所 一种中空核壳式磁性介孔氮化碳及其制备方法
CN106928765A (zh) * 2017-03-10 2017-07-07 青岛海尔空调器有限总公司 一种光触媒添加剂及含该添加剂的亲水性涂料的使用方法
CN107029774A (zh) * 2017-03-20 2017-08-11 暨南大学 一种纳米多孔类石墨碳化氮材料的制备方法及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264277A1 (en) * 2007-04-17 2009-10-22 Dr. Rishi Raj Picoscale catalysts for hydrogen catalysis
US20130157838A1 (en) * 2008-06-18 2013-06-20 Board Of Trustees Of The University Of Arkansas Doped-carbon composites, synthesizing methods and applications of the same
CN105331949A (zh) * 2015-11-12 2016-02-17 西南交通大学 一种制备氮化碳薄膜的方法
CN106861739A (zh) * 2015-12-11 2017-06-20 中国科学院大连化学物理研究所 一种中空核壳式磁性介孔氮化碳及其制备方法
CN106423245A (zh) * 2016-10-17 2017-02-22 扬州大学 一种碳化氮负载铜催化剂的合成方法
CN106732738A (zh) * 2017-02-15 2017-05-31 东华大学 一种石墨烯/g‑C3N4三维网络复合薄膜及其制备和应用
CN106928765A (zh) * 2017-03-10 2017-07-07 青岛海尔空调器有限总公司 一种光触媒添加剂及含该添加剂的亲水性涂料的使用方法
CN106824249A (zh) * 2017-03-14 2017-06-13 扬州大学 一种类石墨相碳化氮负载硒催化材料的制备方法
CN107029774A (zh) * 2017-03-20 2017-08-11 暨南大学 一种纳米多孔类石墨碳化氮材料的制备方法及其应用

Similar Documents

Publication Publication Date Title
Cui et al. Solar photocatalytic water oxidation over Ag3PO4/g-C3N4 composite materials mediated by metallic Ag and graphene
Singh et al. Evidence of oxygen defects mediated enhanced photocatalytic and antibacterial performance of ZnO nanorods
Xu et al. The ultra-high NO2 response of ultra-thin WS2 nanosheets synthesized by hydrothermal and calcination processes
Sun et al. Facile constructing of isotype g-C3N4 (bulk)/g-C3N4 (nanosheet) heterojunctions through thermal polymerization of single-source glucose-modified melamine: an efficient charge separation system for photocatalytic hydrogen production
Qiao et al. As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine
Song et al. Porous Co nanobeads/rGO nanocomposites derived from rGO/Co-metal organic frameworks for glucose sensing
Toboonsung et al. Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process
Zhang et al. ZnO nanowire/reduced graphene oxide nanocomposites for significantly enhanced photocatalytic degradation of Rhodamine 6G
Zhang et al. One-step synthesis of flowerlike C/Fe2O3 nanosheet assembly with superior adsorption capacity and visible light photocatalytic performance for dye removal
Ikram et al. 3D-multilayer MoS2 nanosheets vertically grown on highly mesoporous cubic In2O3 for high-performance gas sensing at room temperature
CN104176724B (zh) 一种掺氮碳纳米管的制备方法及其产品
KR101233420B1 (ko) 신규한 그래핀옥사이드 환원제 및 이에 의한 환원그래핀옥사이드의 제조방법
Zhang et al. A feasible synthesis of Mn3 (PO4) 2@ BSA nanoflowers and its application as the support nanomaterial for Pt catalyst
CN105322146B (zh) 一种硒化钼/碳纳米纤维/石墨烯复合材料及其制备方法
WO2015184816A1 (zh) 一种氮掺杂石墨烯片及其制备方法和应用
Yan et al. Growth and photocatalytic properties of one-dimensional ZnO nanostructures prepared by thermal evaporation
Noreen et al. Emerging 2D-Nanostructured materials for electrochemical and sensing Application-A review
CN104529455A (zh) 一种二氧化钛/二维层状碳化钛复合材料的低温制备法
KR20170052889A (ko) 다공성 탄소 재료 및 이의 제조 방법
Ullah et al. Comparative investigation of photocatalytic degradation of toluene on nitrogen doped Ta2O5 and Nb2O5 nanoparticles
Zhao et al. Synthesis and characterization of MgO/ZnO composite nanosheets for biosensor
Wei et al. Challenges and recent advancements of functionalization of two-dimensional nanostructured molybdenum trioxide and dichalcogenides
Mani et al. Selective recognition of hydrogen sulfide using template and catalyst free grown ZnO nanorods
CN109761216A (zh) 一种通用的、基于有机锌盐制备多孔碳材料的方法
Shankar et al. Electrospun tailored ZnO nanostructures–role of chloride ions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924058

Country of ref document: EP

Kind code of ref document: A1