WO2019045005A1 - リンパ行性薬剤送達法に有効な薬剤を含む溶液の適正な浸透圧域 - Google Patents

リンパ行性薬剤送達法に有効な薬剤を含む溶液の適正な浸透圧域 Download PDF

Info

Publication number
WO2019045005A1
WO2019045005A1 PCT/JP2018/032220 JP2018032220W WO2019045005A1 WO 2019045005 A1 WO2019045005 A1 WO 2019045005A1 JP 2018032220 W JP2018032220 W JP 2018032220W WO 2019045005 A1 WO2019045005 A1 WO 2019045005A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
lymph node
osmotic pressure
drug
kpa
Prior art date
Application number
PCT/JP2018/032220
Other languages
English (en)
French (fr)
Inventor
哲也 小玉
士朗 森
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to EP18851860.9A priority Critical patent/EP3677283A4/en
Priority to JP2019539633A priority patent/JP7182794B2/ja
Priority to US16/643,776 priority patent/US20200206352A1/en
Publication of WO2019045005A1 publication Critical patent/WO2019045005A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis

Definitions

  • the present invention relates to the osmotic pressure of a solution containing a drug effective for lymphatic drug delivery methods.
  • Cancer is a disease that affects one in two Japanese people, and 90% of cancer patients' death is caused by metastasis. Many cancers, including breast and head and neck cancers, metastasize to regional lymph nodes through lymphatics.
  • Intravenous administration via blood vessels is common as chemotherapy for current metastatic lymph nodes.
  • the intravenously administered drug leaks from the capillaries to the interstitium in peripheral tissues and is reabsorbed again into blood vessels and lymph vessels.
  • the lymphatic system is characterized by preferentially incorporating large particle size substances and high molecular weight substances.
  • the particle size is 10-100 nm, it is easily resorbed by the lymphatic system, and particles of 10 nm or less are mainly resorbed by blood vessels.
  • the efficiency of reabsorption into the lymphatic system is positively correlated with the molecular weight, and in particular, substances having a molecular weight of more than 16,000 are mainly taken into the lymphatic system. Therefore, anticancer agents that are generally small molecules are considered to have difficulty in accessing the lymphatic system and have low drug delivery efficiency to target lymph nodes.
  • EPR Enhanced Permeability Retention effect
  • immature tumor blood vessels constructed by cancer tissue have a wide gap of about 200 nm between vascular endothelial cells. Therefore, microparticle preparations and polymer preparations whose particle size is controlled to about 50-100 nm are passively accumulated in cancer tissue.
  • liposomal and micellized drugs have been developed utilizing this EPR effect, and many therapeutic effects have been reported for solid tumors.
  • Non-patent Literature 1 MXH10 / Mo-lpr / lpr lymph node swelling mouse having a lymph node equivalent to the size of human lymph node
  • lymph node metastasis is sufficient because blood vessels for supplying oxygen and nutrients necessary for the growth of tumor cells that invaded and engrafted into the lymph node are sufficiently present in normal lymph nodes. It is thought that it is because angiogenesis is hard to occur.
  • Non-patent document 3 Non-patent document 4
  • the concept is to inject locally into the regional lymph nodes around the primary site, and to treat or prevent regional lymph nodes and their downstream lymph node metastasis, or to administer drugs to the lymph nodes located upstream of the metastatic lymph nodes, It is a method of delivering a drug to downstream metastatic lymph nodes via lymphatic vessels.
  • An object of the present invention is to provide an optimal intralymphatic administration preparation containing drugs such as pharmaceutical compounds, cells, nucleic acids and the like used in lymphatic drug delivery methods.
  • the present inventors have found that a liquid preparation having a specific osmotic pressure zone has high drug retention in target lymph nodes, It was found that the downstream lymph node was highly deliverable and had a good drug effect. That is, the present invention relates to the following 1) to 11).
  • the intralymphatic administration preparation of 1), wherein the osmotic pressure of the liquid is 2400 kPa or less.
  • the intralymphatic administration preparation of 1), wherein the osmotic pressure of the liquid is 950 to 2000 kPa.
  • the intralymphatic administration preparation according to any one of 1) to 4), wherein the viscosity of the liquid is 0.5 to 20 mPa ⁇ s.
  • the intralymphatic administration preparation according to any one of 1) to 4), wherein the viscosity of the liquid is 1.0 to 15 mPa ⁇ s.
  • Intralymphatic administration preparation of polyoxyethylene sorbitan fatty acid ester is polyoxyethylene sorbitan oleate 8).
  • an intralymphatic administration preparation for effectively exerting the effect of the target drug in the target lymph node. That is, in the lymphatic drug delivery method, a network from a lymph node of a pharmaceutically active substance such as a low molecular weight compound, a polypeptide, an antibody, or a nucleic acid or a drug such as various cultured cells used in immunotherapy, gene therapy or regenerative medicine.
  • a pharmaceutically active substance such as a low molecular weight compound, a polypeptide, an antibody, or a nucleic acid or a drug such as various cultured cells used in immunotherapy, gene therapy or regenerative medicine.
  • the delivery rate and retention time to the downstream lymph nodes can be adjusted, and the therapeutic or preventive therapeutic effect of the administered drug in the lymph nodes and the downstream lymph nodes can be optimized.
  • Lymphatic network in mouse experiments In the axillary region, there are proprio axillary lymph nodes (PANL) and accessory axillary lymph nodes (AALN).
  • PANL proprio axillary lymph nodes
  • AALN accessory axillary lymph nodes
  • the auxiliary axillary and subiliac lymph nodes (SiLNs) are located upstream of the lymphatic network with respect to the intrinsic axillary lymph nodes. That is, there is a lymphatic flow of the secondary axillary node ⁇ propaginal axillary lymph node, subiliac lymph node ⁇ propyal axillary lymph node. Polysorbate 80 volume percent versus viscosity. Dynamics of the solution from subiliac lymph nodes to specific axillary lymph nodes by lymphatic drug delivery method.
  • Pathological image of subiliac lymph nodes and intrinsic axillary lymph nodes at Day 6 T Change in mouse weight for each solution. Relationship between glucose volume percent and viscosity.
  • Conceptual diagram of the epirubicin experiment Pathological image at day 16 after tumor cell inoculation.
  • Conceptual diagram of the nimstine experiment Pathological image at day 16 after tumor cell inoculation.
  • Conceptual diagram of the methotrexate experiment Pathological image at day 16 after tumor cell inoculation.
  • the “lymphatic drug delivery method” is a method of administering a drug to a lymph node located upstream of a metastatic lymph node and delivering the drug to a downstream lymph node via a lymphatic vessel.
  • the "intralymph node administration preparation” is a liquid preparation to be administered into a lymph node for delivering a target drug to a target lymph node by a lymphatic drug delivery method.
  • drug refers to various substances to be administered into the body of animals including humans for the purpose of treating or preventing diseases, and pharmaceutically active substances (eg, low molecular weight compounds, particularly low molecular weight organic substances) Compounds; Proteins or polypeptides (cell growth factors, cell growth inhibitors, neurotrophic factors, enzymes, hormones, cytokines, etc.); polysaccharides; lipids; antibodies; nucleic acids (DNA molecules, RNA molecules, aptamers, etc.); viruses, etc.
  • pharmaceutically active substances eg, low molecular weight compounds, particularly low molecular weight organic substances
  • Compounds Compounds; Proteins or polypeptides (cell growth factors, cell growth inhibitors, neurotrophic factors, enzymes, hormones, cytokines, etc.); polysaccharides; lipids; antibodies; nucleic acids (DNA molecules, RNA molecules, aptamers, etc.); viruses, etc.
  • nucleic acid molecules for gene therapy viruses, virus like particles, minicircles, plasmids or vectors (naked DNA), liposomes and / or nanoparticles
  • Various cultured cells eg, pluripotent stem cells (ES cells, iPS cells, etc.), tissue stem cells, mesenchymal stem cells, etc.
  • treatment refers to treatment (immediate treatment) of a subject having a disease, and ameliorates, alleviates or eliminates the condition or one or more symptoms caused by the condition. It means that.
  • “Prophylactic treatment” means treatment of a subject who is at risk of becoming ill, but who does not have the condition or symptom at this time.
  • the types of the above pharmaceutically active substances are not particularly limited, and drugs for central nervous system, drugs for peripheral nervous system, drugs for sensory organs, drugs for circulatory organs, drugs for respiratory organs, drugs for digestive organs, drugs for urogenital organs, although any of hormone agents, oncology agents, radiopharmaceuticals and the like may be used, oncology agents (anti-cancer agents) are preferred.
  • the preparation form of the above-mentioned pharmaceutically active substance may be in the form of a composition, and may be a micelle preparation such as a high molecular polymer micelle drug and a liposome preparation.
  • Molecularly-targeted drugs ibritsumomabtiuxetane, imatinib, everolimus, erlotinib, gefitinib, gemtuzumab ozogamicin, sunitinib, cetuximab, sorafenib, dasatinib, tamibarotene, trastuzumab, tretinoin, panitumumab, bevacizumab, bortezomib, tilapizumab , One or more selected from rituximab).
  • alkylating agents ifosfamide, cyclophosphamide, dacarbazine, temozolomide, nimustine, busulfan, melphalan, lanimustine.
  • Antimetabolite enocitabine, capecitabine, carmofur, cladribine, gemcitabine, cytarabine, cytarabine octophosphate, tegafur, tegafur uracil, tegafur ⁇ guileracil oteracil potassium, doxifluridine, nelabin, hydroxycarbamide, fluorouracil, feldemiratezolequine , Pentostatin, mercaptopurine, methotrexate), or more.
  • Anti-cancer antibiotics actinomycin D, acarrubicin, amrubicin, idarubicin, epirubicin, dinostatin stimaamer, daunorubicin, doxorubicin, pirarubicin, bleomycin, peptomycin, mitomycin C, mitoxantrone
  • plant alkaloids irinotecan, etoposide, eribulin, sobuzoxane, docetaxel, nogitecan, paclitaxel, paclitaxel injection, vinorelbine, vincristine, vindesine, vinblastine.
  • Anti-cancer antibiotics actinomycin D, acarrubicin, amrubicin, idarubicin, epirubicin, dinostatin stimaamer, daunorubicin, doxorubicin, pirarubicin, bleomycin, peptomycin, mitomycin C, mitoxantrone
  • One or more types selected from platinum preparations oxaliplatin, carboplatin, cisplatin, nedaplatin.
  • Hormonal agents Antastrozole, exemestane, estramustine, ethynyl estradiol, chlormadinone, goserelin, tamoxifen, dexamethasone, toremifene, bicalutamide, flutamide, prednisolone, phosfestrol, mitotane, methyltestosterone, medroxyprogesterone, mepithiostan, One or more selected from leuprorelin, letrozole).
  • the intralymphatic administration preparation of the present invention is preferably in the form ready for intralymphatic injection, ie, a composition for injection.
  • the form of the injectable composition may be a sterile aqueous or non-aqueous solution, a suspension, an emulsion, a gel or a solid composition for topical preparation.
  • the intralymphatic administration preparation of the present invention is an aqueous diluent such as distilled water for injection, physiological saline, Ringer's solution, phosphate buffer (PBS) or a vegetable oil such as propylene glycol, polyethylene glycol or olive oil.
  • a solution, suspension, or emulsion of the above drug is prepared using a non-aqueous diluent such as alcohols such as ethanol, polyoxyethylene sorbitan fatty acid esters such as polysorbate 20, 60, 80, etc. In that case, the osmotic pressure of the liquid is adjusted to be 700 kPa to 2700 kPa.
  • the osmotic pressure of the intralymphatic administration preparation is adjusted in the range of 700 to 2700 kPa, preferably from 700 kPa or more, more preferably from the point of delivery rate and retention of the drug to the lymph node located downstream and tissue damage.
  • it is 800 kPa or more, more preferably 900 kPa or more, more preferably 950 kPa or more, more preferably 1000 kPa or more, and 2700 kPa or less, preferably 2400 kPa or less, more preferably 2000 kPa or less.
  • the pressure is 700 to 2700 kPa, preferably 900 to 2700 kPa, more preferably 900 to 2400 kPa, more preferably 950 to 2400 kPa, and more preferably 950 to 2000 kPa.
  • C molar concentration (mol / L)
  • T absolute temperature (K).
  • Pa osmotic pressure
  • the intralymphatic administration preparation of the present invention preferably has a viscosity of 25 mPa ⁇ s or less, more preferably 20 mPa ⁇ s or less, more preferably 15 mPa ⁇ s, from the viewpoint of drug effects and handling on the preparation.
  • S or less more preferably 13 mPa ⁇ s or less, and preferably 0.5 mPa ⁇ s or more, more preferably 1 mPa ⁇ s or more.
  • it is 0.5 to 25 mPa ⁇ s, preferably 1.0 to 15 mPa ⁇ s, and more preferably 1.0 to 13 mPa ⁇ s.
  • the viscosity can be measured at 20 ° C. using a vibration viscometer (for example, a tuning fork vibration viscometer ⁇ SV-1A, manufactured by A & D Corporation>) at 20 ° C., as described in the examples below. is there.
  • Osmotic pressure can be adjusted by saccharides such as glucose, mannitol, sorbitol, sucrose, trehalose, raffinose, maltose, salts such as sodium chloride and potassium chloride, sugar alcohols or polyhydric alcohols or their ethers, nonionic surfactants And so on.
  • adjustment of viscosity can be performed using various hydrophilic polymers generally used as a thickener in injection preparations. Specifically, for example, linear polysaccharides such as cellulose, amylose, pectin, gelatin, dextrin, alginate; cellulose derivatives (methyl cellulose (MC), hydroxypropyl cellulose (HPC), hydroxypropyl methyl cellulose (HPMC), etc.
  • CMC carboxymethylcellulose
  • glycosaminoglycans non-sulfated glycosaminoglycans such as hyaluronic acid and salts thereof, desulfated heparin, desulfated chondroitin Sulfuric
  • non-ionic excipient capable of adjusting both the osmotic pressure and the viscosity
  • saccharides such as glucose, mannitol, sorbitol, sucrose, trehalose, raffinose, maltose and the like
  • nonionic surfactants Is preferred, and nonionic surfactants are more preferred.
  • higher alcohol ethylene oxide adducts alkylphenol ethylene oxide adducts, fatty acid ethylene oxide adducts, polyhydric alcohol fatty acid ester ethylene oxide adducts, higher alkylamine ethylene oxide adducts, fatty acid amide ethylene oxide addition Products, ethylene oxide adducts of fats and oils, glycerine fatty acid esters, fatty acid esters of pentaerythritol, alkyl ethers of polyhydric alcohols, fatty acid amides of alkanolamines, etc., among which, for example, fatty acid esters of sorbitol and sorbitan, Polyoxyethylene sorbitan fatty acid ester, polyethylene glycol fatty acid ester, sucrose fatty acid ester, polyoxyethylene castor oil (polyethoxylated ca Polyoxyethylene hydrogenated hydrogenated castor oil, polyoxyethylene polypropylene glycol copolymer, gly
  • sorbitan fatty acid ester in particular, sorbitan monostearate, sorbitan sesquioleate, sorbitan trioleate and the like are suitable.
  • polyoxyethylene sorbitan fatty acid ester in particular, polyoxyethylene sorbitan monolaurate (polysorbate 20, Tween 20), polyoxyethylene sorbitan monostearate (polysorbate 60, Tween 60), polyoxyethylene sorbitan tristearate (polysorbate 65, Tween 65) And polyoxyethylene sorbitan oleate (polysorbate 80, Tween 80), and the like.
  • Particularly preferred polyethylene glycol fatty acid esters are polyethylene glycol monolaurate (10E.O.).
  • sucrose fatty acid ester sucrose palmitic acid esters
  • sucrose stearic acid esters etc.
  • polyoxyethylene castor oil polyethoxylated castor oil
  • polyoxyethylene glycerol triricinolate 35 etc. are suitable.
  • polyoxyethylene hydrogenated castor oil polyoxyethylene hydrogenated castor oil 50, polyoxyethylene hydrogenated castor oil 60 and the like are suitable.
  • polyoxyethylene polyoxypropylene glycol copolymer particularly, polyoxyethylene (160) polyoxypropylene (30) glycol is suitable.
  • glycerine fatty acid ester glyceryl monostearate is preferable.
  • polyglycerin fatty acid ester tetraglycerin monostearic acid, decaglycerin monolauric acid and the like are particularly preferable.
  • the nonionic surfactant polyoxyethylene sorbitan fatty acid ester is more preferable, polysorbate 20, polysorbate 60, polysorbate 65, or polysorbate 80 is preferable, and polysorbate 80 (polyoxyethylene sorbitan oleate) is more preferable.
  • the volume percent of non-ionic surfactant in the preparation is preferably, for example, 0 to 25% (v / v), more preferably Is 8-25% (v / v), more preferably 10-23% (v / v), still more preferably 15-20% (v / v).
  • the preparation for intralymphatic administration according to the present invention can be appropriately added to the above-mentioned drug and osmotic pressure preparation, as long as the effects of the present invention are not inhibited, surfactants, preservatives (stabilizers), soothing agents, local anesthesia And adjuvants such as pH adjusters, preservatives, wetting agents, emulsifiers, dispersants, stabilizers, solubilizers, etc., and prepared according to the conventional method in the same manner as known injections. be able to.
  • Examples of preservatives include alkylparabens such as methylparaben and propylparaben, etc.
  • Examples of soothing agents include benzyl alcohol and the like.
  • Examples of local anesthetics include xylocaine hydrochloride, chlorobutanol and the like.
  • Examples of pH adjusters include hydrochloric acid, acetic acid, sodium hydroxide and various buffers.
  • nonionic surfactant a dispersing agent, and an emulsifier
  • polyethyleneglycol polyethyleneglycol, carboxymethylcellulose, sodium alginate etc.
  • solubilizers for example, sodium salicylate, poloxamers, sodium acetate and the like can be mentioned, and as preservatives, for example, methyl paraben, propyl paraben, benzyl alcohol, chlorobutanol, sodium benzoate, phenol and the like can be mentioned, stabilizers Examples thereof include albumins such as human serum albumin and bovine serum albumin.
  • the intralymphatic administration preparation of the present invention is locally administered into a lymph node of a patient.
  • the lymph node to be administered may be a lymph node (target lymph node) itself for the purpose of therapeutic or prophylactic treatment, or a lymph node located upstream of a lymphatic network to which the lymph node belongs. It may be.
  • a sentinel lymph node in which tumor cells move from the primary site and develop metastasis first a lymph node located downstream of the sentinel node (secondary lymph node), regional lymph around the primary site
  • the intralymphatic administration preparation is administered to the lymph node in the dissection area (upstream lymph node), and the lymph node outside the dissection area (downstream lymph node) via the lymphatic network
  • upstream lymph node upstream lymph node
  • downstream lymph node downstream lymph node
  • the administration of the preparation for intralymphatic administration of the present invention to the lymph node is not limited as long as the preparation for intralymphatic administration of the present invention can be injected into the lymph node, and the patient's skin was opened and exposed. It may be injected into the lymph node, or may be injected over the skin of the patient at the site designated as the location of the lymph node.
  • the viscosity of the solution in Table 1 is a tuning fork vibration viscometer (SV-1A: viscosity measurement area: 0.3 to 10,000 mPa ⁇ s, SV-1 H: viscosity measurement area: 0.3 to 1000 mPa ⁇ s, A & D -It measured at room temperature (20 degreeC) by Day Corporation.
  • the osmotic pressure [kPa] of each solution is converted to mOsm / Kg, and this is the osmotic pressure of blood 290 mOsm / kg. It is the divided value.
  • FIG. 2 shows the relationship between polysorbate 80 volume percent and viscosity. The viscosity tended to increase exponentially as the polysorbate 80 content increased. Assuming that 80 parts by volume of polysorbate (x) and viscosity (y), the following relational expression (Formula 1) was obtained.
  • Example 1 Pharmacokinetics by lymphatic drug delivery when the osmotic pressure of the solution is changed
  • Materials and Methods 1 Preparation of Solution Four solutions (Solution A, B, C, D) shown in Table 1 were prepared. The osmotic pressure and viscosity of each solution are as follows.
  • the observation date is immediately before, after, 6 hours, 1 hour, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 6 days, 7 days, 14 days, 21 days after the injection of indocyanine green solution into the inguinal lymph node. Day after, 28 days after, 35 days after, 42 days after, 49 days after.
  • Body weight change associated with indocyanine green solution injection by lymphatic drug delivery method Body weight measurement date is immediately before, one day, two days, two days, three days, four days after injection of indocyanine green solution into subiliac lymph nodes. After 5 days, 6 days, 7 days, 14 days, 21 days, 28 days, and 35 days. Each weight measurement was expressed as mean ⁇ standard error (mean ⁇ SE).
  • Solution C On the 14th day after injection, storage of Solution C, D was confirmed in the subiliac lymph node (a part surrounded by ⁇ ), but not in Solution A and B. On the 21st day after the injection, storage of Solution D was confirmed in the subiliac lymph node (a part surrounded by ⁇ ), but Solution A, B, and C were not confirmed.
  • Solution D it was necessary to put Solution D in an injection container and push it out from the injection needle, and it was not a practical solution.
  • Solution C and D edema was confirmed in the subiliac lymph nodes (arrows).
  • FIG. 4 shows the storage characteristics of each solution stored in the subiliac lymph node and the specific axillary lymph node obtained in FIG. Immediately after administration, it was confirmed that the retention property of solution B is high in the inherent axillary lymph node, and the storage property of solution D is high in the subiliam lymph node.
  • FIG. 5 shows the weight change of the mouse for each solution. Error bars are expressed as mean ⁇ standard error. Injection of Solution A, B, C, D into subiliac lymph nodes did not confirm significant weight loss as a side effect.
  • Example 2 Pathological Analysis for Changes in Osmotic Pressure Materials and methods 1) Preparation of solution The solutions shown in Table 2, ⁇ 758, ⁇ 408, ⁇ 515, ⁇ 556, ⁇ 2610, ⁇ 2773 were used. Regarding the viscosity of ⁇ 758, the viscosity of physiological saline was judged to be equivalent to that of water, and it was obtained from the reference (Science table, edited by National Astronomical Observatory of Japan, 1997, Maruzen Co., Ltd.).
  • a tuning fork vibration viscometer (SV-1A: viscosity measurement area: 0.3 to 10,000 mPa ⁇ s, SV-1 H: viscosity measurement area: 0 .3 to 1000 mPa ⁇ s (A & D Inc.) at room temperature (20 ° C.).
  • the osmotic pressure was obtained from the above (Formula 2) in the same manner as described above.
  • the osmotic pressure [kPa] of each solution is converted to mOsm / Kg
  • the osmotic pressure of blood is 290mOsm / kg. It is the value divided by.
  • the prepared sections were stained with hematoxylin and eosin (HE) using a HE automatic staining system (Ventana Symphony, Ventana Medical Systems, Inc., Arlington, AZ, USA). The observation was performed by bright field observation using an optical microscope (BX51, manufactured by Olympus Corporation).
  • HE hematoxylin and eosin
  • FIG. 6 shows a pathological image of the subiliac lymph node and the inherent axillary lymph node on the sixth day of injection (Day 6).
  • the solutions are ⁇ 756, ⁇ 408, ⁇ 515, ⁇ 556, ⁇ 2610 and ⁇ 2773.
  • the magnifications are 2 and 10 times.
  • a 10 ⁇ image is an enlarged view of a portion enclosed by ⁇ on the 2 ⁇ image.
  • T indicates a tumor area and N indicates a necrotic area.
  • (A) ⁇ 758 SiLN There were no notable pathological changes in lymph nodes.
  • PALN There were no notable pathological changes in lymph nodes.
  • PALN Mild dilation was seen in the lymph node medulla and mild edema was noted in the lymph node medulla, but no apparent organic changes were noted in the lymph node.
  • D ⁇ 556 SiLN Mild dilation in the lymph node medulla and edema in the lymph node medulla, but no apparent structural changes in the lymph node.
  • PALN Enlargement was observed in the lymph node medulla of the entire lymph node, and edema was noted outside the lymph node. However, necrosis and fibrosis are not observed and it seems to be a reversible change.
  • E ⁇ 2610 SiLN There was a mild dilation in the lymph node medullary sinus.
  • PALN Enlargement was observed in the lymph node medulla of the entire lymph node, and edema was noted outside the lymph node. However, necrosis and fibrosis are not observed and it seems to be a reversible change.
  • PALN Mild dilation was seen in the lymph node medulla and mild edema was noted in the lymph node medulla, but no apparent organic changes were noted in the lymph node.
  • Materials and Methods 1) Preparation of Solution Table 3 shows the composition of a solution containing cisplatin. The solution is solution I, solution I ', solution II, solution II', solution III, solution III ', solution IV, solution IV', solution V. Prepare a working solution for cisplatin at saline. The mice were adjusted to receive 5 mg / kg of mouse weight.
  • the viscosity shown in Table 3 was calculated from the above (formula 1).
  • the osmotic pressure shown in Table 3 was obtained from the above (Formula 2).
  • the osmotic pressure [kPa] of each solution is converted to mOsm / Kg
  • the osmotic pressure of blood is 290mOsm / kg. It is the value divided by.
  • Bioluminescence Imaging System (IVIS, PerkinElmer) was used to assess tumor growth in the intrinsic axillary lymph nodes. Under anesthesia, luciferin adjusted to a concentration of 15 mg / mL was adjusted to the weight of the mouse and 10 ⁇ L / g was injected intraperitoneally into the mouse. Ten minutes after luciferin administration, bioluminescence intensity was measured using IVIS. Measurement data calculated luminescence per unit time in specific axillary lymph nodes using dedicated analysis software. The bioluminescence intensity was measured once on the treatment start day (day 0 T ), on the 3rd day after the treatment start (day 3 T ), and on the 6th day after the treatment start (day 6 T ).
  • lymph node volumetric tumor inoculation day (day3 T), treatment start date (day 0 T), 3 days after treatment initiation (day3 T), the treatment starts after 6 days (Day6 T), mice weighing Was measured. 8) Pathological analysis On the sixth day after the start of treatment (day 6T), subiliam lymph nodes and intrinsic axillary lymph nodes were removed, and pathological images were analyzed by hematoxylin and eosin staining.
  • the vertical axis shows the dimensionless luciferase activity value.
  • a dimensionless quantity was introduced: luciferase activity (day 6 T ) / luciferase activity (day 0 T ).
  • the antitumor effect on the intrinsic axillary lymph node was confirmed up to an osmotic pressure of 3200 kPa.
  • the anti-tumor effect 9 on the viscosity shows an antitumor effect against the viscosity at Day6 T.
  • evaluation Figure 10 edema for osmotic pressure and viscosity in the macro field of view, showing a mouse image in after the start of treatment Day3 T and Day6 T for each solution.
  • FIG. 11 shows a B-mode image of the intrinsic axillary lymph node obtained by high frequency ultrasound on the experimental day.
  • FIG. 12 shows the subiliac lymph nodes and the specific axilla on the day 6 T in solution I, solution I ′, solution II, solution II ′, solution III, solution III ′, solution IV, solution IV ′, and solution V
  • the pathological image of the lymph node is shown. The magnifications are 2 and 10 times.
  • a 10 ⁇ image is an enlarged view of a portion enclosed by ⁇ on the 2 ⁇ image.
  • T indicates a tumor area
  • N indicates a necrosis area
  • E indicates an edema area.
  • solution I SiLN Most of the existing lymph nodes have become necrotic, and the extent of necrosis extends to surrounding tissues. Diffusion of the anticancer drug to surrounding tissues is suggested.
  • PALN Drug delivery from the draining lymphatics to PALN is an unlikely finding.
  • PALN Depending on the location of the lymph node margin, there are areas in which the tumor tissue has become necrotic, but also areas in which the tumor growth is hardly suppressed. The structure of lymph node parenchyma is maintained. Although the anticancer agent was inflowing to a part of lymph node marginal sinus, it seems that the whole area was not reached.
  • PALN Tumor infiltration / proliferation appears to have grown from the lymph node marginal sinus. It seems that drug delivery was hardly done.
  • C solution II SiLN Although necrosis was formed in the center of the lymph node, presumably due to the injection of an anticancer drug, the tissue of the lymph node marginal sinus was preserved, and drug delivery to PALN from efferent lymph vessels could be expected. It is a finding. PALN Proliferation of tumor cells was observed in the lymph node margin, but it was accompanied by extensive necrosis of the tumor tissue. This is a finding that can be expected to be effective for lymphatic drug delivery from SiLN.
  • PALN There were extensive necrotic foci showing that the tumor cells had proliferated and necrotized in the lymph nodes and lymph node parenchyma. There was no survival of tumor cells. It is considered to be a remarkable antitumor effect by lymphatic drug delivery from SiLN.
  • PALN Lymph node marginal sinus and lymph node parenchyma showed proliferation of tumor cells, and some tumor tissue was necrotic. Although limited, antineoplastic effects were observed with lymphatic drug delivery from SiLN.
  • FIG. 13 shows the weight change of the mouse for each solution. No clear weight loss was observed in all solutions (solution I, II, III, IV, V).
  • Results Figure 14 is the relationship between glucose volume percent and viscosity. Viscosity increases exponentially with increasing volume percent of glucose. Assuming the glucose volume percentage (x) and the viscosity (y), the following relational expression (Expression 3) was obtained.
  • the osmotic pressure in Table 4 was determined from the van't Hoff equation (Equation 2).
  • Example 4 Examination of viscosity range and osmotic pressure range using a solution containing epirubicin Materials and Methods 1) Preparation of Solution Table 5 shows the composition of a solution containing epirubicin. The solution is solution C, solution C ', solution D, solution F. The viscosity in Table 5 was obtained from the above (Equation 3). The viscosity of each solution was approximately 1 mPa ⁇ s. The osmotic pressure in Table 5 was obtained from the van't Hoff equation (Eq. 2).
  • fetal bovine serum FBS; Sigma-Aldrich, St Louis, MO, USA
  • 1% L-glutamine-penicillin-streptomycin Sigma-Aldrich
  • 0.5% G418 RPMI-1640 medium Biological Industries, Haemek, Israel
  • FIG. 16 is a pathological image at 16 days after tumor implantation.
  • C Solution C SiLN (C-1, C-2) Tumor invasion and growth can not be confirmed in lymph nodes. It is considered to be an antiproliferative effect of the administered drug.
  • PALN C-3, C-4) Tumor cells can not be identified in lymph nodes. It is considered to be a metastasis suppressive effect by the administered drug.
  • D Solution D SiLN (D-1, D-2) Although there are a few tumor cells that seem to have infiltrated and grown from the lymph node marginal sinus, most of the tumor tissue has fallen into necrotic tissue and has been replaced by fibrous tissue.
  • PALN (D-3, D-4) Tumor cells can not be identified in lymph nodes. It is considered to be a metastasis suppressive effect by the administered drug.
  • Example 5 Examination of Osmotic Pressure Region Using a Solution Containing Nimustine Materials and Methods 1) Preparation of Solution Table 6 shows the composition of a solution containing nimustine. The solutions are solution C and solution D. The viscosity in Table 6 was calculated
  • fetal bovine serum FBS; Sigma-Aldrich, St Louis, MO, USA
  • 1% L-glutamine-penicillin-streptomycin Sigma-Aldrich
  • 0.5% G418 RPMI-1640 medium Biological Industries, Haemek, Israel
  • FIG. 17 is a conceptual diagram of an experiment of nimustine.
  • FIG. 18 is a pathological image of a pathological image (bolus administration) on day 16 after tumor cell inoculation.
  • C Solution C SiLN (I, J) Tumor cells can not be identified in lymph nodes. It is considered to be an antiproliferative effect of the administered drug.
  • PALN K, L Tumor cells can not be identified in lymph nodes. It is considered to be a metastasis suppressive effect by the administered drug.
  • D Solution D SiLN (M, N) Tumor cells can not be identified in lymph nodes. It is considered to be an antiproliferative effect of the administered drug.
  • Example 6 Examination of Osmotic Pressure Area Using a Solution Containing Methotrexate Materials and Methods 1) Preparation of Solution Table 7 shows the composition of a solution containing methotrexate. The solutions are solution B, solution C, and solution D. The viscosity in Table 7 was calculated
  • fetal bovine serum FBS; Sigma-Aldrich, St Louis, MO, USA
  • 1% L-glutamine-penicillin-streptomycin Sigma-Aldrich
  • 0.5% G418 RPMI-1640 medium Biological Industries, Haemek, Israel
  • FIG. 19 is a conceptual diagram of a methotrexate experiment.
  • a drug can be administered to the lymph node, and the drug can be efficiently drained to the lymph node downstream of the administered lymph node.
  • the drug is an anticancer drug, it not only exerts an anti-cancer effect in the target lymph node but also anti-cancer in other lymph nodes to which a minute cancer may have metastasized.
  • the agent can be poured efficiently, and recurrence can be prevented by killing minute cancers.
  • the intralymphatic administration preparation of the present invention when cancer is in a lymph node in a region that can not be dissected by surgery, healing by surgery is impossible, but using the intralymphatic administration preparation of the present invention, the upstream lymph node It is possible to treat the lymph nodes in areas that can not be dissectioned by pouring anti-cancer drugs from the Furthermore, in the intralymphatic administration preparation of the present invention, the amount of drug used is smaller than that used for conventional systemic administration, so there are fewer side effects and high safety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Oncology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

リンパ行性薬剤送達法において用いられる、医薬、細胞、核酸等の薬剤を含有する最適なリンパ節内投与製剤を提供する。 リンパ行性薬剤送達法によって薬剤を標的リンパ節に送達するための薬剤含有液体製剤であって、液体の浸透圧が700~2700kPaであるリンパ節内投与製剤。

Description

リンパ行性薬剤送達法に有効な薬剤を含む溶液の適正な浸透圧域
 本発明はリンパ行性薬剤送達法に有効な薬剤を含む溶液の浸透圧に関する。
 がんは日本人の二人に一人が罹患する病気であり、がん患者の死因9割が転移に起因する。乳がんや頭頸部がんをはじめとするがんの多くは、リンパ管を介して所属リンパ節に転移を来す。
 現在の転移リンパ節に対する化学療法として、血管を介した静脈内投与が一般的である。静脈に投与された薬剤は末梢組織で毛細血管より間質へ漏出し、ふたたび血管及びリンパ管に再吸収される。
 リンパ系は粒径の大きな物質及び高分子物質を優先的に取り込むという特徴をもつ。粒子の大きさが10-100nmの場合にはリンパ系へ再吸収されやすく、10nm以下の粒子は主に血管に再吸収される。また、リンパ系への再吸収の効率は分子量と正の相関を示し、特に分子量が16,000を超える物質は主にリンパ系に取り込まれる。したがって、一般的に低分子である抗がん剤は、リンパ系へのアクセスは困難であり、標的リンパ節への薬剤送達効率は低いと考えられる。
 現在のドラッグデリバリーシステム(DDS)における重要な原理はEPR効果(Enhanced Permeability Retention effect)である。がん組織が構築する未成熟な腫瘍血管は正常な血管内皮とは異なり、血管内皮細胞間に200nm程度の広い隙間が開口している。
 そのため50-100nm程に粒径が制御された微粒子製剤や高分子製剤は受動的にがん組織に集積される。現在、このEPR効果を利用してリポソームやミセル化した薬剤が開発されており、固形腫瘍についてはその治療効果が数多く報告されている。
 しかしながら、リンパ節転移の治療に関する研究報告は、固形腫瘍の治療に関する研究に比べ、相対的に少なく、この理由として、リンパ節転移研究に有益な疾患モデルが開発されていないことがあった。斯かる状況の下、本発明者らは、ヒトのリンパ節の大きさと同等のリンパ節を有するMXH10/Mo-lpr/lprリンパ節腫脹マウスを樹立することに成功し(図1、非特許文献1)、このマウスを用いて、EPR効果に基づく薬剤送達法では早期の転移リンパ節に対して治療効果が期待されないことを報告した(非特許文献2)。これは、リンパ節に侵入し生着した腫瘍細胞が増殖するために必要な酸素や栄養を供給するための血管が、正常なリンパ節において十分に存在するため、リンパ節転移早期における腫瘍形成で血管新生が発生しにくいためだと考えられる。
 本発明者らは、従来の血行性全身投与あるは経口投与に依存しない、転移リンパ節に対する新たな治療法として、リンパ行性薬剤送達法を提案してきた(非特許文献3、非特許文献4)。この概念は、原発巣周囲の所属リンパ節に局注し、所属リンパ節とその下流のリンパ節転移を治療あるいは予防する方法、あるいは転移リンパ節の上流に位置するリンパ節に薬剤を投与し、リンパ管経由で薬剤を下流の転移リンパ節に送達させる方法である。
Shao L, Mori S, Yagishita Y, Okuno T, Hatakeyama Y, Sato T, Kodama T. Lymphatic mapping of mice with systemic lymphoproliferative disorder: usefulness as an inter-lymph node metastasis model of cancer. J Immunol Methods 2013; 389:69-78. Mikada M, Sukhbaatar A, Miura Y, Horie S, Sakamoto M, Mori S, Kodama T. Evaluation of the enhanced permeability and retention effect in the early stages of lymph node metastasis. Cancer Sci 2017. Kodama T, Hatakeyama Y, Kato S, Mori S. Visualization of fluid drainage pathways in lymphatic vessels and lymph nodes using a mouse model to test a lymphatic drug delivery system. Biomedical optics express 2015; 6:124-34. Kodama T, Matsuki D, Tada A, Takeda K, Mori S. New concept for the prevention and treatment of metastatic lymph nodes using chemotherapy administered via the lymphatic network. Scientific reports 2016; 6:32506
 本発明は、リンパ行性薬剤送達法において用いられる、医薬化合物、細胞、核酸等の薬剤を含有する最適なリンパ節内投与製剤を提供することを目的とする。
 本発明者らは、リンパ行性薬剤送達法において用いられる、リンパ節内投与製剤について種々検討した結果、特定の浸透圧域を有する液体製剤が、標的リンパ節における薬剤貯留性が高く、また、下流リンパ節への送達性が高く、良好な薬剤効果を有することを見出した。
 すなわち、本発明は、以下の1)~11)に係るものである。
 1)リンパ行性薬剤送達法によって薬剤を標的リンパ節に送達するための薬剤含有液体製剤であって、液体の浸透圧が700~2700kPaである、リンパ節内投与製剤。
 2)液体の浸透圧が900kPa以上である、1)のリンパ節内投与製剤。
 3)液体の浸透圧が、2400kPa以下である、1)のリンパ節内投与製剤。
 4)液体の浸透圧が950~2000kPaである、1)のリンパ節内投与製剤。
 5)液体の粘度が0.5~20mPa・sである、1)~4)のいずれかのリンパ節内投与製剤。
 6)液体の粘度が1.0~15mPa・sである、1)~4)のいずれかのリンパ節内投与製剤。
 7)非イオン性界面活性剤を含有する、1)~6)のいずれかのリンパ節内投与製剤。
 8)非イオン性界面活性剤がポリオキシエチレンソルビタン脂肪酸エステルである、7)のリンパ節内投与製剤。
 9)ポリオキシエチレンソルビタン脂肪酸エステルがオレイン酸ポリオキシエチレンソルビタンである8)のリンパ節内投与製剤。
 10)薬剤が、医薬活性物質、核酸分子収容体又は培養細胞である1)~9)のいずれかのリンパ節内投与製剤。
 11)薬剤が、抗がん剤である1)~9)のいずれかのリンパ節内投与製剤。
 本発明によれば、リンパ行性薬剤送達法において、目的薬剤の効果を標的リンパ節において効果的に発揮させるためのリンパ節内投与製剤が提供される。すなわち、リンパ行性薬剤送達法において、低分子化合物、ポリペプチド、抗体、核酸等の医薬活性物質や免疫療法、遺伝子治療又は再生医療において使用される各種培養細胞等の薬剤の、リンパ節からネットワーク下流に位置するリンパ節への送達率及び貯留時間を調節でき、投与された薬剤のリンパ節及び下流リンパ節における治療又は予防的治療効果の最適化を図ることができる。
マウス実験におけるリンパネットワーク図。腋窩部には固有腋窩リンパ節(proper axillary lymph node:PALN)と副腋窩リンパ節(accessory axillary lymph node:AALN)が存在する。副腋窩リンパ節及び腸骨下リンパ節(subiliac lymph node:SiLN)は、固有腋窩リンパ節に対して、リンパネットワークの上流に位置する。すなわち副腋窩リンパ節→固有腋窩リンパ節、腸骨下リンパ節→固有腋窩リンパ節のリンパ流れが存在する。 ポリソルベート80体積パーセントと粘度の関係。 リンパ行性薬剤送達法による腸骨下リンパ節から固有腋窩リンパ節への溶液の動態。 腸骨下リンパ節および固有腋窩リンパ節に貯留性する各溶液の貯留特性。 各溶液に対する体重変化。 注射日からDay6目での腸骨下リンパ節及び固有腋窩リンパ節の病理像。 A:Day0における腸骨下リンパ節(SiLN)から内側腋窩リンパ節(PALN)に流れ出る溶液の動態。B:Day6における抗腫瘍効果(in vivoイメージング画像)。 Day6における各浸透圧に対する抗腫瘍効果。 Day6における各粘度に対する抗腫瘍効果。 各溶液に対する治療開始後Day3及びDay6でのマウス画像。 実験日における高周波超音波で得られた固有腋窩リンパ節のBモード画像。 Day6での腸骨下リンパ節及び固有腋窩リンパ節の病理像。 各溶液に対するマウスの体重変化。 グルコース体積パーセントと粘度との関係。 エピルビシン実験の概念図。 腫瘍細胞接種後16日目における病理像。 ニムスチン実験の概念図。 腫瘍細胞接種後16日目における病理像。 メトトレキサート実験の概念図。 腫瘍細胞接種後16日目における病理像。
 本発明において、「リンパ行性薬剤送達法」とは、転移リンパ節の上流に位置するリンパ節に薬剤を投与し、リンパ管経由で当該薬剤を下流のリンパ節に送達させる方法である。
 本発明において、「リンパ節内投与製剤」とは、リンパ行性薬剤送達法によって目的薬剤を標的リンパ節に送達するための、リンパ節内に投与される液体製剤である。
 本発明において、「薬剤」とは、疾病の治療又は予防的治療を目的として人を含む動物の体内に投与される各種物質を意味し、医薬活性物質(例えば、低分子化合物、特に低分子有機化合物;タンパク質又はポリペプチド(細胞増殖因子、細胞増殖抑制因子、神経栄養因子、酵素、ホルモン、サイトカイン等);多糖類;脂質;抗体;核酸(DNA分子、RNA分子、アプタマー等);ウイルス等)の他、遺伝子治療のための核酸分子を収容する構造体(ウイルス、ウイルス様粒子、ミニサークル、プラスミド又はベクター(ネイキッドDNA)、リポソーム及び/又はナノ粒子)、免疫療法、遺伝子治療又は再生医療において使用される各種培養細胞(例えば、多能性幹細胞(ES細胞、iPS細胞等)、組織幹細胞、間葉系幹細胞等)等が包含される。
 なお、本明細書において、「治療」とは、疾病を有する対象の治療(即時治療)のことを指し、その状態、又はその状態によって生じる1つ若しくは複数の症状を、改善、軽減又は消失させることを意味する。「予防的治療」とは、疾病になるリスクはあるが、現時点ではその状態や症状を有しない対象の治療を意味する。
 上記医薬活性物質の種類は、特に限定されず、中枢神経用薬、末梢神経系用薬、感覚器官用薬、循環器官用薬、呼吸器官用薬、消化器官用薬、泌尿生殖器官用薬、ホルモン剤、腫瘍用薬、放射性医薬品等の何れでも良いが、腫瘍用薬(抗がん剤)が好適である。
 また、上記医薬活性物質の製剤形態は、組成物の形態でもよく、高分子ポリマーミセル医薬品等のミセル製剤、リポゾーム製剤であってもよい。
 以下に、好適な薬剤の一例を示す。
(1)分子標的薬(イブリツモマブチウキセタン、イマチニブ、エベロリムス、エルロチニブ、ゲフィチニブ、ゲムツズマブオゾガマイシン、スニチニブ、セツキシマブ、ソラフェニブ、ダサチニブ、タミバロテン、トラスツズマブ、トレチノイン、パニツムマブ、ベバシズマブ、ボルテゾミブ、ラパチニブ、リツキシマブ)から選ばれる1種以上。
(2)アルキル化剤(イホスファミド、シクロホスファミド、ダカルバジン、テモゾロミド、ニムスチン、ブスルファン、メルファラン、ラニムスチン)から選ばれる1種以上。
(3)代謝拮抗剤(エノシタビン、カペシタビン、カルモフール、クラドリビン、ゲムシタビン、シタラビン、シタラビンオクホスファート、テガフール、テガフール・ウラシル、テガフール・ギメラシル・オテラシルカリウム、ドキシフルリジン、ネララビン、ヒドロキシカルバミド、フルオロウラシル、フルダラビン、ペメトレキセド、ペントスタチン、メルカプトプリン、メトトレキサート)から選ばれる1種以上。
(4)植物アルカロイド(イリノテカン、エトポシド、エリブリン、ソブゾキサン、ドセタキセル、ノギテカン、パクリタキセル、パクリタキセル注射剤、ビノレルビン、ビンクリスチン、ビンデシン、ビンブラスチン)から選ばれる1種以上。
(5)抗がん性抗生物質(アクチノマイシンD、アクラルビシン、アムルビシン、イダルビシン、エピルビシン、ジノスタチンスチマラマー、ダウノルビシン、ドキソルビシン、ピラルビシン、ブレオマイシン、ぺプロマイシン、マイトマイシンC、ミトキサントロン)から選ばれる1種以上。
(6)プラチナ製剤(オキサリプラチン、カルボプラチン、シスプラチン、ネダプラチン)から選ばれる1種以上。
(7)ホルモン剤(アナストロゾール、エキセメスタン、エストラムスチン、エチニルエストラジオール、クロルマジノン、ゴセレリン、タモキシフェン、デキサメタゾン、トレミフェン、ビカルタミド、フルタミド、プレドニゾロン、ホスフェストロール、ミトタン、メチルテストステロン、メドロキシプロゲステロン、メピチオスタン、リュープロレリン、レトロゾール)から選ばれる1種以上。
(8)インターフェロン・α、インターフェロン・β、インターフェロン・γ、インターロイキン2、ウベニメクス、乾燥BCG、レンチナン)から選ばれる1種以上。
(9)上記(1)~(8)のミセル製剤。
(10)上記(1)~(8)のリポゾーム製剤。
(11)免疫療法、遺伝子治療、再生医療などにおいて使用される各種細胞懸濁液。
 本発明のリンパ節内投与製剤は、リンパ節内に注射可能な剤型、すなわち注射用組成物であるのが好ましい。注射用組成物の形態は、無菌の水性又は非水性の溶液剤、懸濁剤、乳濁剤、ゲル、或いは用事調製のための固体組成物の何れでも良い。
 本発明のリンパ節内投与製剤は、例えば注射用蒸留水、生理食塩水、リンゲル液、リン酸塩緩衝液(PBS)等の水性の希釈剤、又は例えばプロピレングリコール、ポリエチレングリコール、オリーブ油のような植物油;エタノールなどのアルコール類、ポリソルベート20、60,80等のポリオキシエチレンソルビタン脂肪酸エステル類等の非水性の希釈剤を用いて、上記薬剤の溶液、懸濁液、乳濁液が調製されるが、その場合において、当該液体の浸透圧が700kPa~2700kPaであるように調製される。
 リンパ節内投与製剤の浸透圧は、700~2700kPaの範囲で調整されるが、下流に位置するリンパ節への薬剤の送達率及び貯留性並びに組織障害性の点から、好ましくは700kPa以上、より好ましくは800kPa以上、より好ましくは900kPa以上、より好ましくは950kPa以上であり、より好ましくは1000kPa以上であり、且つ2700kPa以下、好ましくは2400kPa以下、より好ましくは2000kPa以下である。例えば、700~2700kPa、好ましくは900~2700kPa、より好ましくは900~2400kPa、より好ましくは950~2400kPa、より好ましくは950~2000kPaである。
 本発明において、浸透圧Πは、Π=CRTで定められたファントホッフの式より算出される。なお、式中、Cはモル濃度(mol/L)、Rは気体定数(R=8.31×10Pa・L/K・mol)、Tは絶対温度(K)をそれぞれ示す。
 例えば、後述の表1に示す溶液の浸透圧Π(Pa)は、(ポリソルベート80のモル濃度+エタノールのモル濃度)×8.31×10×(273+摂氏温度)で求められる。
 併せて、本発明のリンパ節内投与製剤は、薬剤効果及び製剤上の取り扱いの点から、その粘度が、25mPa・s以下であるのが好ましく、より好ましくは20mPa・s以下、より好ましくは15mPa・s以下、より好ましくは13mPa・s以下であり、且つ好ましくは0・5mPa・s以上、より好ましくは1mPa・s以上である。
 例えば、0.5~25mPa・s、好ましくは1.0~15mPa・s、より好ましくは1.0~13mPa・sである。
 粘度は後述の実施例で示すように、20℃において振動粘度計(例えば、音叉振動式粘度計<SV-1A、エー・アンド・デイ株式会社製>)を使用して測定することが可能である。
 浸透圧の調整は、グルコース、マンニトール、ソルビトール、ショ糖、トレハロース、ラフィノース、マルトース等の糖類や、塩化ナトリウム、塩化カリウム等の塩類、糖アルコール若しくは多価アルコール又はそのエーテル、非イオン性界面活性剤等を用いて行うことができる。また、粘度の調整は、一般に注射製剤において、増粘剤として用いられる各種の親水性ポリマーを用いて行うことができる。具体的には、例えば、セルロース、アミロース、ペクチン、ゼラチン、デキストリン、アルギン酸塩等の直鎖状の多糖類;セルロース誘導体(メチルセルロース(MC)、ヒドロキシプロピルセルロース(HPC)及びヒドロキシプロピルメチルセルロース(HPMC)等のヒドロキシアルキルセルロース、カルボキシアルキルセルロース、並びにカルボキシメチルセルロース(CMC)を含むこれらの塩等);グリコサミノグリカン(ヒアルロン酸及びその塩等の非硫酸化グリコサミノグリカン、脱硫酸化ヘパリン、脱硫酸化コンドロイチン硫酸、及び脱硫酸化デルマタン硫酸等);ガラクトマンナン(グアーガム、フェヌグリークガム、タラガム、ローカストビーンガム、及びイナゴマメガム等);カルボマー;ポリアクリル酸;ポリカルボフィル;ポリビニルピロリドン;ポリアクリルアミド;ポリビニルアルコール;ポリ酢酸ビニルの誘導体及び混合物が挙げられる。
 このうち、浸透圧及び粘度を共に調整可能な非イオン性賦形剤を用いるのが好ましく、例えば、グルコース、マンニトール、ソルビトール、ショ糖、トレハロース、ラフィノース、マルトース等の糖類、非イオン性界面活性剤が好ましく、非イオン性界面活性剤がより好ましい。非イオン性界面活性剤としては、高級アルコールエチレンオキシド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、多価アルコール脂肪酸エステルエチレンオキサイド付加物、高級アルキルアミンエチレンオキサイド付加物、脂肪酸アミドエチレンオキサイド付加物、油脂のエチレノキサイド付加物、グリセリン脂肪酸エステル、ペンタエリスリトールの脂肪酸エステル、多価アルコールのアルキルエーテル、アルカノールアミン類の脂肪酸アミドなどが挙げられるが、中でも、例えば、ソルビトール及びソルビタンの脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンヒマシ油(polyethoxylated castor oil)、ポリオキシエチレン硬化ヒマシ油(polyethoxylated hydrogenated castor oil)、ポリオキシエチレンポリプロピレングリコール共重合体、グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステルなどが好ましく用いられる。
 ソルビタン脂肪酸エステルとしては、特に、モノステアリン酸ソルビタン、セスキオレイン酸ソルビタン、トリオレイン酸ソルビタンなどが好適である。ポリオキシエチレンソルビタン脂肪酸エステルとしては、特に、モノラウリン酸ポリオキシエチレンソルビタン(ポリソルベート20、Tween20)、モノステアリン酸ポリオキシエチレンソルビタン(ポリソルベート60、Tween60)、トリステアリン酸ポリオキシエチレンソルビタン(ポリソルベート65、Tween65)、オレイン酸ポリオキシエチレンソルビタン(ポリソルベート80、Tween80)などが好適である。ポリエチレングリコール脂肪酸エステルとしては、特に、モノラウリン酸ポリエチレングリコール(10E.O.)などが好適である。ショ糖脂肪酸エステルとしては、特に、ショ糖パルミチン酸エステル類)、ショ糖ステアリン酸エステル類などが好適である。ポリオキシエチレンヒマシ油(polyethoxylated castor oil)としては、特に、ポリオキシエチレングリセロールトリリシノレート35などが好適である。ポリオキシエチレン硬化ヒマシ油(polyethoxylated hydrogenated castor oil)としては、特に、ポリオキシエチレン硬化ヒマシ油50、ポリオキシエチレン硬化ヒマシ油60などが好適である。ポリオキシエチレンポリオキシプロピレングリコール共重合体としては、特に、ポリオキシエチレン(160)ポリオキシプロピレン(30)グリコールなどが好適である。グリセリン脂肪酸エステルとしては、モノステアリン酸グリセリルなどが好適である。ポリグリセリン脂肪酸エステルとしては、特に、テトラグリセリンモノステアリン酸、デカグリセリンモノラウリン酸などが好適である。
 非イオン性界面活性剤としては、ポリオキシエチレンソルビタン脂肪酸エステルがより好ましく、ポリソルベート20、ポリソルベート60、ポリソルベート65又はポリソルベート80が好ましく、ポリソルベート80(オレイン酸ポリオキシエチレンソルビタン)がより好ましい。
 浸透圧の調製に、非イオン性賦形剤を用いた場合の、製剤中の非イオン性界面活性剤の体積パーセントは、例えば0~25%(v/v)であるのが好ましく、より好ましくは8~25%(v/v)であり、より好ましくは10~23%(v/v)であり、さらに好ましくは15~20%(v/v)である。
 本発明のリンパ節内投与製剤は、上記の薬剤と浸透圧調製剤に、本発明の効果を阻害しない範囲で、適宜、界面活性剤、保存剤(安定化剤)、無痛化剤、局所麻酔剤及びpH調整剤、防腐剤、湿潤剤、乳化剤、分散剤、安定化剤、溶解補助剤のような補助剤(賦形剤)を配合し、公知の注射剤と同様に常法に従い調製することができる。
 保存剤としては例えば、メチルパラベン、プロピルパラベン等のアルキルパラベン等が挙げられ、無痛化剤としては例えば、ベンジルアルコール等が挙げられ、局所麻酔剤としては例えば、塩酸キシロカイン、クロロブタノール等が挙げられ、pH調整剤としては例えば、塩酸、酢酸、水酸化ナトリウムあるいは各種緩衝剤等が挙げられる。
 また、界面活性剤、分散剤、乳化剤としては、上述した非イオン性界面活性剤やポリエチレングリコール、カルボキシメチルセルロース、アルギン酸ナトリウム等が挙げられる。
 また、可溶化剤としては、例えばサリチル酸ナトリウム、ポロキサマー、酢酸ナトリウム等が挙げられ、防腐剤としては、例えばメチルパラベン、プロピルパラベン、ベンジルアルコール、クロロブタノール、安息香酸ナトリウム、フェノール等が挙げられ、安定剤としては、例えばヒト血清アルブミン、ウシ血清アルブミン等のアルブミンが挙げられる。
 斯くして調製された本発明のリンパ節内投与製剤は、患者のリンパ節内に局所投与される。ここで、投与対象となるリンパ節は、治療又は予防的治療を目的とするリンパ節(標的リンパ節)自体であってもよく、又は当該リンパ節が属するリンパ管ネットワーク上流に位置するリンパ節であってもよい。具体的には、例えば、腫瘍細胞が原発巣から移動して最初に転移を発症するセンチネルリンパ節や、センチネルリンパ節の下流に位置するリンパ節(二次リンパ節)、原発巣周囲の所属リンパ節の上流に位置するリンパ節、所属リンパ節が属するリンパ管ネットワークの上流に位置するリンパ節等が挙げられる。ここで、標的リンパ節は、がんを有しているか否かは問われない。例えば、リンパ節郭清する前に、郭清域内のリンパ節(上流側リンパ節)にリンパ節内投与製剤を投与し、リンパ管ネットワークを介して郭清域外のリンパ節(下流側リンパ節)に抗がん剤を送達させて、郭清を実施することにより、下流側リンパ節の予防的治療が可能である。
 本発明のリンパ節内投与製剤のリンパ節への投与は、リンパ節内に本発明のリンパ節内投与製剤が注入できればその手法は限定されず、患者の皮膚を切開して露わになったリンパ節に注入投与してもよいし、患者の皮膚の上からリンパ節の位置として見当をつけた部位に注射投与してもよい。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。
参考例1 インドシアニングリーン(ICG)を含む溶液の粘性の測定
1.材料・方法
 1)溶液の準備
 ポリソルベート80(polysorbate80、日油株式会社)、蒸留水、インドシアニングリーン溶液(Indocyanine Green:ICG、第一三共株式会社)を混合し、粘度の異なる組成の溶液を調製した(表1)。
 表1の溶液の粘度は音叉振動式粘度計(SV-1A:粘度測定域:0.3~10、000mPa・s、SV-1H:粘度測定域:0.3~1000mPa・s、エー・アンド・デイ株式会社)で、室温下(20℃)で測定した。
 表1中、血液の浸透圧に対する比とは、1mOsm/Kg=2269.68Paの関係から各溶液の浸透圧[kPa]をmOsm/Kgに単位換算し、これを血液の浸透圧290mOsm/kgで除した値である。
2.結果
1)ポリソルベート80体積パーセントと粘度との関係
 図2にポリソルベート80体積パーセントと粘度との関係を示す。ポリソルベート80含有率が高くなるほど、粘度が指数関数的に増加する傾向にあった。
 ポリソルベート80体積パーセント(x)、 粘度(y)とすると、以下の関係式(式1)を得た。
Figure JPOXMLDOC01-appb-M000001
 表1中における浸透圧は、 以下の浸透圧は以下のファントホッフの式(式2)より求めた。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-T000003
実施例1 溶液の浸透圧を変えた場合のリンパ行性薬剤送達による薬剤動態
1.材料・方法
 1)溶液の調整
 表1で示した4つの溶液(SolutionA,B,C,D)を準備した。各溶液の浸透圧及び粘度は、以下のとおりである。
 SolutionA:浸透圧=0kPa、粘度=1.01mPa・s)
 SolutionB:浸透圧=1740kPa、粘度=6.01mPa・s)
 SolutionC:浸透圧=3481kPa、粘度=427mPa・s)
 SolutionD:浸透圧=5221kPa、粘度=8020mPa・s)
 2)溶液の浸透圧の変化にともなうリンパ行性薬剤送達法で送達される溶液の可視化
 溶液を腸骨下リンパ節(SiLN)に投与速度10μL/minで200μL注射し、リンパ管経由で固有腋窩リンパ節(PALN) への送達性と貯留性を生物発光イメージングシステム(IVIS, PerkinElmer社製)の蛍光モードで観察した(Excitation filter: 745 nm, Emission filter: ICG)。
 観察日は、インドシアニングリーン溶液を腸骨下リンパ節に注射する直前、直後、6時間後、1日後、2日後、3日後、4日後、5日後、6日後、7日後、14日後、21日後、28日後、35日後、42日後、49日後とした。
 3)腸骨下リンパ節および固有腋窩リンパ節に貯留する溶液の貯留特性
 前述の2)の測定日に得られた腸骨下リンパ節および固有腋窩リンパ節の蛍光値と測定時間との関係をプロットした。
 4)リンパ行性薬剤送達法によるインドシアニングリーン溶液注入にともなう体重変化
 体重測定日は,インドシアニングリーン溶液を腸骨下リンパ節に注射する直前、1日後、2日後、3日後、4日後、5日後、6日後、7日後、14日後、21日後、28日後、35日後とした。各回の体重測定値は平均値±標準誤差(mean±SE)として表記した。
2.実験結果
 1)リンパ行性薬剤送達法による腸骨下リンパ節から固有腋窩リンパ節への溶液の動態
 図3にリンパ行性薬剤送達法による腸骨下リンパ節から固有腋窩リンパ節への溶液の動態を示す。
 投与直後において、すべての溶液において、腸骨下リンパ節から固有腋窩リンパ節への流れが確認された(0hr)。
 注射後1日目で、固有腋窩リンパ節への貯留効果はSolutionB、C、Dで確認されたが(○で囲まれた箇所)、SolutionAでは確認されなかった。
 注射後7日目で、腸骨下リンパ節にSolutionB、C、Dの貯留が確認されたが(○で囲まれた箇所)、SolutionAは確認されなかった。
 注射後14日目で、腸骨下リンパ節にSolutionC、Dの貯留が確認されたが(○で囲まれた箇所)、SolutionA及びBでは確認されなかった。
 注射後21日目で、腸骨下リンパ節にSolutionDの貯留が確認されたが(○で囲まれた箇所)、SolutionA、B、Cは確認されなかった。
 SolutionDでは、SolutionDを、注射容器に入れ、注射針から押し出すには相当の力が必要であり、実用に適した溶液ではなかった。
 SolutionC及びDでは腸骨下リンパ節に浮腫が確認された(矢印部分)。
 2)腸骨下リンパ節および固有腋窩リンパ節に貯留する溶液の貯留特性
 図4に図3で得られた腸骨下リンパ節および固有腋窩リンパ節に貯留する各溶液の貯留特性を示す。投与直後では、固有腋窩リンパ節ではsolution Bの貯留性が高く、腸骨下リンパ節ではsolution Dの貯留性が高くなることが確認された。 
 3)各溶液に対する体重変化
 図5に各溶液に対するマウスの体重変化を示す。エラーバーは平均±標準誤差として表記されている。SolutionA、B、C、Dを腸骨下リンパ節に注射しても、副作用としての顕著な体重減少は確認されなかった。
 4)浸透圧及び粘度の適正域
 以上から、浸透圧、粘度の適正な範囲は、浸透圧上限値は3481kPa以下、粘度上限値は427mPa×s以下であると判断できる。
実施例2 浸透圧の変化に対する病理解析
1.材料・方法
 1)溶液の調整
 表2に示された溶液、Π758、Π408、Π515、Π556、Π2610、Π2773を使用した。Π758の粘度に関しては, 生理食塩水の粘度が水と同等と判断し参考文献(理科年表、国立天文台編、1997、丸善株式会社)から得た。溶液Π758、Π408、Π515、Π556、Π2610、Π2773の粘度に関しては、音叉振動式粘度計(SV-1A:粘度測定域:0.3~10、000mPa・s、SV-1H:粘度測定域:0.3~1000mPa・s、エー・アンド・デイ株式会社)で、室温下(20℃)で測定した。
 浸透圧は前記と同様に前記(式2)より求めた。
 表2中、 血液の浸透圧に対する比とは、1mOsm/Kg=2269.68Paの関係から、各溶液の浸透圧[kPa]をmOsm/Kgに単位換算し、これを血液の浸透圧290mOsm/kgで除した値である。
Figure JPOXMLDOC01-appb-T000004
 2)マウス
 マウスとしては図1に示すMXH10/Mo-lpr/lprマウス(14-18週齢)(前記非特許文献1)を使用した。
 3)溶液の注射
 溶液を腸骨下リンパ節(SiLN)に投与速度10μL/minで200μL注射し、リンパ管経由で固有腋窩リンパ節(PALN)に送達させた。注射日をday0とした。
 4)病理解析
 注射日から6日目(Day6)に腸骨下リンパ節と固有腋窩リンパ節を摘出し取り出し、10%ホルマリン溶液に浸漬して4日間放置したのちパラフィンで包埋し、ブロックを作製した。パラフィンブロックはミクロトーム(REM-700,Yamato Kohki,Saitama,Japan)を使用し厚さ3μmに薄切し、スライドグラス(Superfrost,Matsunami,Osaka,Japan)に貼付した。その後、パラフィン伸展器(Thermo Fisher Scientific,Waltham,MA,USA)上に一晩置き、十分伸展させた。作製した切片は、HE全自動染色システム(Ventana Symphony, Ventana Medical Systems,Inc., Tucson,AZ,USA)を用いてヘマトキシリン・エオジン(HE)染色をおこなった。
 観察には光学顕微鏡(BX51,オリンパス社製)を用いて明視野観察法で観察した。
2.結果
 1)病理解析
 図6に注射日から6日目(Day6)での腸骨下リンパ節及び固有腋窩リンパ節の病理像を示す。溶液はΠ756、Π408 、Π515、Π556、Π2610およびにΠ2773である。倍率は2倍および10倍である。2倍画像上で□で囲んだ部位を拡大したものが10倍像である。画像においてTは腫瘍領域、Nは壊死領域を示す。
(A)Π758
SiLN
 リンパ節に特記すべき病的変化は認められなかった。
PALN
 リンパ節に特記すべき病的変化は認められなかった。
(B)Π408
SiLN
 リンパ節髄洞に軽度の拡張がみられ、リンパ節髄質に軽度の浮腫を認めるが、リンパ節に明らかな器質的変化が認められなかった。
PALN
 リンパ節全体のリンパ節髄洞に拡張がみられ、リンパ節外に浮腫を認められた。しかし、壊死巣や線維化は観られず可逆的変化と思われる。
(C)Π515
SiLN 
 リンパ節髄洞に軽度の拡張がみられ、リンパ節髄質に軽度の浮腫を認められたが、リンパ節に明らかな器質的変化が認められなかった。
PALN
 リンパ節髄洞に軽度の拡張がみられ、リンパ節髄質に軽度の浮腫を認められたが、リンパ節に明らかな器質的変化が認められなかった。
(D)Π556
SiLN 
 リンパ節髄洞に軽度の拡張がみられ、リンパ節髄質に浮腫を認めるが、リンパ節に明らかな器質的変化が認められない。
PALN
 リンパ節全体のリンパ節髄洞に拡張がみられ、リンパ節外に浮腫を認められた。しかし、壊死巣や線維化は観られず可逆的変化と思われる。
(E)Π2610
SiLN 
 リンパ節髄洞に軽度の拡張がみられた。
PALN
 リンパ節全体のリンパ節髄洞に拡張がみられ、リンパ節外に浮腫を認められた。しかし、壊死巣や線維化は観られず可逆的変化と思われる。
(F)Π2773
SiLN 
 リンパ節の大部分に及ぶ広範な壊死を認め、輸出リンパ管基部も壊死に陥っていたことから、輸出リンパ管を介した薬剤送達は困難な所見を呈している。
PALN
 リンパ節髄洞に軽度の拡張がみられ、リンパ節髄質に軽度の浮腫を認められたが、リンパ節に明らかな器質的変化が認められなかった。
 以上の結果から、浸透圧2773kPa、粘度18.9mP・sの溶液は、下流リンパ節への薬剤送達を達成できず、リンパ行性薬剤送達の製剤としては適さないと考えられる。
実施例3 シスプラチンを含む溶液を用いた浸透圧域の検討
1.材料・方法
 1)溶液の調製
 表3にシスプラチンを含む溶液の組成を示す。
 溶液はsolution I、solution I’、solution II,solution II’、solution III、solution III’、solution IV、solution IV’、solution Vである。シスプラチンのworking solution はsalineで準備する。 マウスにはマウス体重あたり、5mg/kgを投与するように調整した。
 表3に示された粘度は前記(式1)から算出した。
 表3に示された浸透圧は前記(式2)より求めた。
 表3中、 血液の浸透圧に対する比とは、1mOsm/Kg=2269.68Paの関係から、各溶液の浸透圧[kPa]をmOsm/Kgに単位換算し、これを血液の浸透圧290mOsm/kgで除した値である。
Figure JPOXMLDOC01-appb-T000005
 2)腫瘍細胞
 ルシフェラーゼ遺伝子を発現するKM-Luc/GFP悪性線維性組織球腫様細胞を使用した(Li L, Mori S, Sakamoto M, Takahashi S, Kodama T. Mouse model of lymph node metastasis via afferent lymphatic vessels for development of imaging modalities. PLoS One 2013; 8:e55797)。細胞の培養には、培地として10%ウシ胎児血清(FBS;Sigma-Aldrich, St Louis, MO, USA)、1%L-グルタミン-ペニシリン-ストレプトマイシン(Sigma-Aldrich)、及び0.5%G418 (Sigma-Aldrich)を含むDulbecco’s modified Eagle’s medium(DMEM,Sigma-Aldrich)を用いた。培養条件は、37℃、5%COとした。
 3)細胞接種
 固有腋窩リンパ節に細胞溶液(4×10cells/mL)を40μL接種した。この日をday-3とした。
 4)薬剤投与
 細胞接種後3日目に、腸骨下リンパ節にシスプラチン溶液を速度10μL/minで200μL投与し固有腋窩リンパ節に送達させた。
 5)生物発光イメージングシステムを用いた腫瘍の成長の確認
 固有腋窩リンパ節内の腫瘍成長を評価するために、生物発光イメージングシステム(IVIS, PerkinElmer社製)を使用した。麻酔下において、15mg/mLに濃度調整したルシフェリンをマウスの体重に合わせて10μL/gをマウスの腹腔内に注射した。ルシフェリン投与10分後に、IVISを用いて生物発光強度を測定した。測定データは、専用の解析ソフトを使用して固有腋窩リンパ節における単位時間当たりの発光量を算出した。治療開始日(day0)、治療開始後3日目(day3)、治療開始後6日目(day6)に1回、生物発光強度の測定を行った。
 6)固有腋窩リンパ節の超音波診断
 小動物用高周波超音波診断装置(中心周波数25MHz、空間分解能70μm、方位分解能140mm、VEVO770,VisualSonics社)下で、固有腋窩リンパ節のBモード像を得る。腫瘍接種日(day-3)、治療開始日(day0)、治療開始後3日目(day3)、治療開始後6日目(day6)に、計測した。
 7)リンパ節体積測定
 腫瘍接種日(day-3)、治療開始日(day0)、治療開始後3日目(day3)、治療開始後6日目(day6)に、マウスの体重を測定した。
 8)病理解析
 治療開始後6日目(day6T)に腸骨下リンパ節及び固有腋窩リンパ節を摘出し、ヘマトキシリン・エオジン染色により、病理像を解析した。
2.実験結果
 1)溶液の動態
 図7Aにsolution I、solution I’、solution II、solution II’、solution III、solution III’、solution IV、solution Vのday0における腸骨下リンパ節(SiLN)から内側腋窩リンパ節(PALN)に流れ出る溶液の動態のin vivoイメージング画像を示す。
 図7Bにday6における抗腫瘍効果として、in vivoイメージング画像を示す。血液の浸透圧に対する比とは、1mOsm/Kg=2269.68Paの関係から、各溶液の浸透圧[kPa]をmOsm/Kgに単位換算し、これを血液の浸透圧290mOsm/kgで除した値である。
 2)浸透圧対する抗腫瘍効果
 図8にday6における各浸透圧に対する抗腫瘍効果を示す。縦軸は無次元化されたルシフェラーゼ活性値を示す。 luciferase activity(day 6T)/luciferase activity(day 0T)という無次元量を導入した。結果、luciferase activity を指標とした抗腫瘍効果の評価では、浸透圧Π=3200kPaまで固有腋窩リンパ節に対する抗腫瘍効果が確認された。 
 3)粘度に対する抗腫瘍効果
 図9にday6における各粘度に対する抗腫瘍効果を示す。
 結果、Luciferase activityを指標とした抗腫瘍効果の評価では、粘度μ=120mPa・sまでは、固有腋窩リンパ節に対する抗腫瘍効果が確認できた。
 4)マクロ視野における浸透圧および粘度に対する浮腫の評価
 図10に、各溶液に対する治療開始後Day3及びDay6でのマウス画像を示す。Day3において、溶液IV(浸透圧Π=2768kPa、粘度μ=55mPa・s)及びV(浸透圧Π=3641kPa、粘度μ=261.5mPa・s)で浮腫が確認された。
 5)高周波超音波イメージング法による浮腫の評価
 図11に、実験日における高周波超音波で得られた固有腋窩リンパ節のBモード画像を示す。Day6において、溶液IV(浸透圧Π=2768kPa、粘度μ=55.0mPa・s)及びにV(浸透圧Π=3641kPa、粘度μ=261.8mPa・s)で浮腫が確認された。
 6)病理解析
 図12にsolution I、 solution I'、solution II、solution II’、solution III、solution III’ 、solution IV、solution IV’、 および Solution V おけるday6Tでの腸骨下リンパ節および固有腋窩リンパ節の病理像を示す。倍率は2倍および10倍である。2倍画像上で□で囲んだ部位を拡大したものが10倍像である。画像においてTは腫瘍領域、Nは壊死領域、Eは浮腫領域を示す。
(A)solution I
SiLN
 既存のリンパ節の大部分が壊死に陥り、壊死の範囲は周囲組織にも及んでいる。抗がん剤の周囲組織への拡散が示唆される。輸出リンパ管からのPALNへの薬剤送達が殆ど期待できない所見である。
PALN
 リンパ節辺縁洞の場所により、腫瘍組織が壊死に陥った領域も認められるが、殆ど腫瘍増殖が抑制されていない領域も認められる。リンパ節実質の構造は保たれている。リンパ節辺縁洞の一部に抗がん剤が流入したものの、全域には到達しなかったものと思われる。
(B)solution I’
SiLN
 リンパ節中央に抗がん剤の注入によると思われる広範な壊死巣の形成が認められ、リンパ節辺縁洞にも及んでいる。輸出リンパ管からのPALNへの薬剤送達が殆ど期待できない所見である。
PALN
 リンパ節辺縁洞を起点として増殖したと思われる腫瘍の浸潤・増殖が認められる。薬剤送達が殆ど為されなかったと思われる。
(C)solution II
SiLN 
 リンパ節中央に抗がん剤の注入によると思われる壊死巣の形成が認められたが、リンパ節辺縁洞の組織は保存されており、輸出リンパ管からのPALNへの薬剤送達が期待できる所見である。
PALN
 リンパ節辺縁洞相当部に腫瘍細胞の増殖がみられたが、腫瘍組織の広範な壊死を伴っていた。SiLNからのリンパ行性の薬剤送達の効果が期待できる所見である。
(D)solution II’
SiLN 
 リンパ節門部相当部に浮腫と限局した壊死を認められたものの、リンパ節の構造は保存されており、輸出リンパ管からのPALNへの薬剤送達が期待できる所見である。
PALN
 リンパ節辺縁洞およびリンパ節実質相当部に腫瘍細胞の増殖がみられたが、腫瘍組織の広範な壊死もみられた。SiLNからのリンパ行性の薬剤送達の効果と考えらえる。
(E)solution III
SiLN 
 リンパ節の一部に限局した壊死病巣を認められたもののリンパ節の構造は保存されており、輸出リンパ管からのPALNへの薬剤送達が期待できる所見である。
PALN
 リンパ節辺縁洞およびリンパ節実質相当部に腫瘍細胞が増殖し、壊死したことを示す広範な壊死病巣を認められた。腫瘍細胞の残存はみられなかった。SiLNからのリンパ行性の薬剤送達による著明な抗腫瘍効果と考えられる。
(F)solution III’
SiLN
 リンパ節に壊死組織がみられ、辺縁洞も一部壊死に陥っていた。
PALN
 リンパ節辺縁洞およびリンパ節実質に腫瘍細胞の増殖が認められ、一部腫瘍組織が壊死に陥っていた。限局的ではあるが、SiLNからのリンパ行性の薬剤送達による抗腫瘍効果が認められた。リンパ行性薬剤送達を期待できる結果であるため、投与するシスプラチン濃度を高めることなどで、所望の抗腫瘍効果が得られると考えられる。
(G)solution IV
SiLN
 既存のリンパ節に広範な壊死像を認め、周囲組織には著明な浮腫を認める。輸出リンパ管からのPALNへの薬剤送達が期待できない所見である。
PALN
 リンパ節辺縁洞を起点として増殖したと思われる壊死を伴った腫瘍がみられる。十分な抗がん剤の薬剤送達が為されなかったものと思われる。
(H)solution IV’
SiLN
 リンパ節門部相当部に壊死組織がみられ、また、周囲組織に浮腫を伴っており、輸出リンパ管からのPALNへの十分な薬剤送達が期待できない所見である。
PALN
 リンパ節の広範な領域が腫瘍に置換されており、抗がん剤の薬剤送達が殆ど為されなかったものと思われる。
(I)solution V
SiLN
 リンパ節門部の領域が広範な壊死に陥っており、また、周囲組織には著明な浮腫を伴っており、輸出リンパ管からのPALNへの薬剤送達が殆ど期待できない所見である。
PALN
 既存のリンパ節全ての領域が腫瘍に置換された状態である。抗がん剤は殆ど送達されなかったと思われる。
 以上から、CDDPを含む溶液を使用した場合のリンパ行性薬剤送達法に、より有効な溶液はsolution II~solution III'であった。当該病理像の結果から、リンパ行性薬剤送達の製剤として、浸透圧588kPa以下、又は、2768kPa以上は適さないと考えられる。
 7)病理解析
 図13に各溶液に対するマウスの体重変化を示す。すべての溶液(solutionI、II、III、IV、V)において、明確な体重減少は確認されなかった。
参考例2 グルコースを含む溶液の粘性の測定
1.材料・方法
 1)溶液の準備
 グルコース(Otsuka, 50% glucose)を希釈し、粘度の異なる溶液(0.1~50v/v%グルコース水溶液)を調製した(表4)。溶液の粘度は音叉振動式粘度計(SV-1A:粘度測定域:0.3~10、000mPa・s、SV-1H:粘度測定域:0.3~1000mPa・s、エー・アンド・デイ株式会社)で、室温下(20℃)で測定した。
1.結果
 図14はグルコース体積パーセントと粘度との関係である。グルコースの体積パーセントの増加とともに、 粘度は指数関数的に増加する。 
 グルコース体積パーセント(x)、 粘度(y)とすると、以下の関係式(式3)を得た。
Figure JPOXMLDOC01-appb-M000006
 表4中における浸透圧は、 ファントホッフの式前記(式2)より求めた。
 血液の浸透圧に対する比とは、1mOsm/Kg=2269.68Paの関係から各溶液の浸透圧[kPa]をmOsm/Kgに単位換算し、これを血液の浸透圧290mOsm/kgで除した値である。
Figure JPOXMLDOC01-appb-T000007
実施例4 エピルビシンを含む溶液を用いた粘度域及び浸透圧域の検討
1.材料・方法
 1)溶液の調製
 表5にエピルビシンを含む溶液の組成を示す。
 溶液はsolution C、solution C’、solution D、solution Fである。
 表5における粘度は 前記(式3)から求めた。各溶液の粘度はほぼ1mPa×sであった。 
 表5中における浸透圧は, ファントホッフの式前記(式2)より求めた。
 血液の浸透圧に対する比とは、1mOsm/Kg=2269.68Paの関係から各溶液の浸透圧[kPa]をmOsm/Kgに単位換算し、これを血液の浸透圧290mOsm/kgで除した値である。
Figure JPOXMLDOC01-appb-T000008
 2)腫瘍細胞
 ルシフェラーゼ遺伝子を発現するFM3A-Lucマウス乳がん細胞を使用した(Shao L, Mori S, Yagishita Y, Okuno T, Hatakeyama Y, Sato T, Kodama T. Lymphatic mapping of mice with systemic lymphoproliferative disorder: Usefulness as an inter-lymph node metastasis model of cancer. J Immunol Methods. 2013 Mar 29;389(1-2):69-78.)。細胞の培養には、培地として10%ウシ胎児血清(FBS;Sigma-Aldrich, St Louis, MO,USA)、1%L-グルタミン-ペニシリン-ストレプトマイシン(Sigma-Aldrich)、 及び0.5%G418 (Sigma-Aldrich)を含むRPMI-1640 medium (Biological Industries, Haemek, Israel)を用いた。培養条件は、37℃、5%COとした。
 3)細胞接種
 腸骨下リンパ節(SiLN)に細胞溶液(3.3×10cells/mL)を60μL接種した。この日をday0とした。実験の概要図を図15に示す。 
 4)溶液投与
 細胞接種後7日目(D7)に、腸骨下リンパ節にエピルビシン溶液をボーラス投与で200μL投与し固有腋窩リンパ節(PALN)に送達させた。薬剤濃度はマウスを34gと仮定して、 3mg/kg/mouseとした。 
 5)病理解析
 腫瘍移植後16日目(D16)に腸骨下リンパ節及び固有腋窩リンパ節を摘出し、ヘマトキシリン・エオジン染色により、病理像を解析した。
2.実験結果
1)ボーラス投与の場合
図16は腫瘍移植後16日目における病理像である。
(C)Solution C
SiLN (C-1, C-2)
 リンパ節に腫瘍の浸潤・増殖は確認できない。投与薬剤による増殖抑制効果と考えられる。
PALN(C-3, C-4)
 リンパ節内に腫瘍細胞は確認できない。投与薬剤による転移抑制効果と考えられる。
(D)Solution D
SiLN (D-1, D-2)
 リンパ節辺縁洞を起点に浸潤・増殖したと思われる腫瘍細胞がわずかにみられるが、腫瘍組織の大部分は壊死組織に陥り、線維性組織に置換されている。投与薬剤による増殖抑制効果と考えられる。
PALN(D-3, D-4)
 リンパ節内に腫瘍細胞は確認できない。投与薬剤による転移抑制効果と考えられる。
(F)Solution F
SiLN(F-1, F-2)
 リンパ節内に腫瘍細胞は確認できない。投与薬剤による増殖抑制効果と考えられる。
PALN(F-3, F-4)
 リンパ節内に腫瘍細胞は確認できない。投与薬剤による転移抑制効果と考えられる。
(C’)Solution C’, Control
SiLN(C’-1, C’-2)
 リンパ節辺縁洞を起点に浸潤・増殖したと思われる腫瘍細胞が、著明な増殖傾向を示し、リンパ節周囲に腫瘍塊を形成している。
PALN(C’-3, C’-4)
 リンパ節辺縁洞に腫瘍細胞の浸潤、増殖が認められ、転移病巣を形成している。
 以上から、 エピルビシンを含む溶液を使用した場合のリンパ行性薬剤送達法においても、浸透圧1600kPa~2335kPaの範囲で、本発明の効果が発揮され、良好な薬剤効果が得られることが示された。
実施例5 ニムスチンを含む溶液を用いた浸透圧域の検討
1.材料・方法
 1)溶液の調製
 表6にニムスチンを含む溶液の組成を示す。
 溶液はsolution C、およびsolution Dである。 
 表6中の粘度は前記(式3)から求めた。 
 粘度はほぼ1mPa×sであった。
 表6中における浸透圧は、 ファントホッフの式前記(式2)より求めた。
 血液の浸透圧に対する比とは、1mOsm/Kg=2269.68Paの関係から各溶液の浸透圧[kPa]をmOsm/Kgに単位換算し、これを血液の浸透圧290mOsm/kgで除した値である。
Figure JPOXMLDOC01-appb-T000009
 2)腫瘍細胞
 ルシフェラーゼ遺伝子を発現するFM3A-Lucマウス乳がん細胞を使用した(Shao L, Mori S, Yagishita Y, Okuno T, Hatakeyama Y, Sato T, Kodama T. Lymphatic mapping of mice with systemic lymphoproliferative disorder: Usefulness as an inter-lymph node metastasis model of cancer. J Immunol Methods. 2013 Mar 29;389(1-2):69-78.)。細胞の培養には、培地として10%ウシ胎児血清(FBS;Sigma-Aldrich, St Louis, MO, USA)、1%L-グルタミン-ペニシリン-ストレプトマイシン(Sigma-Aldrich)、 及び0.5%G418 (Sigma-Aldrich)を含むRPMI-1640 medium (Biological Industries, Haemek, Israel)を用いた。培養条件は、37℃、5%COとした。
 3)細胞接種
 腸骨下リンパ節に細胞溶液(3.3×10cells/mL)を60μL接種した。この日をday0とした。図17はニムスチンの実験の概念図である。 
 4)溶液投与
 細胞接種後7日目(D7)に、腸骨下リンパ節にニムスチン溶液をボーラス投与で200μL投与し固有腋窩リンパ節に送達させた。薬剤濃度はマウスを34gと仮定して、5mg/kg/mouseとした。
 5)病理解析
 腫瘍移植後16日目(D16)に腸骨下リンパ節及び固有腋窩リンパ節を摘出し、ヘマトキシリン・エオジン染色により、病理像を解析した。
2.実験結果
 図18は腫瘍細胞接種後16日目における病理像(ボーラス投与)の病理像である。 
(C)Solution C
SiLN (I, J)
 リンパ節内に腫瘍細胞は確認できない。投与薬剤による増殖抑制効果と考えられる。
PALN(K, L)
 リンパ節内に腫瘍細胞は確認できない。投与薬剤による転移抑制効果と考えられる。
(D)Solution D
SiLN (M, N)
 リンパ節内に腫瘍細胞は確認できない。投与薬剤による増殖抑制効果と考えられる。
PALN(O, P)
 リンパ節内に腫瘍細胞は確認できない。投与薬剤による転移抑制効果と考えられる。
 以上から、ニムスチンを含む溶液を使用した場合のリンパ行性薬剤送達法においても、浸透圧1600kPa~1943kPaの範囲で、本発明の効果が発揮され、良好な薬剤効果が得られることが示された。
実施例6 メトトレキサートを含む溶液を用いた浸透圧域の検討
1.材料・方法
 1)溶液の調製
 表7にメトトレキサートを含む溶液の組成を示す。
 溶液はsolution B、solution C、およびsolution Dである。
 表7中の粘度は前記(式3)から求めた。
 粘度はほぼ1mPa×sであった。
 表7中における浸透圧は、 ファントホッフの式前記(式2)より求めた。
 血液の浸透圧に対する比とは、1mOsm/Kg=2269.68Paの関係から各溶液の浸透圧[kPa]をmOsm/Kgに単位換算し、これを血液の浸透圧290mOsm/kgで除した値である。
Figure JPOXMLDOC01-appb-T000010
 2)腫瘍細胞
 ルシフェラーゼ遺伝子を発現するFM3A-Lucマウス乳がん細胞を使用した(Shao L, Mori S, Yagishita Y, Okuno T, Hatakeyama Y, Sato T, Kodama T. Lymphatic mapping of mice with systemic lymphoproliferative disorder: Usefulness as an inter-lymph node metastasis model of cancer. J Immunol Methods. 2013 Mar 29;389(1-2):69-78.)。細胞の培養には、培地として10%ウシ胎児血清(FBS;Sigma-Aldrich, St Louis, MO, USA)、1%L-グルタミン-ペニシリン-ストレプトマイシン(Sigma-Aldrich)、 及び0.5%G418 (Sigma-Aldrich)を含むRPMI-1640 medium (Biological Industries, Haemek, Israel)を用いた。培養条件は、37℃、5%COとした。
 3)細胞接種
 腸骨下リンパ節に細胞溶液(3.3×10cells/mL)を60μL接種した。この日をday0とした。図19はメトトレキサート実験の概念図である。 
 4)溶液投与
 細胞接種後7日目(D7)に、腸骨下リンパ節にメトトレキサート溶液をボーラス投与で200μL投与し固有腋窩リンパ節に送達させた。薬剤濃度はマウスを34gと仮定して、 5mg/kg/mouseとした。
 5)病理解析
 腫瘍移植後16日目(D16)に腸骨下リンパ節及び固有腋窩リンパ節を摘出し、ヘマトキシリン・エオジン染色により、病理像を解析した。
2.実験結果
抗腫瘍効果の病理像を図20に示す。 
(B) Solution B 
SiLN( E, F)
 リンパ節に明らかな腫瘍細胞の増殖は確認できない。投与薬剤による増殖抑制効果と考えられる。
PALN (G, H)
 リンパ節に明らかな腫瘍細胞の増殖は確認できない。投与薬剤による転移抑制効果と考えられる。
(C)Solution C
SiLN (I, J)
 リンパ節に明らかな腫瘍細胞の増殖は確認できない。投与薬剤による増殖抑制効果と考えられる。
PALN(K, L)
 リンパ節に明らかな腫瘍細胞の増殖は確認できない。投与薬剤による転移抑制効果と考えられる。
(D)Solution D
SiLN (M, N)
 リンパ節に明らかな腫瘍細胞の増殖は確認できない。投与薬剤による増殖抑制効果と考えられる。
PALN(O, P)
 リンパ節に明らかな腫瘍細胞の増殖は確認できない。投与薬剤による転移抑制効果と考えられる。
 以上から、メトトレキサートを含む溶液を使用した場合のリンパ行性薬剤送達法においても、浸透圧1208~1943kPaの範囲で、本発明の効果が発揮され、良好な薬剤効果が得られることが示された。
 本発明のリンパ節内投与製剤によれば、リンパ節に薬剤を投与して、投与したリンパ節より下流のリンパ節に効率よく薬剤を流し込むことができる。例えば、薬剤が抗がん剤である場合、標的のリンパ節で抗がん作用を発揮するだけでなく、微小ながんが転移している可能性がある他のリンパ節にも抗がん剤を効率よく流し込むことができ、微小ながんを殺すことで、再発を防止することができる。
 また、例えば、手術で郭清できない領域のリンパ節にがんがある場合、外科的手術での治癒は不可能であるが、本発明のリンパ節内投与製剤を用いることで、上流のリンパ節から抗がん剤を流して郭清できない領域のリンパ節の治療を行うことが可能である。さらに、本発明のリンパ節内投与製剤においては、使用する薬剤の量は、従来の全身投与に用いる量よりも少ないため、副作用も少なく、安全性が高い。
 

Claims (11)

  1.  リンパ行性薬剤送達法によって薬剤を標的リンパ節に送達するための薬剤含有液体製剤であって、液体の浸透圧が700~2700kPaである、リンパ節内投与製剤。
  2.  液体の浸透圧が、900kPa以上である、請求項1記載のリンパ節内投与製剤。
  3.  液体の浸透圧が、2400kPa以下である、請求項1記載のリンパ節内投与製剤。
  4.  液体の浸透圧が、950~2000kPaである、請求項1記載のリンパ節内投与製剤。
  5.  液体の粘度が0.5~20mPa・sである、請求項1~4のいずれか1項記載のリンパ節内投与製剤。
  6.  液体の粘度が1.0~15mPa・sである、請求項1~4のいずれか1項記載のリンパ節内投与製剤。
  7.  非イオン性界面活性剤を含有する、請求項1~6のいずれか1項記載のリンパ節内投与製剤。
  8.  非イオン性界面活性剤がポリオキシエチレンソルビタン脂肪酸エステルである、請求項7記載のリンパ節内投与製剤。
  9.  ポリオキシエチレンソルビタン脂肪酸エステルがオレイン酸ポリオキシエチレンソルビタンである請求項8記載のリンパ節内投与製剤。
  10.  薬剤が、医薬活性物質、核酸分子収容体又は培養細胞である請求項1~9のいずれか1項記載のリンパ節内投与製剤。
  11.  薬剤が、抗がん剤である請求項1~9のいずれか1項記載のリンパ節内投与製剤。
     
PCT/JP2018/032220 2017-08-31 2018-08-30 リンパ行性薬剤送達法に有効な薬剤を含む溶液の適正な浸透圧域 WO2019045005A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18851860.9A EP3677283A4 (en) 2017-08-31 2018-08-30 APPROPRIATE AREA OF OSMOTIC PRESSURE OF A SOLUTION WITH MEDICINAL PRODUCT EFFECTIVE IN LYMPHODIC DELIVERY SYSTEM
JP2019539633A JP7182794B2 (ja) 2017-08-31 2018-08-30 リンパ行性薬剤送達法に有効な薬剤を含む溶液の適正な浸透圧域
US16/643,776 US20200206352A1 (en) 2017-08-31 2018-08-30 Optimal osmotic range for a drug-containing solution suitable for lymphatic delivery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017167951 2017-08-31
JP2017-167951 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019045005A1 true WO2019045005A1 (ja) 2019-03-07

Family

ID=65525779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032220 WO2019045005A1 (ja) 2017-08-31 2018-08-30 リンパ行性薬剤送達法に有効な薬剤を含む溶液の適正な浸透圧域

Country Status (4)

Country Link
US (1) US20200206352A1 (ja)
EP (1) EP3677283A4 (ja)
JP (1) JP7182794B2 (ja)
WO (1) WO2019045005A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162840A1 (ja) * 2022-02-22 2023-08-31 国立大学法人東北大学 疾患モデルマウスを用いた抗腫瘍薬および/または免疫チェックポイント阻害剤の投与により誘発される有害事象の評価

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018066278A1 (ja) * 2016-10-05 2018-04-12 国立大学法人東北大学 リンパ行性薬剤投与法で有効な薬剤

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015192670A (ja) * 2014-03-26 2015-11-05 国立大学法人東北大学 リンパ節転移のリスク評価プログラム及び装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ234143A (en) * 1989-06-28 1991-10-25 Mcneil Ppc Inc Aqueous pharmaceutical suspension formulation for administering substantially insoluble pharmaceutical agents
US6077545A (en) * 1995-10-30 2000-06-20 Matrix Pharmaceuticals, Inc. Process and composition for therapeutic cisplatin (CDDP)
EP2351577A1 (en) * 2004-12-29 2011-08-03 Mannkind Corporation Methods to trigger, maintain and manipulate immune responses by targeted administration of biological response modifiers into lymphoid organs
KR20080030024A (ko) * 2005-06-17 2008-04-03 호스피라 오스트레일리아 피티와이 리미티드 도세탁셀의 약제학적 액상제제
CN107949418B (zh) * 2015-07-24 2024-07-02 索伦托治疗有限公司 用于活性剂的淋巴递送的方法
CN107149592B (zh) * 2017-06-23 2019-10-08 沈阳天邦药业有限公司 具有淋巴靶向功能的生物自组装纳米晶注射剂及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015192670A (ja) * 2014-03-26 2015-11-05 国立大学法人東北大学 リンパ節転移のリスク評価プログラム及び装置

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Science Data, National Astronomical Observatory", 1997, MARUZEN CO., LTD.
HONOKA FUJII ET AL : "2B42 Development of a treatment for metastatic lymph nodes via lymphatic network", PROCEEDINGS OF THE 29TH LECTURE CONFERENCE OF BIOENGINEERING / THE PROCEEDINGS OF THE BIOENGINEERING CONFERENCE ANNUAL MEETING OF BED/JSME; JANUARY 19, 2017 - JANUARY 20, 2017, 18 January 2017 (2017-01-18), JAPAN, pages 1 - 2, XP009519525, ISSN: 2424-2829, DOI: 10.1299/jsmebio.2017.29.2B42 *
KODAMA THATAKEYAMA YKATO SMORI S: "Visualization of fluid drainage pathways in lymphatic vessels and lymph nodes using a mouse model to test a lymphatic drug delivery system", BIOMED OPT EXPRESS, vol. 6, 2015, pages 124 - 34
KODAMA TMATSUKI DTADA ATAKEDA KMORI S: "New concept for the prevention and treatment of metastatic lymph nodes using chemotherapy administered via the lymphatic network", SCI REP, vol. 6, 2016, pages 32506
LI LMORI SSAKAMOTO MTAKAHASHI SKODAMA T: "Mouse model of lymph node metastasis via afferent lymphatic vessels for development of imaging modalities", PLOS ONE, vol. 8, 2013, pages e55797
MIKADA MSUKHBAATAR AMIURA YHORIE SSAKAMOTO MMORI SKODAMA T: "Evaluation of the enhanced permeability and retention effect in the early stages of lymph node metastasis", CANCER SCI, vol. 108, 2017, pages 846 - 852
MIURA, YOSHINOBU ET AL.: "Early diagnosis of lymph node metastasis: Importance of intranodal pressures", CANCER SCIENCE, vol. 107, no. 3, 2016, pages 224 - 232, XP055577382, ISSN: 1349-7006 *
See also references of EP3677283A4
SHAO LMORI SYAGISHITA YOKUNO THATAKEYAMA YSATO TKODAMA T: "Lymphatic mapping of mice with systemic lymphoproliferative disorder: usefulness as an inter-lymph node metastasis model of cancer", J IMMUNOL METHODS, vol. 389, 2013, pages 69 - 78, XP028976305, DOI: 10.1016/j.jim.2013.01.004

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162840A1 (ja) * 2022-02-22 2023-08-31 国立大学法人東北大学 疾患モデルマウスを用いた抗腫瘍薬および/または免疫チェックポイント阻害剤の投与により誘発される有害事象の評価

Also Published As

Publication number Publication date
EP3677283A4 (en) 2021-05-12
JP7182794B2 (ja) 2022-12-05
US20200206352A1 (en) 2020-07-02
JPWO2019045005A1 (ja) 2020-10-08
EP3677283A1 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
US20230338251A1 (en) Method of treating cancer
Yang et al. T cell-depleting nanoparticles ameliorate bone loss by reducing activated T cells and regulating the Treg/Th17 balance
EA016653B1 (ru) Способы и композиции для ингибирования ангиогенеза
Lee et al. Paclitaxel nanosuspensions for targeted chemotherapy–nanosuspension preparation, characterization, and use
JP7182794B2 (ja) リンパ行性薬剤送達法に有効な薬剤を含む溶液の適正な浸透圧域
Zhou et al. Immunogenic hydrogel toolkit disturbing residual tumor “seeds” and pre-metastatic “soil” for inhibition of postoperative tumor recurrence and metastasis
KR20220125798A (ko) 표적화된 세포 집단의 직접 주사에 의한 치료를 위한 시스템 및 약학적 조성물
Yang et al. An in situ spontaneously forming micelle-hydrogel system with programmable release for the sequential therapy of anaplastic thyroid cancer
Yang et al. Local sustained chemotherapy of pancreatic Cancer using endoscopic ultrasound-guided injection of biodegradable Thermo-sensitive hydrogel
Chen et al. Injectable thermo-sensitive hydrogel enhances anti-tumor potency of engineered Lactococcus lactis by activating dendritic cells and effective memory T cells
WO2022159878A9 (en) Compositions and methods for delivering therapeutics to the heart
CN106822099A (zh) 维生素c与苯磺酰胺化合物协同作用的注射用药物组合物
EP3524269B1 (en) Anticancer composition to be administered into a lymph node
JP7523821B2 (ja) 異種組織細胞組成物の使用方法
JP7570134B2 (ja) 治療用ワクチンとしての使用のためのナノ粒子
US20220096423A1 (en) Treatment of Bladder Cancer by Local Administration of Taxane Particles
Li et al. Liposomes Loaded with 5-Fluorouracil Can Improve the Efficacy in Pathological Scars
JP2023516845A (ja) 網膜芽腫治療のための医薬組成物、製剤及びその方法
US20190365699A1 (en) Treatment of Kidney Tumors by Intratumoral Injection of Taxane Particles
WO2023055473A1 (en) Shear-thinning compositions for ablation
WO2017217517A1 (ja) 腫瘍内静脈形成促進剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018851860

Country of ref document: EP

Effective date: 20200331