WO2019045426A1 - 검사용 소켓 및 도전성 입자 - Google Patents

검사용 소켓 및 도전성 입자 Download PDF

Info

Publication number
WO2019045426A1
WO2019045426A1 PCT/KR2018/009939 KR2018009939W WO2019045426A1 WO 2019045426 A1 WO2019045426 A1 WO 2019045426A1 KR 2018009939 W KR2018009939 W KR 2018009939W WO 2019045426 A1 WO2019045426 A1 WO 2019045426A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
insulating material
particles
elastic insulating
fine particles
Prior art date
Application number
PCT/KR2018/009939
Other languages
English (en)
French (fr)
Inventor
정영배
Original Assignee
주식회사 아이에스시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이에스시 filed Critical 주식회사 아이에스시
Priority to CN201880055925.2A priority Critical patent/CN111051894B/zh
Publication of WO2019045426A1 publication Critical patent/WO2019045426A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0483Sockets for un-leaded IC's having matrix type contact fields, e.g. BGA or PGA devices; Sockets for unpackaged, naked chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/0735Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card arranged on a flexible frame or film
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks

Definitions

  • the present invention relates to a test socket and a conductive particle, and more particularly, to a test socket and a conductive particle which prevent the conductive particles from being detached from the conductive portion during an inspection process.
  • a socket for inspection is used in an inspection process for judging whether or not a manufactured device to be inspected is defective. That is, the manufactured device to be inspected performs a predetermined electrical inspection in order to judge whether the device is defective. At this time, the device to be inspected requiring inspection and the inspection device for inspection are not directly in contact with each other, .
  • the inspection apparatus for inspection is relatively expensive, so that it is not easy to replace the apparatus when it is frequently worn or damaged due to contact with the device to be inspected, and the replacement cost is high.
  • the inspecting socket is replaceably mounted on the inspection apparatus, and the inspecting device is electrically connected to the inspecting apparatus by contacting the inspecting socket, not the inspecting apparatus. Therefore, the inspection signal coming from the inspection device is transmitted to the device under test through the inspection socket.
  • the inspecting socket 140 is disposed between the inspecting device 140 and the inspecting device 130 and is provided between the terminal 141 of the inspecting device 140 and the inspecting device 130
  • the conductive part 110 is disposed at a position corresponding to a terminal of the device to be inspected and exhibits conductivity in the thickness direction.
  • the conductive part 110 is elastic
  • the pad 131 of the inspection apparatus 130 and the conductive section 110 are in contact with each other while the inspection socket 130 is mounted on the inspection apparatus 130, And is configured to be able to contact the conductive portion 110 of the inspection socket 100.
  • the device 140 to be inspected moved by an insert (not shown) is brought into contact with the conductive portion 110 of the inspection socket 100 and is seated in the inspection socket 100, 130, the signal is transmitted to the device under test 140 via the conductive part 110, and a predetermined electrical inspection is performed.
  • the conductive part of the inspection socket is constituted by arranging a plurality of conductive particles in the insulating material, and the terminals of the device to be inspected frequently touch the conductive parts.
  • the conductive particles distributed in the insulating material can be easily released to the outside.
  • the conductive particles are spherical, and thus the spherical conductive particles are easily separated from the insulating material. In the case where the conductive particles are detached as described above, the conductive performance is deteriorated as a whole, and thus the reliability of the whole inspection is affected.
  • Korean Patent Registration No. 1339166 (published on December 9, 2013) filed by the applicant of the present invention discloses a method of forming a through hole in conductive particles and filling the through hole with a peripheral elastic insulating material, Discloses a technique for preventing particles from escaping from a conductive portion.
  • Such conventional technology has the effect of preventing the conductive part from being separated from the conductive part, but it has a problem in that the conductive material is made of a conductive material composed of a metal material having conductivity and a material between the elastic insulating material made of silicone rubber The adhesive force at the interface (the portion contacting the surface of the conductive particles with the elastic insulating material) is weak.
  • an object of the present invention is to provide an inspecting socket and a conductive particle which can maintain a constant conductivity even during an inspecting process, .
  • a test socket for electrically connecting a terminal of an inspecting device and a pad of an inspecting device, the insulated socket being disposed between an inspecting device and an inspecting device,
  • a plurality of conductive parts provided at positions corresponding to the terminals of the device to be inspected and having a plurality of conductive particles arranged in a vertical direction in an elastic insulating material;
  • an insulating support portion provided between the plurality of conductive portions and electrically insulating the conductive portions from each other while supporting the conductive portions
  • At least one of the conductive particles may be a conductive particle
  • a body portion made of a metal material and constituting an outer shape of the conductive particles
  • the fine silica particles may be evenly distributed over the entire surface of the body portion.
  • the conductive part is prepared by curing a plurality of conductive particles in a liquid-state elastic insulating material in a thickness direction,
  • the silica fine particles can prevent the conductive particles from being separated from the elastic insulating material by inducing strong bonding with the elastic insulating material in the course of curing the liquid insulating elastic insulating material.
  • the body portion may be made of a mixture of a high-conductive metal and a magnetic body, or a state in which a high-conductive metal and a magnetic body are physically or chemically contacted to each other.
  • the body portion is provided with a plurality of concave portions which are recessed and filled with elastic insulating material,
  • Fine particles of silica may be fixedly protruded on the inner surface of the concave portion so as to be firmly coupled to the elastic insulating material in the concave portion.
  • a test socket for electrically connecting a terminal of an inspecting device and a pad of an inspecting device, the insulated socket being disposed between an inspecting device and an inspecting device,
  • a plurality of conductive parts provided at positions corresponding to the terminals of the device to be inspected and having a plurality of conductive particles arranged in a vertical direction in an elastic insulating material;
  • an insulating support portion provided between the plurality of conductive portions and electrically insulating the conductive portions from each other while supporting the conductive portions
  • At least one of the conductive particles may be a conductive particle
  • a body portion made of a metal material and constituting an outer shape of the conductive particles
  • the high-definition synthetic microparticles are made of a material having a high adhesive force to be adhered to the elastic insulating material than the metal material constituting the body part.
  • the high-definition synthetic fine particles may be made of calcium carbonate.
  • the high-definition synthetic microparticles can be evenly distributed over the entire surface of the body portion.
  • the conductive particles of the present invention are provided for each position corresponding to a terminal of a device to be inspected requiring electrical inspection, and a plurality of conductive particles And an insulative support portion provided between the plurality of conductive portions to electrically insulate the conductive portions from each other while supporting the respective conductive portions,
  • At least one of the conductive particles provided in the conductive portion is a conductive particle
  • a body portion made of a metal material and constituting an outer shape of the conductive particles
  • the fine silica particles may be evenly distributed over the entire surface of the body portion.
  • the body portion may be made of a mixture of a high-conductive metal and a magnetic body, or a state in which a high-conductive metal and a magnetic body are physically or chemically contacted to each other.
  • a plurality of conductive parts which are provided for respective positions corresponding to terminals of the device to be inspected and in which a large number of conductive particles are arranged in the elastic insulating material in the vertical direction, and a plurality of conductive parts which are provided between the plurality of conductive parts, 1.
  • a conductive particle provided in a test socket comprising an insulating support for electrically insulating a conductive particle,
  • At least one of the conductive particles may be a conductive particle
  • a body portion made of a metal material and constituting an outer shape of the conductive particles
  • the high-definition synthetic microparticles are made of a material having a higher adhesive force to the elastic insulation material than the metal material constituting the body part.
  • the conductive particles may be,
  • the high-definition synthetic microparticles can be evenly distributed over the entire surface of the body portion.
  • fine particles of silica are provided on the surface of the conductive particles to induce strong bonding with the elastic insulating material, thereby preventing the conductive particles from being separated even if the conductive part is compressed during the inspection process. Accordingly, There is an advantage.
  • Fig. 1 shows a prior art socket for inspection.
  • Figure 2 is an operational view of Figure 1;
  • FIG. 3 is a view showing a test socket according to an embodiment of the present invention.
  • Fig. 4 is a view showing conductive particles used in the inspection socket of Fig. 3; Fig.
  • 5 and 6 are views showing a method of manufacturing a test socket of the present invention.
  • FIG. 7 is a view showing conductive particles according to another embodiment of the present invention.
  • test socket according to the present invention will be described in detail with reference to the accompanying drawings.
  • the inspection socket 10 is disposed between the device under test 60 and the inspection device 70 and is provided with the terminals 61 of the device under test 60 and the pads 71 of the inspection device 70, And includes an electrically conductive portion 20 and an insulative support portion 30.
  • the electrically conductive portion 20 and the insulative support portion 30 are electrically connected to each other.
  • a plurality of the conductive parts 20 are disposed at positions corresponding to the terminals 61 of the device under test 60.
  • Each of the conductive parts 20 is arranged to be spaced apart from each other in the plane direction and exhibits conductivity in the thickness direction and does not show conductivity in the plane direction perpendicular to the thickness direction.
  • a plurality of conductive particles 21 are arranged in the thickness direction in the elastic insulating material. When the upper surface of the conductive part 20 is pressed, the conductive part 20 is compressed in the thickness direction and expanded in the surface direction.
  • the elastic insulating material constituting the conductive part 20 is preferably a polymer material having a crosslinked structure.
  • the curable polymeric substance-forming material usable for obtaining such an elastic insulating material various materials can be used. Specific examples thereof include polybutadiene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber, acrylonitrile- Butadiene-diene block copolymer, and styrene-isoprene block copolymer, and hydrogenated products thereof, chloroprene rubber, urethane rubber, poly Ester rubber, epichlorohydrin rubber, silicone rubber, ethylene-propylene copolymer rubber, and ethylene-propylene-diene copolymer rubber.
  • the conductive parts 20 when weatherability is required for the conductive parts 20 to be obtained, it is preferable to use a material other than the conjugated diene rubber, and in particular, from the viewpoints of moldability and electrical characteristics, it is preferable to use silicone rubber.
  • the liquid silicone rubber is crosslinked or condensed.
  • the liquid silicone rubber preferably has a viscosity of 10 5 poise or less at a strain rate of 10 -1 s, and may be any of condensation type, addition type, vinyl type, and hydroxyl type. Specific examples thereof include dimethyl silicone raw material, methyl vinyl silicone raw material and methylphenyl vinyl silicone raw material.
  • the conductive particles 21 have conductivity as a whole and perform the function of allowing electricity to flow in the conductive parts 20. [ A plurality of the conductive particles 21 are contained in the insulating elastic material.
  • These conductive particles 21 include a body portion 21a and silica fine particles 21b.
  • the body portion 21a is made of a metal material and forms a general outer shape of the conductive particles 21, and may have a usual sphere shape.
  • the present invention is not limited thereto and may have various shapes such as a columnar shape, a star shape, and an irregular shape.
  • a material exhibiting magnetism As the body portion 21a, a material exhibiting magnetism is used.
  • the material exhibiting such magnetism include particles of a magnetic metal such as iron (Fe), cobalt (Co), nickel (Ni), alnico, ferrite, neodymium (NdFeB), and samarium (SmCo) Alloy particles or particles containing these metals or those particles as core particles and plating the surface of the core particles with a metal having a good conductivity such as gold, silver, palladium, or rhodium, or a non- Or inorganic particles such as glass beads or polymer particles as core particles and plating the surfaces of the core particles with a conductive magnetic metal such as nickel or cobalt.
  • a metal having a good conductivity such as gold, silver, palladium, or rhodium
  • a non- Or inorganic particles such as glass beads or polymer particles as core particles and plating the surfaces of the core particles with a conductive
  • the body 21a is made of a magnetic material such as iron, cobalt, nickel, or the like, which represents magnetic properties, and an alloy of a high-conductivity metal such as gold, silver and copper, It is also possible to include a state in which the "
  • the silica fine particles (21b) are, as has a smaller size than body portion (21a) having a granule, the formula SiO 2 . These fine silica particles 21b are excellent in bonding strength with the silicone rubber constituting the elastic insulating material as compared with the metal material. That is, the adhesive strength to the silicone rubber at the interface is excellent, so that it is not easily peeled off when bonded.
  • the silica fine particles 21b are partially embedded in the surface of the body portion 21a and are firmly fixed to the body portion 21a while the remaining portion of the silica fine particles 21b protrudes from the body portion 21a.
  • the silica fine particles 21b protruding from the body 21a are in contact with the elastic insulating material and are firmly coupled to the elastic insulating material.
  • These fine silica particles 21b are evenly distributed over the entire surface of the body portion 21a.
  • the fine silica particles 21b do not completely cover the surface of the body portion 21a so that the conductive particles 21 can be brought into electrical contact with the adjacent conductive particles 21 at the surface.
  • the fine silica particles 21b attached to the conductive particles 21 are spaced apart from each other.
  • the conductivity can be reduced, but the adhesive strength with the elastic insulating material can be further improved by controlling the composition ratio effectively, thereby increasing the service life of the test socket 10.
  • the insulating supporting portion 30 is formed of the same material as the elastic insulating material so as to insulate the conductive portions 20 from each other while preventing the electric conduction between the conductive portions 20 while supporting the conductive portions 20.
  • a silicone rubber can be used.
  • the present invention is not limited thereto, and it is also possible to use a material different from the elastic insulating material constituting the conductive part 20.
  • a molding material of a fluidity is prepared by dispersing magnetic particles 21 in a liquid insulating elastic material, and the molding material is filled in the cavity of the mold, Is embedded in the mold in a state of being positioned between the ferromagnetic portion 52 of the upper mold 50 and the ferromagnetic portion 57 of the lower mold 55 corresponding thereto.
  • a pair of electromagnets (not shown), for example, are disposed on the lower surface of the ferromagnetic substrate 56 on the upper surface and the lower surface 55 of the ferromagnetic substrate 51 in the upper mold 50, A parallel magnetic field having a large intensity between the parallel magnetic field having the intensity distribution, that is, the ferromagnetic material portion 52 of the upper mold 50 and the corresponding ferromagnetic material portion 57 of the lower mold 55, .
  • the conductive particles 21 dispersed in the molding material layer 20A as shown in Fig. 6 are separated from the ferromagnetic material portion 52 of the upper mold 50 and the lower mold 55 and the ferromagnetic material portions 57 of the forming material 20A at the same time and aligned so as to be aligned in the thickness direction of the molding material 20A.
  • the molding material 20A is cured to form an insulating elastic material (not shown) disposed between the ferromagnetic material portion 52 of the upper die 50 and the corresponding ferromagnetic material portion 57 of the lower die 55, A conductive part 20 densely packed in a state in which the conductive particles 21 are arranged so as to be arranged in the thickness direction and an insulating support part 21 having no or almost no conductive particles 21 around the conductive part 20 30 are manufactured.
  • the silica fine particles 21b induce strong bonding with the conductive particles 21 in the curing process of the insulating elastic material, The sliding of the conductive particles 21 can be prevented.
  • the conductive part 20 can be held firmly in the process of compressing the conductive part 20, and the conductivity can be maintained constant.
  • the silica fine particles 21b have a strong adhesive force with the elastic insulating material such as silicone rubber, there is little fear that the conductive particles 21 will be separated from the conductive part 20 and the whole life of the test socket 10 is improved .
  • test socket 10 according to an embodiment of the present invention has the following actions and effects.
  • the inspecting device 10 is placed on the inspecting socket 10.
  • the conductive portion 20 of the inspection socket 10 is placed in a state in which it can be electrically conducted by the terminal 61 of the device under test.
  • the electric signal is transmitted to the terminal 61 of the device under test 60 through the conductive part 20 by applying a predetermined electrical signal from the testing device 70, Can be performed.
  • the test socket of the present invention is advantageous in that the conductive fine particles provided in the conductive particles induce a strong bonding between the conductive particles and the silicone rubber, which is an elastic insulating material, so that the conductivity can be maintained constant.
  • the contact surface between the conductive particles is always deteriorated.
  • the conductive particles having the silica fine particles adhered thereto in this embodiment the strong bond between the silica and the elastic insulating material is maintained The contact with the conductive particles can be maintained even if the elastic insulating material expands, so that more stable electrical contact can be maintained in a high temperature environment.
  • the fine particles of silica can not be plated, so that the exposure of the fine particles of silica can be maintained.
  • test socket according to the present invention can be modified as follows.
  • the conductive particles of the present invention are formed by adhering silica fine particles to the body portion.
  • the present invention is not limited thereto, and fine synthetic microparticles of other materials may be used as long as the material is excellent in adhesion strength to the elastic material than the metal material constituting the body portion It is also possible.
  • Examples of such highly consolidated synthetic fine particles include calcium carbonate, calcium phosphate, alumina, titanium oxide, and the like. It is also possible to use silica fine particles and calcium carbonate fine particles alone, or to mix different kinds of dissimilar materials to form a body part.
  • the fine particles adhering to the surface of the body have intrinsic properties so that the adhesive force with the elastic insulating material can be maintained.
  • silica fine particles are formed on the surface of the spherical body portion.
  • the concave portions of the conductive particles 21 ' It is also possible that a plurality of silica particles 22 'are formed and silica fine particles 21b' are formed up to the inner surface of the concave portion 22 '. That is, the elastic insulating material is filled up to the concave portion 22 ', which is recessed, so that the solid particles between the conductive particles 21' and the elastic insulating material can be firmly bonded to the inner surface of the concave portion 22 ' (21b ') are formed, which makes it possible to more securely engage with each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

본 발명은 검사용 소켓 및 도전성 입자에 대한 것으로서, 더욱 상세하게는 피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 연결시키기 위한 검사용 소켓에 있어서, 상기 피검사 디바이스의 단자와 대응되는 위치마다 마련되고 탄성 절연물질 내에 다수의 도전성 입자가 상하방향으로 배열되어 있는 복수의 도전부; 및 상기 복수의 도전부 사이에 마련되고 각각의 도전부를 지지하면서 도전부를 서로 전기적으로 절연시키는 절연성 지지부;를 포함하되, 상기 도전성 입자 중 적어도 하나는, 금속소재로 이루어지며 도전성 입자의 외형을 구성하는 몸체부와, 일부는 상기 몸체부 내에 고정되고 나머지 일부는 상기 몸체부로부터 돌출되며, 도전부를 구성하는 탄성 절연물질과 접촉되어 상기 탄성 절연물질과 견고하게 결합되는 다수의 실리카 미립자를 포함하는 검사용 소켓에 대한 것이다.

Description

검사용 소켓 및 도전성 입자
본 발명은 검사용 소켓 및 도전성 입자에 대한 것으로서, 더욱 상세하게는 검사과정에서 도전성 입자가 도전부로부터 이탈되는 것을 방지하는 검사용 소켓 및 도전성 입자에 대한 것이다.
일반적으로 검사용 소켓은, 제조된 피검사 디바이스의 불량여부를 판단하기 위한 검사과정에서 사용되는 것이다. 즉, 제조된 피검사 디바이스는 불량여부를 판단하기 위하여 소정의 전기적 검사를 수행하게 되는데, 이때 검사가 요구되는 피검사 디바이스와 검사를 위한 검사장치는 서로 직접 접촉되는 것이 아니라 검사용 소켓을 통하여 간접적으로 접속되게 된다. 그 이유는 검사를 위한 검사장치는 비교적 고가이기 때문에 빈번한 피검사 디바이스와의 접촉으로 인한 마모 또는 손상시 교체가 용이하지 않고 교체비용이 많이 들기 때문이다. 이에 따라 검사용 소켓은 검사장치의 상측에 교체가능하게 장착되고 상기 피검사 디바이스는 검사장치가 아닌 검사용 소켓과 접촉함으로서 상기 검사장치와 전기적으로 연결되게 된다. 따라서, 검사장치로부터 나오는 검사신호는 상기 검사용 소켓을 통하여 상기 피검사 디바이스로 전달되게 되는 것이다.
이러한 검사용 소켓은, 도 1 및 도 2에 도시된 바와 같이, 피검사 디바이스(140)와 검사장치(130)의 사이에 배치되어 피검사 디바이스(140)의 단자(141)와 검사장치(130)의 패드(131)를 서로 전기적으로 연결시키는 검사용 소켓에 있어서, 상기 피검사 디바이스의 단자와 대응되는 위치마다 배치되고 두께방향으로의 도전성을 나타내는 도전부로서, 상기 도전부(110)는 탄성 절연물질 내에 다수의 도전성 입자(111)가 두께방향으로 배열되어 배치되는 도전부(110); 및 상기 각각의 도전부(110)를 지지하면서 절연시키는 절연성 지지부(120)를 포함하여 구성된다. 이때, 상기 검사용 소켓(100)은 검사장치(130)에 탑재된 상태에서 검사장치(130)의 패드(131)와 상기 도전부(110)가 서로 접촉되어 있으며, 피검사 디바이스(140)는 검사용 소켓(100)의 도전부(110)에 접촉될 수 있도록 구성된다.
인서트(미도시)에 의하여 이동되어 오는 피검사용 디바이스(140)는 상기 검사용 소켓(100)의 도전부(110)에 접촉됨으로서, 상기 검사용 소켓(100)에 안착되고, 이후에 검사장치(130)로부터 소정의 전기적인 신호가 인가되면 그 신호는 도전부(110)를 거쳐서 피검사용 디바이스(140)로 전달됨으로서 소정의 전기적인 검사가 수행된다.
한편, 검사용 소켓의 도전부는 절연물질 내부에 다수의 도전성 입자가 배열되어 구성되는데, 이때 피검사 디바이스의 단자가 빈번하게 상기 도전부에 접촉된다. 이와 같이 피검사 디바이스의 단자가 빈번하게 도전부에 접촉되면 절연물질 내에 분포되어 있는 도전성 입자는 쉽게 외부로 이탈될 수 있다. 특히, 도전성 입자는 구형으로 이루어지게 되는데, 이와 같이 구형의 도전성 입자는 쉽게 절연물질로부터 이탈되게 된다. 이와 같이 도전성 입자가 이탈되는 경우에는 전체적인 도전성능을 저해하게 되고 이에 따라서 전체적인 검사의 신뢰성에 영향을 미치게 되는 단점이 있다.
이러한 문제점을 해결하기 위하여 본 출원인에 의하여 출원되어 등록된 대한민국 등록특허 1339166호(2013. 12. 9. 공고)에는 도전성 입자에 관통공을 형성하고 상기 관통공에 주변 탄성 절연물질이 충전되도록 하여 도전성 입자가 도전부에서 이탈을 방지하는 기술이 개시되어 있다.
이러한 종래기술은 구형 도전성 입자에 비해서 도전부에서 이탈이 방지되는 효과가 있으나, 기본적으로 도전성을 가지면서 금속소재로 이루어진 도전성 입자와, 상기 도전성 입자 주변을 감싸는 실리콘 고무로 이루어진 탄성 절연물질 사이의 소재의 차이로 인하여 계면(도전성 입자의 표면에서 탄성 절연물질과 접촉하는 부분)에서의 접착력이 약하다는 단점까지 극복하지 못하고 있다.
본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로서, 더욱 상세하게는 도전성 입자가 주변 탄성 절연물질과 견고한 결합력을 유지하여 검사과정에서도 전도성을 일정하게 유지할 수 있는 검사용 소켓 및 도전성 입자를 제공하는 것을 목적으로 한다.
상술한 목적을 달성하기 위한 본 발명의 검사용 소켓은, 피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 연결시키기 위한 검사용 소켓에 있어서,
상기 피검사 디바이스의 단자와 대응되는 위치마다 마련되고 탄성 절연물질 내에 다수의 도전성 입자가 상하방향으로 배열되어 있는 복수의 도전부; 및
상기 복수의 도전부 사이에 마련되고 각각의 도전부를 지지하면서 도전부를 서로 전기적으로 절연시키는 절연성 지지부;를 포함하되,
상기 도전성 입자 중 적어도 하나는,
금속소재로 이루어지며 도전성 입자의 외형을 구성하는 몸체부와,
일부는 상기 몸체부 내에 고정되고 나머지 일부는 상기 몸체부로부터 돌출되며, 도전부를 구성하는 탄성 절연물질과 접촉되어 상기 탄성 절연물질과 견고하게 결합되는 다수의 실리카 미립자를 포함한다.
상기 검사용 소켓에서,
상기 실리카 미립자는 몸체부의 표면 전체에 걸쳐서 고르게 분포될 수 있다.
상기 검사용 소켓에서,
상기 도전부는 액상의 탄성 절연물질 내에 다수의 도전성 입자가 두께방향으로 배열된 상태에서 경화되어 제조되고,
상기 실리카 미립자는 액상의 탄성 절연물질이 경화되는 과정에서 탄성 절연물질과의 강한 결합을 유도함으로서, 상기 도전성 입자가 탄성 절연물질로부터 이탈되는 것을 방지할 수 있다.
상기 검사용 소켓에서,
상기 몸체부는, 고도전성 금속과 자성체가 혼합되거나 고도전성 금속과 자성체가 물리적 또는 화학적으로 접촉하여 결합된 상태로 될 수 있다.
상기 검사용 소켓에서,
상기 몸체부에는 오목하게 패여지고 탄성 절연물질이 채워지는 다수의 오목부가 마련되어 있으며,
상기 오목부의 내면에 실리카 미립자가 고정돌출되어 상기 오목부 내의 탄성 절연물질과 견고하게 결합될 수 있다.
상술한 목적을 달성하기 위한 본 발명의 검사용 소켓은, 피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 연결시키기 위한 검사용 소켓에 있어서,
상기 피검사 디바이스의 단자와 대응되는 위치마다 마련되고 탄성 절연물질 내에 다수의 도전성 입자가 상하방향으로 배열되어 있는 복수의 도전부; 및
상기 복수의 도전부 사이에 마련되고 각각의 도전부를 지지하면서 도전부를 서로 전기적으로 절연시키는 절연성 지지부;를 포함하되,
상기 도전성 입자 중 적어도 하나는,
금속소재로 이루어지며 도전성 입자의 외형을 구성하는 몸체부와,
일부는 상기 몸체부 내에 고정되고 나머지 일부는 상기 몸체부로부터 돌출되며 도전부를 구성하는 탄성 절연물질과 접촉되어, 상기 탄성 절연물질과 견고한 결합을 구성하는 다수의 고결합성 미립자를 포함하되,
상기 고결합성 미립자는, 상기 몸체부를 이루는 금속소재보다 탄성 절연물질에 접착되는 접착력이 높은 소재로 이루어진다.
상기 검사용 소켓에서,
상기 고결합성 미립자는, 탄산칼슘을 소재로 할 수 있다.
상기 검사용 소켓에서,
상기 고결합성 미립자는 몸체부의 표면 전체에 걸쳐서 고르게 분포될 수 있다.
상술한 목적을 달성하기 위한 본 발명의 도전성 입자는, 전기적 검사가 요구되는 피검사 디바이스의 단자와 대응되는 위치마다 마련되고 탄성 절연물질 내에 다수의 도전성 입자가 상하방향으로 배열되어 있는 복수의 도전부와, 상기 복수의 도전부 사이에 마련되어 각각의 도전부를 지지하면서 도전부를 서로 전기적으로 절연시키는 절연성 지지부;를 포함하는 검사용 소켓에 마련되는 도전성 입자에 있어서,
상기 도전부 내에 마련된 도전성 입자 중 적어도 하나는,
금속소재로 이루어지며 도전성 입자의 외형을 구성하는 몸체부와,
일부는 상기 몸체부 내에 고정되고 나머지 일부는 상기 몸체부로부터 돌출되며, 상기 탄성 절연물질과 접촉되어 상기 탄성 절연물질과 견고하게 결합되는 다수의 실리카 미립자를 포함한다.
상기 도전성 입자에서,
상기 실리카 미립자는 몸체부의 표면 전체에 걸쳐서 고르게 분포될 수 있다.
상기 도전성 입자에서,
상기 몸체부는, 고도전성 금속과 자성체가 혼합되거나 고도전성 금속과 자성체가 물리적 또는 화학적으로 접촉하여 결합된 상태로 될 수 있다.
상술한 목적을 달성하기 위한 본 발명의 도전성 입자는,
피검사 디바이스의 단자와 대응되는 위치마다 마련되고 탄성 절연물질 내에 다수의 도전성 입자가 상하방향으로 배열되어 있는 복수의 도전부와, 상기 복수의 도전부 사이에 마련되어 각각의 도전부를 지지하면서 도전부를 서로 전기적으로 절연시키는 절연성 지지부;를 포함하는 검사용 소켓에 마련되는 도전성 입자에 있어서,
상기 도전성 입자 중 적어도 하나는,
금속소재로 이루어지며 도전성 입자의 외형을 구성하는 몸체부와,
일부는 상기 몸체부 내에 고정되고 나머지 일부는 상기 몸체부로부터 돌출되며, 도전부를 구성하는 탄성 절연물질과 접촉되어 상기 탄성 절연물질과 견고하게 결합되는 다수의 고결합성 미립자를 포함하되,
상기 고결합성 미립자는, 상기 몸체부를 이루는 금속소재보다 탄성 절연물질에 접착력이 높은 소재로 이루어진다.
상기 도전성 입자는,
상기 고결합성 미립자는 몸체부의 표면 전체에 걸쳐서 고르게 분포될 수 있다.
본 발명은 도전성 입자의 표면에 실리카 미립자가 마련되어 있어서 탄성 절연물질과의 강한 결합을 유도함으로서 검사과정에서 도전부가 압축되어도 도전성 입자가 이탈되는 것을 방지하고, 이에 따라서 도전부의 도전성능을 일정하게 유지할 수 있는 장점이 있다.
도 1은 종래기술의 검사용 소켓을 나타내는 도면.
도 2는 도 1의 작동도.
도 3은 본 발명의 일 실시예에 따른 검사용 소켓을 나타내는 도면.
도 4는 도 3의 검사용 소켓에 사용되는 도전성 입자를 나타내는 도면.
도 5 및 도 6은 본 발명의 검사용 소켓을 제조하는 방법을 나타내는 도면.
도 7은 본 발명의 다른 실시예에 따른 도전성 입자를 나타내는 도면.
이하, 본 발명에 따른 검사용 소켓을 첨부된 도면을 참조하여 상세하게 설명한다.
본 발명에 따른 검사용 소켓(10)은, 피검사 디바이스(60)와 검사장치(70) 사이에 배치되어 피검사 디바이스(60)의 단자(61)와 검사장치(70)의 패드(71)를 서로 전기적으로 연결시키는 것으로서, 도전부(20)와 절연성 지지부(30)를 포함하여 구성된다.
상기 도전부(20)는, 상기 피검사 디바이스(60)의 단자(61)와 대응되는 위치마다 다수개가 배치되는 것이다. 이러한 도전부(20)는 각각이 면방향으로 서로 이격되어 배치되어 있게 되며, 두께방향으로 도전성을 나타내고 두께방향과 직각인 면방향으로는 도전성을 나타내지 않는 것이다. 이러한 도전부(20)는 탄성 절연물질 내에 다수의 도전성 입자(21)가 두께방향으로 배열되어 배치된다. 상기 도전부(20)의 상면을 가압하게 되면 상기 도전부(20)는 두께방향으로 압축되면서 면방향으로 팽창된다.
상기 도전부(20)를 구성하는 탄성 절연물질은, 가교 구조를 갖는 고분자 물질이 바람직하다. 이러한 탄성 절연물질을 얻기 위해서 이용할 수 있는 경화성의 고분자 물질 형성 재료로서는, 여러가지 것을 사용할 수 있고, 그 구체예로서는, 폴리부타디엔 고무, 천연 고무, 폴리이소프렌 고무, 스티렌-부타디엔 공중합체 고무, 아크릴로니트릴-부타디엔 공중합체 고무 등의 공액 디엔계 고무 및 이들의 수소 첨가물, 스티렌-부타디엔-디엔 블록 공중합체 고무, 스티렌-이소프렌 블록 공중합체 등의 블록 공중합체 고무 및 이들 수소 첨가물, 클로로프렌 고무, 우레탄 고무, 폴리에스테르계 고무, 에피클로로히드린 고무, 실리콘 고무, 에틸렌-프로필렌 공중합체 고무, 에틸렌-프로필렌-디엔 공중합체 고무 등을 들 수 있다.
이상에 있어서, 얻어지는 도전부(20)에 내후성이 요구되는 경우에는, 공액 디엔계 고무 이외의 것을 이용하는 것이 바람직하고, 특히 성형 가공성 및 전기 특성 측면에서, 실리콘 고무를 이용하는 것이 바람직하다.
실리콘 고무로서는, 액상 실리콘 고무를 가교 또는 축합한 것이 바람직하다. 액상 실리콘 고무는, 그의 점도가 변형 속도 10-1초에서 105 푸아즈 이하인 것이 바람직하고, 축합형의 것, 부가형의 것, 비닐기나 히드록실기를 함유하는 것 등 중의 어느 것일 수도 있다. 구체적으로는, 디메틸 실리콘 생고무, 메틸비닐실리콘 생고무, 메틸페닐비닐 실리콘 생고무 등을 들 수 있다.
도전성 입자(21)는, 전체적으로 전도성을 가지는 것으로서 도전부(20) 내에서 전기가 흐를 수 있도록 하는 기능을 수행한다. 상기 도전성 입자(21)는 다수개가 절연성 탄성물질 내에 함유되어 있게 된다.
이러한 도전성 입자(21)는 몸체부(21a)와, 실리카 미립자(21b)를 포함한다.
상기 몸체부(21a)는 금속소재로 이루어지며, 도전성 입자(21)의 전체적인 외형을 구성하는 것으로서 통상적인 구형상을 가질 수 있다. 다만, 이에 한정되는 것은 아니며 기둥형, 별형, 비정형 등 다양한 형상을 가질 수 있다.
몸체부(21a)는 자성을 나타내는 소재가 이용된다. 이러한 자성을 나타내는 소재의 구체예로서는, 철(Fe), 코발트(Co), 니켈(Ni), 알니코, 페라이트, 네오디움(NdFeB), 사마륨(SmCo) 등의 자성을 갖는 금속의 입자 또는 이들의 합금의 입자 또는 이들 금속을 함유하는 입자, 또는 이들 입자를 코어 입자로 하여, 상기 코어 입자의 표면에 금, 은, 팔라듐, 로듐 등의 도전성이 양호한 금속의 도금을 실시한 것, 또는 비자성 금속 입자 또는 유리 비드 등의 무기 물질 입자 또는 중합체 입자를 코어 입자로 하여, 상기 코어 입자의 표면에 니켈, 코발트 등의 도전성 자성 금속의 도금을 실시한 것 등을 들 수 있다. 이 중에서는, 니켈 입자를 코어 입자로 하여, 그 표면에 도전성이 양호한 금의 도금을 실시한 것을 이용하는 것이 바람직하다.
또한, 몸체부(21a)는 자성을 나타내는 철, 코발트, 니켈 등의 자성체와, 금, 은, 구리 등의 고도전성 금속을 혼합한 합금과 더불어 자성체와 고도전성 금속이 물리적 또는 화학적으로 접촉하여 결합된 상태를 포함하는 것도 가능하다.
상기 실리카 미립자(21b)는, 몸체부(21a)보다 작은 크기를 가지며 알갱이 형상을 가지는 것으로서, 화학식을 SiO2 로 한다. 이러한 실리카 미립자(21b)는 금속소재에 비하여 탄성절연 물질을 구성하는 실리콘 고무와 결합력이 우수하다. 즉, 실리콘 고무와 계면에서의 접착력이 우수하여 결합되었을 때 쉽게 박리되지 않게 된다.
이러한 실리카 미립자(21b)는 몸체부(21a)의 표면에 일부는 파묻혀서 상기 몸체부(21a)에 견고하게 고정되고, 나머지 일부는 몸체부(21a)로부터 돌출되어 있게 된다. 몸체부(21a)로부터 돌출된 실리카 미립자(21b)는 탄성 절연물질과 접촉되면서 상기 탄성 절연물질과 견고한 결합을 이루게 된다. 이러한 실리카 미립자(21b)는 몸체부(21a)의 표면 전체에 걸쳐서 고르게 분포되어 있게 된다. 다만 도전성 입자(21)가 인접한 도전성 입자(21)와 표면에서 전기적 접촉이 가능하게 될 수 있도록 실리카 미립자(21b)가 완전하게 몸체부(21a) 표면을 덮고 있는 것은 아니다. 또한 도전성 입자(21)에 부착된 각 실리카 미립자(21b)들은 서로 이격되어 있게 된다.
또한, 실리카 미립자(21b)의 성분 비율을 높이는 경우 전도성은 감소할 수 있으나 효율적인 성분비 조절을 통해 탄성 절연물질과의 접착력을 더욱더 향상시켜 검사용 소켓(10)의 수명을 높일 수 있다.
상기 절연성 지지부(30)는, 상기 각각의 도전부(20)를 지지하면서 도전부(20) 간에 전기가 흐르지 않도록 각각의 도전부(20)들을 절연시키는 것으로서, 상기 탄성 절연물질과 동일한 소재로 이루어질 수 있으며, 구체적으로는 실리콘 고무가 사용될 수 있다. 다만 이에 한정되는 것은 아니며 도전부(20)를 구성하는 탄성 절연물질과 다른 소재가 사용되는 것도 가능하다.
이러한 본 발명의 검사용 소켓(10)의 제조방법에 대하여 도 5 및 도 6을 참조하면서 설명한다.
먼저, 액상의 절연성 탄성물질 중에 자성을 나타내는 도전성 입자(21)를 분산시킴으로써 유동성의 성형재료를 제조하고, 도 5에 나타낸 바와 같이 이 성형재료를 금형의 캐비티 내에 충전함과 동시에, 프레임판(40)을, 상형 (50)의 강자성체부분(52)과 이에 대응하는 하형 (55)의 강자성체 부분 (57) 사이에 위치된 상태로 금형 내에 매설한다. 이어서, 상형(50)에 있어서의 강자성체 기판 (51)의 상면 및 하형 (55)에 있어서의 강자성체 기판(56)의 하면에, 예를 들면 한쌍의 전자석(도시 생략)을 배치하고, 상기 전자석을 작동시킴으로써, 강도 분포를 갖는 평행 자장, 즉 상형(50)의 강자성체 부분(52)과 이에 대응하는 하형(55)의 강자성체 부분 (57) 사이에 큰 강도를 갖는 평행 자장을 성형재료의 두께 방향으로 작용시킨다.
그 결과, 성형재료(20A)에서는, 도 6에 나타낸 바와 같이 상기 성형재료층 (20A) 중에 분산되어 있던 도전성 입자(21)가, 상형 (50)의 강자성체 부분 (52)와 이에 대응하는 하형 (55)의 강자성체 부분 (57) 사이에 위치하는 도전부(20)가 되어야 할 부분에 집합하는 동시에, 상기 성형재료(20A)의 두께 방향으로 배열하도록 배향한다.
또한, 이 상태에 있어서, 성형재료(20A)를 경화 처리함으로써, 상형(50)의 강자성체 부분(52)와 이에 대응하는 하형 (55)의 강자성체 부분 (57) 사이에 배치된, 절연성 탄성물질 중에 도전성 입자(21)가 두께 방향으로 배열하도록 배향한 상태로 조밀하게 충전된 도전부(20)와, 이 도전부(20)의 주위에 도전성 입자(21)가 전혀 또는 거의 존재하지 않는 절연성 지지부(30)를 갖는 검사용 소켓(10)이 제조된다.
이와 같이 제조된 검사용 소켓(10)에서는, 실리카 미립자(21b)가 절연성 탄성물질의 경화과정에서 도전성 입자(21)와 강한 결합을 유도함으로서 피검사 디바이스(60)의 검사과정에서 도전부(20)가 압축되더라도 도전성 입자(21)간의 미끄러짐을 방지할 수 있게 된다.
또한, 도전성 입자(21)와 탄성 절연물질 간의 강한 결합으로 인하여 도전부(20)가 압축되는 과정에서도 단단한 결합을 유지하여 전도성을 일정하게 유지할 수 있게 된다.
또한, 실리카 미립자(21b)는 실리콘 고무와 같은 탄성 절연물질과 접착력이 크기 때문에 도전성 입자(21)가 도전부(20)로부터 이탈될 우려가 적고, 검사용 소켓(10)의 전체적인 수명을 향상시킬 수 있게 된다.
이러한, 본 발명의 일 실시예에 따른 검사용 소켓(10)은, 다음과 같은 작용효과 가진다.
먼저, 검사장치(70)에 검사용 소켓(10)을 안착시킨 후에, 피검사용 디바이스를 상기 검사용 소켓(10)에 안착시킨다. 이때, 상기 검사용 소켓(10)의 도전부(20)는 피검사용 디바이스의 단자(61)에 의하여 눌림에 의하여 전기적으로 도통가능한 상태에 놓이게 된다. 이때, 검사장치(70)로부터 소정의 전기적인 신호를 인가함에 따라서 상기 전기적인 신호는 도전부(20)를 통하여 피검사 디바이스(60)의 단자(61)로 전달되게 되고, 이에 따라서 소정의 검사가 수행될 수 있다.
이러한 본 발명의 검사용 소켓은, 도전성 입자에 마련된 실리콘 미립자가 도전성 입자와 탄성 절연물질인 실리콘 고무와의 견고한 결합을 유도함으로서 전도성을 일정하게 유지할 수 있게 하는 장점이 있다.
또한, 종래의 도전성 입자는 탄성 절연물질이 고온환경에서 팽창할 경우 도전성 입자 간의 접촉면이 항상 떨어지게 되는데 본 실시예에서 제시하는 실리카 미립자가 부착된 도전성 입자는 실리카와 탄성 절연물질간의 강한 결합을 그대로 유지하고 있기 때문에 탄성 절연물질이 팽창하여도 도전성 입자와의 접촉을 유지할 수 있어 고온 환경에서 더욱 안정적인 전기적 접촉을 유지할 수 있다.
또한, 본 발명에 따른 도전성 입자에서는 고도전성을 위해 몸체부 표면에 도금층을 형성하여도 실리카 미립자에는 도금이 되지 않기 때문에 실리카 미립자의 노출을 그대로 유지시킬 수 있다.
이러한 본 발명에 따른 검사용 소켓은 다음과 같이 변형되는 것도 가능하다.
본 발명의 도전성 입자는 실리카 미립자가 몸체부에 부착형성시키는 것을 예시하였으나, 이에 한정되는 것은 아니며 몸체부를 구성하는 금속소재보다 탄성물질에 접착되는 접착력이 우수한 소재라면 다른 소재의 고결합성 미립자가 이용되는 것도 가능하다. 이러한 고결합성 미립자로는 탄산칼슘, 인산칼슘, 알루미나, 산화티타늄 등이 사용될 수 있다. 또한, 실리카 미립자와 탄산칼슘 미립자 등을 단독으로 사용하거나, 서로 다른 이종물질을 서로 혼합하여 몸체부에 형성시키는 것도 가능하다.
이와 같이 몸체부의 표면에 부착된 미립자는 고유의 성질을 그대로 가지고 있어서 탄성 절연물질과 접착력이 그대로 유지될 수 있게 된다.
또한, 상술한 실시예에서는 구형 몸체부 표면에 실리카 미립자가 형성되는 것을 예시하고 있으나, 도 7에 도시된 바와 같이 도전성 입자(21')의 몸체부(21a') 표면에 오목하게 패여진 오목부(22')가 다수 형성되고 상기 오목부(22') 내면까지 실리카 미립자(21b')가 형성되는 것도 가능하다. 즉, 탄성 절연물질이 오목하게 패여진 오목부(22')까지 채워져서 도전성 입자(21')와 탄성 절연물질 간의 견고한 결합이 가능하게 된 상태에서, 오목부(22')의 내면까지 실리카 미립자(21b')가 형성되어 있어서 보다 확실한 고정결합이 가능하게 되는 장점이 있게 된다.
이상에서 바람직한 실시예를 들어 본 발명을 상세하게 설명하였으나, 본 발명은 반드시 이러한 실시예들 및 변형예에 한정되는 것은 아니고 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양하게 변형 실시될 수 있다.

Claims (13)

  1. 피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 연결시키기 위한 검사용 소켓에 있어서,
    상기 피검사 디바이스의 단자와 대응되는 위치마다 마련되고 탄성 절연물질 내에 다수의 도전성 입자가 상하방향으로 배열되어 있는 복수의 도전부; 및
    상기 복수의 도전부 사이에 마련되고 각각의 도전부를 지지하면서 도전부를 서로 전기적으로 절연시키는 절연성 지지부;를 포함하되,
    상기 도전성 입자 중 적어도 하나는,
    금속소재로 이루어지며 도전성 입자의 외형을 구성하는 몸체부와,
    일부는 상기 몸체부 내에 고정되고 나머지 일부는 상기 몸체부로부터 돌출되며, 도전부를 구성하는 탄성 절연물질과 접촉되어 상기 탄성 절연물질과 견고하게 결합되는 다수의 실리카 미립자를 포함하는 것을 특징으로 하는 검사용 소켓.
  2. 제1항에 있어서,
    상기 실리카 미립자는 몸체부의 표면 전체에 걸쳐서 고르게 분포되어 있는 것을 특징으로 하는 검사용 소켓.
  3. 제1항에 있어서,
    상기 도전부는 액상의 탄성 절연물질 내에 다수의 도전성 입자가 두께방향으로 배열된 상태에서 경화되어 제조되고,
    상기 실리카 미립자는 액상의 탄성 절연물질이 경화되는 과정에서 탄성 절연물질과의 강한 결합을 유도함으로서, 상기 도전성 입자가 탄성 절연물질로부터 이탈되는 것을 방지하는 것을 특징으로 하는 검사용 소켓.
  4. 제1항에 있어서,
    상기 몸체부는, 고도전성 금속과 자성체가 혼합되거나 고도전성 금속과 자성체가 물리적 또는 화학적으로 접촉하여 결합된 상태로 되어 있는 것을 특징으로 하는 검사용 소켓.
  5. 제1항에 있어서,
    상기 몸체부에는 오목하게 패여지고 탄성 절연물질이 채워지는 다수의 오목부가 마련되어 있으며,
    상기 오목부의 내면에 실리카 미립자가 고정돌출되어 상기 오목부 내의 탄성 절연물질과 견고하게 결합되는 것을 특징으로 하는 검사용 소켓.
  6. 피검사 디바이스와 검사장치 사이에 배치되어 상기 피검사 디바이스의 단자와 검사장치의 패드를 서로 전기적으로 연결시키기 위한 검사용 소켓에 있어서,
    상기 피검사 디바이스의 단자와 대응되는 위치마다 마련되고 탄성 절연물질 내에 다수의 도전성 입자가 상하방향으로 배열되어 있는 복수의 도전부; 및
    상기 복수의 도전부 사이에 마련되고 각각의 도전부를 지지하면서 도전부를 서로 전기적으로 절연시키는 절연성 지지부;를 포함하되,
    상기 도전성 입자 중 적어도 하나는,
    금속소재로 이루어지며 도전성 입자의 외형을 구성하는 몸체부와,
    일부는 상기 몸체부 내에 고정되고 나머지 일부는 상기 몸체부로부터 돌출되며, 도전부를 구성하는 탄성 절연물질과 접촉되어 상기 탄성 절연물질과 견고한 결합을 구성하는 다수의 고결합성 미립자를 포함하되,
    상기 고결합성 미립자는, 상기 몸체부를 이루는 금속소재보다 탄성 절연물질에 접착되는 접착력이 높은 소재로 이루어지는 것을 특징으로 하는 검사용 소켓.
  7. 제6항에 있어서,
    상기 고결합성 미립자는, 탄산칼슘을 소재로 하는 것을 특징으로 하는 검사용 소켓.
  8. 제1항에 있어서,
    상기 고결합성 미립자는 몸체부의 표면 전체에 걸쳐서 고르게 분포되어 있는 것을 특징으로 하는 검사용 소켓.
  9. 전기적 검사가 요구되는 피검사 디바이스의 단자와 대응되는 위치마다 마련되고 탄성 절연물질 내에 다수의 도전성 입자가 상하방향으로 배열되어 있는 복수의 도전부와, 상기 복수의 도전부 사이에 마련되어 각각의 도전부를 지지하면서 도전부를 서로 전기적으로 절연시키는 절연성 지지부;를 포함하는 검사용 소켓에 마련되는 도전성 입자에 있어서,
    상기 도전부 내에 마련된 도전성 입자 중 적어도 하나는,
    금속소재로 이루어지며 도전성 입자의 외형을 구성하는 몸체부와,
    일부는 상기 몸체부 내에 고정되고 나머지 일부는 상기 몸체부로부터 돌출되며, 상기 탄성 절연물질과 접촉되어 상기 탄성 절연물질과 견고하게 결합되는 다수의 실리카 미립자를 포함하는 것을 특징으로 하는 도전성 입자.
  10. 제9항에 있어서,
    상기 실리카 미립자는 몸체부의 표면 전체에 걸쳐서 고르게 분포되어 있는 것을 특징으로 하는 도전성 입자.
  11. 제9항에 있어서,
    상기 몸체부는, 고도전성 금속과 자성체가 혼합되거나 고도전성 금속과 자성체가 물리적 또는 화학적으로 접촉하여 결합된 상태로 되어 있는 것을 특징으로 하는 도전성 입자.
  12. 피검사 디바이스의 단자와 대응되는 위치마다 마련되고 탄성 절연물질 내에 다수의 도전성 입자가 상하방향으로 배열되어 있는 복수의 도전부와, 상기 복수의 도전부 사이에 마련되어 각각의 도전부를 지지하면서 도전부를 서로 전기적으로 절연시키는 절연성 지지부;를 포함하는 검사용 소켓에 마련되는 도전성 입자에 있어서,
    상기 도전성 입자 중 적어도 하나는,
    금속소재로 이루어지며 도전성 입자의 외형을 구성하는 몸체부와,
    일부는 상기 몸체부 내에 고정되고 나머지 일부는 상기 몸체부로부터 돌출되며, 도전부를 구성하는 탄성 절연물질과 접촉되어 상기 탄성 절연물질과 견고하게 결합되는 다수의 고결합성 미립자를 포함하되,
    상기 고결합성 미립자는, 상기 몸체부를 이루는 금속소재보다 탄성 절연물질에 접착력이 높은 소재로 이루어지는 것을 특징으로 하는 도전성 입자.
  13. 제12항에 있어서,
    상기 고결합성 미립자는 몸체부의 표면 전체에 걸쳐서 고르게 분포되어 있는 것을 특징으로 하는 도전성 입자.
PCT/KR2018/009939 2017-08-31 2018-08-29 검사용 소켓 및 도전성 입자 WO2019045426A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880055925.2A CN111051894B (zh) 2017-08-31 2018-08-29 测试插座以及导电颗粒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0110660 2017-08-31
KR1020170110660A KR101976703B1 (ko) 2017-08-31 2017-08-31 검사용 소켓 및 도전성 입자

Publications (1)

Publication Number Publication Date
WO2019045426A1 true WO2019045426A1 (ko) 2019-03-07

Family

ID=65527683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009939 WO2019045426A1 (ko) 2017-08-31 2018-08-29 검사용 소켓 및 도전성 입자

Country Status (4)

Country Link
KR (1) KR101976703B1 (ko)
CN (1) CN111051894B (ko)
TW (1) TWI708065B (ko)
WO (1) WO2019045426A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726918A (zh) * 2019-09-25 2020-01-24 苏州韬盛电子科技有限公司 阻抗匹配结构的半导体芯片测试同轴插座及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102387745B1 (ko) * 2020-06-23 2022-05-19 (주)하이그레이드 손상된 실리콘 러버 소켓 복원 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100069989A (ko) * 2008-12-17 2010-06-25 제일모직주식회사 절연 전도성 입자 및 이를 포함하는 이방 전도성 필름용 조성물
KR20100075938A (ko) * 2007-10-22 2010-07-05 니폰 가가쿠 고교 가부시키가이샤 피복 도전성 분체 및 그것을 이용한 도전성 접착제
JP2015501427A (ja) * 2012-04-03 2015-01-15 アイエスシー カンパニー,リミテッドISC Co.,Ltd. 高密度導電部を有するテスト用ソケット及びその製造方法
KR101586340B1 (ko) * 2014-12-26 2016-01-18 주식회사 아이에스시 전기적 검사 소켓 및 전기적 검사 소켓용 도전성 입자의 제조방법
KR101748184B1 (ko) * 2016-02-02 2017-06-19 (주)티에스이 검사용 소켓 및 검사용 소켓의 도전성 입자 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW561266B (en) * 1999-09-17 2003-11-11 Jsr Corp Anisotropic conductive sheet, its manufacturing method, and connector
KR100621463B1 (ko) * 2003-11-06 2006-09-13 제일모직주식회사 절연 전도성 미립자 및 이를 함유하는 이방 전도성 필름
KR101375298B1 (ko) * 2011-12-20 2014-03-19 제일모직주식회사 전도성 미립자 및 이를 포함하는 이방 전도성 필름
KR101339166B1 (ko) * 2012-06-18 2013-12-09 주식회사 아이에스시 관통공이 형성된 도전성 입자를 가지는 검사용 소켓 및 그 제조방법
US20150377923A1 (en) * 2013-02-19 2015-12-31 Isc Co., Ltd. Test socket with high density conduction section
CN105448620B (zh) * 2014-07-10 2017-08-08 清华大学 场发射阴极及场发射装置
CN104741605B (zh) * 2015-04-10 2017-03-01 武汉大学 纳米银包裹二氧化硅纳微米球导电粉末及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100075938A (ko) * 2007-10-22 2010-07-05 니폰 가가쿠 고교 가부시키가이샤 피복 도전성 분체 및 그것을 이용한 도전성 접착제
KR20100069989A (ko) * 2008-12-17 2010-06-25 제일모직주식회사 절연 전도성 입자 및 이를 포함하는 이방 전도성 필름용 조성물
JP2015501427A (ja) * 2012-04-03 2015-01-15 アイエスシー カンパニー,リミテッドISC Co.,Ltd. 高密度導電部を有するテスト用ソケット及びその製造方法
KR101586340B1 (ko) * 2014-12-26 2016-01-18 주식회사 아이에스시 전기적 검사 소켓 및 전기적 검사 소켓용 도전성 입자의 제조방법
KR101748184B1 (ko) * 2016-02-02 2017-06-19 (주)티에스이 검사용 소켓 및 검사용 소켓의 도전성 입자 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726918A (zh) * 2019-09-25 2020-01-24 苏州韬盛电子科技有限公司 阻抗匹配结构的半导体芯片测试同轴插座及其制备方法

Also Published As

Publication number Publication date
TWI708065B (zh) 2020-10-21
KR20190024070A (ko) 2019-03-08
CN111051894B (zh) 2023-02-21
CN111051894A (zh) 2020-04-21
KR101976703B1 (ko) 2019-05-09
TW201920973A (zh) 2019-06-01

Similar Documents

Publication Publication Date Title
WO2013191432A1 (ko) 관통공이 형성된 도전성 입자를 가지는 검사용 소켓 및 그 제조방법
WO2014129784A1 (ko) 고밀도 도전부를 가지는 테스트용 소켓
WO2017196093A1 (ko) 검사용 소켓 및 도전성 입자
WO2015012498A1 (ko) 도전성 커넥터 및 그 제조방법
WO2017196092A1 (ko) 검사용 소켓 및 도전성 입자
WO2013151316A1 (ko) 고밀도 도전부를 가지는 테스트용 소켓 및 그 제조방법
WO2017196094A1 (ko) 검사용 소켓 및 도전성 입자
WO2016105031A1 (ko) 전기적 검사 소켓 및 전기적 검사 소켓용 도전성 입자의 제조방법
WO2012002612A1 (ko) 프로브
WO2017023037A1 (ko) 테스트용 소켓
WO2015182885A1 (ko) 반도체 패키지 및 기판 검사용 소켓, 이에 사용되는 플렉시블 콘택트핀, 및 이 플렉시블 콘택트핀의 제조 방법
WO2021125679A1 (ko) 검사용 소켓
WO2018105896A1 (ko) 검사용 소켓장치
WO2010082715A1 (ko) 전기적 접속체 및 그 전기적 접속체를 포함한 테스트 소켓
WO2014204161A2 (ko) 검사용 인서트
WO2009145416A1 (ko) 반도체 칩 검사용 소켓
WO2021002690A1 (ko) 테스트용 소켓
WO2014104782A1 (ko) 테스트 소켓 및 소켓본체
WO2023128428A1 (ko) 신호 손실 방지용 테스트 소켓
WO2016068541A1 (ko) 관통홀이 형성된 다공성 절연시트를 갖는 전기적 접속체 및 그 제조 방법
WO2013165174A1 (ko) 검사용 탐침장치 및 검사용 탐침장치의 제조방법
WO2019045426A1 (ko) 검사용 소켓 및 도전성 입자
WO2020022745A1 (ko) 검사용 도전 시트
WO2013100560A1 (ko) 전기적 콘택터 및 전기적 콘택터의 제조방법
WO2015156653A1 (ko) 검사용 시트의 제조방법 및 검사용 시트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850292

Country of ref document: EP

Kind code of ref document: A1