WO2019047073A1 - 飞行器降落方法、飞行器和计算机可读存储介质 - Google Patents

飞行器降落方法、飞行器和计算机可读存储介质 Download PDF

Info

Publication number
WO2019047073A1
WO2019047073A1 PCT/CN2017/100758 CN2017100758W WO2019047073A1 WO 2019047073 A1 WO2019047073 A1 WO 2019047073A1 CN 2017100758 W CN2017100758 W CN 2017100758W WO 2019047073 A1 WO2019047073 A1 WO 2019047073A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
dynamic target
target
energy
dynamic
Prior art date
Application number
PCT/CN2017/100758
Other languages
English (en)
French (fr)
Inventor
张柯
臧波
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to CN201780001746.6A priority Critical patent/CN107820585B/zh
Priority to PCT/CN2017/100758 priority patent/WO2019047073A1/zh
Priority to EP17814288.1A priority patent/EP3480118B1/en
Priority to US15/849,066 priority patent/US10725479B2/en
Publication of WO2019047073A1 publication Critical patent/WO2019047073A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • G05D1/0676Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing
    • G05D1/0684Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing on a moving platform, e.g. aircraft carrier
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0094Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/12Target-seeking control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/80Transport or storage specially adapted for UAVs by vehicles
    • B64U80/82Airborne vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/80Transport or storage specially adapted for UAVs by vehicles
    • B64U80/84Waterborne vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/80Transport or storage specially adapted for UAVs by vehicles
    • B64U80/86Land vehicles

Definitions

  • the present application relates to the field of aircraft technology, and in particular, to an aircraft landing method, an aircraft, and a computer readable storage medium.
  • the UAVs in the prior art have been able to achieve accurate landing of drones at special return points for continuous movements such as automobiles and ships, but the technology needs to obtain motion information of moving targets through peripheral measuring devices (such as GPS). .
  • the method of merging image feature matching to obtain accurate landing points requires pre-entering the image information of the target. If the target is not equipped with a measuring device or a returning target change occurs during flight, the method will fail.
  • Aircraft and computer readable storage media are necessary to provide an aircraft landing method that does not require a moving form, a mode change, a measuring instrument, or the like, and does not need to acquire a feature image of a target area in advance, in view of the above problems in the prior art.
  • Aircraft and computer readable storage media are necessary to provide an aircraft landing method that does not require a moving form, a mode change, a measuring instrument, or the like, and does not need to acquire a feature image of a target area in advance, in view of the above problems in the prior art.
  • Aircraft and computer readable storage media are necessary to provide an aircraft landing method that does not require a moving form, a mode change, a measuring instrument, or the like, and does not need to acquire a feature image of a target area in advance, in view of the above problems in the prior art.
  • Aircraft and computer readable storage media are necessary to provide an aircraft landing method that does not require a moving form, a mode change, a measuring instrument, or the like, and does not need to
  • An aircraft landing method includes:
  • the aircraft determines a dynamic target, which is a target in motion
  • the aircraft follows the dynamic target
  • the aircraft landed on or near the dynamic target when the aircraft is near the dynamic target.
  • the method before the aircraft determines the dynamic target, the method further includes:
  • the aircraft receives information transmitted by the controller for indicating the dynamic target that the user has selected.
  • the method before the aircraft receives the information sent by the controller, the method further includes:
  • the aircraft sends an instruction to the controller to reselect the target.
  • the method before the aircraft determines the dynamic target, the method further includes:
  • the aircraft receives a landing command sent by the dynamic target, the landing command is used to indicate that the aircraft is landing on the dynamic target or in the vicinity of the dynamic target.
  • the aircraft when the aircraft approaches the dynamic target, the aircraft is landing on the dynamic target or near the dynamic target, including:
  • the aircraft landed on the dynamic target when the aircraft flew above the dynamic target.
  • the aircraft is landed on the dynamic target, including:
  • the aircraft landed on the dynamic target when the speed of the aircraft relative to the dynamic target is less than a predetermined threshold.
  • the aircraft is landed on the dynamic target, including:
  • the aircraft landed on the dynamic target when the aircraft is stationary relative to the dynamic target.
  • the method further includes:
  • the aircraft maintains its flight altitude unchanged until the aircraft flies directly above the dynamic target;
  • the aircraft adjusts its flight speed to remain relatively stationary with the dynamic target.
  • the proximity of the aircraft to the dynamic target means that the aircraft is located directly above the dynamic target.
  • the approaching the aircraft to the dynamic target means that the distance between the aircraft and the dynamic target is less than a preset threshold.
  • the aircraft is landed near the dynamic target, and includes:
  • the aircraft landed on the ground near the dynamic target.
  • the aircraft is landed near the dynamic target, and includes:
  • the aircraft landed on the surface of the water near the dynamic target.
  • the aircraft is landed on the dynamic target or near the dynamic target, include:
  • the dynamic target belongs to a category that is unsuitable for landing on the dynamic target, landing at a position where the distance from the dynamic target is less than a preset distance.
  • the dynamic target that is unsuitable for landing thereon comprises a human or other animal.
  • the method further includes:
  • the controller is sent a prompt message for prompting the user to reselect the dynamic target, and/or prompting the user that the aircraft is insufficiently energized.
  • determining whether the energy of the aircraft can support the aircraft to reach the vicinity of the dynamic target includes:
  • the aircraft predicts a flight distance required to fly according to a current motion state of the dynamic target
  • the aircraft determines energy consumed when flying a unit distance in accordance with a maximum flight speed of the aircraft
  • the aircraft calculates energy required for the aircraft to reach a region near the dynamic target based on the predicted flight distance and energy consumed when flying the unit distance;
  • determining whether the required energy is less than the remaining energy of the aircraft includes:
  • E left is the remaining energy of the aircraft, and E need is the energy required by the aircraft;
  • L is the flight distance predicted by the aircraft according to the current motion state of the dynamic target
  • d a represents the current absolute distance of the aircraft from the dynamic target
  • v a is the moving speed of the dynamic target
  • v r is the maximum flying speed of the aircraft
  • E * is the energy consumed by the aircraft at a unit distance flight when flying at the maximum flight speed
  • represents the energy output ratio, that is, the ratio of the maximum actual output energy to the battery capacity.
  • the method further includes:
  • the aircraft When 0.8 ⁇ ⁇ ⁇ 1, the aircraft is in the process of tracking the dynamic target, the aircraft sends information to the controller prompting the user that the aircraft is insufficiently energized.
  • the method further includes:
  • the aircraft maintains the dynamic target at a central region of an image captured by the aircraft.
  • the method further includes:
  • the aircraft maintains a center of the dynamic target within a range that is less than a predetermined threshold from a center of view of the aircraft.
  • the aircraft keeps the center of the dynamic target within a range that is less than a preset threshold from the center of the aircraft view angle, and includes:
  • the aircraft maintains its own center of view coincides with the center of the dynamic target.
  • the aircraft maintains its own viewing angle center coincident with the center of the dynamic target, including:
  • the aircraft maintains its own perspective center coincident with the center of the dynamic target by adjusting at least one of the following parameters:
  • the flight speed, flight height, and angle of the camera of the aircraft are the flight speed, flight height, and angle of the camera of the aircraft.
  • the method further includes:
  • the aircraft determines whether a ratio of a viewing angle ⁇ capturing the dynamic target to a maximum viewing angle ⁇ * of the camera exceeds a safe viewing angle ratio ⁇ ;
  • An aircraft comprising:
  • processor disposed within the housing, the processor for:
  • the aircraft further includes:
  • a transceiver configured to receive information sent by the controller, where the information is used to indicate the dynamic target that the user has selected.
  • the transceiver is further configured to send an instruction to the controller to reselect the target.
  • the transceiver is further configured to receive a landing instruction sent by the dynamic target, where the landing instruction is used to indicate that the aircraft is landing on the dynamic target or in the vicinity of the dynamic target.
  • the processor is specifically configured to control the aircraft to land on the dynamic target when the aircraft flies above the dynamic target.
  • the processor is configured to control the aircraft to land on the dynamic target when a speed of the aircraft relative to the dynamic target is less than a preset threshold.
  • the processor is specifically configured to control the aircraft to land on the dynamic target when the aircraft is stationary relative to the dynamic target.
  • the processor is further configured to control the flying height of the aircraft to be constant until the aircraft flies directly above the dynamic target;
  • the flight speed of the aircraft is adjusted to remain relatively stationary with the dynamic target.
  • the proximity of the aircraft to the dynamic target means that the aircraft is located directly above the dynamic target.
  • the approaching the aircraft to the dynamic target means that the distance between the aircraft and the dynamic target is less than a preset threshold.
  • the processor is specifically configured to control the aircraft to land on the ground near the dynamic target.
  • the processor is specifically configured to control the aircraft to land on a water surface near the dynamic target.
  • the processor is specifically configured to:
  • Controlling the aircraft at the location if the dynamic target belongs to a category that is unsuitable for landing on the dynamic target The distance at which the distance of the dynamic target is less than the preset distance is dropped.
  • the dynamic target that is unsuitable for landing thereon comprises a human or other animal.
  • the processor is further configured to:
  • the controller is sent a prompt message for prompting the user to reselect the dynamic target, and/or prompting the user that the aircraft is insufficiently energized.
  • the processor is specifically configured to:
  • the processor is specifically configured to:
  • E left is the remaining energy of the aircraft, and E need is the energy required by the aircraft;
  • L is the flight distance predicted by the aircraft according to the current motion state of the dynamic target
  • d a represents the current absolute distance of the aircraft from the dynamic target
  • v a is the moving speed of the dynamic target
  • v r is the maximum flying speed of the aircraft
  • E * is the energy consumed by the aircraft at a unit distance flight when flying at the maximum flight speed
  • represents the energy output ratio, that is, the ratio of the maximum actual output energy to the battery capacity.
  • the transceiver when 0.8 ⁇ ⁇ ⁇ 1, transmits information indicating that the user is insufficient in energy of the aircraft during the tracking of the dynamic target by the aircraft.
  • the processor in a process in which the aircraft follows the dynamic target, is further configured to control the aircraft such that the dynamic target is located in a central region of an image captured by the aircraft .
  • the processor in a process in which the aircraft follows the dynamic target, is further configured to control the aircraft to cause a center of the dynamic target to fall at a center of the aircraft perspective The distance is within a range less than the preset threshold.
  • the processor is specifically configured to control a center of a view of the aircraft to coincide with a center of the dynamic target.
  • the processor is specifically configured to control a center of a view of the aircraft to coincide with a center of the dynamic target by adjusting at least one of the following parameters:
  • the flight speed, flight height, and angle of the camera of the aircraft are the flight speed, flight height, and angle of the camera of the aircraft.
  • the processor is further configured to:
  • An aircraft comprising:
  • Determining module for determining a dynamic target, the dynamic target being a target in motion
  • a landing module for controlling the aircraft to land on or near the dynamic target when the aircraft is near the dynamic target.
  • the aircraft further includes a receiving module, and the receiving module is configured to receive information sent by the controller, where the information is used to indicate the dynamic target that the user has selected.
  • the aircraft further includes a transmitting module, and the transmitting module is configured to send an instruction to the controller to reselect the target.
  • the aircraft further includes a receiving module, the receiving module is configured to receive a landing command sent by the dynamic target, and the landing command is used to indicate that the aircraft is landing on the dynamic target Or near the dynamic target.
  • the landing module is specifically configured to control the aircraft to land on the dynamic target when the aircraft flies above the dynamic target.
  • the landing module is specifically configured to control the aircraft to land on the dynamic target when a speed of the aircraft relative to the dynamic target is less than a preset threshold.
  • the landing module is specifically configured to control the aircraft to land on the dynamic target when the aircraft is stationary relative to the dynamic target.
  • the following module is further configured to control the flying height of the aircraft to be constant until the aircraft flies directly above the dynamic target;
  • the flight speed of the aircraft is adjusted to remain relatively stationary with the dynamic target.
  • the proximity of the aircraft to the dynamic target means that the aircraft is located directly above the dynamic target.
  • the approaching the aircraft to the dynamic target means that the distance between the aircraft and the dynamic target is less than a preset threshold.
  • the landing module is specifically configured to control the aircraft to land on the ground near the dynamic target.
  • the landing module is specifically configured to control the aircraft to land on a water surface near the dynamic target.
  • the aircraft further includes a target category determining module, and the target category determining module is configured to determine a category to which the dynamic target belongs;
  • the landing module controls the aircraft to land at a position where the distance from the dynamic target is less than a preset distance .
  • the object that is unsuitable for landing thereon comprises a human or other animal.
  • the aircraft further includes an energy estimation module, wherein the energy estimation module is configured to determine whether the energy of the aircraft can support the aircraft to reach a vicinity of the dynamic target;
  • the sending module of the aircraft sends prompt information to the controller, the prompt information is used to prompt the user to reselect the dynamic target, and/or prompt the user to the energy of the aircraft insufficient.
  • the energy estimation module includes:
  • a distance calculation module configured to predict a flight distance required to fly according to a current motion state of the dynamic target
  • the energy calculation and determination module is used for determining Whether it is less than 1, if not, sending the prompt information to the controller by using the sending module;
  • E left is the remaining energy of the aircraft, and E need is the energy required by the aircraft;
  • L is the flight distance predicted by the aircraft according to the current motion state of the dynamic target
  • d a represents the current absolute distance of the aircraft from the dynamic target
  • v a is the moving speed of the dynamic target
  • v r is the maximum flying speed of the aircraft
  • E * is the energy consumed by the aircraft at a unit distance flight when flying at the maximum flight speed
  • represents the energy output ratio, that is, the ratio of the maximum actual output energy to the battery capacity.
  • the transmitting module when the energy calculation and determination module determines that 0.8 ⁇ ⁇ ⁇ 1, the transmitting module sends information to the controller prompting the user that the aircraft is insufficient in energy.
  • the following module is specifically configured to control the aircraft to maintain the dynamic target at a central area of an image captured by the aircraft.
  • the following module is specifically configured to control the aircraft to maintain the center of the dynamic target within a range that is less than a preset threshold from a center of view of the aircraft.
  • the following module is specifically configured to control a center of a view of the aircraft to coincide with a center of the dynamic target.
  • the following module controls the aircraft to maintain its own perspective center coincident with the center of the dynamic target by adjusting at least one of the following parameters:
  • the flight speed, flight height, and angle of the camera of the aircraft are the flight speed, flight height, and angle of the camera of the aircraft.
  • the aircraft further includes a safety angle of view ratio calculation module, wherein the safety angle of view ratio calculation module is configured to calculate a ratio of a viewing angle ⁇ capturing the dynamic target to a maximum angle of view ⁇ * of the camera;
  • the flying height of the aircraft is adjusted, where ⁇ 1.
  • An aircraft comprising a memory and a processor, the memory storing a computer program, the computer program being executed by the processor, causing the processor to perform the aircraft tracking method described above.
  • a computer readable storage medium characterized by storing a computer program, which when executed by a processor, causes the processor to perform the aircraft tracking method described above.
  • the invention does not require the motion form of the dynamic target, whether the aircraft is equipped with the measuring instrument, and the like, and does not need to acquire the feature image of the target in advance, but uses the good tracking real-time of the airborne imaging device to obtain the motion information of the target to ensure that the aircraft can reach the target.
  • the nearby area, and the process allows dynamic targets to have complex forms of motion. Good tracking and real-time, allowing the aircraft to change targets at any point in time for continuous tracking and precise landing.
  • FIG. 1 is a schematic structural view of an aircraft according to an embodiment of the present invention.
  • FIG. 2 is an application environment diagram of the aircraft shown in FIG. 1 according to the present invention
  • FIG. 3 is a schematic diagram of the aircraft shown in FIG. 1 using a binocular camera to calculate a flight distance;
  • Figure 4 is a schematic view of the aircraft of Figure 1 using the parallelogram rule to calculate the flight distance
  • Figure 5 is a schematic view of the dynamic target center of the present invention located in a central region of an image captured by the aircraft shown in Figure 1;
  • FIG. 6 is a schematic diagram of the aircraft shown in FIG. 1 in order to ensure that the viewing angle of the moving target does not exceed the safe viewing angle half angle to increase its flying height;
  • FIG. 7 is a flowchart of a method for landing an aircraft according to another embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for landing an aircraft according to another embodiment of the present invention.
  • FIG. 9 is a structural block diagram of an aircraft according to another embodiment of the present invention.
  • the present invention provides a method of controlling an aircraft to land on a dynamic target or near a dynamic target, and an aircraft that can land on or near the dynamic target.
  • the autonomous tracking of the specified dynamic target by the aircraft and the autonomous landing of the aircraft on the dynamic target or near the dynamic target can be achieved.
  • the aircraft 10 includes a casing 11, an arm 12 connected to the casing 11, a power unit 13 disposed at one end of the arm 12, a platform 15 connected to the casing 11, and a platform 13 connected thereto.
  • the imaging device 14 and the processor 16 and the transceiver 17 disposed within the housing 11.
  • the number of the arms 12 is four, that is, the aircraft is a quadrotor. In other possible embodiments, the number of the arms 12 may also be 3, 6, 8, 10, and the like.
  • the aircraft 10 can also be other movable objects such as manned aircraft, RC airplanes, unmanned airships, fixed-wing drones, and unmanned hot air balloons.
  • the power unit 13 includes a motor 132 disposed at one end of the arm 12 and a propeller 131 coupled to the rotating shaft of the motor 132.
  • the rotating shaft of the motor 132 rotates to drive the propeller 131 to rotate to provide lift to the aircraft 10.
  • the pan/tilt 15 is used to reduce or even eliminate the vibration transmitted by the power unit 13 to the image device 14 to ensure that the image device 14 can capture a stable and clear image or video.
  • the imaging device 14 may be a binocular camera, a monocular camera, an infrared imaging device, an ultraviolet imaging device, a camcorder, or the like.
  • the image device 14 may be mounted directly on the aircraft 10 or may be mounted on the aircraft 10 via a platform 15 as shown in this embodiment.
  • the platform 15 allows the imaging device 14 to rotate relative to the aircraft 10 about at least one axis.
  • FIG. 2 is an application scenario diagram of the aircraft 10 of the present embodiment.
  • the controller 20 can send control commands to the aircraft 10 to control the aircraft 10, the aircraft 10 can accept control commands sent by the controller 20 via a transceiver 17 provided inside the casing 11, and the processor 16 controls the aircraft 10 through its own vision system.
  • the camera follows the dynamic target 30 and land on the dynamic target 30 or in the vicinity of the dynamic target 30.
  • the controller 20 may specifically be at least one of a remote controller, a signal transmission tower, a satellite, and a smart terminal.
  • the dynamic target 30 refers to a target in motion, and may specifically be at least one of a ship, a car, a train, an airship, a hot air balloon, a person, or other animals in motion.
  • the transceiver 17 may be a WIFI (Wireless Fidelity) module, an LTE (Long Term Evolution) module, or a Bluetooth module or the like disposed inside the aircraft 10.
  • WIFI Wireless Fidelity
  • LTE Long Term Evolution
  • Bluetooth Wireless Fidelity
  • the processor 16 may include a plurality of functional units, such as a flight control unit for controlling the flight attitude of the aircraft, a target recognition unit for identifying the target, a tracking unit for tracking a specific target, a navigation unit for navigating the aircraft (for example, a GPS (Global Positioning System), a Beidou, and a data processing unit for processing environmental information acquired by a related airborne device (for example, the imaging device 14).
  • a flight control unit for controlling the flight attitude of the aircraft
  • a target recognition unit for identifying the target
  • a tracking unit for tracking a specific target
  • a navigation unit for navigating the aircraft
  • a GPS Global Positioning System
  • Beidou Beidou
  • data processing unit for processing environmental information acquired by a related airborne device (for example, the imaging device 14).
  • the aircraft 10 transmits the picture or video captured by the image device 14 to the controller 20 through the transceiver 17, and the controller 20 receives the picture or video returned by the aircraft 10 and displays it to the user through a display device (such as a display screen).
  • a display device such as a display screen.
  • the frame, voice or other possible way selects the dynamic target that needs to be tracked, and the controller 20 sends information to the aircraft 10 indicating that the user has selected the dynamic target.
  • the aircraft 10 receives information of the dynamic target that the user has selected through the transceiver 17 (e.g., WIFI module) and determines the dynamic target 30.
  • the dynamic target transmission tracking and landing command may also be sent to the aircraft, and the aircraft receives the tracking and landing command through the transceiver, and tracks the dynamic target according to the tracking and landing command and falls on the dynamic target or dynamic Near the target.
  • the processor 16 determines whether the energy of the aircraft 10 can support the aircraft 10 to fly to a nearby area of the dynamic target 30.
  • the aircraft 10 energy refers to the amount of electricity or fuel that supports the aircraft 10 in performing a series of operations such as a mission, a tracking mission, or a landing action.
  • the processor 16 can determine whether the energy of the aircraft 10 can support the aircraft flying into the vicinity of the dynamic target 30 according to the following steps:
  • the aircraft 10 can utilize image information of a target acquired by a distance-capable imaging device (eg, a binocular camera 512, 514) (eg, an imaging relationship of a dynamic target in two consecutive frames captured by the imaging device). Solving the center position of the dynamic target 30.
  • the motion information of the aircraft 10 itself is obtained by the onboard sensor, and the image transmission is performed at a certain frame rate, so that the position difference of the dynamic target 30 between two consecutive frames can be calculated.
  • the moving speed information of the dynamic target 30 is then calculated as the distance required to fly.
  • R represents the current position of the aircraft
  • T represents the current position of the dynamic target
  • T' represents the position of the next moment of the dynamic target
  • V1 is the speed of the dynamic target 30 relative to the aircraft 10 on the horizontal projection
  • V2 is The speed at which the aircraft 10 directly flies to the dynamic target 30 can be solved by the parallelogram rule to obtain the combined velocity V. And calculate the distance you need to fly.
  • S3. Determine whether the required energy is less than the remaining energy of the aircraft 10. If not, send the prompt information to the controller 20 through the transceiver 17 of the aircraft 10.
  • the prompt information is used to prompt the user to reselect the dynamic target, or to prompt the user that the aircraft 10 is insufficiently energized, or to prompt the user to reselect the dynamic target while prompting the user that the aircraft 10 is insufficiently energized.
  • the present invention proposes an energy threshold factor ⁇ for characterizing the relationship between required energy and residual energy, and the processor 16 determines whether the aircraft has sufficient energy to fly near the dynamic target by determining whether ⁇ is less than one.
  • E left is the remaining energy of the aircraft 10
  • E need is the energy required by the aircraft 10.
  • E need LE *
  • L is the flight distance predicted by the aircraft 10 according to the current motion state of the dynamic target 30,
  • d a represents the current absolute distance of the aircraft 10 from the dynamic target 30
  • v a is the moving speed of the dynamic target 30
  • v r is the maximum flying speed of the aircraft 10 .
  • E * is the energy consumed by the aircraft 10 to fly at a unit distance according to the maximum flight speed;
  • represents the energy output ratio, that is, the ratio of the maximum actual output energy of the battery to the battery capacity.
  • the processor 16 inside the aircraft 10 sends a message to the controller 20 via the transceiver 17 to prompt the user to reselect the dynamic target. Or prompting the user of the insufficient energy of the aircraft 10, or prompting the user that the energy of the aircraft 10 is insufficient and prompting the user to reselect the dynamic target.
  • the processor 16 determines that 0.8 ⁇ ⁇ ⁇ 1, it indicates that the energy consumed by the aircraft 10 to fly to the vicinity of the dynamic target 30 is close to or reaches the critical value of the remaining energy, and the aircraft 10 will still follow the dynamic target 30. However, a prompt or warning of insufficient energy of the aircraft 10 will be continuously sent to the controller 20.
  • the processor 10 also needs to control the aircraft 10 such that the dynamic target 30 is located within the central region of the image captured by the aircraft 10. Keeping the dynamic target 30 in the central region of the image captured by the aircraft 10 is more advantageous for the aircraft 10 to track the dynamic target 30.
  • the center of the dynamic target 30 falls within a range that is less than a predetermined threshold from the center of view of the aircraft 10.
  • the center of view of the aircraft 10 coincides with the center of the dynamic target 30.
  • processor 16 controls the center of view of aircraft 10 to coincide with the center of dynamic target 30 by adjusting at least one of the following parameters:
  • the flight speed of the aircraft 10 the flying height, and the angle of the onboard camera.
  • the processor 16 also needs to continuously determine whether the ratio of the angle of view ⁇ of the captured dynamic target 30 to the maximum angle of view ⁇ * of the onboard camera of the aircraft 10 exceeds the safety angle of view ratio ⁇ , where ⁇ 1 If the result is yes, the processor 16 adjusts the height of the aircraft.
  • the concept of the safety angle of view ratio is proposed in this paper to ensure that the aircraft 10 tracks the robustness of the dynamic target 30, and avoids the loss of the dynamic target 30 by the size of the dynamic target 30 in the captured image exceeding the angle of view of the camera.
  • the processor 16 controls the aircraft 10 to keep the center of view of the aircraft 10 coincident with the center of the dynamic target 30, when capturing the viewing angle half angle ⁇ of the dynamic target 30 image and the maximum viewing angle half angle of the camera.
  • the safety angle of view ratio ⁇ is exceeded, that is, ⁇ / ⁇ * > ⁇ ( ⁇ ⁇ 1)
  • the processor 16 controls the aircraft 10 to raise the height of the aircraft 10 without changing the horizontal motion state, ensuring that the dynamic target 30 frame is always located at the camera.
  • the maximum captured viewing angle of the airborne camera is 130° and the safety viewing angle ratio is 0.8.
  • ⁇ * is the maximum viewing angle half angle of the camera, and ⁇ ' is the safe viewing angle half angle.
  • the processor 16 determines that the ratio of the angle of view of the captured dynamic target 30 to the maximum angle of view of the aircraft 10 onboard camera does not exceed the safe viewing angle ratio, the processor 16 needs to further determine the category to which the dynamic target 30 belongs to determine whether the dynamic target 30 belongs to The category on which the aircraft 10 falls is suitable. Unsuitable for the aircraft 10 to land on it
  • the target 30 is typically a target that would cause serious damage to the dynamic target 30 or cause serious damage to the aircraft 10 itself once the aircraft has landed thereon, and may include humans or other animals.
  • the processor 16 may first identify the determined dynamic target 30 and classify the dynamic target 30. Once the dynamic target 30 is classified as unsuitable for aircraft landing, the processor 16 controls the aircraft 10 to land on the dynamic target. A nearby area of 30, or an instruction to reselect the target is sent to the controller 20 via the transceiver 17, prompting the user to reselect the dynamic target that needs to be tracked and landed.
  • the control aircraft 10 is landed on the dynamic target 30.
  • the approach of the aircraft 10 to the dynamic target 30 includes the aircraft 10 being directly above the dynamic target 30 or the distance of the aircraft 10 from the dynamic target 30 being less than a predetermined threshold.
  • the processor 16 may control the aircraft 10 to fly above the dynamic target 30 and then land on the dynamic target 30. Specifically, the processor 16 controls the flight altitude of the aircraft 10 to be constant until the aircraft 10 flies directly above the dynamic target 30, and adjusts the flight speed of the aircraft 10 when the speed of the aircraft 10 relative to the dynamic target 30 is less than a preset threshold. For example, when the aircraft 10 is stationary relative to the dynamic target 30, the aircraft 10 is controlled to land on the dynamic target 30.
  • the processor 16 controls the aircraft 10 to land in the vicinity of the dynamic target 30. At this point, processor 16 may control aircraft 10 to land on the ground or water surface or other suitable location near dynamic target 30.
  • the aircraft landing method includes the following steps:
  • the aircraft receives dynamic target information that the user has selected.
  • it may also be a dynamic target transmission tracking and landing command to the aircraft.
  • the aircraft determines the dynamic target.
  • the aircraft determines whether the energy of the aircraft can support the aircraft to fly to a nearby area of the dynamic target.
  • the aircraft can determine whether its energy can support the aircraft to fly to the vicinity of the dynamic target can be judged according to the following steps:
  • the present invention proposes an energy threshold factor ⁇ for characterizing the relationship between required energy and residual energy, and the aircraft determines whether the aircraft has sufficient energy to fly near the dynamic target by determining whether ⁇ is less than one.
  • E left is the remaining energy of the aircraft
  • E need is the energy required by the aircraft.
  • E need LE *
  • L is the flight distance predicted by the aircraft according to the current motion state of the dynamic target 3
  • d a represents the current absolute distance between the aircraft and the dynamic target
  • v a is the moving speed of the dynamic target
  • v r is the maximum flying speed of the aircraft.
  • E * is the energy consumed by the aircraft to fly at a unit distance according to the maximum flight speed;
  • represents the energy output ratio, that is, the ratio of the maximum actual output energy to the battery capacity.
  • step S104 that is, the aircraft sends a prompt message to the user.
  • the prompt information includes prompting the user to reselect the dynamic target, or prompting the user to insufficient energy of the aircraft, or prompting the user to insufficient energy of the aircraft and prompting the user to reselect the dynamic target.
  • step S105 the aircraft follows the dynamic target.
  • the aircraft continuously determines whether the ratio of the angle of view capturing the dynamic target to the maximum angle of view of the aircraft's onboard camera exceeds the safe viewing angle ratio.
  • step S107 is executed, that is, the aircraft adjusts its flying height, and steps S105 and S106 are performed again.
  • step S108 is performed.
  • the aircraft determines whether the dynamic target belongs to a category that is unsuitable for landing on the dynamic target.
  • step S109 is executed, that is, the aircraft is landed on the dynamic target.
  • step S110 or step S104 is performed.
  • a method for landing an aircraft according to an embodiment of the present invention is performed by an aircraft, and the method includes:
  • the aircraft determines a dynamic target, and the dynamic target is a target in motion.
  • the aircraft determines the dynamic target, which may be determined by the remote controller transmitting the dynamic target information selected by the user, or may be determined by the follow-up and landing commands sent by the dynamic target to the aircraft.
  • the aircraft When the dynamic target is suitable to land on it, the aircraft landed on the dynamic target. When the dynamic target is not suitable for landing thereon (eg, a person or an animal), the aircraft landed on the ground or water surface near the dynamic target.
  • Figure 9 is a block diagram showing the structure of an aircraft 20 in a third embodiment of the present invention.
  • the aircraft 20 includes:
  • a determining module 203 configured to determine a dynamic target
  • a follower module 205 for following the dynamic target
  • the landing module 208 is configured to control the aircraft to land on the dynamic target or in the vicinity of the dynamic target when the aircraft approaches the dynamic target.
  • the following module is further configured to control the flight altitude of the aircraft to be constant until the aircraft flies directly above the dynamic target;
  • the following module is specifically used to control the aircraft to keep the dynamic target in a central region of the image captured by the aircraft.
  • the following module is specifically configured to control the aircraft to maintain the center of the dynamic target within a range that is less than a predetermined threshold from the center of the aircraft's viewing angle.
  • the following module is specifically configured to control the center of the perspective of the aircraft to coincide with the center of the dynamic target.
  • the following module controls the aircraft to maintain its center of view coincides with the center of the dynamic target by adjusting at least one of the following parameters:
  • the flight speed of the aircraft the flying height and the angle of the camera.
  • the landing module is specifically used to control the aircraft to land on the dynamic target.
  • the landing module is specifically configured to control the aircraft to land on the dynamic target when the speed of the aircraft relative to the dynamic target is less than a preset threshold.
  • the landing module is specifically configured to control the aircraft to land on the dynamic target when the aircraft is stationary relative to the dynamic target.
  • the proximity of the aircraft to the dynamic target means that the aircraft is directly above the dynamic target.
  • the proximity of the aircraft to the dynamic target means that the distance between the aircraft and the dynamic target is less than a preset threshold.
  • the aircraft 20 may further include:
  • the receiving module 201 is configured to receive information sent by the controller or the dynamic target, where the information is used to indicate the dynamic target that the user has selected, or to receive a landing instruction sent by the dynamic target, where the landing instruction is used to indicate the aircraft Landing on a dynamic target or near a dynamic target;
  • the sending module 202 is configured to send an instruction to the controller to reselect the target;
  • the energy estimation module 204 is configured to determine whether the energy of the aircraft can support the aircraft to reach the vicinity of the dynamic target. If the judgment result of the energy estimation module is negative, the transmitting module of the aircraft sends a prompt message to the controller, and the prompt information is used for prompting The user reselects the dynamic target and/or prompts the user that the aircraft is not energetic.
  • the energy estimation module 204 includes:
  • a distance calculation module 204a configured to predict a flight distance required to fly according to a current motion state of the dynamic target
  • the energy calculation and judgment module 204b is configured to calculate the energy consumed by the aircraft when flying the unit distance according to the maximum flight speed of the aircraft;
  • the follower module 205 is for following the dynamic target.
  • the energy calculation and determination module is used to determine Whether it is less than 1, if not, sending the prompt information to the controller through the sending module;
  • E left is the remaining energy of the aircraft and E need is the energy required by the aircraft;
  • L is the flight distance predicted by the aircraft according to the current motion state of the dynamic target
  • d a represents the current absolute distance between the aircraft and the dynamic target
  • v a is the moving speed of the dynamic target
  • v r is the maximum flying speed of the aircraft
  • E * is the energy consumed by the aircraft at a unit distance flight when flying at the maximum flight speed
  • represents the energy output ratio, that is, the ratio of the maximum actual output energy to the battery capacity.
  • the sending module sends information to the controller that indicates that the energy of the user aircraft is insufficient.
  • the safety angle of view ratio calculating module 206 is configured to calculate a ratio of the angle of view ⁇ capturing the dynamic target to the maximum angle of view ⁇ * of the camera, and adjust the flying height of the aircraft when the ratio exceeds the safety angle of view ratio ⁇ , where ⁇ 1;
  • the target category determining module 207 is configured to determine a category to which the dynamic target belongs; when the target category determining module determines that the dynamic target belongs to a category on which the aircraft is unsuitable to land, the landing module controls the aircraft to be at a distance from the dynamic target that is less than a preset distance. Landing at the location.
  • the target that is unsuitable for landing thereon comprises a human or other animal.
  • the determining module 203, the landing module 208, the target class determining module 207, the following module 205, and the security view ratio calculating module 206, the energy estimating module 204 may be processors on the aircraft. (processor) or Field Programmable Gate Array (FPGA).
  • the determining module 203, the target class determining module 207, the following module 205, and the security view ratio calculating module 206 are all visual chips on the aircraft.
  • the receiving module 201 and the sending module 202 may be a WIFI module, a Bluetooth module, an LTE module, etc. in the aircraft, and the energy estimating module 204 may be a battery chip in the aircraft.
  • the present invention also provides an aircraft comprising a memory and a processor having a computer program stored therein, the computer program being executed by the processor, causing the processor to perform the method described in the embodiment shown in FIG. 7 or FIG. .
  • the present invention also proposes a computer readable storage medium storing a computer program, which when executed by a processor, causes the processor to perform the method described in the embodiment shown in FIG. 7 or FIG. .
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or the like.

Abstract

一种飞行器降落方法、飞行器和计算机可读存储介质。飞行器降落方法包括:飞行器确定动态目标,所述动态目标为运动中的目标;所述飞行器跟随所述动态目标;当所述飞行器靠近所述动态目标时,所述飞行器降落在所述动态目标上或者所述动态目标附近。该降落方法利用机载影像设备良好的跟踪实时性获取目标的运动信息,保证飞行器能够抵达目标附近区域,且该过程允许动态目标具有复杂的运动形式,允许飞行器在飞行的任意时间点更换目标,能够实现持续跟踪和精准着陆。

Description

飞行器降落方法、飞行器和计算机可读存储介质 技术领域
本申请涉及飞行器技术领域,特别是涉及一种飞行器降落方法、飞行器和计算机可读存储介质。
背景技术
伴随着视觉算法的发展及该视觉算法在无人机(UAV,Unmanned Aerial Vehicle)平台上的应用,智能跟踪具备了良好的跟踪效果。而如何实现从跟踪到着陆的全程无人化是提高无人机智能化的重要方向。在现有的无人机技术中,一键返航能够仅根据用户的一次指令自主飞行至指定地点,飞行及着陆过程不再需要用户参与,但是该技术局限于固定位置的返航着陆。
目前,现有技术中的无人机已经能实现无人机精准着陆在汽车、轮船等持续运动着的特殊返航点上,但该技术需要通过外围测量装置(如GPS)获得移动目标的运动信息。另外,融合图像特征匹配从而获取精准落点的方法需要预先输入目标的图像信息,如果目标未搭载测量装置或飞行过程中发生返航目标变化,该方法便会失效。
发明内容
基于此,有必要针对现有技术中的上述问题,提供一种对目标的运动形式、模式变化、是否搭载测量仪器件等不做要求,亦无需提前获取目标区域的特征图像的飞行器降落方法、飞行器和计算机可读存储介质。
一种飞行器降落方法,包括:
飞行器确定动态目标,所述动态目标为运动中的目标;
所述飞行器跟随所述动态目标;
当所述飞行器靠近所述动态目标时,所述飞行器降落在所述动态目标上或者所述动态目标附近。
在本发明的一实施例中,在所述飞行器确定动态目标之前,所述方法还包括:
所述飞行器接收控制器发送的信息,所述信息用于指示用户已选择的所述动态目标。
在本发明的一实施例中,在所述飞行器接收所述控制器发送的信息之前,所述方法还包括:
所述飞行器向控制器发送重新选择目标的指令。
在本发明的一实施例中,在所述飞行器确定动态目标之前,所述方法还包括:
所述飞行器接收所述动态目标发送的降落指令,所述降落指令用于指示所述飞行器降落在所述动态目标上或者所述动态目标附近。
在本发明的一实施例中,当所述飞行器靠近所述动态目标时,所述飞行器降落在所述动态目标上或者所述动态目标附近,包括:
当所述飞行器飞至所述动态目标上方时,所述飞行器降落在所述动态目标上。
在本发明的一实施例中,所述飞行器降落在所述动态目标上,包括:
当所述飞行器相对于所述动态目标的速度小于预设阈值时,所述飞行器降落在所述动态目标上。
在本发明的一实施例中,所述飞行器降落在所述动态目标上,包括:
当所述飞行器相对于所述动态目标静止时,所述飞行器降落在所述动态目标上。
在本发明的一实施例中,所述方法还包括:
所述飞行器保持其飞行高度不变直至所述飞行器飞至所述动态目标正上方;
所述飞行器调整其飞行速度,以便与所述动态目标保持相对静止。
在本发明的一实施例中,所述飞行器靠近所述动态目标是指所述飞行器位于所述动态目标的正上方。
在本发明的一实施例中,所述飞行器靠近所述动态目标是指所述飞行器与所述动态目标的距离小于预设阈值。
在本发明的一实施例中,所述飞行器降落在所述动态目标附近,包括:
所述飞行器降落在所述动态目标附近的地面上。
在本发明的一实施例中,所述飞行器降落在所述动态目标附近,包括:
所述飞行器降落在所述动态目标附近的水面上。
在本发明的一实施例中,所述飞行器降落在所述动态目标上或者所述动态目标附近, 包括:
确定所述动态目标所属的类别;
若所述动态目标属于不适宜降落在所述动态目标上的类别,则在与所述动态目标的距离小于预设距离的位置处降落。
在本发明的一实施例中,所述不适宜降落在其上的动态目标包括人或其他动物。
在本发明的一实施例中,在所述飞行器确定所述动态目标之后,所述方法还包括:
判断所述飞行器的能量是否能够支持所述飞行器抵达所述动态目标附近区域;
若判断结果为否,则向控制器发送提示信息,所述提示信息用于提示用户重新选择动态目标,和/或提示用户所述飞行器的能量不足。
在本发明的一实施例中,判断所述飞行器的能量是否能够支持所述飞行器抵达所述动态目标附近区域,包括:
所述飞行器根据所述动态目标的当前运动状态,预测需要飞行的飞行距离;
所述飞行器确定按照所述飞行器的最大飞行速度飞行单位距离时所消耗的能量;
所述飞行器根据所述预测的飞行距离以及飞行单位距离时所消耗的能量,计算所述飞行器抵达所述动态目标附近区域所需的能量;
判断所述所需的能量是否小于所述飞行器的剩余能量,若否,则向所述控制器发送所述提示信息。
在本发明的一实施例中所述判断所述所需的能量是否小于所述飞行器的剩余能量,包括:
判断
Figure PCTCN2017100758-appb-000001
是否小于1,若否,则向所述控制器发送所述提示信息;
其中,Eleft为所述飞行器的剩余能量,Eneed为所述飞行器所需的能量;
其中,Eneed=LE*,L为所述飞行器根据所述动态目标的当前运动状态预测的飞行距离,
Figure PCTCN2017100758-appb-000002
其中da表示所述飞行器与所述动态目标当前的绝对距离,va为所述动态目标的移动速度,vr为所述飞行器的最大飞行速度;
E*为所述飞行器按照所述最大飞行速度飞行时单位距离飞行所消耗的能量;
η表示能量输出比,即最大实际输出能量与电池容量的比值。
在本发明的一实施例中,所述方法还包括:
当0.8<λ<1时,所述飞行器在跟踪所述动态目标的过程中,所述飞行器向控制器发送提示用户所述飞行器的能量不足的信息。
在本发明的一实施例中,在所述飞行器跟随所述动态目标的过程中,所述方法还包括:
所述飞行器保持所述动态目标位于所述飞行器所拍摄的图像的中心区域。
在本发明的一实施例中,在所述飞行器跟随所述动态目标的过程中,所述方法还包括:
所述飞行器保持所述动态目标的中心落在与所述飞行器视角中心的距离小于预设阈值的范围内。
在本发明的一实施例中,所述飞行器保持所述动态目标的中心落在与所述飞行器视角中心的距离小于预设阈值的范围内,包括:
所述飞行器保持自身的视角中心与所述动态目标的中心重合。
在本发明的一实施例中,所述飞行器保持自身的视角中心与所述动态目标的中心重合,包括:
所述飞行器通过调整以下参数中的至少一个,保持自身视角中心与所述动态目标的中心重合:
所述飞行器的飞行速度、飞行高度以及摄像头的角度。
在本发明的一实施例中,该方法还包括:
所述飞行器判断捕捉所述动态目标的视角α与摄像头的最大视角α*的比值是否超出安全视角比ε;
若结果为是,则所述飞行器调整其飞行高度,其中,ε<1。
一种飞行器,包括:
壳体;
与所述壳体相连的机臂;
设置在所述机臂上的动力装置;以及
设置在所述壳体内的处理器,所述处理器用于:
确定动态目标,所述动态目标为运动中的目标;
控制所述无人机跟随所述动态目标;以及
当所述飞行器靠近所述动态目标时,控制所述飞行器降落在所述动态目标上或者所述 动态目标附近。
在本发明的一实施例中,所述飞行器还包括:
收发器,用于接收控制器发送的信息,所述信息用于指示用户已选择的所述动态目标。
在本发明的一实施例中,所述收发器还用于向所述控制器发送重新选择目标的指令。
在本发明的一实施例中,所述收发器还用于接收所述动态目标发送的降落指令,所述降落指令用于指示所述飞行器降落在所述动态目标上或者所述动态目标附近。
在本发明的一实施例中,当所述飞行器飞至所述动态目标上方时,所述处理器具体用于控制所述飞行器降落在所述动态目标上。
在本发明的一实施例中,所述处理器用于在所述飞行器相对于所述动态目标的速度小于预设阈值时,控制所述飞行器降落在所述动态目标上。
在本发明的一实施例中,所述处理器具体用于在所述飞行器相对于所述动态目标静止时,控制所述飞行器降落在所述动态目标上。
在本发明的一实施例中,所述处理器还用于控制所述飞行器的飞行高度不变直至所述飞行器飞至所述动态目标正上方;以及
调整所述飞行器的飞行速度,以便与所述动态目标保持相对静止。
在本发明的一实施例中,所述飞行器靠近所述动态目标是指所述飞行器位于所述动态目标的正上方。
在本发明的一实施例中,所述飞行器靠近所述动态目标是指所述飞行器与所述动态目标的距离小于预设阈值。
在本发明的一实施例中,所述处理器具体用于控制所述飞行器降落在所述动态目标附近的地面上。
在本发明的一实施例中,所述处理器具体用于控制所述飞行器降落在所述动态目标附近的水面上。
在本发明的一实施例中,所述处理器具体用于:
确定所述动态目标所属的类别;
若所述动态目标属于不适宜降落在所述动态目标上的类别,则控制所述飞行器在与所 述动态目标的距离小于预设距离的位置处降落。
在本发明的一实施例中,所述不适宜降落在其上的动态目标包括人或其他动物。
在本发明的一实施例中,所述处理器还用于:
判断所述飞行器的能量是否能够支持所述飞行器抵达所述动态目标附近区域;
若判断结果为否,则向控制器发送提示信息,所述提示信息用于提示用户重新选择动态目标,和/或提示用户所述飞行器的能量不足。
在本发明的一实施例中,所述处理器具体用于:
根据所述动态目标的当前运动状态,预测需要飞行的飞行距离;
确定按照所述飞行器的最大飞行速度飞行单位距离时所消耗的能量;
根据所述预测的飞行距离以及飞行单位距离时所消耗的能量,计算所述飞行器抵达所述动态目标附近区域所需的能量;以及
判断所述所需的能量是否小于所述飞行器的剩余能量,若否,则通过所述飞行器的收发器向所述控制器发送所述提示信息。
在本发明的一实施例中,所述处理器具体用于:
判断
Figure PCTCN2017100758-appb-000003
是否小于1,若否,则通过所述收发器向所述控制器发送所述提示信息;
其中,Eleft为所述飞行器的剩余能量,Eneed为所述飞行器所需的能量;
其中,Eneed=LE*,L为所述飞行器根据所述动态目标的当前运动状态预测的飞行距离,
Figure PCTCN2017100758-appb-000004
其中da表示所述飞行器与所述动态目标当前的绝对距离,va为所述动态目标的移动速度,vr为所述飞行器的最大飞行速度;
E*为所述飞行器按照所述最大飞行速度飞行时单位距离飞行所消耗的能量;
η表示能量输出比,即最大实际输出能量与电池容量的比值。
在本发明的一实施例中,当0.8<λ<1时,在所述飞行器跟踪所述动态目标的过程中,所述收发器向控制器发送提示用户所述飞行器的能量不足的信息。
在本发明的一实施例中,在所述飞行器跟随所述动态目标的过程中,所述处理器还用于控制所述飞行器以使所述动态目标位于所述飞行器所拍摄的图像的中心区域。
在本发明的一实施例中,在所述飞行器跟随所述动态目标的过程中,所述处理器还用于控制所述飞行器以使所述动态目标的中心落在与所述飞行器视角中心的距离小于预设阈值的范围内。
在本发明的一实施例中,所述处理器具体用于控制所述飞行器的视角中心与所述动态目标的中心重合。
在本发明的一实施例中,所述处理器具体用于通过调整以下参数中的至少一个,控制所述飞行器的视角中心与所述动态目标的中心重合:
所述飞行器的飞行速度、飞行高度以及摄像头的角度。
在本发明的一实施例中,所述处理器还用于:
判断捕捉所述动态目标的视角α与摄像头的最大视角α*的比值是否超出安全视角比ε;
若结果为是,则调整所述飞行器的飞行高度,其中,ε<1。
一种飞行器,包括:
确定模块:用于确定动态目标,所述动态目标为运动中的目标;
跟随模块:用于跟随所述动态目标;以及
降落模块:用于当所述飞行器靠近所述动态目标时,控制所述飞行器降落在所述动态目标上或者所述动态目标附近。
在本发明的一实施例中,所述飞行器还包括接收模块,所述接收模块用于接收控制器发送的信息,所述信息用于指示用户已选择的所述动态目标。
在本发明的一实施例中,所述飞行器还包括发送模块,所述发送模块用于向所述控制器发送重新选择目标的指令。
在本发明的一实施例中,所述飞行器还包括接收模块,所述接收模块用于接收所述动态目标发送的降落指令,所述降落指令用于指示所述飞行器降落在所述动态目标上或者所述动态目标附近。
在本发明的一实施例中,当所述飞行器飞至所述动态目标上方时,所述降落模块具体用于控制所述飞行器降落在所述动态目标上。
在本发明的一实施例中,所述降落模块具体用于在所述飞行器相对于所述动态目标的速度小于预设阈值时,控制所述飞行器降落在所述动态目标上。
在本发明的一实施例中,所述降落模块具体用于在所述飞行器相对于所述动态目标静止时,控制所述飞行器降落在所述动态目标上。
在本发明的一实施例中,所述跟随模块还用于控制所述飞行器的飞行高度不变直至所述飞行器飞至所述动态目标正上方;以及
调整所述飞行器的飞行速度,以便与所述动态目标保持相对静止。
在本发明的一实施例中,所述飞行器靠近所述动态目标是指所述飞行器位于所述动态目标的正上方。
在本发明的一实施例中,所述飞行器靠近所述动态目标是指所述飞行器与所述动态目标的距离小于预设阈值。
在本发明的一实施例中,所述降落模块具体用于控制所述飞行器降落在所述动态目标附近的地面上。
在本发明的一实施例中,所述降落模块具体用于控制所述飞行器降落在所述动态目标附近的水面上。
在本发明的一实施例中,所述飞行器还包括目标类别确定模块,所述目标类别确定模块用于确定所述动态目标所属的类别;
当所述目标类别确定模块确定所述动态目标属于所述飞行器不适宜降落在其上的类别时,所述降落模块控制所述飞行器在与所述动态目标的距离小于预设距离的位置处降落。
在本发明的一实施例中,所述不适宜降落在其上的目标包括人或其他动物。
在本发明的一实施例中,所述飞行器还包括能量预估模块,所述能量预估模块用于判断所述飞行器的能量是否能够支持所述飞行器抵达所述动态目标附近区域;
若所述能量预估模块的判断结果为否,则所述飞行器的发送模块向控制器发送提示信息,所述提示信息用于提示用户重新选择动态目标,和/或提示用户所述飞行器的能量不足。
在本发明的一实施例中,所述能量预估模块包括:
距离计算模块,用于根据所述动态目标的当前运动状态,预测需要飞行的飞行距离;
能量计算及判断模块,用于:
计算所述飞行器按照所述飞行器的最大飞行速度飞行单位距离时所消耗的能量;
根据所述预测的飞行距离以及飞行单位距离时所消耗的能量,计算所述飞行器抵达所述动态目标附近区域所需的能量;以及
判断所述所需的能量是否小于所述飞行器的剩余能量,若否,则通过所述飞行器的发送模块向所述控制器发送所述提示信息。
在本发明的一实施例中,所述能量计算及判断模块用于判断
Figure PCTCN2017100758-appb-000005
是否小于1,若否,则通过所述发送模块向所述控制器发送所述提示信息;
其中,Eleft为所述飞行器的剩余能量,Eneed为所述飞行器所需的能量;
其中,Eneed=LE*,L为所述飞行器根据所述动态目标的当前运动状态预测的飞行距离,
Figure PCTCN2017100758-appb-000006
其中da表示所述飞行器与所述动态目标当前的绝对距离,va为所述动态目标的移动速度,vr为所述飞行器的最大飞行速度;
E*为所述飞行器按照所述最大飞行速度飞行时单位距离飞行所消耗的能量;
η表示能量输出比,即最大实际输出能量与电池容量的比值。
在本发明的一实施例中,当所述能量计算及判断模块判断0.8<λ<1时,所述发送模块向控制器发送提示用户所述飞行器的能量不足的信息。
在本发明的一实施例中,所述跟随模块具体用于控制所述飞行器以保持所述动态目标位于所述飞行器所拍摄的图像的中心区域。
在本发明的一实施例中,所述跟随模块具体用于控制所述飞行器以保持所述动态目标的中心落在与所述飞行器视角中心的距离小于预设阈值的范围内。
在本发明的一实施例中,所述跟随模块具体用于控制所述飞行器的视角中心与所述动态目标的中心重合。
在本发明的一实施例中,所述跟随模块通过调整以下参数中的至少一个,控制所述飞行器以保持自身视角中心与所述动态目标的中心重合:
所述飞行器的飞行速度、飞行高度以及摄像头的角度。
在本发明的一实施例中,所述飞行器还包括安全视角比计算模块,所述安全视角比计算模块用于计算捕捉所述动态目标的视角α与摄像头的最大视角α*的比值;
当该比值超过安全视角比ε时,调整所述飞行器的飞行高度,其中,ε<1。
一种飞行器,包括存储器和处理器,存储器中存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行上述所述的飞行器跟踪方法。
一种计算机可读存储介质,其特征在于,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行上述所述的飞行器跟踪方法。
本发明对动态目标的运动形式、飞行器是否搭载测量仪器等没有要求,亦无需提前获取目标的特征图像,而是利用机载影像设备良好的跟踪实时性获取目标的运动信息,保证飞行器能够抵达目标附近区域,且该过程允许动态目标具有复杂的运动形式。良好的跟踪实时性,允许飞行器在飞行的任意时间点更换目标,能够实现持续跟踪和精准着陆。
附图说明
图1为本发明一实施例中一种飞行器的结构示意图;
图2为本发明图1所示飞行器的应用环境图;
图3为图1所示飞行器利用双目摄像头计算飞行距离的示意图;
图4为图1所示飞行器利用平行四边形法则计算飞行距离的示意图;
图5为本发明的动态目标中心位于图1所示飞行器所捕获图像的中心区域内的示意图;
图6为图1所示飞行器为保证捕捉动态目标的视角半角不超过安全视角半角以升高其飞行高度的示意图;
图7为本发明另一实施例中一种飞行器降落方法的流程图;
图8为本发明另一实施例中一种飞行器降落方法的流程图;
图9为本发明另一实施例中一种飞行器的结构框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并 不用于限定本发明。
本发明提供了一种控制飞行器降落在动态目标上或者动态目标附近的方法、以及可以降落在动态目标上或者动态目标附近的飞行器。通过控制该飞行器,可以实现飞行器对指定动态目标的自主跟踪及飞行器自主降落于动态目标上或者动态目标附近。
如图1所示,飞行器10包括壳体11、与壳体11相连的机臂12、设置在机臂12一端的动力装置13、与壳体11相连的云台15、与云台13相连的影像设备14以及设置在壳体11内的处理器16和收发器17。
在本实施例中,机臂12的数量为4,即该飞行器为四旋翼飞行器,在其他可能的实施例中,机臂12的数量也可以为3、6、8、10等。飞行器10还可以是其他可移动物体,例如载人飞行器、航模、无人飞艇、固定翼无人机和无人热气球等。
动力装置13包括设置在机臂12一端的电机132以及与电机132的转轴相连的螺旋桨131。电机132的转轴转动以带动螺旋桨131旋转从而给飞行器10提供升力。
云台15用于减轻甚至消除动力装置13传递给影像设备14的振动,以保证影像设备14能够拍摄出稳定清晰的图像或视频。
影像设备14可以是双目摄像头、单目摄像头、红外线影像设备、紫外线影像设备、摄录机等类似的设备。影像设备14可以直接搭载在飞行器10上,也可以通过如本实施例所示的云台15搭载在飞行器10上,云台15允许影像设备14相对于飞行器10绕至少一个轴转动。
图2为本实施例的飞行器10的一种应用场景图。控制器20可以向飞行器10发送控制指令来控制飞行器10,飞行器10可以通过设于壳体11内部的收发器17接受控制器20发送的控制指令,处理器16控制飞行器10通过自身配备的视觉系统,例如相机,跟随动态目标30并降落在动态目标30上或者动态目标30的附近。
控制器20具体可以是遥控器、信号发射塔、卫星和智能终端等中的至少一种。
动态目标30是指运动中的目标,具体可以是运动中的轮船、汽车、火车、飞艇和热气球、人或其他动物等中的至少一种。
在本发明的一实施例中,收发器17可以是设置在飞行器10内部的WIFI(Wireless Fidelity)模块、LTE(Long Term Evolution)模块或者蓝牙模块等。
处理器16可以包括多个功能性单元,如,用于控制飞行器飞行姿态的飞行控制单元、用于识别目标的目标识别单元、用于跟踪特定目标的跟踪单元、用于导航飞行器的导航单元(例如GPS(Global Positioning System)、北斗)、以及用于处理相关机载设备(如,影像设备14)所获取的环境信息的数据处理单元等。
飞行器10通过收发器17将影像设备14捕获的图片或视频发送给控制器20,控制器20接收飞行器10传回的图片或视频并通过显示装置(例如显示屏)显示给用户,用户通过点击、画框、语音或其他可能的方式选择需要跟踪的动态目标,控制器20向飞行器10发送用于指示用户已经选择的动态目标的信息。飞行器10通过收发器17(例如WIFI模块)接收用户已经选择的动态目标的信息并确定该动态目标30。
在其他可能的实施例中,也可以是动态目标发送跟踪及降落指令给飞行器,飞行器通过收发器接收该跟踪及降落指令,并根据该跟踪及降落指令跟踪动态目标并降落在动态目标上或者动态目标附近。
在飞行器10确定了需要跟踪及降落的动态目标30后,处理器16会进一步判断飞行器10的能量是否能够支持飞行器10飞抵动态目标30的附近区域。飞行器10能量是指支持飞行器10完成飞行任务、跟踪任务、或降落动作等一系列操作的电量或燃油量。在本发明的一实施例中,处理器16可根据以下步骤判断飞行器10的能量是否能够支持飞行器飞抵动态目标30的附近区域:
S1、根据动态目标30的当前运动状态,预测需要飞行的距离。
如图3所示,飞行器10可以利用能够测距的影像设备(例如双目摄像头512,514)获取的目标的图像信息(例如,动态目标在影像设备捕获的连续两帧图像中的成像关系)求解得到动态目标30的中心位置。在捕获动态目标30的过程中,飞行器10本身的运动信息通过机载传感器获得,图像传输按照一定的帧率执行,这样,通过连续两帧之间的动态目标30的位置差,便能够计算得到动态目标30的移动速度信息,继而计算出需要飞行的距离。
参照图4,R表示飞行器10的当前位置,T表示动态目标30的当前位置,T’表示动态目标30下一时刻的位置,V1为水平面投影上动态目标30相对于飞行器10的速度,V2为飞行器10径直飞向动态目标30的速度,利用平行四边形法则可求解得到合速度V,继 而计算出需要飞行的距离。
S2、根据计算得到的飞行距离以及飞行单位距离时所消耗的能量,计算飞行器10抵达动态目标30附近区域所需的能量;以及
S3、判断所需的能量是否小于飞行器10的剩余能量,若否,则通过飞行器10的收发器17向控制器20发送提示信息。该提示信息用于提示用户重新选择动态目标、或提示用户飞行器10的能量不足、或在提示用户飞行器10的能量不足的同时提示用户重新选择动态目标。
通过判断飞行器10是否有足够的能量飞抵动态目标30的附近区域能够避免飞行器10出现因为能量不足导致的炸机等问题。
鉴于此,本发明提出了用于表征所需能量与剩余能量关系的能量阈值因子λ,处理器16通过判断λ是否小于1来判断飞行器是否有足够的能量飞抵动态目标附近。本实施例中,
Figure PCTCN2017100758-appb-000007
其中,Eleft为飞行器10的剩余能量,Eneed为飞行器10所需的能量。
本实施例中,Eneed=LE*,L为飞行器10根据动态目标30的当前运动状态预测的飞行距离,
Figure PCTCN2017100758-appb-000008
其中da表示飞行器10与动态目标30当前的绝对距离,va为动态目标30的移动速度,vr为飞行器10的最大飞行速度。
E*为飞行器10按照最大飞行速度飞行时单位距离飞行所消耗的能量;η表示能量输出比,即电池最大实际输出能量与电池容量的比值。
当λ>1时,表明飞行器10没有足够的能量飞抵动态目标30的附近区域,此时飞行器10内部的处理器16通过收发器17向控制器20发送提示用户重新选择动态目标的提示信息、或提示用户飞行器10的能量不足的提示信息、或提示用户飞行器10的能量不足和提示用户重新选择动态目标的提示信息。
当λ<1时,表明飞行器10有足够的能量飞抵动态目标30附近,此时处理器16控制飞行器10跟随动态目标30。
此外,当处理器16判断0.8<λ<1时,表明飞行器10飞抵动态目标30的附近区域需要消耗的能量接近或者达到剩余能量的临界值,此时飞行器10仍然会跟随动态目标30, 但会向控制器20持续发送飞行器10能量不足的提示或警告。
如图5所示,在飞行器10跟随动态目标30的过程中,处理器10还需要控制飞行器10以使动态目标30位于飞行器10所捕获图像的中心区域内。将动态目标30始终保持在飞行器10所捕获图像的中心区域内更加有利于飞行器10对动态目标30的跟踪。
在本发明的一实施例中,动态目标30的中心落在与飞行器10视角中心的距离小于预设阈值的范围内。
在本发明的一实施例中,飞行器10的视角中心与动态目标30的中心重合。在本发明的一实施例中,处理器16通过调整以下参数中的至少一个,控制飞行器10的视角中心与动态目标30的中心重合:
飞行器10的飞行速度、飞行高度以及机载摄像头的角度。
在飞行器10跟踪动态目标30的过程中,处理器16还需要持续判断捕捉动态目标30的视角α与飞行器10机载摄像头的最大视角α*的比值是否超出安全视角比ε,其中,ε<1,若结果为是,则处理器16调整飞行器的高度。本文提出安全视角比的概念是为了保证飞行器10追踪动态目标30的稳健性,避免动态目标30在拍摄图像中的尺寸超过摄像头的视角而造成动态目标30特征的丢失。
在飞行器10跟随动态目标30的过程中,处理器16控制飞行器10以保持飞行器10的视角中心始终与动态目标30的中心重合,当捕捉动态目标30图像的视角半角α与摄像头的最大视角半角α*超出安全视角比ε时,即α/α*>ε(ε<1),处理器16控制飞行器10在不改变水平运动状态的前提下调高飞行器10的高度,保证动态目标30边框始终位于摄像头的安全视角范围内。假设,机载摄像头的最大捕获视角为130°,取安全视角比为0.8,那么当目标捕获视角半角大于65°×0.8=52°时,则必须调高飞行器的高度。
如图6所示,α*为摄像头的最大视角半角,α′为安全视角半角,此时,α*同时也等于捕捉动态目标30图像的视角半角α,因此,α/α*=1,大于安全视角比,因此,处理器16需要控制飞行器10调高其飞行高度,也就是从图中的位置A调整到位置B。
若处理器16判断捕捉动态目标30的视角与飞行器10机载摄像头的最大视角的比值没有超出安全视角比,处理器16需要进一步确定该动态目标30所属的类别以判断该动态目标30是否属于不适宜飞行器10降落于其上的类别。不适宜飞行器10降落于其上的动 态目标30通常为那些一旦飞行器降落在其上后会对该动态目标30造成严重损害或者对飞行器10本身会造成严重损害的目标,可以包括人或者其他动物。处理器16可以先对确定的动态目标30进行识别,并对该动态目标30进行归类,一旦该动态目标30被归为不适宜飞行器降落的类别,处理器16会控制飞行器10降落在动态目标30的附近区域,或通过收发器17发送重新选择目标的指令给控制器20,提示用户重新选择需要跟踪和降落的动态目标。
若动态目标30不属于不适宜飞行器降落的类别时,则当飞行器10靠近动态目标30时,控制飞行器10降落在动态目标30上。
在本发明的一实施例中,飞行器10靠近动态目标30包括飞行器10位于动态目标30的正上方或飞行器10与动态目标30的距离小于预设阈值。
在本发明的一实施例中,当动态目标30不属于不适宜飞行器10降落的目标时,处理器16可以控制飞行器10飞行至动态目标30的上方,然后再降落在动态目标30上。具体地,处理器16控制飞行器10的飞行高度不变直至飞行器10飞至动态目标30的正上方,且调整飞行器10的飞行速度,当飞行器10相对于动态目标30的速度小于预设阈值时,例如,飞行器10相对于动态目标30静止时,控制飞行器10降落在动态目标30上。
在本发明的一实施例中,当动态目标30属于不适宜飞行器10降落的目标时,处理器16控制飞行器10降落在动态目标30的附近区域。此时,处理器16可以控制飞行器10降落在动态目标30附近的地面上或水面上或其他合适的地方。
图7是本发明实施例中一种飞行器降落方法的流程图。该飞行器降落方法包括以下步骤:
S101、飞行器接收用户已选择的动态目标信息。
在其他可能的实施例中,也可以是动态目标发送跟踪及降落指令给飞行器。
S102、飞行器确定该动态目标。
S103、飞行器判断飞行器的能量是否能够支持飞行器飞抵动态目标的附近区域。
飞行器判断其能量是否能够支持飞行器飞抵动态目标的附近区域可以根据以下几个步骤进行判断:
根据动态目标的当前运动状态,预测需要飞行的距离;
根据计算得到的飞行距离以及飞行单位距离时所消耗的能量,计算飞行器抵达动态目标附近区域所需的能量;以及
判断所需的能量是否小于飞行器的剩余能量。
鉴于此,本发明提出了用于表征所需能量与剩余能量关系的能量阈值因子λ,飞行器通过判断λ是否小于1来判断飞行器是否有足够的能量飞抵动态目标附近。本实施例中,
Figure PCTCN2017100758-appb-000009
其中,Eleft为飞行器的剩余能量,Eneed为飞行器所需的能量。
本实施例中,Eneed=LE*,L为飞行器根据动态目标3当前运动状态预测的飞行距离,
Figure PCTCN2017100758-appb-000010
其中da表示飞行器与动态目标当前的绝对距离,va为动态目标的移动速度,vr为飞行器的最大飞行速度。
E*为飞行器按照所述最大飞行速度飞行时单位距离飞行所消耗的能量;η表示能量输出比,即最大实际输出能量与电池容量的比值。
当λ>1时,表明飞行器没有足够的能量飞抵动态目标附近,此时飞行器执行步骤S104,即飞行器向用户发送提示信息。该提示信息包括提示用户重新选择动态目标、或提示用户飞行器的能量不足、或提示用户飞行器的能量不足以及提示用户重新选择动态目标。
当λ<1时,表明飞行器有足够的能量飞抵动态目标附近,此时飞行器执行步骤S105,即飞行器跟随动态目标。
此外,当飞行器判断0.8<λ<1时,表明飞行器飞抵动态目标的附近区域需要消耗的能量接近或者达到剩余能量的临界值,此时飞行器仍然会跟随动态目标,但仍然会向用户发送飞行器能量不足的提示或警告。
S106、飞行器在跟随动态目标的过程中,飞行器会持续判断捕捉动态目标的视角与飞行器机载摄像头的最大视角的比值是否超出安全视角比。
若判断结果为是,则执行步骤S107,即飞行器调整其飞行高度,并再次执行步骤S105和步骤S106。
若判断结果为否,则执行步骤S108。
S108、飞行器判断该动态目标是否属于不适宜降落在其上的类别。
若判断结果为否,则执行步骤S109,即飞行器降落在动态目标上。
若判断结果为是,则执行步骤S110或步骤S104。
S110、飞行器降落在动态目标附近。
有关该方法中各步骤的详细内容可以参考前述的描述,在此不再赘述。
如图8所示,为本发明实施例提供的一种飞行器降落的方法,该方法由飞行器执行,该方法包括:
S201、飞行器确定动态目标,所述动态目标为运动中的目标。
飞行器确定动态目标,可以是通过远端的控制器发送用户已选择的动态目标信息来确定,也可以通过动态目标发送给飞行器的跟随及降落指令来确定。
S202、飞行器跟随动态目标。
S203、当飞行器靠近动态目标时,飞行器降落在动态目标上或者动态目标附近。
当该动态目标适合在其上降落时,该飞行器降落在动态目标上。当该动态目标不适合在其上降落时(例如,人或者动物),该飞行器降落在动态目标附近的地面或者水面上。
有关该方法中各步骤的详细内容可以参考前述的描述,在此不再赘述。
图9是本发明第三实施例中一种飞行器20的结构框图。
飞行器20包括:
确定模块203,用于确定动态目标;
跟随模块205,用于跟随所述动态目标;以及
降落模块208,用于当所述飞行器靠近所述动态目标时,控制所述飞行器降落在所述动态目标上或者所述动态目标附近。
可选地,跟随模块还用于控制飞行器的飞行高度不变直至飞行器飞至动态目标正上方;以及
调整飞行器的飞行速度,以便与动态目标保持相对静止。
可选地,跟随模块具体用于控制飞行器以保持动态目标位于飞行器所拍摄的图像的中心区域。
可选地,跟随模块具体用于控制飞行器以保持动态目标的中心落在与飞行器视角中心的距离小于预设阈值的范围内。
可选地,跟随模块具体用于控制飞行器的视角中心与动态目标的中心重合。
可选地,跟随模块通过调整以下参数中的至少一个,控制飞行器以保持自身视角中心与动态目标的中心重合:
飞行器的飞行速度、飞行高度以及摄像头的角度。
可选地,当飞行器飞至动态目标上方时,降落模块具体用于控制飞行器降落在动态目标上。
可选地,降落模块具体用于在飞行器相对于动态目标的速度小于预设阈值时,控制飞行器降落在动态目标上。
可选地,降落模块具体用于在飞行器相对于动态目标静止时,控制飞行器降落在动态目标上。
可选地,飞行器靠近动态目标是指飞行器位于动态目标的正上方。
可选地,飞行器靠近动态目标是指飞行器与动态目标的距离小于预设阈值。
可选地,飞行器20还可以包括:
接收模块201,用于接受控制器或动态目标发送的信息,所述信息用于指示用户已选择的所述动态目标,或用于接收动态目标发送的降落指令,所述降落指令用于指示飞行器降落在动态目标上或者动态目标附近;
发送模块202,用于向控制器发送重新选择目标的指令;
能量预估模块204,用于判断飞行器的能量是否能够支持飞行器抵达动态目标附近区域,若能量预估模块的判断结果为否,则飞行器的发送模块向控制器发送提示信息,提示信息用于提示用户重新选择动态目标,和/或提示用户飞行器的能量不足。
可选地,所述能量预估模块204包括:
距离计算模块204a,用于根据动态目标当前的运动状态,预测需要飞行的飞行距离;以及
能量计算及判断模块204b,用于计算飞行器按照飞行器的最大飞行速度飞行单位距离时所消耗的能量;
根据预测的飞行距离以及飞行单位距离时所消耗的能量,计算飞行器抵达动态目标附近区域所需的能量;以及
判断所需的能量是否小于飞行器的剩余能量,若否,则通过飞行器的发送模块向控制器发送提示信息;
跟随模块205,用于跟随动态目标。
可选地,能量计算及判断模块用于判断
Figure PCTCN2017100758-appb-000011
是否小于1,若否,则通过发送模块向控制器发送所述提示信息;
其中,Eleft为飞行器的剩余能量,Eneed为飞行器所需的能量;
其中,Eneed=LE*,L为飞行器根据动态目标的当前运动状态预测的飞行距离,
Figure PCTCN2017100758-appb-000012
其中da表示飞行器与动态目标当前的绝对距离,va为动态目标的移动速度,vr为飞行器的最大飞行速度;
E*为飞行器按照所述最大飞行速度飞行时单位距离飞行所消耗的能量;
η表示能量输出比,即最大实际输出能量与电池容量的比值。
可选地,当能量计算及判断模块判断0.8<λ<1时,发送模块向控制器发送提示用户飞行器的能量不足的信息。
安全视角比计算模块206,用于计算捕捉所述动态目标的视角α与摄像头的最大视角α*的比值,当该比值超过安全视角比ε时,调整所述飞行器的飞行高度,其中,ε<1;以及
目标类别确定模块207,用于确定动态目标所属的类别;当目标类别确定模块确定动态目标属于飞行器不适宜降落在其上的类别时,降落模块控制飞行器在与动态目标的距离小于预设距离的位置处降落。可选地,所述不适宜降落在其上的目标包括人或其他动物。
在本发明的实施例中,确定模块203、降落模块208、目标类别确定模块207、跟随模块205以及安全视角比计算模块206、能量预估模块204可以是飞行器上的处理器 (processor)或者现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)。可选地,确定模块203、目标类别确定模块207、跟随模块205、安全视角比计算模块206都是该飞行器上的视觉芯片。接收模块201以及发送模块202可以是飞行器中的WIFI模块、蓝牙模块、LTE模块等,能量预估模块204可以是飞行器中的电池芯片。
本发明还提出了一种飞行器,包括存储器和处理器,存储器中存储有计算机程序,计算机程序被处理器执行时,使得处理器执行在图7或图8所示的实施例中所描述的方法。
本发明还提出了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行在图7或图8所示的实施例中所描述的方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (71)

  1. 一种飞行器降落方法,其特征在于,包括:
    飞行器确定动态目标,所述动态目标为运动中的目标;
    所述飞行器跟随所述动态目标;
    当所述飞行器靠近所述动态目标时,所述飞行器降落在所述动态目标上或者所述动态目标附近。
  2. 根据权利要求1所述的方法,其特征在于,在所述飞行器确定动态目标之前,所述方法还包括:
    所述飞行器接收控制器发送的信息,所述信息用于指示用户已选择的所述动态目标。
  3. 根据权利要求2所述的方法,其特征在于,在所述飞行器接收所述控制器发送的信息之前,所述方法还包括:
    所述飞行器向控制器发送重新选择目标的指令。
  4. 根据权利要求1所述的方法,其特征在于,在所述飞行器确定动态目标之前,所述方法还包括:
    所述飞行器接收所述动态目标发送的降落指令,所述降落指令用于指示所述飞行器降落在所述动态目标上或者所述动态目标附近。
  5. 根据权利要求1-4中任一所述的方法,其特征在于,当所述飞行器靠近所述动态目标时,所述飞行器降落在所述动态目标上或者所述动态目标附近,包括:
    当所述飞行器飞至所述动态目标上方时,所述飞行器降落在所述动态目标上。
  6. 根据权利要求5所述的方法,其特征在于,所述飞行器降落在所述动态目标上,包括:
    当所述飞行器相对于所述动态目标的速度小于预设阈值时,所述飞行器降落在所述动态目标上。
  7. 根据权利要求5所述的方法,其特征在于,所述飞行器降落在所述动态目标上,包括:
    当所述飞行器相对于所述动态目标静止时,所述飞行器降落在所述动态目标上。
  8. 根据权利要求5-7任一项所述的方法,其特征在于,所述方法还包括:
    所述飞行器保持其飞行高度不变直至所述飞行器飞至所述动态目标正上方;
    所述飞行器调整其飞行速度,以便与所述动态目标保持相对静止。
  9. 根据权利要求1-4中任一所述的方法,其特征在于,所述飞行器靠近所述动态目标是指所述飞行器位于所述动态目标的正上方。
  10. 根据权利要求1-4中任一所述的方法,其特征在于,所述飞行器靠近所述动态目标是指所述飞行器与所述动态目标的距离小于预设阈值。
  11. 根据权利要求1-4,10中任一所述的方法,其特征在于,所述飞行器降落在所述动态目标附近,包括:
    所述飞行器降落在所述动态目标附近的地面上。
  12. 根据权利要求1-4,10中任一所述的方法,其特征在于,所述飞行器降落在所述动态目标附近,包括:
    所述飞行器降落在所述动态目标附近的水面上。
  13. 根据权利要求1-4,10-12中任一所述的方法,其特征在于,所述飞行器降落在所述动态目标上或者所述动态目标附近,包括:
    确定所述动态目标所属的类别;
    若所述动态目标属于不适宜降落在所述动态目标上的类别,则在与所述动态目标的距离小于预设距离的位置处降落。
  14. 根据权利要求13所述的方法,其特征在于,所述不适宜降落在其上的动态目标包括人或其他动物。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,在所述飞行器确定所述动态目标之后,所述方法还包括:
    判断所述飞行器的能量是否能够支持所述飞行器抵达所述动态目标附近区域;
    若判断结果为否,则向控制器发送提示信息,所述提示信息用于提示用户重新选择动态目标,和/或提示用户所述飞行器的能量不足。
  16. 根据权利要求15所述的方法,其特征在于,判断所述飞行器的能量是否能够支持所述飞行器抵达所述动态目标附近区域,包括:
    所述飞行器根据所述动态目标的当前运动状态,预测需要飞行的飞行距离;
    所述飞行器确定按照所述飞行器的最大飞行速度飞行单位距离时所消耗的能量;
    所述飞行器根据所述预测的飞行距离以及飞行单位距离时所消耗的能量,计算所述飞行器抵达所述动态目标附近区域所需的能量;
    判断所述所需的能量是否小于所述飞行器的剩余能量,若否,则向所述控制器发送所述提示信息。
  17. 根据权利要求16所述的方法,其特征在于,所述判断所述所需的能量是否小于所述飞行器的剩余能量,包括:
    判断
    Figure PCTCN2017100758-appb-100001
    是否小于1,若否,则向所述控制器发送所述提示信息;
    其中,Eleft为所述飞行器的剩余能量,Eneed为所述飞行器所需的能量;
    其中,Eneed=LE*,L为所述飞行器根据所述动态目标的当前运动状态预测的飞行距离,
    Figure PCTCN2017100758-appb-100002
    其中da表示所述飞行器与所述动态目标当前的绝对距离,va为所述动态目标的移动速度,vr为所述飞行器的最大飞行速度;
    E*为所述飞行器按照所述最大飞行速度飞行时单位距离飞行所消耗的能量;
    η表示能量输出比,即最大实际输出能量与电池容量的比值。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    当0.8<λ<1时,所述飞行器在跟踪所述动态目标的过程中,所述飞行器向控制器发送提示用户所述飞行器的能量不足的信息。
  19. 根据权利要求1-18任一项所述的方法,其特征在于,在所述飞行器跟随所述动态目标的过程中,所述方法还包括:
    所述飞行器保持所述动态目标位于所述飞行器所拍摄的图像的中心区域。
  20. 根据权利要求1-18任一项所述的方法,其特征在于,在所述飞行器跟随所述动态目标的过程中,所述方法还包括:
    所述飞行器保持所述动态目标的中心落在与所述飞行器视角中心的距离小于预设阈值的范围内。
  21. 根据权利要求20所述的方法,其特征在于,所述飞行器保持所述动态目标的中心落在与所述飞行器视角中心的距离小于预设阈值的范围内,包括:
    所述飞行器保持自身的视角中心与所述动态目标的中心重合。
  22. 根据权利要求21所述的方法,其特征在于,所述飞行器保持自身的视角中心与所述动态目标的中心重合,包括:
    所述飞行器通过调整以下参数中的至少一个,保持自身视角中心与所述动态目标的中心重合:
    所述飞行器的飞行速度、飞行高度以及摄像头的角度。
  23. 根据权利要求1-22所述的方法,其特征在于,该方法还包括:
    所述飞行器判断捕捉所述动态目标的视角α与摄像头的最大视角α*的比值是否超出安全视角比ε;
    若结果为是,则所述飞行器调整其飞行高度,其中,ε<1。
  24. 一种飞行器,其特征在于,包括:
    壳体;
    与所述壳体相连的机臂;
    设置在所述机臂上的动力装置;以及
    设置在所述壳体内的处理器,所述处理器用于:
    确定动态目标,所述动态目标为运动中的目标;
    控制所述无人机跟随所述动态目标;以及
    当所述飞行器靠近所述动态目标时,控制所述飞行器降落在所述动态目标上或者所述动态目标附近。
  25. 根据权利要求24所述的飞行器,其特征在于,所述飞行器还包括:
    收发器,用于接收控制器发送的信息,所述信息用于指示用户已选择的所述动态目标。
  26. 根据权利要求25所述的飞行器,其特征在于,所述收发器还用于向所述控制器发送重新选择目标的指令。
  27. 根据权利要求24所述的飞行器,其特征在于,所述收发器还用于接收所述动态目标发送的降落指令,所述降落指令用于指示所述飞行器降落在所述动态目标上或者所述动态目标附近。
  28. 根据权利要求24-27中任一所述的飞行器,其特征在于,当所述飞行器飞至所述 动态目标上方时,所述处理器具体用于控制所述飞行器降落在所述动态目标上。
  29. 根据权利要求28所述的飞行器,其特征在于,所述处理器用于在所述飞行器相对于所述动态目标的速度小于预设阈值时,控制所述飞行器降落在所述动态目标上。
  30. 根据权利要求28所述的飞行器,其特征在于,所述处理器具体用于在所述飞行器相对于所述动态目标静止时,控制所述飞行器降落在所述动态目标上。
  31. 根据权利要求28-30任一项所述的飞行器,其特征在于,所述处理器还用于控制所述飞行器的飞行高度不变直至所述飞行器飞至所述动态目标正上方;以及
    调整所述飞行器的飞行速度,以便与所述动态目标保持相对静止。
  32. 根据权利要求24-27中任一所述的飞行器,其特征在于,所述飞行器靠近所述动态目标是指所述飞行器位于所述动态目标的正上方。
  33. 根据权利要求24-27中任一所述的飞行器,其特征在于,所述飞行器靠近所述动态目标是指所述飞行器与所述动态目标的距离小于预设阈值。
  34. 根据权利要求24-27,33中任一所述的飞行器,其特征在于,所述处理器具体用于控制所述飞行器降落在所述动态目标附近的地面上。
  35. 根据权利要求24-27,33中任一所述的飞行器,其特征在于,所述处理器具体用于控制所述飞行器降落在所述动态目标附近的水面上。
  36. 根据权利要求24-27,33-35中任一所述的飞行器,其特征在于,所述处理器具体用于:
    确定所述动态目标所属的类别;
    若所述动态目标属于不适宜降落在所述动态目标上的类别,则控制所述飞行器在与所述动态目标的距离小于预设距离的位置处降落。
  37. 根据权利要求36所述的飞行器,其特征在于,所述不适宜降落在其上的动态目标包括人或其他动物。
  38. 根据权利要求24-37任一项所述的飞行器,其特征在于,所述处理器还用于:
    判断所述飞行器的能量是否能够支持所述飞行器抵达所述动态目标附近区域;
    若判断结果为否,则向控制器发送提示信息,所述提示信息用于提示用户重新选择动态目标,和/或提示用户所述飞行器的能量不足。
  39. 根据权利要求38所述的飞行器,其特征在于,所述处理器具体用于:
    根据所述动态目标的当前运动状态,预测需要飞行的飞行距离;
    确定按照所述飞行器的最大飞行速度飞行单位距离时所消耗的能量;
    根据所述预测的飞行距离以及飞行单位距离时所消耗的能量,计算所述飞行器抵达所述动态目标附近区域所需的能量;以及
    判断所述所需的能量是否小于所述飞行器的剩余能量,若否,则通过所述飞行器的收发器向所述控制器发送所述提示信息。
  40. 根据权利要求39所述的飞行器,其特征在于,所述处理器具体用于:
    判断
    Figure PCTCN2017100758-appb-100003
    是否小于1,若否,则通过所述收发器向所述控制器发送所述提示信息;
    其中,Eleft为所述飞行器的剩余能量,Eneed为所述飞行器所需的能量;
    其中,Eneed=LE*,L为所述飞行器根据所述动态目标的当前运动状态预测的飞行距离,
    Figure PCTCN2017100758-appb-100004
    其中da表示所述飞行器与所述动态目标当前的绝对距离,va为所述动态目标的移动速度,vr为所述飞行器的最大飞行速度;
    E*为所述飞行器按照所述最大飞行速度飞行时单位距离飞行所消耗的能量;
    η表示能量输出比,即最大实际输出能量与电池容量的比值。
  41. 根据权利要求40所述的飞行器,其特征在于,
    当0.8<λ<1时,在所述飞行器跟踪所述动态目标的过程中,所述收发器向控制器发送提示用户所述飞行器的能量不足的信息。
  42. 根据权利要求24-41任一项所述的飞行器,其特征在于,在所述飞行器跟随所述动态目标的过程中,所述处理器还用于控制所述飞行器以使所述动态目标位于所述飞行器所拍摄的图像的中心区域。
  43. 根据权利要求24-41任一项所述的飞行器,其特征在于,在所述飞行器跟随所述动态目标的过程中,所述处理器还用于控制所述飞行器以使所述动态目标的中心落在与所述飞行器视角中心的距离小于预设阈值的范围内。
  44. 根据权利要求43所述的飞行器,其特征在于,所述处理器具体用于控制所述飞 行器的视角中心与所述动态目标的中心重合。
  45. 根据权利要求44所述的飞行器,其特征在于,所述处理器具体用于通过调整以下参数中的至少一个,控制所述飞行器的视角中心与所述动态目标的中心重合:
    所述飞行器的飞行速度、飞行高度以及摄像头的角度。
  46. 根据权利要求24-45所述的飞行器,其特征在于,所述处理器还用于:
    判断捕捉所述动态目标的视角α与摄像头的最大视角α*的比值是否超出安全视角比ε;
    若结果为是,则调整所述飞行器的飞行高度,其中,ε<1。
  47. 一种飞行器,其特征在于,包括:
    确定模块,用于确定动态目标,所述动态目标为运动中的目标;
    跟随模块,用于跟随所述动态目标;以及
    降落模块,用于当所述飞行器靠近所述动态目标时,控制所述飞行器降落在所述动态目标上或者所述动态目标附近。
  48. 根据权利要求47所述的飞行器,其特征在于,所述飞行器还包括接收模块,所述接收模块用于接收控制器发送的信息,所述信息用于指示用户已选择的所述动态目标。
  49. 根据权利要求48所述的飞行器,其特征在于,所述飞行器还包括发送模块,所述发送模块用于向所述控制器发送重新选择目标的指令。
  50. 根据权利要求47所述的飞行器,其特征在于,所述飞行器还包括接收模块,所述接收模块用于接收所述动态目标发送的降落指令,所述降落指令用于指示所述飞行器降落在所述动态目标上或者所述动态目标附近。
  51. 根据权利要求47-50中任一所述的飞行器,其特征在于,当所述飞行器飞至所述动态目标上方时,所述降落模块具体用于控制所述飞行器降落在所述动态目标上。
  52. 根据权利要求51所述的飞行器,其特征在于,所述降落模块具体用于在所述飞行器相对于所述动态目标的速度小于预设阈值时,控制所述飞行器降落在所述动态目标上。
  53. 根据权利要求51所述的飞行器,其特征在于,所述降落模块具体用于在所述飞行器相对于所述动态目标静止时,控制所述飞行器降落在所述动态目标上。
  54. 根据权利要求51-53中任一所述的飞行器,其特征在于,所述跟随模块还用于控 制所述飞行器的飞行高度不变直至所述飞行器飞至所述动态目标正上方;以及
    调整所述飞行器的飞行速度,以便与所述动态目标保持相对静止。
  55. 根据权利要求47-50中任一所述的飞行器,其特征在于,所述飞行器靠近所述动态目标是指所述飞行器位于所述动态目标的正上方。
  56. 根据权利要求47-50中任一所述的飞行器,其特征在于,所述飞行器靠近所述动态目标是指所述飞行器与所述动态目标的距离小于预设阈值。
  57. 根据权利要求47-50,56中任一所述的飞行器,其特征在于,所述降落模块具体用于控制所述飞行器降落在所述动态目标附近的地面上。
  58. 根据权利要求47-50,56中任一所述的飞行器,其特征在于,所述降落模块具体用于控制所述飞行器降落在所述动态目标附近的水面上。
  59. 根据权利要求47-50,56-58任一项所述的飞行器,其特征在于,所述飞行器还包括目标类别确定模块,所述目标类别确定模块用于确定所述动态目标所属的类别;
    当所述目标类别确定模块确定所述动态目标属于所述飞行器不适宜降落在其上的类别时,所述降落模块控制所述飞行器在与所述动态目标的距离小于预设距离的位置处降落。
  60. 根据权利要求59所述的飞行器,其特征在于,所述不适宜降落在其上的目标包括人或其他动物。
  61. 根据权利要求47-60任一项所述的飞行器,其特征在于,所述飞行器还包括能量预估模块,所述能量预估模块用于判断所述飞行器的能量是否能够支持所述飞行器抵达所述动态目标附近区域;
    若所述能量预估模块的判断结果为否,则所述飞行器的发送模块向控制器发送提示信息,所述提示信息用于提示用户重新选择动态目标,和/或提示用户所述飞行器的能量不足。
  62. 根据权利要求61所述的飞行器,其特征在于,所述能量预估模块包括:
    距离计算模块,用于根据所述动态目标的当前运动状态,预测需要飞行的飞行距离;
    能量计算及判断模块,用于:
    计算所述飞行器按照所述飞行器的最大飞行速度飞行单位距离时所消耗的能量;
    根据所述预测的飞行距离以及飞行单位距离时所消耗的能量,计算所述飞行器抵达所述动态目标附近区域所需的能量;以及
    判断所述所需的能量是否小于所述飞行器的剩余能量,若否,则通过所述飞行器的发送模块向所述控制器发送所述提示信息。
  63. 根据权利要求62所述的飞行器,其特征在于,所述能量计算及判断模块用于判断
    Figure PCTCN2017100758-appb-100005
    是否小于1,若否,则通过所述发送模块向所述控制器发送所述提示信息;
    其中,Eleft为所述飞行器的剩余能量,Eneed为所述飞行器所需的能量;
    其中,Eneed=LE*,L为所述飞行器根据所述动态目标的当前运动状态预测的飞行距离,
    Figure PCTCN2017100758-appb-100006
    其中da表示所述飞行器与所述动态目标当前的绝对距离,va为所述动态目标的移动速度,vr为所述飞行器的最大飞行速度;
    E*为所述飞行器按照所述最大飞行速度飞行时单位距离飞行所消耗的能量;
    η表示能量输出比,即最大实际输出能量与电池容量的比值。
  64. 根据权利要求63所述的飞行器,其特征在于,当所述能量计算及判断模块判断0.8<λ<1时,所述发送模块向控制器发送提示用户所述飞行器的能量不足的信息。
  65. 根据权利要求47-56任一项所述的飞行器,其特征在于,所述跟随模块具体用于控制所述飞行器以保持所述动态目标位于所述飞行器所拍摄的图像的中心区域。
  66. 根据权利与55-64任一项所述的飞行器,其特征在于,所述跟随模块具体用于控制所述飞行器以保持所述动态目标的中心落在与所述飞行器视角中心的距离小于预设阈值的范围内。
  67. 根据权利要求66所述的飞行器,其特征在于,所述跟随模块具体用于控制所述飞行器的视角中心与所述动态目标的中心重合。
  68. 根据权利要求67所述的飞行器,其特征在于,所述跟随模块通过调整以下参数中的至少一个,控制所述飞行器以保持自身视角中心与所述动态目标的中心重合:
    所述飞行器的飞行速度、飞行高度以及摄像头的角度。
  69. 根据权利要求55-68任一项所述的飞行器,其特征在于,所述飞行器还包括安全视角比计算模块,所述安全视角比计算模块用于计算捕捉所述动态目标的视角α与摄像头 的最大视角α*的比值;
    当该比值超过安全视角比ε时,调整所述飞行器的飞行高度,其中,ε<1。
  70. 一种飞行器,其特征在于,包括存储器和处理器,存储器中存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行权利要求1至23中任意一项所述的方法。
  71. 一种计算机可读存储介质,其特征在于,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行权利要求1至23中任意一项所述的方法。
PCT/CN2017/100758 2017-09-06 2017-09-06 飞行器降落方法、飞行器和计算机可读存储介质 WO2019047073A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780001746.6A CN107820585B (zh) 2017-09-06 2017-09-06 飞行器降落方法、飞行器和计算机可读存储介质
PCT/CN2017/100758 WO2019047073A1 (zh) 2017-09-06 2017-09-06 飞行器降落方法、飞行器和计算机可读存储介质
EP17814288.1A EP3480118B1 (en) 2017-09-06 2017-09-06 Aerial vehicle landing method
US15/849,066 US10725479B2 (en) 2017-09-06 2017-12-20 Aerial vehicle landing method, aerial vehicle, and computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100758 WO2019047073A1 (zh) 2017-09-06 2017-09-06 飞行器降落方法、飞行器和计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/849,066 Continuation US10725479B2 (en) 2017-09-06 2017-12-20 Aerial vehicle landing method, aerial vehicle, and computer readable storage medium

Publications (1)

Publication Number Publication Date
WO2019047073A1 true WO2019047073A1 (zh) 2019-03-14

Family

ID=61606877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100758 WO2019047073A1 (zh) 2017-09-06 2017-09-06 飞行器降落方法、飞行器和计算机可读存储介质

Country Status (4)

Country Link
US (1) US10725479B2 (zh)
EP (1) EP3480118B1 (zh)
CN (1) CN107820585B (zh)
WO (1) WO2019047073A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108375986A (zh) * 2018-03-30 2018-08-07 深圳市道通智能航空技术有限公司 无人机的控制方法、装置及终端
US11221626B2 (en) * 2019-04-23 2022-01-11 HERE Global, B.V. Drone-based collection of location-related data
CN110968107A (zh) * 2019-10-25 2020-04-07 深圳市道通智能航空技术有限公司 一种降落控制方法、飞行器及存储介质
CN111176323A (zh) * 2019-12-30 2020-05-19 湖南华诺星空电子技术有限公司 一种雷达与红外融合的无人机降落控制方法及装置
US11767130B2 (en) 2021-07-12 2023-09-26 Honeywell International Inc. System and method for launching and retrieving unmanned aerial vehicle from carrier in motion
CN113824516B (zh) * 2021-08-06 2024-01-12 星展测控科技股份有限公司 一种视频的接收方法、视频接收设备及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110066307A1 (en) * 2009-09-17 2011-03-17 Eads Deutschland Gmbh Procedure for Automatically Landing an Aircraft
CN102722697A (zh) * 2012-05-16 2012-10-10 北京理工大学 一种无人飞行器视觉自主导引着陆的目标跟踪方法
CN103218607A (zh) * 2013-04-11 2013-07-24 北京航空航天大学 一种用于无人机自主着舰的合作目标设计与定位方法
CN106494632A (zh) * 2016-09-05 2017-03-15 珠海市磐石电子科技有限公司 飞行器移动降落系统及移动降落方法
CN106527481A (zh) * 2016-12-06 2017-03-22 重庆零度智控智能科技有限公司 无人机飞行控制方法、装置及无人机
CN206470615U (zh) * 2017-01-21 2017-09-05 西京学院 一种通用型无人机云台控制系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2320829B (en) * 1996-12-04 1998-10-21 Lockheed Martin Tactical Sys Method and system for predicting the motion e.g. of a ship or the like
US7299130B2 (en) * 2003-12-12 2007-11-20 Advanced Ceramic Research, Inc. Unmanned vehicle
JP5775354B2 (ja) * 2011-04-28 2015-09-09 株式会社トプコン 離着陸ターゲット装置及び自動離着陸システム
US9568919B2 (en) * 2012-10-24 2017-02-14 Aurora Flight Sciences Corporation System and methods for automatically landing aircraft
US9248915B2 (en) * 2013-08-30 2016-02-02 Insitu, Inc. Systems and methods for fuel monitoring
US20160009392A1 (en) * 2014-03-31 2016-01-14 Sharper Shape Oy Unmanned aerial vehicle and method for protecting payload
EP3246776B1 (en) * 2014-05-30 2020-11-18 SZ DJI Technology Co., Ltd. Systems and methods for uav docking
CN107577247B (zh) * 2014-07-30 2021-06-25 深圳市大疆创新科技有限公司 目标追踪系统及方法
US9704409B2 (en) * 2014-08-05 2017-07-11 Qualcomm Incorporated Piggybacking unmanned aerial vehicle
US9809305B2 (en) * 2015-03-02 2017-11-07 Amazon Technologies, Inc. Landing of unmanned aerial vehicles on transportation vehicles for transport
EP3274256A4 (en) * 2015-03-27 2018-10-31 Planck Aerosystems, Inc. Unmanned aircraft navigation system and method
US9889932B2 (en) * 2015-07-18 2018-02-13 Tata Consultancy Services Limited Methods and systems for landing of unmanned aerial vehicle
US10061328B2 (en) * 2015-08-12 2018-08-28 Qualcomm Incorporated Autonomous landing and control
US10423167B2 (en) * 2016-04-25 2019-09-24 Uvionix Aerospace Corporation System and method for automated landing of an unmanned aerial vehicle
EP3287366B1 (en) * 2016-08-25 2020-03-11 AIRBUS HELICOPTERS DEUTSCHLAND GmbH An aircraft with an emergency floatation system
US10152059B2 (en) * 2016-10-10 2018-12-11 Qualcomm Incorporated Systems and methods for landing a drone on a moving base
CN109923492B (zh) * 2016-11-14 2022-08-16 深圳市大疆创新科技有限公司 飞行路径确定
US10540899B2 (en) * 2016-11-21 2020-01-21 Honeywell International Inc. Flight plan segmentation for en route diversion destinations
KR20180068469A (ko) * 2016-12-14 2018-06-22 현대자동차주식회사 무인비행장치 및 이를 포함하는 시스템
CN106527471B (zh) 2017-01-25 2019-10-01 上海航天控制技术研究所 姿态机动过程中抑制挠性振动的轨迹规划方法和系统
WO2018236903A1 (en) * 2017-06-20 2018-12-27 Planck Aerosystems Inc. SYSTEMS AND METHODS FOR RECHARGING A PILOT-FREE AIR VEHICLE ON A MOBILE PLATFORM
GB2565569B (en) * 2017-08-16 2019-09-25 Ford Global Tech Llc Method and system for landing an unmanned aerial vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110066307A1 (en) * 2009-09-17 2011-03-17 Eads Deutschland Gmbh Procedure for Automatically Landing an Aircraft
CN102722697A (zh) * 2012-05-16 2012-10-10 北京理工大学 一种无人飞行器视觉自主导引着陆的目标跟踪方法
CN103218607A (zh) * 2013-04-11 2013-07-24 北京航空航天大学 一种用于无人机自主着舰的合作目标设计与定位方法
CN106494632A (zh) * 2016-09-05 2017-03-15 珠海市磐石电子科技有限公司 飞行器移动降落系统及移动降落方法
CN106527481A (zh) * 2016-12-06 2017-03-22 重庆零度智控智能科技有限公司 无人机飞行控制方法、装置及无人机
CN206470615U (zh) * 2017-01-21 2017-09-05 西京学院 一种通用型无人机云台控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3480118A4 *

Also Published As

Publication number Publication date
CN107820585A (zh) 2018-03-20
EP3480118A1 (en) 2019-05-08
EP3480118B1 (en) 2021-03-03
US10725479B2 (en) 2020-07-28
CN107820585B (zh) 2021-08-13
US20190072983A1 (en) 2019-03-07
EP3480118A4 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
US11604479B2 (en) Methods and system for vision-based landing
WO2019047073A1 (zh) 飞行器降落方法、飞行器和计算机可读存储介质
US10938471B2 (en) Method, apparatus and system of providing communication coverage to an unmanned aerial vehicle
US20220083078A1 (en) Method for controlling aircraft, device, and aircraft
US20210065400A1 (en) Selective processing of sensor data
US10351240B1 (en) Methods and systems for cooperative operation and configuration of aerially-mobile devices
US20190243356A1 (en) Method for controlling flight of an aircraft, device, and aircraft
EP3077879A1 (en) Imaging method and apparatus
JP6957304B2 (ja) 架線撮影システム及び架線撮影方法
US20210325503A1 (en) Relay point generation method and apparatus, and unmanned aerial vehicle
WO2020019106A1 (zh) 云台和无人机控制方法、云台及无人机
EP3077760A1 (en) Payload delivery
KR102441077B1 (ko) 차량의 드론 이착륙 제어 장치 및 그 방법
WO2020244648A1 (zh) 一种飞行器控制方法、装置及飞行器
JP7384042B2 (ja) 飛行ルート学習装置、飛行ルート決定装置及び飛行装置
US20230312091A1 (en) Semantic Adjustment of Unmanned Aerial Vehicle Delivery Points
US20230316739A1 (en) Semantic Abort of Unmanned Aerial Vehicle Deliveries
KR101876829B1 (ko) 소형 드론의 실내 비행제어를 위한 유도 제어 시스템
WO2015082594A1 (en) Determining routes for aircraft
US20230315123A1 (en) Unmanned Aerial Vehicle Trajectories for Nudging and Un-nudging
US20230316741A1 (en) Method for Semantic Localization of an Unmanned Aerial Vehicle
EP2881709A1 (en) Determining routes for aircraft
EP2881698A1 (en) Payload delivery
WO2015082311A1 (en) Imaging method and apparatus

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE