WO2019044817A1 - Negative photosensitive resin composition, semiconductor device and electronic device - Google Patents

Negative photosensitive resin composition, semiconductor device and electronic device Download PDF

Info

Publication number
WO2019044817A1
WO2019044817A1 PCT/JP2018/031738 JP2018031738W WO2019044817A1 WO 2019044817 A1 WO2019044817 A1 WO 2019044817A1 JP 2018031738 W JP2018031738 W JP 2018031738W WO 2019044817 A1 WO2019044817 A1 WO 2019044817A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive resin
resin composition
layer
film
semiconductor device
Prior art date
Application number
PCT/JP2018/031738
Other languages
French (fr)
Japanese (ja)
Inventor
咲子 鈴木
雄大 山川
泰典 高橋
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to CN201880055884.7A priority Critical patent/CN111033379A/en
Priority to KR1020207020144A priority patent/KR20200087876A/en
Priority to JP2019522344A priority patent/JP6631752B2/en
Priority to KR1020207005419A priority patent/KR102135599B1/en
Publication of WO2019044817A1 publication Critical patent/WO2019044817A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a negative photosensitive resin composition, a semiconductor device and an electronic device.
  • a resin film made of a resin material is used for applications such as a protective film, an interlayer insulating film, and a planarization film. Further, depending on the mounting method of the semiconductor element, thickening of these resin films is required. However, when the resin film is thickened, the warpage of the semiconductor chip becomes remarkable.
  • Patent Document 1 discloses a photosensitive resin composition which is excellent in light transmittance and can suppress warpage of a semiconductor chip by optimizing the molecular structure and reducing the residual stress.
  • the photosensitive resin composition is also used for the purpose of forming an insulating portion for insulating the wiring by embedding the wiring in a resin film formed of the photosensitive resin composition.
  • An object of the present invention is to provide a photosensitive resin composition capable of forming a resin film having good adhesion to inorganic materials and metal materials, a semiconductor device provided with the resin film, and an electronic device provided with the semiconductor device. It is in.
  • Thermosetting resin A photopolymerization initiator, A coupling agent containing an acid anhydride as a functional group,
  • the negative photosensitive resin composition characterized by including.
  • thermosetting resin contains a solid component at normal temperature.
  • thermosetting resin contains a polyfunctional epoxy resin.
  • a semiconductor chip A resin film provided on the semiconductor chip, the resin film containing a cured product of the negative photosensitive resin composition according to any one of the above (1) to (8).
  • a semiconductor device comprising:
  • a negative photosensitive resin composition capable of forming a resin film having good adhesion to inorganic materials and metal materials is obtained.
  • a semiconductor device provided with the resin film can be obtained. Further, according to the present invention, an electronic device provided with the above semiconductor device can be obtained.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of the semiconductor device of the present invention.
  • FIG. 2 is a partially enlarged view of a region surrounded by a dashed line in FIG.
  • FIG. 3 is a diagram showing an example of a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 4 is a diagram showing an example of a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 5 is a longitudinal sectional view showing a second embodiment of the semiconductor device of the present invention.
  • FIG. 6 is a partially enlarged view of a region surrounded by a dashed line in FIG.
  • FIG. 7 is a process diagram showing a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 8 is a diagram for explaining a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 9 is a diagram for illustrating a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 10 is a diagram for illustrating a method of manufacturing the semiconductor device shown in FIG.
  • FIG. 1 is a longitudinal sectional view showing a first embodiment of the semiconductor device of the present invention.
  • FIG. 2 is a partially enlarged view of a region surrounded by a dashed line in FIG.
  • the upper side in FIG. 1 is referred to as “upper” and the lower side as “lower”.
  • a semiconductor device 1 shown in FIG. 1 has a so-called package-on-package structure including a through electrode substrate 2 and a semiconductor package 3 mounted thereon.
  • the through electrode substrate 2 includes an organic insulating layer 21 (resin film), a plurality of through wires 22 penetrating the upper surface to the lower surface of the organic insulating layer 21, and a semiconductor chip 23 embedded in the organic insulating layer 21.
  • the organic insulating layer 21 is provided at least on the surface of the semiconductor chip 23 and includes a photosensitive resin composition or a cured product of a photosensitive resin film described later.
  • the semiconductor package 3 includes a package substrate 31, a semiconductor chip 32 mounted on the package substrate 31, a bonding wire 33 for electrically connecting the semiconductor chip 32 and the package substrate 31, a semiconductor chip 32 and a bonding wire.
  • the semiconductor package 3 is stacked on the through electrode substrate 2. Thus, the solder bumps 35 of the semiconductor package 3 and the upper wiring layer 25 of the through electrode substrate 2 are electrically connected.
  • Such a semiconductor device 1 has high reliability because the adhesion of the organic insulating layer 21 to the through wiring 22 and the semiconductor chip 23 is good.
  • the height can be easily reduced. For this reason, it can contribute also to size reduction of the electronic device which incorporates the semiconductor device 1.
  • the semiconductor device 1 can be miniaturized.
  • Lower layer wiring layer 24 and upper layer wiring layer 25 provided in through electrode substrate 2 shown in FIG. 2 each include an insulating layer, a wiring layer, a through wiring, and the like.
  • the lower layer wiring layer 24 and the upper layer wiring layer 25 include interconnections inside and on the surface, and are electrically connected to penetrate in the thickness direction through the through interconnections.
  • the wiring layer included in the lower layer wiring layer 24 is connected to the semiconductor chip 23 and the solder bump 26.
  • the lower wiring layer 24 functions as a rewiring layer of the semiconductor chip 23, and the solder bumps 26 function as external terminals of the semiconductor chip 23.
  • the through wiring 22 shown in FIG. 2 is provided to penetrate the organic insulating layer 21. Thereby, the lower wiring layer 24 and the upper wiring layer 25 can be electrically connected. As a result, the through electrode substrate 2 and the semiconductor package 3 can be stacked, and the semiconductor device 1 can be highly functional.
  • the wiring layer included in the upper wiring layer 25 shown in FIG. 2 is connected to the through wiring 22 and the solder bump 35. Therefore, the upper wiring layer 25 is electrically connected to the semiconductor chip 23 and functions as a rewiring layer of the semiconductor chip 23 and as an interposer interposed between the semiconductor chip 23 and the package substrate 31. Also works. As a result, the rewiring layer can be densified.
  • the effect of reinforcing the organic insulating layer 21 can be obtained by the through wiring 22 penetrating the organic insulating layer 21. Therefore, even when the mechanical strength of the lower wiring layer 24 and the upper wiring layer 25 is low, it is possible to avoid the reduction in the mechanical strength of the entire through electrode substrate 2. As a result, the thickness of the lower wiring layer 24 and the upper wiring layer 25 can be further reduced, and the height of the semiconductor device 1 can be further reduced.
  • the organic insulating layer 21 is provided to cover the semiconductor chip 23.
  • the effect of protecting the semiconductor chip 23 is enhanced.
  • the reliability of the semiconductor device 1 can be improved.
  • the semiconductor device 1 which can be easily applied to the mounting method like the package on package structure which concerns on this embodiment is obtained.
  • the diameter W (see FIG. 2) of the through wiring 22 is not particularly limited, but is preferably about 1 to 100 ⁇ m, and more preferably about 2 to 80 ⁇ m. Thereby, the conductivity of the through wiring 22 can be secured without impairing the mechanical properties of the organic insulating layer 21.
  • the semiconductor package 3 shown in FIG. 2 may be any type of package.
  • Quad Flat Package QFP
  • Small Outline Package SOP
  • Ball Grid Array BGA
  • Chip Size Package CSP
  • Quad Flat Non-leaded Package QFN
  • Small Outline Non-leaded Package SON
  • a form such as LF-BGA (Lead Flame BGA) may be mentioned.
  • the form of the semiconductor chip 32 is not particularly limited, but the semiconductor chip 32 shown in FIG. 1 as an example is configured by laminating a plurality of chips. For this reason, high densification is achieved. Note that the plurality of chips may be juxtaposed in the planar direction, or may be juxtaposed in the planar direction while being stacked in the thickness direction.
  • the package substrate 31 may be any substrate, and is, for example, a substrate including an insulating layer, a wiring layer, a through wiring, and the like (not shown). Among these, the solder bump 35 and the bonding wire 33 can be electrically connected through the through wiring.
  • the sealing layer 34 is made of, for example, a known sealing resin material. By providing such a sealing layer 34, the semiconductor chip 32 and the bonding wire 33 can be protected from external force and the external environment.
  • one of the semiconductor chip 23 and the semiconductor chip 32 is an arithmetic element such as a central processing unit (CPU), a graphics processing unit (GPU), or an application processor (AP), and the other is a dynamic random access (DRAM)
  • CPU central processing unit
  • GPU graphics processing unit
  • AP application processor
  • DRAM dynamic random access
  • a storage element such as a memory or a flash memory
  • these elements can be arranged close to each other in the same device, so that a semiconductor device 1 having both high performance and miniaturization can be realized.
  • Organic insulating layer 21 Next, the organic insulating layer 21 will be particularly described in detail.
  • the organic insulating layer 21 of the present embodiment includes a photosensitive resin composition to be described later or a cured product of a photosensitive resin film.
  • the cured product of the photosensitive resin composition according to the present embodiment preferably has a glass transition temperature (Tg) of 140 ° C. or higher, and 150 ° C. or higher. Is more preferable, and 160 ° C. or more is further preferable.
  • Tg glass transition temperature
  • the upper limit of the cured product of the photosensitive resin composition may not be particularly set, but is, for example, 250 ° C. or less.
  • the glass transition temperature of the cured product of the photosensitive resin composition is measured using a thermomechanical analyzer (TMA) for a predetermined test piece (width 4 mm ⁇ length 20 mm ⁇ thickness 0.005 to 0.015 mm). It is calculated from the result of measurement under the conditions of start temperature 30 ° C., measurement temperature range 30 to 400 ° C., temperature raising rate 5 ° C./min.
  • TMA thermomechanical analyzer
  • the cured product of the photosensitive resin composition according to this embodiment preferably has a linear expansion coefficient (CTE) of 5 to 80 ppm / ° C., more preferably 10 to 70 ppm / ° C., and more preferably 15 to 60 ppm / ° C. More preferably, it is ° C.
  • CTE linear expansion coefficient
  • the linear expansion coefficient of the organic insulating layer 21 can be made close to, for example, the linear expansion coefficient of a silicon material. Therefore, for example, the organic insulating layer 21 in which the semiconductor chip 23 is not easily warped can be obtained. As a result, a highly reliable semiconductor device 1 can be obtained.
  • the linear expansion coefficient of the cured product of the photosensitive resin composition was measured using a thermomechanical analyzer (TMA) for a predetermined test piece (width 4 mm ⁇ length 20 mm ⁇ thickness 0.005 to 0.015 mm). It is calculated from the result of measurement under the conditions of start temperature 30 ° C., measurement temperature range 30 to 400 ° C., temperature raising rate 5 ° C./min.
  • TMA thermomechanical analyzer
  • the cured product of the photosensitive resin composition according to this embodiment preferably has a 5% thermal weight loss temperature Td5 of 300 ° C. or higher, and more preferably 320 ° C. or higher.
  • Td5 thermal weight loss temperature
  • the 5% thermal weight loss temperature Td5 of the cured product of the photosensitive resin composition is calculated from the result of measurement using a differential thermal thermal simultaneous measurement device (TG / DTA) for 5 mg of the cured product. Ru.
  • the cured product of the photosensitive resin composition according to the present embodiment preferably has an elongation of 5 to 50%, more preferably 6 to 45%, still more preferably 7 to 40%. .
  • the elongation rate of the organic insulating layer 21 is optimized, so that, for example, even when the through wiring 22 is provided to penetrate the organic insulating layer 21, the organic insulating layer 21 and the through wiring 22 and It is possible to suppress the occurrence of peeling or the like at the interface of Also in the organic insulating layer 21 itself, the occurrence of cracks and the like can be suppressed.
  • the elongation percentage when the elongation percentage is below the lower limit value, there is a possibility that a crack or the like may occur in the organic insulating layer 21 depending on the thickness, the shape, and the like of the organic insulating layer 21.
  • the elongation percentage exceeds the upper limit value, the mechanical properties of the organic insulating layer 21 may be deteriorated depending on the thickness, the shape, and the like of the organic insulating layer 21.
  • the elongation of the cured product of the photosensitive resin composition is measured as follows. First, for a predetermined test piece (width 6.5 mm ⁇ length 20 mm ⁇ thickness 0.005 to 0.015 mm), a tensile test (tension speed: 5 mm / min) was performed in an atmosphere with a temperature of 25 ° C. and a humidity of 55%. To carry out. The tensile test is performed using a tensile tester (Tensilon RTA-100) manufactured by Orientec Co., Ltd. Then, the tensile elongation rate is calculated from the result of the said tensile test.
  • the cured product of the photosensitive resin composition according to this embodiment preferably has a tensile strength of 20 MPa or more, and more preferably 30 to 300 MPa.
  • the organic insulating layer 21 having sufficient mechanical strength and excellent durability can be obtained.
  • cured material of the photosensitive resin composition is calculated
  • the cured product of the photosensitive resin composition according to this embodiment preferably has a tensile elastic modulus of 0.5 GPa or more, and more preferably 1 to 5 GPa.
  • the organic insulating layer 21 having sufficient mechanical strength and excellent durability can be obtained.
  • cured material of the photosensitive resin composition is calculated
  • a photosensitive resin composition is coated on a silicon wafer substrate by a spin coater or the like, and then dried on a hot plate at 120 ° C. for 5 minutes to obtain a coated film.
  • the obtained coating film is exposed on the entire surface at 700 mJ / cm 2 and subjected to PEB (Post Exposure Bake) at 70 ° C. for 5 minutes. Thereafter, the film is heated at 200 ° C. for 90 minutes to obtain a cured film.
  • PEB Post Exposure Bake
  • the semiconductor device 1 of the present embodiment described above can be manufactured, for example, as follows.
  • 3 and 4 are diagrams showing an example of a method of manufacturing the semiconductor device 1 shown in FIG.
  • the substrate 202 is prepared.
  • the constituent material of the substrate 202 is not particularly limited, and examples thereof include metal materials, glass materials, ceramic materials, semiconductor materials, organic materials and the like. Further, as the substrate 202, a semiconductor wafer such as a silicon wafer, a glass wafer, or the like may be used. Note that an electronic circuit may be formed on the substrate 202 as necessary.
  • the semiconductor chip 23 is disposed on the substrate 202.
  • a plurality of semiconductor chips 23 are disposed while being separated from each other.
  • the plurality of semiconductor chips 23 may be of the same type as each other or may be of different types.
  • an interposer (not shown) may be provided between the substrate 202 and the semiconductor chip 23.
  • the interposer functions as, for example, a rewiring layer of the semiconductor chip 23. Therefore, the interposer may be provided with a pad (not shown) for electrically connecting with the electrode of the semiconductor chip 23 described later. Thereby, the pad spacing and the arrangement pattern of the semiconductor chip 23 can be converted, and the design freedom of the semiconductor device 1 can be further enhanced.
  • a silicon substrate, a ceramic substrate, an inorganic substrate such as a glass substrate, an organic substrate such as a resin substrate, or the like is used for such an interposer.
  • the photosensitive resin layer 210 is disposed on the substrate 202 so that the semiconductor chip 23 is embedded.
  • the photosensitive resin layer 210 the photosensitive resin composition or photosensitive resin film mentioned later is used.
  • the semiconductor chip 23 can be easily embedded without thinning.
  • the photosensitive resin film alone may be attached from above the semiconductor chip 23, and the photosensitive resin film laminated on the carrier film may be used as a semiconductor chip. After pasting on the substrate 23, the photosensitive resin film may be left by peeling off the carrier film.
  • the well-known laminating method may be used.
  • a vacuum laminator is used.
  • the vacuum laminator may be a batch type or a continuous type.
  • the photosensitive resin film may be heated as required.
  • the heating temperature is appropriately set according to the constituent material of the photosensitive resin film, the heating time and the like, but is preferably about 40 to 150 ° C., more preferably about 50 to 140 ° C., and more preferably 60 to 130 It is more preferable that the temperature be about ° C.
  • the temperature be about ° C.
  • heating temperature is lower than the lower limit value, melting of the photosensitive resin film is insufficient, and the embedding property may be lowered depending on the constituent material of the photosensitive resin film.
  • the heating temperature exceeds the upper limit value, depending on the constituent material of the photosensitive resin film, etc., there is a risk of curing.
  • the heating time is appropriately set according to the constituent material of the photosensitive resin film, the heating temperature and the like, but is preferably about 5 to 180 seconds, and more preferably about 10 to 60 seconds.
  • the semiconductor chip 23 can be embedded by being heated and pressurized.
  • the pressure applied at that time is appropriately set according to the constituent material of the photosensitive resin film and the like, but is preferably about 0.2 to 5 MPa, and more preferably about 0.4 to 1 MPa.
  • the viscosity is adjusted with a solvent or the like as necessary, and the solution is applied onto the substrate 202 using various coating devices. Then, the photosensitive resin layer 210 is obtained by drying the obtained coating film. The application and drying of the varnish-like photosensitive resin composition may be repeated several times in order to ensure a sufficient thickness so that the semiconductor chip is completely embedded.
  • a coating apparatus As a coating apparatus, a spin coater, a spray apparatus, an inkjet apparatus etc. are mentioned, for example.
  • the film thickness of the photosensitive resin film (film thickness of the photosensitive resin layer 210) is appropriately set according to the film thickness after curing (height H in FIG. 2) and in consideration of curing shrinkage, while the semiconductor chip
  • the thickness is not particularly limited as long as the thickness 23 can be embedded.
  • the film thickness of the photosensitive resin film it is preferably about 20 to 1000 ⁇ m, more preferably about 50 to 750 ⁇ m, and still more preferably about 100 to 500 ⁇ m.
  • the mask 41 is disposed in a predetermined area on the photosensitive resin layer 210. Then, light (actinic radiation) is irradiated through the mask 41. Thus, the photosensitive resin layer 210 is exposed according to the pattern of the mask 41.
  • a post-exposure heat treatment is performed.
  • the conditions of the post-exposure heat treatment are not particularly limited, but for example, the heating temperature is about 50 to 150 ° C., and the heating time is about 1 to 10 minutes.
  • FIG. 3D shows the case where the photosensitive resin layer 210 has so-called negative type photosensitivity.
  • the solubility in the developer is given to the area corresponding to the non-light shielding portion of the mask 41.
  • development processing is performed to form an opening 42 penetrating the photosensitive resin layer 210 corresponding to the non-light shielding portion of the mask 41 (see FIG. 3E).
  • a developing solution an organic type developing solution, a water-soluble developing solution, etc. are mentioned, for example.
  • the photosensitive resin layer 210 is subjected to a post-development heat process.
  • the conditions for the post-development heat treatment are not particularly limited, but the heating temperature is about 160 to 250 ° C., and the heating time is about 30 to 180 minutes. Thereby, the photosensitive resin layer 210 can be cured and the organic insulating layer 21 can be obtained while suppressing the thermal influence on the semiconductor chip 23.
  • a known method is used to form the through wiring 22, and for example, the following method is used.
  • a seed layer (not shown) is formed on the organic insulating layer 21.
  • the seed layer is formed on the top surface of the organic insulating layer 21 together with the inside (sidewalls and bottom surface) of the opening 42.
  • a seed layer for example, a copper seed layer is used. Also, the seed layer is formed, for example, by sputtering.
  • the seed layer may be made of the same kind of metal as the through wire 22 to be formed, or may be made of different kinds of metal.
  • a resist layer (not shown) is formed on the region other than the opening 42 in the seed layer (not shown).
  • metal is filled in the opening 42 using the resist layer as a mask.
  • electrolytic plating is used for this filling.
  • the metal to be filled include copper or copper alloy, aluminum or aluminum alloy, gold or gold alloy, silver or silver alloy, nickel or nickel alloy, and the like.
  • the conductive material is embedded in the opening 42 to form the through wiring 22.
  • the formation location of the penetration wiring 22 is not limited to the position of illustration.
  • it may be provided at a position passing through the photosensitive resin layer 210 covering the semiconductor chip 23.
  • the upper wiring layer 25 is formed on the upper surface side of the organic insulating layer 21.
  • the upper wiring layer 25 is formed, for example, using a photolithography method and a plating method.
  • the substrate 202 is peeled off. Thereby, the lower surface of the organic insulating layer 21 is exposed.
  • the lower wiring layer 24 is formed on the lower surface side of the organic insulating layer 21.
  • the lower wiring layer 24 is formed using, for example, a photolithography method and a plating method.
  • the lower wiring layer 24 thus formed is electrically connected to the upper wiring layer 25 through the through wiring 22.
  • solder bumps 26 are formed in the lower wiring layer 24.
  • a protective film such as a solder resist layer may be formed on the upper wiring layer 25 and the lower wiring layer 24 as necessary.
  • the through electrode substrate 2 is obtained.
  • the through electrode substrate 2 shown in FIG. 4 (j) can be divided into a plurality of regions. Therefore, for example, the through electrode substrate 2 can be efficiently manufactured by dividing the through electrode substrate 2 along the alternate long and short dash line shown in FIG. 4 (j).
  • a diamond cutter etc. can be used for individualization, for example.
  • the semiconductor package 3 is disposed on the singulated through electrode substrate 2. Thereby, the semiconductor device 1 shown in FIG. 1 is obtained.
  • Such a method of manufacturing the semiconductor device 1 can be applied to a wafer level process or a panel level process using a large area substrate.
  • the photosensitive resin layer 210 containing the photosensitive resin composition By using the photosensitive resin layer 210 containing the photosensitive resin composition, the arrangement of the semiconductor chip 23, the embedding of the semiconductor chip 23, the formation of the through wiring 22, the formation of the upper wiring layer 25, and the formation of the lower wiring layer 24. Can be performed in a wafer level process or a panel level process. As a result, the manufacturing efficiency of the semiconductor device 1 can be enhanced and the cost can be reduced.
  • FIG. 5 is a longitudinal sectional view showing a second embodiment of the semiconductor device of the present invention. 6 is a partially enlarged view of a region surrounded by a dashed line in FIG. In the following description, the upper side in FIG. 5 is referred to as “upper” and the lower side as “lower”.
  • the configuration of the through wiring formed in the organic insulating layer 21 is different, and the upper wiring layer 25 is formed using a photosensitive resin composition described later.
  • the semiconductor device of the second embodiment is the same as the semiconductor device 1 of the first embodiment described above except for the semiconductor device of the first embodiment described above.
  • the organic insulating layer 21 is provided with the through wiring 221 so as to penetrate the organic insulating layer 21.
  • the lower wiring layer 24 and the upper wiring layer 25 are electrically connected, and the through electrode substrate 2 and the semiconductor package 3 can be stacked. Therefore, the semiconductor device 1 can be highly functional. it can.
  • the diameter W (see FIG. 6) of the through wiring 221 is not particularly limited, but may be the same size as the diameter W of the through wiring 22 of the semiconductor device 1 of the first embodiment described above.
  • the semiconductor device 1 according to the present embodiment also includes a through wiring 222 provided so as to penetrate the organic insulating layer 21 located on the top surface of the semiconductor chip 23. Thereby, the electrical connection between the upper surface of the semiconductor chip 23 and the upper wiring layer 25 can be achieved.
  • the wiring layer 253 included in the upper wiring layer 25 shown in FIG. 6 is connected to the through wiring 221 and the solder bump 35. Therefore, the upper wiring layer 25 is electrically connected to the semiconductor chip 23 and functions as a rewiring layer of the semiconductor chip 23 and as an interposer interposed between the semiconductor chip 23 and the package substrate 31. Also works.
  • the upper wiring layer 25 is formed by using a photosensitive resin composition described later, and has a structure in which the wiring layer 253 is embedded in the resin film of the photosensitive resin composition. In such a semiconductor device 1, the adhesion of the upper wiring layer 25 to the wiring layer 253 is good, so the reliability is high.
  • FIG. 7 is a process diagram showing a method of manufacturing the semiconductor device 1 shown in FIG. 8 to 10 are views for explaining a method of manufacturing the semiconductor device 1 shown in FIG. 5, respectively.
  • a solder bump forming step S5 for forming the through electrode substrate 2 and a laminating step S6 for laminating the semiconductor package 3 on the through electrode substrate 2 are provided.
  • a photosensitive resin varnish 5 is disposed on the organic insulating layer 21 and the semiconductor chip 23, and a first resin film disposing step S20 for obtaining a photosensitive resin layer 2510;
  • Chip placement step S1 First, as shown in FIG. 8A, the substrate 202, the semiconductor chip 23 and the through wires 221 and 222 provided on the substrate 202, and the organic insulating layer 21 provided to embed them are provided. The chip embedded structure 27 is prepared.
  • the constituent material of the substrate 202 is not particularly limited, and examples thereof include metal materials, glass materials, ceramic materials, semiconductor materials, organic materials and the like. Further, as the substrate 202, a semiconductor wafer such as a silicon wafer, a glass wafer, or the like may be used.
  • the semiconductor chip 23 is bonded onto the substrate 202.
  • a plurality of semiconductor chips 23 are provided on the same substrate 202 while being separated from each other.
  • the plurality of semiconductor chips 23 may be of the same type as each other or may be of different types.
  • the substrate 202 and the semiconductor chip 23 may be fixed via an adhesive layer (not shown) such as a die attach film.
  • an interposer (not shown) may be provided between the substrate 202 and the semiconductor chip 23.
  • the interposer functions as, for example, a rewiring layer of the semiconductor chip 23. Therefore, the interposer may be provided with a pad (not shown) for electrically connecting with the electrode of the semiconductor chip 23 described later. Thereby, the pad spacing and the arrangement pattern of the semiconductor chip 23 can be converted, and the design freedom of the semiconductor device 1 can be further enhanced.
  • a silicon substrate, a ceramic substrate, an inorganic substrate such as a glass substrate, an organic substrate such as a resin substrate, or the like is used for such an interposer.
  • the organic insulating layer 21 is, for example, a resin film containing a thermosetting resin or a thermoplastic resin as mentioned as a component of the photosensitive resin composition described later.
  • penetration wiring 221 and 222 As a constituent material of penetration wiring 221 and 222, copper or copper alloy, aluminum or aluminum alloy, gold or gold alloy, silver or silver alloy, nickel or nickel alloy etc. are mentioned, for example.
  • the chip embedded structure 27 manufactured by a method different from the above may be prepared.
  • the application of the photosensitive resin varnish 5 is performed using, for example, a spin coater, a bar coater, a spray device, an inkjet device, or the like.
  • the viscosity of the photosensitive resin varnish 5 is not particularly limited, but is preferably 10 to 700 mPa ⁇ s, and more preferably 30 to 400 mPa ⁇ s.
  • a thinner photosensitive resin layer 2510 (see FIG. 8D) can be formed.
  • the upper wiring layer 25 can be made thinner, and the semiconductor device 1 can be easily made thinner.
  • the viscosity of the photosensitive resin varnish 5 is, for example, a value measured using a cone-plate viscometer (TV-25, manufactured by Toki Sangyo Co., Ltd.) under the conditions of a rotational speed of 50 rpm and a measuring time of 300 seconds.
  • the drying conditions of the photosensitive resin varnish 5 are not particularly limited, and for example, the conditions of heating at a temperature of 80 to 150 ° C. for 1 to 60 minutes may be mentioned.
  • the photosensitive resin film is manufactured, for example, by applying the photosensitive resin varnish 5 on the lower surface of the carrier film or the like by various coating devices and then drying the obtained coating film.
  • the photosensitive resin layer 2510 is subjected to a pre-exposure heat treatment, as necessary.
  • a pre-exposure heat treatment By performing the pre-exposure heat treatment, the molecules contained in the photosensitive resin layer 2510 can be stabilized, and the reaction in the first exposure step S21 described later can be stabilized, while the heating conditions as described later By heating with the above, the adverse effect of the heating on the photoacid generator can be minimized.
  • the temperature of the heat treatment before exposure is preferably 70 to 130 ° C., more preferably 75 to 120 ° C., and still more preferably 80 to 110 ° C. If the temperature of the pre-exposure heat treatment is below the lower limit value, the purpose of the stabilization of molecules by the pre-exposure heat treatment may not be achieved. On the other hand, when the temperature of the pre-exposure heat treatment exceeds the upper limit value, the movement of the photoacid generator becomes too active, and the acid is less likely to be generated even when light is irradiated in the first exposure step S21 described later. However, the processing accuracy of patterning may be lowered.
  • the time of the pre-exposure heat treatment is appropriately set according to the temperature of the pre-exposure heat treatment, but is preferably 1 to 10 minutes, more preferably 2 to 8 minutes at the temperature, and more preferably 3 to 6 minutes. If the time of the pre-exposure heat treatment is below the lower limit value, the heating time is insufficient, so that the purpose of the stabilization of the molecules by the pre-exposure heat treatment may not be achieved. On the other hand, if the pre-exposure heat treatment time exceeds the upper limit value, the heating time is too long, so even if the pre-exposure heat treatment temperature falls within the above range, the action of the photoacid generator is inhibited. There is a risk of
  • the atmosphere of the heat treatment is not particularly limited, and may be an inert gas atmosphere, a reducing gas atmosphere, or the like, but it is in the air in consideration of work efficiency and the like.
  • the atmospheric pressure is not particularly limited, and may be under reduced pressure or under pressure, but it is normal pressure in consideration of work efficiency and the like.
  • the normal pressure means a pressure of about 30 to 150 kPa, preferably atmospheric pressure.
  • a mask 412 is disposed in a predetermined region on the photosensitive resin layer 2510. Then, light (actinic radiation) is emitted through the mask 412. Thus, the photosensitive resin layer 2510 is exposed according to the pattern of the mask 412.
  • FIG. 8D shows the case where the photosensitive resin layer 2510 has so-called negative type photosensitivity.
  • the solubility in the developing solution is given to the region corresponding to the light shielding portion of the mask 412.
  • a catalyst such as an acid is generated by the action of the photosensitizer.
  • the generated acid acts as a catalyst for the reaction of the thermosetting resin in the process described later.
  • the exposure dose in the exposure process is not particularly limited, but is preferably 100 to 2000 mJ / cm 2 , and more preferably 200 to 1000 mJ / cm 2 . Thereby, underexposure and overexposure in the photosensitive resin layer 2510 can be suppressed. As a result, high patterning accuracy can finally be realized. Thereafter, if necessary, the photosensitive resin layer 2510 is subjected to a post-exposure heat treatment.
  • the temperature of the heat treatment after exposure is not particularly limited, but is preferably 50 to 150 ° C., more preferably 50 to 130 ° C., still more preferably 55 to 120 ° C., particularly preferably 60 to 110 ° C. Be done.
  • the catalytic action of the generated acid is sufficiently enhanced, and the thermosetting resin can be sufficiently reacted in a short time.
  • the temperature is too high, the diffusion of the acid is promoted, and there is a possibility that the processing accuracy of the patterning may be reduced, but if it is within the above range, such concern can be reduced.
  • the temperature of the post-exposure heat treatment is below the lower limit, the action of the catalyst such as acid can not be sufficiently enhanced, which may lower the reaction rate of the thermosetting resin or require time. There is.
  • the temperature of the post-exposure heat treatment exceeds the upper limit value, the diffusion of the acid is promoted (widened), and the processing accuracy of patterning may be lowered.
  • the time of post-exposure heat treatment is appropriately set according to the temperature of post-exposure heat treatment, it is preferably 1 to 30 minutes, more preferably 2 to 20 minutes at the temperature, and more preferably 3-15 minutes.
  • the thermosetting resin can be reacted sufficiently, and the diffusion of the acid can be suppressed to suppress the decrease in the processing accuracy of the patterning.
  • the atmosphere for the post-exposure heat treatment is not particularly limited, and may be an inert gas atmosphere, a reducing gas atmosphere, or the like, but it is under the atmosphere in consideration of work efficiency and the like.
  • the atmospheric pressure of the post-exposure heat treatment is not particularly limited, and may be under reduced pressure or under pressure, but it is normal pressure in consideration of work efficiency and the like.
  • the normal pressure means a pressure of about 30 to 150 kPa, preferably atmospheric pressure.
  • Step S22 the photosensitive resin layer 2510 is developed.
  • an opening 423 penetrating the photosensitive resin layer 2510 is formed in a region corresponding to the light shielding portion of the mask 412 (see FIG. 9E).
  • a developing solution an organic type developing solution, a water-soluble developing solution, etc. are mentioned, for example.
  • the photosensitive resin layer 2510 is cured (heat treatment after development). Conditions for the curing treatment are not particularly limited, but the heating temperature is about 160 to 250 ° C., and the heating time is about 30 to 240 minutes. Thus, the photosensitive resin layer 2510 can be cured to obtain the organic insulating layer 251 while suppressing the thermal influence on the semiconductor chip 23.
  • the wiring layer 253 is formed on the organic insulating layer 251 (see FIG. 9F).
  • the wiring layer 253 is formed, for example, by obtaining a metal layer using a vapor deposition method such as a sputtering method or a vacuum evaporation method, and then patterning the metal layer using a photolithography method and an etching method.
  • a surface modification process such as a plasma process may be performed.
  • the processing conditions are, for example, the conditions described in the first resin film disposing step S20.
  • the processing conditions are, for example, the conditions described in the first exposure step S21.
  • Second Development Step S27 Next, the photosensitive resin layer 2520 is developed.
  • the processing conditions are, for example, the conditions described in the first development step S22.
  • an opening 424 penetrating the photosensitive resin layers 2510 and 2520 is formed (see FIG. 9H).
  • Second curing step S28 After the development process, the photosensitive resin layer 2520 is cured (heat treatment after development).
  • the curing conditions are, for example, the conditions described in the first curing step S23.
  • the photosensitive resin layer 2520 is cured to obtain the organic insulating layer 252 (see FIG. 10I).
  • the upper wiring layer 25 has two layers of the organic insulating layer 251 and the organic insulating layer 252, it may have three or more layers. In this case, after the second curing step S28, a series of steps from the wiring layer forming step S24 to the second curing step S28 may be repeatedly added.
  • a known method is used to form the through wiring 254, and for example, the following method is used.
  • a seed layer (not shown) is formed on the top surface of the organic insulating layer 252 together with the inner surface (side surface and bottom surface) of the opening 424.
  • a seed layer for example, a copper seed layer is used. Also, the seed layer is formed, for example, by sputtering.
  • the seed layer may be made of the same kind of metal as the through wiring 254 to be formed, or may be made of different kinds of metal.
  • a resist layer (not shown) is formed on the region other than the opening 424 in the seed layer (not shown).
  • metal is filled in the opening 424 using the resist layer as a mask.
  • electrolytic plating is used for this filling.
  • the metal to be filled include copper or copper alloy, aluminum or aluminum alloy, gold or gold alloy, silver or silver alloy, nickel or nickel alloy, and the like.
  • the conductive material is embedded in the opening 424 to form the through wiring 254.
  • the resist layer not shown is removed. Further, the seed layer (not shown) on the organic insulating layer 252 is removed. For this, for example, a flash etching method can be used.
  • the formation location of the penetration wiring 254 is not limited to the position of illustration.
  • Substrate peeling process S3 Next, as shown in FIG. 10J, the substrate 202 is peeled off. Thereby, the lower surface of the organic insulating layer 21 is exposed.
  • Lower layer wiring layer forming step S4 Next, as shown in FIG. 10K, the lower wiring layer 24 is formed on the lower surface side of the organic insulating layer 21.
  • the lower wiring layer 24 may be formed by any method, and may be formed, for example, in the same manner as the above-described upper wiring layer forming step S2.
  • the lower wiring layer 24 formed in this manner is electrically connected to the upper wiring layer 25 through the through wiring 221.
  • solder bump forming step S5 Next, as shown in FIG. 10L, the solder bumps 26 are formed in the lower wiring layer 24. In addition, a protective film such as a solder resist layer may be formed on the upper wiring layer 25 and the lower wiring layer 24 as necessary. As described above, the through electrode substrate 2 is obtained.
  • the through electrode substrate 2 shown in FIG. 10L can be divided into a plurality of regions. Therefore, the plurality of through electrode substrates 2 can be efficiently manufactured, for example, by dividing the through electrode substrate 2 along the alternate long and short dash line shown in FIG. 10 (L).
  • a diamond cutter etc. can be used for individualization, for example.
  • Such a method of manufacturing the semiconductor device 1 can be applied to a wafer level process or a panel level process using a large area substrate. As a result, the manufacturing efficiency of the semiconductor device 1 can be enhanced and the cost can be reduced.
  • the photosensitive resin composition of the present invention may be a varnish-like solution or a film.
  • the photosensitive resin composition according to the present embodiment contains a thermosetting resin, a photopolymerization initiator as a photosensitizer, and a coupling agent containing an acid anhydride as a functional group.
  • a photosensitive resin composition has good adhesion to inorganic materials and metal materials such as the semiconductor chip 23, the through wires 22, 221 and 222 and the wiring layer 253 by the action of the coupling agent. It becomes possible to form.
  • thermosetting resin preferably includes, for example, a semi-hardening (solid) thermosetting resin at normal temperature (25 ° C.). Such a thermosetting resin is melted by being heated and pressurized at the time of molding, and is cured while being molded into a desired shape. As a result, organic insulating layers 21, 251, 252 utilizing the characteristics of the thermosetting resin can be obtained.
  • thermosetting resin for example, phenol novolac epoxy resin, novolac epoxy resin such as cresol novolac epoxy resin, cresol naphthol epoxy resin, biphenyl epoxy resin, biphenyl aralkyl epoxy resin, phenoxy resin, naphthalene skeleton Epoxy resin, bisphenol A epoxy resin, bisphenol A diglycidyl ether epoxy resin, bisphenol F epoxy resin, bisphenol F diglycidyl ether epoxy resin, bisphenol S diglycidyl ether epoxy resin, glycidyl ether epoxy resin, cresol Novolak type epoxy resin, aromatic polyfunctional epoxy resin, aliphatic epoxy resin, aliphatic polyfunctional epoxy resin, alicyclic epoxy resin, polyfunctional Epoxy resin such as alicyclic epoxy resin; resin having a triazine ring such as urea (urea) resin, melamine resin; unsaturated polyester resin; maleimide resin such as bismaleimide compound; polyurethane resin; diallyl phthalate resin; silicone resin; Benz
  • thermosetting resin those containing an epoxy resin are preferably used.
  • the epoxy resin include polyfunctional epoxy resins in which two or more epoxy groups are contained in one molecule.
  • the polyfunctional epoxy resin has a plurality of epoxy groups in one molecule, and thus has high reactivity with the photopolymerization initiator. Therefore, the resin film can be sufficiently cured even when the exposure process is performed for a relatively small amount and a short time on the resin film of the photosensitive resin composition.
  • the polyfunctional epoxy resin may be used alone or in combination with the above-mentioned plurality of various thermosetting resins.
  • the epoxy resin a trifunctional or higher polyfunctional epoxy resin may be used.
  • thermosetting resin is, in particular, phenol novolac epoxy resin, cresol novolac epoxy resin, triphenylmethane epoxy resin, dicyclopentadiene epoxy resin, bisphenol A epoxy resin, and tetramethyl bisphenol F epoxy resin It is preferable to include one or more epoxy resins selected from the group consisting of, more preferably include a polyfunctional epoxy resin, and still more preferably include a polyfunctional aromatic epoxy resin. Since such a thermosetting resin is rigid, it has good curability, high heat resistance, and organic insulating layers 21, 251, 252 having a relatively low coefficient of thermal expansion.
  • the thermosetting resin preferably contains a solid resin at normal temperature as described above, and may contain both a resin solid at normal temperature and a resin liquid at normal temperature.
  • the photosensitive resin composition containing such a thermosetting resin has good embedding property of the semiconductor chip 23 etc., improvement of tack (stickiness) when formed into a film, and an organic insulating layer 21 which is a cured product,
  • the mechanical strengths of 251 and 252 can be made compatible. As a result, it is possible to obtain the organic insulating layers 21, 251, 252 having high mechanical strength in which planarization is achieved while suppressing the generation of voids.
  • the amount of the resin liquid at room temperature is preferably about 5 to 150 parts by mass with respect to 100 parts by mass of the resin solid at room temperature. It is more preferably about 100 parts by mass, and even more preferably about 15 to 80 parts by mass.
  • the ratio of the liquid resin is below the lower limit value, the embeddability of the semiconductor chip 23 in the photosensitive resin composition may be reduced, or the stability when formed into a film may be reduced.
  • the ratio of liquid resin exceeds the above upper limit, the tack when forming a film of the photosensitive resin composition is deteriorated, or the mechanical strength of the organic insulating layers 21, 251, 252 which is a cured product is reduced. There is a risk of
  • solid resin at normal temperature examples include phenol novolac epoxy resin, cresol novolac epoxy resin, and phenoxy resin.
  • liquid resin at normal temperature for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, alkyl glycidyl ether, butanetetracarboxylic acid tetra (3,4-epoxycyclohexylmethyl) modified ⁇ -caprolactone, 3 ', 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 2-ethylhexyl glycidyl ether, trimethylolpropane polyglycidyl ether and the like. These may be used alone or in combination of two or more.
  • the resin which is liquid at normal temperature preferably contains both an aromatic compound and an aliphatic compound.
  • a photosensitive resin composition containing such a compound imparts appropriate flexibility when filmed mainly by an aliphatic compound, and retains shape when filmed mainly by an aromatic compound. Is granted. As a result, a photosensitive resin film having compatibility between flexibility and shape retention can be obtained.
  • a cured product of the photosensitive resin composition by containing both a resin that is solid at room temperature and a resin that is liquid at room temperature, or that the resin that is liquid at room temperature contains both an aromatic compound and an aliphatic compound
  • the amount of the aliphatic compound is preferably about 5 to 150 parts by mass, more preferably about 10 to 80 parts by mass, and about 15 to 50 parts by mass with respect to 100 parts by mass of the aromatic compound. Is more preferred.
  • the ratio of the aliphatic compound is below the lower limit value, the flexibility of the film may be lowered depending on the composition of the photosensitive resin composition and the like.
  • the ratio of the aliphatic compound exceeds the upper limit value, the shape retention of the film may be lowered depending on the composition of the photosensitive resin composition and the like.
  • the content of the epoxy resin is not particularly limited, but is preferably about 40 to 80% by mass, more preferably about 45 to 75% by mass, of the total solid content of the photosensitive resin composition, and more preferably 50 to 70 It is more preferable that the content is about% by mass.
  • solid content of the photosensitive resin composition refers to the non volatile matter in the photosensitive resin composition, and refers to the remainder except volatile components, such as water and a solvent.
  • the content of the photosensitive resin composition with respect to the entire solid content refers to the content with respect to the entire solid content excluding the solvent in the photosensitive resin composition when the solvent is contained.
  • the photosensitive resin composition of the present invention may contain a curing agent.
  • the curing agent is not particularly limited as long as it accelerates the polymerization reaction of the thermosetting resin.
  • the thermosetting resin contains an epoxy resin
  • a curing agent having a phenolic hydroxyl group is used.
  • a phenol resin can be used.
  • a phenol resin As a phenol resin, a novolak-type phenol resin, a resol-type phenol resin, a trisphenylmethane-type phenol resin, an aryl alkylene type phenol resin etc. are mentioned, for example. Among these, novolac type phenol resins are particularly preferably used. Thereby, photosensitive resin layers 210, 2510, 2520 having good curability and good development characteristics can be obtained.
  • the addition amount of the curing agent is not particularly limited, but is preferably 25 parts by mass or more and 100 parts by mass or less, more preferably 30 parts by mass or more and 90 parts by mass or less, with respect to 100 parts by mass of the resin More preferably, it is from 80 parts by weight to 80 parts by weight.
  • the photosensitive resin composition may further contain a thermoplastic resin. While being able to improve the moldability of the photosensitive resin composition more by this, the flexibility of the hardened
  • thermoplastic resin for example, phenoxy resin, acrylic resin, polyamide resin (for example, nylon etc.), thermoplastic urethane resin, polyolefin resin (for example, polyethylene, polypropylene etc.), polycarbonate, polyester resin (for example polyethylene terephthalate) , Polybutylene terephthalate etc.), polyacetal, polyphenylene sulfide, polyether ether ketone, liquid crystal polymer, fluorocarbon resin (eg polytetrafluoroethylene, polyvinylidene fluoride etc.), modified polyphenylene ether, polysulfone, polyether sulfone, polyarylate, polyamide An imide, a polyether imide, a thermoplastic polyimide etc. are mentioned. In the photosensitive resin composition, one of these may be used alone, or two or more having different weight average molecular weights may be used in combination, and one or more of them may be used. You may use together with a prepolymer.
  • Phenoxy resin is preferably used as the thermoplastic resin.
  • Phenoxy resins also called polyhydroxy polyethers, are characterized by having a larger molecular weight than epoxy resins. By including such a phenoxy resin, it is possible to suppress the decrease in the flexibility of the cured product of the photosensitive resin composition.
  • phenoxy resin for example, bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, copolymerized phenoxy resin of bisphenol A type and bisphenol F type, biphenyl type phenoxy resin, bisphenol S type phenoxy resin, biphenyl type phenoxy resin and bisphenol Copolymerized phenoxy resin etc. with S type phenoxy resin etc. are mentioned, and 1 type, or 2 or more types of mixtures of these are used.
  • bisphenol A-type phenoxy resin or copolymerized phenoxy resin of bisphenol A-type and bisphenol F-type is preferably used.
  • phenoxy resin what has an epoxy group in molecular chain both ends is used preferably. According to such a phenoxy resin, when an epoxy resin is used as the thermosetting resin, excellent solvent resistance and heat resistance can be imparted to a cured product of the photosensitive resin composition.
  • phenoxy resin what is solid at normal temperature is used preferably. Specifically, a phenoxy resin having a nonvolatile content of 90% by mass or more is preferably used. By using such a phenoxy resin, the mechanical properties of the cured product can be improved.
  • the weight average molecular weight of the thermoplastic resin is not particularly limited, but is preferably about 10000 to 100000, and more preferably about 20000 to 80000. By using such a relatively high molecular weight thermoplastic resin, it is possible to impart good flexibility to the cured product and also to impart sufficient solubility in a solvent.
  • the weight average molecular weight of a thermoplastic resin is measured as a polystyrene conversion value by the gel permeation chromatography (GPC) method, for example.
  • the addition amount of the thermoplastic resin is not particularly limited, but is preferably 10 parts by mass or more and 90 parts by mass or less, and more preferably 15 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the thermosetting resin. Preferably, it is more preferably 20 parts by mass or more and 70 parts by mass or less.
  • thermoplastic resin when the addition amount of a thermoplastic resin is less than the said lower limit, depending on the component contained in the photosensitive resin composition and its compounding ratio, sufficient flexibility may not be provided to the hardened
  • a photo-acid generator As a photosensitizer, a photo-acid generator can be used, for example.
  • the photoacid generator contains a photoacid generator which generates an acid upon irradiation with an actinic ray such as ultraviolet light and functions as a photopolymerization initiator of the curable resin described above.
  • an onium salt compound is mentioned, for example.
  • iodonium salts such as diazonium salts and diaryliodonium salts
  • sulfonium salts such as triaryl sulfonium salts, triaryl bilillium salts, benzyl pyridinium thiocyanate, dialkyl phenacyl sulfonium salts, dialkyl hydroxyphenyl phosphonium salts
  • a cationic type photoinitiator etc. are mentioned.
  • a photosensitive composition contacts a metal, as a photosensitive agent, what does not generate
  • the addition amount of the photosensitizer is not particularly limited, it is preferably about 0.3 to 5% by mass of the total solid content of the photosensitive resin composition, but is preferably about 0.5 to 4.5% by mass. More preferably, it is about 1 to 4% by mass.
  • the photosensitizer may be one which imparts negative photosensitivity to the photosensitive resin composition, or may be one which imparts positive photosensitivity, but an opening with a high aspect ratio. In view of the point that it can be formed with high accuracy, etc., it is preferable to be negative.
  • the photosensitive resin composition according to the present embodiment has a coupling agent containing an acid anhydride as a functional group.
  • a photosensitive resin composition enables formation of a resin film having good adhesion to inorganic materials and metal materials.
  • organic insulating layers 21, 251, 252 having good adhesion to the through wires 22, 221, 222, the wiring layer 253, and the semiconductor chip 23 can be obtained.
  • the acid anhydride which is a functional group dissolves the inorganic oxide and coordinates with a cation (such as a metal cation).
  • the alkoxy group contained in the acid anhydride-containing coupling agent is hydrolyzed to become, for example, silanol.
  • the silanol hydrogen bonds with the surface hydroxyl group of the inorganic material.
  • a coupling agent containing an acid anhydride as a functional group (hereinafter, also abbreviated to as “acid anhydride-containing coupling agent”) is used.
  • a compound containing an alkoxysilyl group is preferably used, and an alkoxysilyl group-containing alkylcarboxylic acid anhydride is preferably used. According to such a coupling agent, a photosensitive resin composition having better adhesion to the inorganic material and the metal material, good sensitivity, and excellent patternability can be obtained.
  • the compound containing an alkoxysilyl group include 3-trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilyl silylsuccinic anhydride, 3-dimethylmethoxysilylpropylsuccinic anhydride, 3-dimethylethoxy Succinic anhydride such as silylpropylsuccinic anhydride, 3-trimethoxysilylpropylcyclohexyldicarboxylic acid anhydride, 3-triethoxysilylpropylcyclohexyldicarboxylic acid anhydride, 3-dimethylmethoxysilylpropylcyclohexyl dicarboxylic acid anhydride, Dicarboxylic acid anhydride such as 3-dimethylethoxysilylpropylcyclohexyl dicarboxylic acid anhydride, 3-trimethoxysilylpropylphthalic anhydride, 3-triethoxysilylpropylpropy
  • alkoxysilyl group-containing succinic anhydride is preferably used, and in particular 3-trimethoxysilylpropyl succinic anhydride is more preferably used. According to such a coupling agent, the molecular length and the molecular structure are optimized, and thus the adhesion and the patterning property described above become better.
  • silane coupling agent was listed here, a titanium coupling agent, a zirconium coupling agent, etc. may be sufficient.
  • the addition amount of the acid anhydride-containing coupling agent is not particularly limited, it is preferably about 0.3 to 5% by mass of the total solid content of the photosensitive resin composition, and 0.5 to 4.5% by mass The degree is more preferably about 1 to 4% by mass.
  • the coupling agent which contains an amino group, an epoxy group, an acryl group, an acryl group, a methacryl group, a mercapto group, a vinyl group, a ureido group, a sulfide group etc. as a functional group is mentioned, for example. These may be used alone or in combination of two or more.
  • amino group-containing coupling agent for example, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyl Diethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ And -aminopropylmethyldimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropylmethyldiethoxysilane, N-phenyl- ⁇ -amino-propyltrimethoxysilane and the amino group-containing coupling
  • epoxy group-containing coupling agent for example, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidyl propyl Trimethoxysilane etc. are mentioned.
  • acrylic group-containing coupling agent examples include ⁇ - (methacryloxypropyl) trimethoxysilane, ⁇ - (methacryloxypropyl) methyldimethoxysilane, and ⁇ - (methacryloxypropyl) methyldiethoxysilane.
  • Examples of mercapto group-containing coupling agents include 3-mercaptopropyltrimethoxysilane.
  • vinyl group-containing coupling agent examples include vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane and the like.
  • ureido group-containing coupling agents examples include 3-ureidopropyltriethoxysilane and the like.
  • sulfide group-containing coupling agent examples include bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide and the like.
  • the addition amount of the other coupling agent is not particularly limited, but is preferably about 1 to 200% by mass, more preferably about 3 to 150% by mass, of the acid anhydride-containing coupling agent, and more preferably 5 to More preferably, it is about 100% by mass.
  • the amount to be added is preferably about 1 to 200% by mass, more preferably about 3 to 150% by mass, of the acid anhydride-containing coupling agent, and more preferably 5 to More preferably, it is about 100% by mass.
  • additives may be added to the photosensitive resin composition as required.
  • examples of other additives include antioxidants, fillers such as silica, surfactants, sensitizers, and film-forming agents.
  • surfactant examples include fluorine-based surfactants, silicon-based surfactants, alkyl-based surfactants, and acrylic-based surfactants.
  • the photosensitive resin composition may contain a solvent. Any solvent can be used without particular limitation as long as it can dissolve the components of the photosensitive resin composition and does not react with the components.
  • the solvent examples include acetone, methyl ethyl ketone, toluene, propylene glycol methyl ethyl ether, propylene glycol dimethyl ether, propylene glycol 1-monomethyl ether 2-acetate, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, benzyl alcohol And propylene carbonate, ethylene glycol diacetate, propylene glycol diacetate, propylene glycol monomethyl ether acetate and the like. These may be used alone or in combination of two or more.
  • the photosensitive resin composition may be in the form of a varnish.
  • the varnish-like photosensitive resin composition is prepared, for example, by uniformly mixing the raw material and the solvent.
  • a solvent is added as needed, and it is also possible to make it varnish, without using a solvent.
  • it may be subjected to processing such as filtration with a filter, degassing and the like.
  • the solid content concentration in the varnish-like photosensitive resin composition is not particularly limited, but is preferably about 20 to 80% by mass.
  • a varnish-like photosensitive resin composition having such a solid content concentration has good flowability that easily penetrates into a narrow gap and is difficult to cause film breakage because the viscosity is optimized. It becomes.
  • the photosensitive resin film may be formed by converting the photosensitive resin composition into a film, or may be a film obtained by applying the photosensitive resin composition to the carrier film.
  • Examples of the method for producing the photosensitive resin film of the latter include a method in which a varnish-like photosensitive resin composition is applied on a carrier film and then dried.
  • a coating apparatus As a coating apparatus, a spin coater, a spray apparatus, an inkjet apparatus etc. are mentioned, for example.
  • the content of the solvent in the photosensitive resin film is not particularly limited, but is preferably 10% by mass or less of the entire photosensitive resin film.
  • the tackiness of the photosensitive resin film can be improved, and the curability of the photosensitive resin film can be enhanced.
  • the generation of voids due to the evaporation of the solvent can be suppressed.
  • the drying conditions include, for example, heating at a temperature of 80 to 150 ° C. for 5 to 30 minutes.
  • the photosensitive resin film laminated on the carrier film is useful from the viewpoint of handleability, surface cleanliness and the like.
  • the carrier film may be in the form of a roll that can be wound, or may be in the form of a sheet.
  • a resin material As a constituent material of a carrier film, a resin material, a metal material, etc. are mentioned, for example.
  • the resin material for example, polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polycarbonates, silicones, fluorine resins, polyimide resins and the like can be mentioned.
  • a metal material copper or copper alloy, aluminum or aluminum alloy, iron or iron alloy etc. are mentioned, for example.
  • a carrier film containing polyester is preferably used.
  • Such a carrier film has relatively good peelability while suitably supporting the photosensitive resin film.
  • cover film may be provided in the surface of the photosensitive resin film as needed.
  • the cover film protects the surface of the photosensitive resin film until the bonding operation.
  • the constituent material of the cover film is appropriately selected from those listed as constituent materials of the carrier film, but a cover film containing polyester is preferably used from the viewpoint of the protective property and the releasability.
  • the electronic device according to the present embodiment includes the semiconductor device according to the present embodiment described above.
  • Such a semiconductor device is highly reliable because it has a protective film excellent in chemical resistance. Therefore, high reliability is given to the electronic device according to the present embodiment.
  • the electronic device is not particularly limited as long as it has such a semiconductor device, but, for example, a mobile phone, a smartphone, a tablet terminal, an information device such as a personal computer, a communication device such as a server or a router , A vehicle control computer, an in-vehicle device such as a car navigation system, and the like.
  • the photosensitive resin composition, the semiconductor device, and the electronic device of the present invention may be obtained by adding an arbitrary element to the above-described embodiment.
  • the photosensitive resin composition and the photosensitive resin film may be, for example, structure forming materials of MEMS (Micro Electro Mechanical Systems) and various sensors, formation of structures of display devices such as liquid crystal display devices and organic EL devices. It is applicable also to material etc.
  • MEMS Micro Electro Mechanical Systems
  • various sensors formation of structures of display devices such as liquid crystal display devices and organic EL devices. It is applicable also to material etc.
  • the prepared solution was filtered with a polypropylene filter having a pore size of 0.2 ⁇ m to obtain a negative photosensitive resin composition.
  • Examples 2 to 11 A photosensitive resin composition was obtained in the same manner as in Example 1 except that the raw materials were changed as shown in Tables 1 and 2.
  • a varnish-like photosensitive resin composition was applied on a silicon wafer by a spin coater.
  • a liquid film having a thickness of 10 ⁇ m was obtained.
  • the liquid film was dried at 120 ° C. for 5 minutes on a hot plate to obtain a film.
  • the entire surface of the resulting coating film was exposed at 700 mJ / cm 2 .
  • PEB Post Exposure Bake
  • a slit was made in the photosensitive resin film using a tool.
  • the slits were inserted at intervals of 1 mm so as to penetrate the photosensitive resin film, ten each in the vertical and horizontal directions. As a result, 100 squares of 1 mm square were all formed from the photosensitive resin film.
  • the liquid film was dried at 120 ° C. for 5 minutes on a hot plate to obtain a film.
  • the coating film was exposed to light using an i-line stepper (NSR-4425i, manufactured by Nikon Corporation) through a negative pattern mask. Thereafter, a post-exposure heat treatment was performed at 70 ° C. for 5 minutes.
  • the unexposed area was dissolved and removed by performing spray development using propylene glycol monomethyl ether acetate (PGMEA) at 25 ° C. as a developer, and then rinsing with isopropyl alcohol (IPA).
  • PGMEA propylene glycol monomethyl ether acetate
  • IPA isopropyl alcohol
  • the negative photosensitive resin composition of the present invention comprises a thermosetting resin, a photopolymerization initiator, and a coupling agent containing an acid anhydride as a functional group.
  • a coupling agent containing an acid anhydride as a functional group a resin film formed of a negative photosensitive resin composition adheres to a semiconductor chip formed of an inorganic material or a metal material or various metal wires. The quality is good. Therefore, the reliability of a semiconductor device using such a negative photosensitive resin composition can be increased. Thus, the present invention has industrial applicability.

Abstract

This negative photosensitive resin composition contains a thermosetting resin, a photopolymerization initiator and a coupling agent which contains an acid anhydride as a functional group. It is preferable that the thermosetting resin contains a polyfunctional epoxy resin. It is also preferable that the content of the polyfunctional epoxy resin is 40-80% by mass relative to the nonvolatile components of the negative photosensitive resin composition. It is also preferable that the coupling agent is a compound containing an alkoxysilyl group, which comprises succinic acid anhydride as a functional group.

Description

ネガ型感光性樹脂組成物、半導体装置および電子機器Negative photosensitive resin composition, semiconductor device and electronic device
 本発明は、ネガ型感光性樹脂組成物、半導体装置および電子機器に関する。 The present invention relates to a negative photosensitive resin composition, a semiconductor device and an electronic device.
 半導体素子には、保護膜、層間絶縁膜、平坦化膜等の用途で、樹脂材料からなる樹脂膜が用いられている。また、半導体素子の実装方式によっては、これらの樹脂膜の厚膜化が求められている。しかしながら、樹脂膜を厚膜化すると、半導体チップの反りが顕著になる。 For the semiconductor element, a resin film made of a resin material is used for applications such as a protective film, an interlayer insulating film, and a planarization film. Further, depending on the mounting method of the semiconductor element, thickening of these resin films is required. However, when the resin film is thickened, the warpage of the semiconductor chip becomes remarkable.
 一方、樹脂膜に感光性および光透過性を付与することにより、樹脂膜にパターンを形成する技術が知られている。これにより、目的とするパターンを精度よく形成することができる。 On the other hand, there is known a technique of forming a pattern on a resin film by imparting photosensitivity and light transmittance to the resin film. Thereby, the target pattern can be formed with high accuracy.
 そこで、感光性を有し、かつ厚膜化が可能な樹脂膜を製造可能な樹脂組成物の開発が進められている。 Then, development of the resin composition which can manufacture the resin film which has photosensitivity and can be thickened is furthered.
 例えば、特許文献1には、分子構造を最適化し、残留応力を低減させることにより、光透過性に優れ、かつ、半導体チップの反りを抑制し得る感光性樹脂組成物が開示されている。 For example, Patent Document 1 discloses a photosensitive resin composition which is excellent in light transmittance and can suppress warpage of a semiconductor chip by optimizing the molecular structure and reducing the residual stress.
 また、感光性樹脂組成物は、感光性樹脂組成物で形成された樹脂膜中に配線を埋設して、配線を絶縁するための絶縁部を形成する目的でも使用される。 The photosensitive resin composition is also used for the purpose of forming an insulating portion for insulating the wiring by embedding the wiring in a resin film formed of the photosensitive resin composition.
特開2003-209104号公報JP 2003-209104 A
 一方で、半導体素子の実装に用いられる樹脂膜には、半導体チップや配線に対する密着性が求められる。このため、係る樹脂膜には、無機材料および金属材料に対する密着性が重要とされる。 On the other hand, adhesion to a semiconductor chip or wiring is required for a resin film used for mounting a semiconductor element. For this reason, the adhesiveness with respect to an inorganic material and a metal material is made important to the resin film which concerns.
 しかしながら、従来の樹脂膜では、無機材料および金属材料に対する密着性が低いため、実装後の信頼性を十分に高められないという問題があった。 However, in the case of the conventional resin film, there is a problem in that the reliability after mounting can not be sufficiently improved because the adhesion to the inorganic material and the metal material is low.
 本発明の目的は、無機材料および金属材料に対する密着性が良好な樹脂膜を形成可能な感光性樹脂組成物、前記樹脂膜を備える半導体装置、ならびに、前記半導体装置を備える電子機器を提供することにある。 An object of the present invention is to provide a photosensitive resin composition capable of forming a resin film having good adhesion to inorganic materials and metal materials, a semiconductor device provided with the resin film, and an electronic device provided with the semiconductor device. It is in.
 このような目的は、下記(1)~(11)の本発明により達成される。
 (1) 熱硬化性樹脂と、
 光重合開始剤と、
 官能基として酸無水物を含有するカップリング剤と、
を含むことを特徴とするネガ型感光性樹脂組成物。
Such an object is achieved by the present invention of the following (1) to (11).
(1) Thermosetting resin,
A photopolymerization initiator,
A coupling agent containing an acid anhydride as a functional group,
The negative photosensitive resin composition characterized by including.
 (2) 前記熱硬化性樹脂は、常温で固形状の成分を含む上記(1)に記載のネガ型感光性樹脂組成物。 (2) The negative photosensitive resin composition according to the above (1), wherein the thermosetting resin contains a solid component at normal temperature.
 (3) 前記熱硬化性樹脂は、多官能エポキシ樹脂を含む上記(1)または(2)に記載のネガ型感光性樹脂組成物。
 (4) 前記多官能エポキシ樹脂の含有量は、前記感光性樹脂組成物の不揮発成分に対して40~80質量%である上記(3)に記載のネガ型感光性樹脂組成物。
(3) The negative photosensitive resin composition as described in said (1) or (2) in which the said thermosetting resin contains a polyfunctional epoxy resin.
(4) The negative photosensitive resin composition according to the above (3), wherein the content of the polyfunctional epoxy resin is 40 to 80% by mass with respect to the non-volatile component of the photosensitive resin composition.
 (5) 前記カップリング剤は、アルコキシシリル基を含む化合物である上記(1)ないし(4)のいずれかに記載のネガ型感光性樹脂組成物。 (5) The negative photosensitive resin composition according to any one of the above (1) to (4), wherein the coupling agent is a compound containing an alkoxysilyl group.
 (6) 前記酸無水物は、コハク酸無水物である上記(1)ないし(5)のいずれかに記載のネガ型感光性樹脂組成物。 (6) The negative photosensitive resin composition according to any one of the above (1) to (5), wherein the acid anhydride is succinic anhydride.
 (7) 前記ネガ型感光性樹脂組成物は、さらに溶剤を含む上記(1)ないし(6)のいずれかに記載のネガ型感光性樹脂組成物。
 (8) 前記ネガ型感光性樹脂組成物は、前記溶剤に溶解されてワニス状をなす上記(7)に記載のネガ型感光性樹脂組成物。
(7) The negative photosensitive resin composition according to any one of the above (1) to (6), wherein the negative photosensitive resin composition further comprises a solvent.
(8) The negative photosensitive resin composition as described in (7) above, which is dissolved in the solvent to form a varnish.
 (9) 半導体チップと、
 前記半導体チップ上に設けられている、上記(1)ないし(8)のいずれかに記載のネガ型感光性樹脂組成物の硬化物を含む樹脂膜と、
を備えることを特徴とする半導体装置。
(9) Semiconductor chip,
A resin film provided on the semiconductor chip, the resin film containing a cured product of the negative photosensitive resin composition according to any one of the above (1) to (8).
A semiconductor device comprising:
 (10) 前記樹脂膜中に、前記半導体チップと電気的に接続される再配線層が埋設されている上記(9)に記載の半導体装置。 (10) The semiconductor device according to (9), wherein a rewiring layer electrically connected to the semiconductor chip is embedded in the resin film.
 (11) 上記(9)または(10)に記載の半導体装置を備えることを特徴とする電子機器。 (11) An electronic device comprising the semiconductor device according to (9) or (10).
 本発明によれば、無機材料および金属材料に対する密着性が良好な樹脂膜を形成可能なネガ型感光性樹脂組成物が得られる。 According to the present invention, a negative photosensitive resin composition capable of forming a resin film having good adhesion to inorganic materials and metal materials is obtained.
 また、本発明によれば、前記樹脂膜を備える半導体装置が得られる。
 また、本発明によれば、上記半導体装置を備える電子機器が得られる。
Further, according to the present invention, a semiconductor device provided with the resin film can be obtained.
Further, according to the present invention, an electronic device provided with the above semiconductor device can be obtained.
図1は、本発明の半導体装置の第1実施形態を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a first embodiment of the semiconductor device of the present invention. 図2は、図1の鎖線で囲まれた領域の部分拡大図である。FIG. 2 is a partially enlarged view of a region surrounded by a dashed line in FIG. 図3は、図1に示す半導体装置を製造する方法の一例を示す図である。FIG. 3 is a diagram showing an example of a method of manufacturing the semiconductor device shown in FIG. 図4は、図1に示す半導体装置を製造する方法の一例を示す図である。FIG. 4 is a diagram showing an example of a method of manufacturing the semiconductor device shown in FIG. 図5は、本発明の半導体装置の第2実施形態を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing a second embodiment of the semiconductor device of the present invention. 図6は、図5の鎖線で囲まれた領域の部分拡大図である。FIG. 6 is a partially enlarged view of a region surrounded by a dashed line in FIG. 図7は、図5に示す半導体装置を製造する方法を示す工程図である。FIG. 7 is a process diagram showing a method of manufacturing the semiconductor device shown in FIG. 図8は、図5に示す半導体装置を製造する方法を説明するための図である。FIG. 8 is a diagram for explaining a method of manufacturing the semiconductor device shown in FIG. 図9は、図5に示す半導体装置を製造する方法を説明するための図である。FIG. 9 is a diagram for illustrating a method of manufacturing the semiconductor device shown in FIG. 図10は、図5に示す半導体装置を製造する方法を説明するための図である。FIG. 10 is a diagram for illustrating a method of manufacturing the semiconductor device shown in FIG.
 以下、本発明のネガ型感光性樹脂組成物、半導体装置および電子機器について添付図面に示す好適実施形態に基づいて詳細に説明する。 Hereinafter, the negative photosensitive resin composition, the semiconductor device and the electronic device of the present invention will be described in detail based on preferred embodiments shown in the attached drawings.

 まず、ネガ型感光性樹脂組成物および係るネガ型感光性樹脂組成物を含む感光性樹脂フィルムの説明に先立ち、これらが適用された本発明の半導体装置の第1実施形態について説明する。

First, prior to the description of the negative photosensitive resin composition and the photosensitive resin film including the negative photosensitive resin composition, a first embodiment of the semiconductor device of the present invention to which these are applied will be described.
<<第1実施形態>>
1.半導体装置
 図1は、本発明の半導体装置の第1実施形態を示す縦断面図である。また、図2は、図1の鎖線で囲まれた領域の部分拡大図である。なお、以下の説明では、図1中の上側を「上」、下側を「下」と言う。
<< First Embodiment >>
1. Semiconductor Device FIG. 1 is a longitudinal sectional view showing a first embodiment of the semiconductor device of the present invention. FIG. 2 is a partially enlarged view of a region surrounded by a dashed line in FIG. In the following description, the upper side in FIG. 1 is referred to as “upper” and the lower side as “lower”.
 図1に示す半導体装置1は、貫通電極基板2と、その上に実装された半導体パッケージ3と、を備えた、いわゆるパッケージオンパッケージ構造を有する。 A semiconductor device 1 shown in FIG. 1 has a so-called package-on-package structure including a through electrode substrate 2 and a semiconductor package 3 mounted thereon.
 このうち、貫通電極基板2は、有機絶縁層21(樹脂膜)と、有機絶縁層21の上面から下面を貫通する複数の貫通配線22と、有機絶縁層21の内部に埋め込まれた半導体チップ23と、有機絶縁層21の下面に設けられた下層配線層24と、有機絶縁層21の上面に設けられた上層配線層25と、下層配線層24の下面に設けられた半田バンプ26と、を備えている。本実施形態の半導体装置1では、有機絶縁層21が、半導体チップ23の表面上に少なくとも設けられ、後述する感光性樹脂組成物または感光性樹脂フィルムの硬化物を含む。 Among them, the through electrode substrate 2 includes an organic insulating layer 21 (resin film), a plurality of through wires 22 penetrating the upper surface to the lower surface of the organic insulating layer 21, and a semiconductor chip 23 embedded in the organic insulating layer 21. A lower wiring layer 24 provided on the lower surface of the organic insulating layer 21, an upper wiring layer 25 provided on the upper surface of the organic insulating layer 21, and a solder bump 26 provided on the lower surface of the lower wiring layer 24; Have. In the semiconductor device 1 of the present embodiment, the organic insulating layer 21 is provided at least on the surface of the semiconductor chip 23 and includes a photosensitive resin composition or a cured product of a photosensitive resin film described later.
 一方、半導体パッケージ3は、パッケージ基板31と、パッケージ基板31上に実装された半導体チップ32と、半導体チップ32とパッケージ基板31とを電気的に接続するボンディングワイヤー33と、半導体チップ32やボンディングワイヤー33が埋め込まれた封止層34と、パッケージ基板31の下面に設けられた半田バンプ35と、を備えている。 The semiconductor package 3 includes a package substrate 31, a semiconductor chip 32 mounted on the package substrate 31, a bonding wire 33 for electrically connecting the semiconductor chip 32 and the package substrate 31, a semiconductor chip 32 and a bonding wire. A sealing layer 34 in which 33 is embedded and solder bumps 35 provided on the lower surface of the package substrate 31 are provided.
 そして、貫通電極基板2上に半導体パッケージ3が積層されている。これにより、半導体パッケージ3の半田バンプ35と、貫通電極基板2の上層配線層25と、が電気的に接続されている。 The semiconductor package 3 is stacked on the through electrode substrate 2. Thus, the solder bumps 35 of the semiconductor package 3 and the upper wiring layer 25 of the through electrode substrate 2 are electrically connected.
 このような半導体装置1は、貫通配線22や半導体チップ23に対する有機絶縁層21の密着性が良好であるため、信頼性が高くなる。 Such a semiconductor device 1 has high reliability because the adhesion of the organic insulating layer 21 to the through wiring 22 and the semiconductor chip 23 is good.
 また、貫通電極基板2においてコア層を含む有機基板のような厚い基板を用いる必要がないため、低背化を容易に図ることができる。このため、半導体装置1を内蔵する電子機器の小型化にも貢献することができる。 In addition, since it is not necessary to use a thick substrate such as an organic substrate including a core layer in through electrode substrate 2, the height can be easily reduced. For this reason, it can contribute also to size reduction of the electronic device which incorporates the semiconductor device 1.
 また、互いに異なる半導体チップを備えた貫通電極基板2と半導体パッケージ3とを積層しているため、単位面積当たりの実装密度を高めることができる。かかる観点においても、半導体装置1の小型化を図ることができる。 In addition, since the through electrode substrate 2 and the semiconductor package 3 having semiconductor chips different from each other are stacked, the mounting density per unit area can be increased. From this viewpoint as well, the semiconductor device 1 can be miniaturized.
 以下、貫通電極基板2および半導体パッケージ3についてさらに詳述する。
 図2に示す貫通電極基板2が備える下層配線層24および上層配線層25は、それぞれ絶縁層、配線層および貫通配線等を含んでいる。これにより、下層配線層24および上層配線層25は、内部や表面に配線を含むとともに、貫通配線を介して厚さ方向に貫通するように電気的接続が図られる。
Hereinafter, the through electrode substrate 2 and the semiconductor package 3 will be described in more detail.
Lower layer wiring layer 24 and upper layer wiring layer 25 provided in through electrode substrate 2 shown in FIG. 2 each include an insulating layer, a wiring layer, a through wiring, and the like. As a result, the lower layer wiring layer 24 and the upper layer wiring layer 25 include interconnections inside and on the surface, and are electrically connected to penetrate in the thickness direction through the through interconnections.
 このうち、下層配線層24に含まれる配線層は、半導体チップ23や半田バンプ26と接続されている。このため、下層配線層24は半導体チップ23の再配線層として機能するとともに、半田バンプ26は半導体チップ23の外部端子として機能する。 Among these, the wiring layer included in the lower layer wiring layer 24 is connected to the semiconductor chip 23 and the solder bump 26. Thus, the lower wiring layer 24 functions as a rewiring layer of the semiconductor chip 23, and the solder bumps 26 function as external terminals of the semiconductor chip 23.
 また、図2に示す貫通配線22は、有機絶縁層21を貫通するように設けられている。これにより、下層配線層24と上層配線層25との間を電気的に接続することができる。その結果、貫通電極基板2と半導体パッケージ3との積層が可能になり、半導体装置1の高機能化を図ることができる。 The through wiring 22 shown in FIG. 2 is provided to penetrate the organic insulating layer 21. Thereby, the lower wiring layer 24 and the upper wiring layer 25 can be electrically connected. As a result, the through electrode substrate 2 and the semiconductor package 3 can be stacked, and the semiconductor device 1 can be highly functional.
 さらに、図2に示す上層配線層25に含まれる配線層は、貫通配線22や半田バンプ35と接続されている。このため、上層配線層25は、半導体チップ23と電気的に接続されることとなり、半導体チップ23の再配線層として機能するとともに、半導体チップ23とパッケージ基板31との間に介在するインターポーザーとしても機能する。その結果、再配線層の高密度化を図ることができる。 Furthermore, the wiring layer included in the upper wiring layer 25 shown in FIG. 2 is connected to the through wiring 22 and the solder bump 35. Therefore, the upper wiring layer 25 is electrically connected to the semiconductor chip 23 and functions as a rewiring layer of the semiconductor chip 23 and as an interposer interposed between the semiconductor chip 23 and the package substrate 31. Also works. As a result, the rewiring layer can be densified.
 また、有機絶縁層21を貫通配線22が貫通していることで、有機絶縁層21を補強する効果が得られる。このため、下層配線層24や上層配線層25の機械的強度が低い場合でも、貫通電極基板2全体の機械的強度の低下を避けることができる。その結果、下層配線層24や上層配線層25のさらなる薄型化を図ることができ、半導体装置1のさらなる低背化を図ることができる。 Moreover, the effect of reinforcing the organic insulating layer 21 can be obtained by the through wiring 22 penetrating the organic insulating layer 21. Therefore, even when the mechanical strength of the lower wiring layer 24 and the upper wiring layer 25 is low, it is possible to avoid the reduction in the mechanical strength of the entire through electrode substrate 2. As a result, the thickness of the lower wiring layer 24 and the upper wiring layer 25 can be further reduced, and the height of the semiconductor device 1 can be further reduced.
 さらには、有機絶縁層21は、半導体チップ23を覆うように設けられている。これにより、半導体チップ23を保護する効果が高められる。その結果、半導体装置1の信頼性を高めることができる。また、本実施形態に係るパッケージオンパッケージ構造のような実装方式にも容易に適用可能な半導体装置1が得られる。 Furthermore, the organic insulating layer 21 is provided to cover the semiconductor chip 23. Thereby, the effect of protecting the semiconductor chip 23 is enhanced. As a result, the reliability of the semiconductor device 1 can be improved. Moreover, the semiconductor device 1 which can be easily applied to the mounting method like the package on package structure which concerns on this embodiment is obtained.
 貫通配線22の直径W(図2参照)は、特に限定されないが、1~100μm程度であるのが好ましく、2~80μm程度であるのがより好ましい。これにより、有機絶縁層21の機械的特性を損なうことなく、貫通配線22の導電性を確保することができる。 The diameter W (see FIG. 2) of the through wiring 22 is not particularly limited, but is preferably about 1 to 100 μm, and more preferably about 2 to 80 μm. Thereby, the conductivity of the through wiring 22 can be secured without impairing the mechanical properties of the organic insulating layer 21.
 図2に示す半導体パッケージ3は、いかなる形態のパッケージであってもよい。例えば、QFP(Quad Flat Package)、SOP(Small Outline Package)、BGA(Ball Grid Array)、CSP(Chip Size Package)、QFN(Quad Flat Non-leaded Package)、SON(Small Outline Non-leaded Package)、LF-BGA(Lead Flame BGA)等の形態が挙げられる。 The semiconductor package 3 shown in FIG. 2 may be any type of package. For example, Quad Flat Package (QFP), Small Outline Package (SOP), Ball Grid Array (BGA), Chip Size Package (CSP), Quad Flat Non-leaded Package (QFN), Small Outline Non-leaded Package (SON), A form such as LF-BGA (Lead Flame BGA) may be mentioned.
 半導体チップ32の形態は、特に限定されないが、一例として図1に示す半導体チップ32は、複数のチップが積層されて構成されている。このため、高密度化が図られている。なお、複数のチップは、平面方向に併設されていてもよく、厚さ方向に積層されつつ平面方向にも併設されていてもよい。 The form of the semiconductor chip 32 is not particularly limited, but the semiconductor chip 32 shown in FIG. 1 as an example is configured by laminating a plurality of chips. For this reason, high densification is achieved. Note that the plurality of chips may be juxtaposed in the planar direction, or may be juxtaposed in the planar direction while being stacked in the thickness direction.
 パッケージ基板31は、いかなる基板であってもよいが、例えば図示しない絶縁層、配線層および貫通配線等を含む基板とされる。このうち、貫通配線を介して半田バンプ35とボンディングワイヤー33とを電気的に接続することができる。 The package substrate 31 may be any substrate, and is, for example, a substrate including an insulating layer, a wiring layer, a through wiring, and the like (not shown). Among these, the solder bump 35 and the bonding wire 33 can be electrically connected through the through wiring.
 封止層34は、例えば公知の封止樹脂材料で構成されている。このような封止層34を設けることにより、半導体チップ32やボンディングワイヤー33を外力や外部環境から保護することができる。 The sealing layer 34 is made of, for example, a known sealing resin material. By providing such a sealing layer 34, the semiconductor chip 32 and the bonding wire 33 can be protected from external force and the external environment.
 なお、貫通電極基板2が備える半導体チップ23と半導体パッケージ3が備える半導体チップ32は、互いに近接して配置されることになるため、相互通信の高速化や低損失化等のメリットを享受することができる。かかる観点から、例えば、半導体チップ23と半導体チップ32のうち、一方をCPU(Central Processing Unit)やGPU(Graphics Processing Unit)、AP(Application Processor)等の演算素子とし、他方をDRAM(Dynamic Random Access Memory)やフラッシュメモリー等の記憶素子等にすれば、同一装置内においてこれらの素子同士を近接して配置することができるので、高機能化と小型化とを両立した半導体装置1を実現することができる。 In addition, since the semiconductor chip 23 included in the through electrode substrate 2 and the semiconductor chip 32 included in the semiconductor package 3 are disposed in proximity to each other, it is possible to enjoy advantages such as speeding up and reduction in mutual communication. Can. From this point of view, for example, one of the semiconductor chip 23 and the semiconductor chip 32 is an arithmetic element such as a central processing unit (CPU), a graphics processing unit (GPU), or an application processor (AP), and the other is a dynamic random access (DRAM) In the case of a storage element such as a memory or a flash memory, these elements can be arranged close to each other in the same device, so that a semiconductor device 1 having both high performance and miniaturization can be realized. Can.
<有機絶縁層>
 次に、有機絶縁層21について特に詳述する。
<Organic insulating layer>
Next, the organic insulating layer 21 will be particularly described in detail.
 本実施形態の有機絶縁層21は、後述する感光性樹脂組成物または感光性樹脂フィルムの硬化物を含む。 The organic insulating layer 21 of the present embodiment includes a photosensitive resin composition to be described later or a cured product of a photosensitive resin film.
 本実施形態に係る感光性樹脂組成物の硬化物(感光性樹脂フィルムの硬化物も含む。以下同様。)は、そのガラス転移温度(Tg)が140℃以上であるのが好ましく、150℃以上であるのがより好ましく、160℃以上であるのがさらに好ましい。これにより、有機絶縁層21の耐熱性を高めることができるので、例えば高温環境下でも使用可能な半導体装置1を実現することができる。なお、感光性樹脂組成物の硬化物の上限値は、特に設定されなくてもよいが、一例として250℃以下とされる。 The cured product of the photosensitive resin composition according to the present embodiment (including the cured product of the photosensitive resin film, the same applies hereinafter) preferably has a glass transition temperature (Tg) of 140 ° C. or higher, and 150 ° C. or higher. Is more preferable, and 160 ° C. or more is further preferable. As a result, the heat resistance of the organic insulating layer 21 can be enhanced, so that the semiconductor device 1 that can be used even in a high temperature environment, for example, can be realized. The upper limit of the cured product of the photosensitive resin composition may not be particularly set, but is, for example, 250 ° C. or less.
 また、感光性樹脂組成物の硬化物のガラス転移温度は、所定の試験片(幅4mm×長さ20mm×厚み0.005~0.015mm)に対して、熱機械分析装置(TMA)を用いて、開始温度30℃、測定温度範囲30~400℃、昇温速度5℃/minの条件下で測定を行った結果から算出される。 Further, the glass transition temperature of the cured product of the photosensitive resin composition is measured using a thermomechanical analyzer (TMA) for a predetermined test piece (width 4 mm × length 20 mm × thickness 0.005 to 0.015 mm). It is calculated from the result of measurement under the conditions of start temperature 30 ° C., measurement temperature range 30 to 400 ° C., temperature raising rate 5 ° C./min.
 本実施形態に係る感光性樹脂組成物の硬化物は、その線膨張係数(CTE)が5~80ppm/℃であるのが好ましく、10~70ppm/℃であるのがより好ましく、15~60ppm/℃であるのがさらに好ましい。これにより、有機絶縁層21の線膨張係数を、例えばシリコン材料の線膨張係数に近づけることができる。このため、例えば半導体チップ23の反り等を生じさせ難い有機絶縁層21が得られる。その結果、信頼性の高い半導体装置1が得られる。 The cured product of the photosensitive resin composition according to this embodiment preferably has a linear expansion coefficient (CTE) of 5 to 80 ppm / ° C., more preferably 10 to 70 ppm / ° C., and more preferably 15 to 60 ppm / ° C. More preferably, it is ° C. Thereby, the linear expansion coefficient of the organic insulating layer 21 can be made close to, for example, the linear expansion coefficient of a silicon material. Therefore, for example, the organic insulating layer 21 in which the semiconductor chip 23 is not easily warped can be obtained. As a result, a highly reliable semiconductor device 1 can be obtained.
 なお、感光性樹脂組成物の硬化物の線膨張係数は、所定の試験片(幅4mm×長さ20mm×厚み0.005~0.015mm)に対して、熱機械分析装置(TMA)を用いて、開始温度30℃、測定温度範囲30~400℃、昇温速度5℃/minの条件下で測定を行った結果から算出される。 The linear expansion coefficient of the cured product of the photosensitive resin composition was measured using a thermomechanical analyzer (TMA) for a predetermined test piece (width 4 mm × length 20 mm × thickness 0.005 to 0.015 mm). It is calculated from the result of measurement under the conditions of start temperature 30 ° C., measurement temperature range 30 to 400 ° C., temperature raising rate 5 ° C./min.
 本実施形態に係る感光性樹脂組成物の硬化物は、5%熱重量減少温度Td5が300℃以上であるのが好ましく、320℃以上であるのがより好ましい。これにより、高温下でも熱分解等による重量減少が生じ難く、耐熱性に優れた硬化物が得られる。このため、高温環境下での耐久性に優れた有機絶縁層21が得られる。 The cured product of the photosensitive resin composition according to this embodiment preferably has a 5% thermal weight loss temperature Td5 of 300 ° C. or higher, and more preferably 320 ° C. or higher. As a result, weight reduction due to thermal decomposition and the like does not easily occur even at high temperatures, and a cured product having excellent heat resistance can be obtained. For this reason, the organic insulating layer 21 excellent in the durability under high temperature environment is obtained.
 なお、感光性樹脂組成物の硬化物の5%熱重量減少温度Td5は、5mgの硬化物に対して、示差熱熱重量同時測定装置(TG/DTA)を用いて測定された結果から算出される。 The 5% thermal weight loss temperature Td5 of the cured product of the photosensitive resin composition is calculated from the result of measurement using a differential thermal thermal simultaneous measurement device (TG / DTA) for 5 mg of the cured product. Ru.
 本実施形態に係る感光性樹脂組成物の硬化物は、その伸び率が5~50%であるのが好ましく、6~45%であるのがより好ましく、7~40%であるのがさらに好ましい。これにより、有機絶縁層21の伸び率が最適化されるため、例えば有機絶縁層21を貫通するように貫通配線22が設けられている場合であっても、有機絶縁層21と貫通配線22との界面に剥離等が生じるのを抑制することができる。また、有機絶縁層21自体においても、クラック等が発生するのを抑制することができる。 The cured product of the photosensitive resin composition according to the present embodiment preferably has an elongation of 5 to 50%, more preferably 6 to 45%, still more preferably 7 to 40%. . As a result, the elongation rate of the organic insulating layer 21 is optimized, so that, for example, even when the through wiring 22 is provided to penetrate the organic insulating layer 21, the organic insulating layer 21 and the through wiring 22 and It is possible to suppress the occurrence of peeling or the like at the interface of Also in the organic insulating layer 21 itself, the occurrence of cracks and the like can be suppressed.
 また、伸び率が前記下限値を下回ると、有機絶縁層21の厚さや形状等によっては、有機絶縁層21にクラック等が発生するおそれがある。一方、伸び率が前記上限値を上回ると、有機絶縁層21の厚さや形状等によっては、有機絶縁層21の機械的特性が低下するおそれがある。 In addition, when the elongation percentage is below the lower limit value, there is a possibility that a crack or the like may occur in the organic insulating layer 21 depending on the thickness, the shape, and the like of the organic insulating layer 21. On the other hand, when the elongation percentage exceeds the upper limit value, the mechanical properties of the organic insulating layer 21 may be deteriorated depending on the thickness, the shape, and the like of the organic insulating layer 21.
 なお、感光性樹脂組成物の硬化物の伸び率は、以下のようにして測定される。まず、所定の試験片(幅6.5mm×長さ20mm×厚み0.005~0.015mm)に対して引張試験(引張速度:5mm/min)を、温度25℃、湿度55%の雰囲気中で実施する。引張試験は、株式会社オリエンテック製引張試験機(テンシロンRTA-100)を用いて行う。次いで、当該引張試験の結果から、引張伸び率を算出する。ここでは、上記引張試験を試験回数n=10で行い、測定値が大きい5回の平均値を求め、これを測定値とする。 The elongation of the cured product of the photosensitive resin composition is measured as follows. First, for a predetermined test piece (width 6.5 mm × length 20 mm × thickness 0.005 to 0.015 mm), a tensile test (tension speed: 5 mm / min) was performed in an atmosphere with a temperature of 25 ° C. and a humidity of 55%. To carry out. The tensile test is performed using a tensile tester (Tensilon RTA-100) manufactured by Orientec Co., Ltd. Then, the tensile elongation rate is calculated from the result of the said tensile test. Here, the above-mentioned tensile test is carried out at the number of times of the test n = 10, and the average value of five times where the measured value is large is determined, and this is taken as the measured value.
 本実施形態に係る感光性樹脂組成物の硬化物は、引張強度が20MPa以上であるのが好ましく、30~300MPaであるのがより好ましい。これにより、十分な機械的強度を有し、耐久性に優れた有機絶縁層21が得られる。 The cured product of the photosensitive resin composition according to this embodiment preferably has a tensile strength of 20 MPa or more, and more preferably 30 to 300 MPa. Thus, the organic insulating layer 21 having sufficient mechanical strength and excellent durability can be obtained.
 なお、感光性樹脂組成物の硬化物の引張強度は、前述した伸び率の測定と同じ方法で取得した引張試験の結果から求められる。 In addition, the tensile strength of the hardened | cured material of the photosensitive resin composition is calculated | required from the result of the tension test acquired by the same method as the measurement of the elongation rate mentioned above.
 本実施形態に係る感光性樹脂組成物の硬化物は、引張弾性率が0.5GPa以上であるのが好ましく、1~5GPaであるのがより好ましい。これにより、十分な機械的強度を有し、耐久性に優れた有機絶縁層21が得られる。 The cured product of the photosensitive resin composition according to this embodiment preferably has a tensile elastic modulus of 0.5 GPa or more, and more preferably 1 to 5 GPa. Thus, the organic insulating layer 21 having sufficient mechanical strength and excellent durability can be obtained.
 なお、感光性樹脂組成物の硬化物の弾性率は、前述した伸び率の測定と同じ方法で取得した引張試験の結果から求められる。 In addition, the elastic modulus of the hardened | cured material of the photosensitive resin composition is calculated | required from the result of the tension test acquired by the same method as measurement of the elongation rate mentioned above.
 また、上述したような硬化物としては、例えば以下のような条件で硬化させたものが用いられる。まず、感光性樹脂組成物を、シリコンウエハー基板上にスピンコーター等で塗布した後、ホットプレートにて120℃で5分間乾燥し、塗膜を得る。得られた塗膜を700mJ/cmで全面露光し、70℃で5分間PEB(Post Exposure Bake)を行う。その後、200℃で90分間加熱して、硬化膜が得られる。 Moreover, as hardened | cured material as mentioned above, what was hardened | cured, for example on condition of the following is used. First, a photosensitive resin composition is coated on a silicon wafer substrate by a spin coater or the like, and then dried on a hot plate at 120 ° C. for 5 minutes to obtain a coated film. The obtained coating film is exposed on the entire surface at 700 mJ / cm 2 and subjected to PEB (Post Exposure Bake) at 70 ° C. for 5 minutes. Thereafter, the film is heated at 200 ° C. for 90 minutes to obtain a cured film.
2.半導体装置の製造方法
 上述した本実施形態の半導体装置1は、例えば、以下のようにして製造することができる。
 図3、4は、それぞれ図1に示す半導体装置1を製造する方法の一例を示す図である。
2. Method of Manufacturing Semiconductor Device The semiconductor device 1 of the present embodiment described above can be manufactured, for example, as follows.
3 and 4 are diagrams showing an example of a method of manufacturing the semiconductor device 1 shown in FIG.
 [1]
 まず、図3(a)に示すように、基板202を用意する。
[1]
First, as shown in FIG. 3A, the substrate 202 is prepared.
 基板202の構成材料としては、特に限定されないが、例えば、金属材料、ガラス材料、セラミック材料、半導体材料、有機材料等が挙げられる。また、基板202には、シリコンウエハーのような半導体ウエハー、ガラスウエハー等を用いるようにしてもよい。なお、基板202には、必要に応じて電子回路が形成されていてもよい。 The constituent material of the substrate 202 is not particularly limited, and examples thereof include metal materials, glass materials, ceramic materials, semiconductor materials, organic materials and the like. Further, as the substrate 202, a semiconductor wafer such as a silicon wafer, a glass wafer, or the like may be used. Note that an electronic circuit may be formed on the substrate 202 as necessary.
 [2]
 次に、図3(b)に示すように、基板202上に半導体チップ23を配置する。本製造方法では、一例として、複数の半導体チップ23を互いに離間させつつ配置する。複数の半導体チップ23は、互いに同じ種類のものであってもよいし、互いに異なる種類のものであってもよい。
[2]
Next, as shown in FIG. 3B, the semiconductor chip 23 is disposed on the substrate 202. In this manufacturing method, as an example, a plurality of semiconductor chips 23 are disposed while being separated from each other. The plurality of semiconductor chips 23 may be of the same type as each other or may be of different types.
 なお、必要に応じて、基板202と半導体チップ23との間にインターポーザー(図示せず)を設けるようにしてもよい。インターポーザーは、例えば半導体チップ23の再配線層として機能する。したがって、インターポーザーは、後述する半導体チップ23の電極と電気的に接続させるための図示しないパッドを備えていてもよい。これにより、半導体チップ23のパッド間隔や配列パターンを変換することができ、半導体装置1の設計自由度をより高めることができる。 Note that, if necessary, an interposer (not shown) may be provided between the substrate 202 and the semiconductor chip 23. The interposer functions as, for example, a rewiring layer of the semiconductor chip 23. Therefore, the interposer may be provided with a pad (not shown) for electrically connecting with the electrode of the semiconductor chip 23 described later. Thereby, the pad spacing and the arrangement pattern of the semiconductor chip 23 can be converted, and the design freedom of the semiconductor device 1 can be further enhanced.
 このようなインターポーザーには、例えば、シリコン基板、セラミック基板、ガラス基板のような無機系基板、樹脂基板のような有機系基板等が用いられる。 For example, a silicon substrate, a ceramic substrate, an inorganic substrate such as a glass substrate, an organic substrate such as a resin substrate, or the like is used for such an interposer.
 [3]
 次に、図3(c)に示すように、半導体チップ23を埋め込むようにして基板202上に感光性樹脂層210を配置する。感光性樹脂層210としては、後述する感光性樹脂組成物または感光性樹脂フィルムが用いられる。
[3]
Next, as shown in FIG. 3C, the photosensitive resin layer 210 is disposed on the substrate 202 so that the semiconductor chip 23 is embedded. As the photosensitive resin layer 210, the photosensitive resin composition or photosensitive resin film mentioned later is used.
 このとき、特に感光性樹脂組成物を含む感光性樹脂フィルムを用いることにより、感光性樹脂層210の厚膜化が容易に図られることとなる。これにより、半導体チップ23の薄型化を図らなくても、容易に埋め込むことができる。 At this time, by using a photosensitive resin film containing a photosensitive resin composition in particular, thickening of the photosensitive resin layer 210 can be easily achieved. Thus, the semiconductor chip 23 can be easily embedded without thinning.
 感光性樹脂フィルムを用いて感光性樹脂層210を形成する場合、感光性樹脂フィルム単体を半導体チップ23の上方から貼り付けるようにしてもよく、キャリアーフィルムに積層された感光性樹脂フィルムを半導体チップ23上に貼り付けた後、キャリアーフィルムを剥離することによって感光性樹脂フィルムを残置するようにしてもよい。 When the photosensitive resin layer 210 is formed using a photosensitive resin film, the photosensitive resin film alone may be attached from above the semiconductor chip 23, and the photosensitive resin film laminated on the carrier film may be used as a semiconductor chip. After pasting on the substrate 23, the photosensitive resin film may be left by peeling off the carrier film.
 また、感光性樹脂フィルムを貼り付ける作業においては、公知のラミネート方法が用いられてもよい。その場合、例えば真空ラミネーターが用いられる。真空ラミネーターは、バッチ式であってもよく、連続式であってもよい。 Moreover, in the operation | work which affixes a photosensitive resin film, the well-known laminating method may be used. In that case, for example, a vacuum laminator is used. The vacuum laminator may be a batch type or a continuous type.
 また、感光性樹脂フィルムを貼り付ける作業の過程では、必要に応じて感光性樹脂フィルムを加熱するようにしてもよい。 In addition, in the process of attaching the photosensitive resin film, the photosensitive resin film may be heated as required.
 加熱温度は、感光性樹脂フィルムの構成材料や加熱時間等に応じて適宜設定されるが、40~150℃程度であるのが好ましく、50~140℃程度であるのがより好ましく、60~130℃程度であるのがさらに好ましい。このような温度で加熱することにより、感光性樹脂フィルムに対する半導体チップ23の埋め込み性がより高められる。これにより、ボイド等の不良の発生が抑えられるとともに、より平坦化が図られた感光性樹脂層210を効率よく形成することができる。 The heating temperature is appropriately set according to the constituent material of the photosensitive resin film, the heating time and the like, but is preferably about 40 to 150 ° C., more preferably about 50 to 140 ° C., and more preferably 60 to 130 It is more preferable that the temperature be about ° C. By heating at such a temperature, the embeddability of the semiconductor chip 23 in the photosensitive resin film is further enhanced. As a result, generation of defects such as voids can be suppressed, and the photosensitive resin layer 210 can be efficiently formed with even higher planarization.
 なお、加熱温度が前記下限値を下回ると、感光性樹脂フィルムの溶融が不足するため、感光性樹脂フィルムの構成材料等によっては埋め込み性が低下するおそれがある。一方、加熱温度が前記上限値を上回ると、感光性樹脂フィルムの構成材料等によっては硬化してしまうおそれがある。 If the heating temperature is lower than the lower limit value, melting of the photosensitive resin film is insufficient, and the embedding property may be lowered depending on the constituent material of the photosensitive resin film. On the other hand, if the heating temperature exceeds the upper limit value, depending on the constituent material of the photosensitive resin film, etc., there is a risk of curing.
 また、加熱時間は、感光性樹脂フィルムの構成材料や加熱温度等に応じて適宜設定されるが、5~180秒程度であるのが好ましく、10~60秒程度であるのがより好ましい。 The heating time is appropriately set according to the constituent material of the photosensitive resin film, the heating temperature and the like, but is preferably about 5 to 180 seconds, and more preferably about 10 to 60 seconds.
 また、感光性樹脂フィルムでは、加熱されるとともに加圧されることによって、半導体チップ23の埋め込みが可能になる。そのときの加圧力は、感光性樹脂フィルムの構成材料等に応じて適宜設定されるが、0.2~5MPa程度であるのが好ましく、0.4~1MPa程度であるのがより好ましい。 Moreover, in the photosensitive resin film, the semiconductor chip 23 can be embedded by being heated and pressurized. The pressure applied at that time is appropriately set according to the constituent material of the photosensitive resin film and the like, but is preferably about 0.2 to 5 MPa, and more preferably about 0.4 to 1 MPa.
 一方、ワニス状の感光性樹脂組成物を用いることにより、感光性樹脂層210の平坦化が容易に図られることとなる。 On the other hand, flattening of the photosensitive resin layer 210 can be easily achieved by using the varnish-like photosensitive resin composition.
 ワニス状の感光性樹脂組成物を用いて感光性樹脂層210を形成する作業においては、必要に応じて溶媒等で粘度を調整し、各種塗布装置を用いて基板202上に塗布する。その後、得られた塗膜を乾燥させることにより、感光性樹脂層210が得られる。なお、半導体チップが完全に埋め込まれるように、十分な厚さを確保するため、ワニス状の感光性樹脂組成物の塗布および乾燥を複数回繰り返してもよい。 In the operation of forming the photosensitive resin layer 210 using a varnish-like photosensitive resin composition, the viscosity is adjusted with a solvent or the like as necessary, and the solution is applied onto the substrate 202 using various coating devices. Then, the photosensitive resin layer 210 is obtained by drying the obtained coating film. The application and drying of the varnish-like photosensitive resin composition may be repeated several times in order to ensure a sufficient thickness so that the semiconductor chip is completely embedded.
 塗布装置としては、例えば、スピンコーター、スプレー装置、インクジェット装置等が挙げられる。 As a coating apparatus, a spin coater, a spray apparatus, an inkjet apparatus etc. are mentioned, for example.
 感光性樹脂フィルムの膜厚(感光性樹脂層210の膜厚)は、硬化後の膜厚(図2の高さH)に応じてかつ硬化収縮を考慮して適宜設定される一方、半導体チップ23を埋め込み得る厚さであれば、特に限定されない。ただし、感光性樹脂フィルムの膜厚の一例として20~1000μm程度であるのが好ましく、50~750μm程度であるのがより好ましく、100~500μm程度であるのがさらに好ましい。感光性樹脂層210の膜厚を前記範囲内に設定することにより、半導体チップ23を容易に埋め込むことができ、かつ、感光性樹脂層210の硬化膜に対して十分な機械的強度も付与することができる。その結果、半導体チップ23の良好な保護性とともに、半導体装置1の剛性への寄与も担う硬化膜(有機絶縁層21)を形成することができる。 The film thickness of the photosensitive resin film (film thickness of the photosensitive resin layer 210) is appropriately set according to the film thickness after curing (height H in FIG. 2) and in consideration of curing shrinkage, while the semiconductor chip The thickness is not particularly limited as long as the thickness 23 can be embedded. However, as an example of the film thickness of the photosensitive resin film, it is preferably about 20 to 1000 μm, more preferably about 50 to 750 μm, and still more preferably about 100 to 500 μm. By setting the film thickness of the photosensitive resin layer 210 within the above range, the semiconductor chip 23 can be easily embedded, and sufficient mechanical strength is also imparted to the cured film of the photosensitive resin layer 210. be able to. As a result, it is possible to form a cured film (organic insulating layer 21) that contributes to the rigidity of the semiconductor device 1 as well as the good protection of the semiconductor chip 23.
 [4]
 次に、図3(d)に示すように、感光性樹脂層210上の所定の領域にマスク41を配置する。そして、マスク41を介して光(活性放射線)を照射する。これにより、マスク41のパターンに応じて感光性樹脂層210に露光処理が施される。
[4]
Next, as shown in FIG. 3D, the mask 41 is disposed in a predetermined area on the photosensitive resin layer 210. Then, light (actinic radiation) is irradiated through the mask 41. Thus, the photosensitive resin layer 210 is exposed according to the pattern of the mask 41.
 その後、必要に応じて、露光後加熱処理が施される。露光後加熱処理の条件は、特に限定されないが、例えば、50~150℃程度の加熱温度で、1~10分程度の加熱時間とされる。 Thereafter, if necessary, a post-exposure heat treatment is performed. The conditions of the post-exposure heat treatment are not particularly limited, but for example, the heating temperature is about 50 to 150 ° C., and the heating time is about 1 to 10 minutes.
 図3(d)では、感光性樹脂層210がいわゆるネガ型の感光性を有している場合を図示している。この例では、感光性樹脂層210のうち、マスク41の非遮光部に対応する領域に対して、現像液に対する溶解性が付与される。 FIG. 3D shows the case where the photosensitive resin layer 210 has so-called negative type photosensitivity. In this example, in the photosensitive resin layer 210, the solubility in the developer is given to the area corresponding to the non-light shielding portion of the mask 41.
 その後、現像処理が施されることにより、マスク41の非遮光部に対応した、感光性樹脂層210を貫通する開口部42が形成される(図3(e)参照)。
 現像液としては、例えば、有機系現像液、水溶性現像液等が挙げられる。
Thereafter, development processing is performed to form an opening 42 penetrating the photosensitive resin layer 210 corresponding to the non-light shielding portion of the mask 41 (see FIG. 3E).
As a developing solution, an organic type developing solution, a water-soluble developing solution, etc. are mentioned, for example.
 現像処理の後、感光性樹脂層210に対して現像後加熱処理が施される。現像後加熱処理の条件は、特に限定されないが、160~250℃程度の加熱温度で、30~180分程度の加熱時間とされる。これにより、半導体チップ23に対する熱影響を抑えつつ、感光性樹脂層210を硬化させ、有機絶縁層21を得ることができる。 After the development process, the photosensitive resin layer 210 is subjected to a post-development heat process. The conditions for the post-development heat treatment are not particularly limited, but the heating temperature is about 160 to 250 ° C., and the heating time is about 30 to 180 minutes. Thereby, the photosensitive resin layer 210 can be cured and the organic insulating layer 21 can be obtained while suppressing the thermal influence on the semiconductor chip 23.
 [5]
 次に、図4(f)に示すように、開口部42(図3(e)参照)に貫通配線22を形成する。
[5]
Next, as illustrated in FIG. 4F, the through wiring 22 is formed in the opening 42 (see FIG. 3E).
 貫通配線22の形成には、公知の方法が用いられるが、例えば以下の方法が用いられる。 A known method is used to form the through wiring 22, and for example, the following method is used.
 まず、有機絶縁層21上に、図示しないシード層を形成する。シード層は、開口部42の内部(側壁および底面)とともに、有機絶縁層21の上面に形成される。 First, a seed layer (not shown) is formed on the organic insulating layer 21. The seed layer is formed on the top surface of the organic insulating layer 21 together with the inside (sidewalls and bottom surface) of the opening 42.
 シード層としては、例えば、銅シード層が用いられる。また、シード層は、例えばスパッタリング法により形成される。 As a seed layer, for example, a copper seed layer is used. Also, the seed layer is formed, for example, by sputtering.
 また、シード層は、形成しようとする貫通配線22と同種の金属で構成されていてもよいし、異種の金属で構成されていてもよい。 Also, the seed layer may be made of the same kind of metal as the through wire 22 to be formed, or may be made of different kinds of metal.
 次いで、図示しないシード層のうち、開口部42以外の領域上に図示しないレジスト層を形成する。そして、このレジスト層をマスクとして、開口部42内に金属を充填する。この充填には、例えば電解めっき法が用いられる。充填される金属としては、例えば銅または銅合金、アルミニウムまたはアルミニウム合金、金または金合金、銀または銀合金、ニッケルまたはニッケル合金等が挙げられる。このようにして開口部42内に導電性材料が埋設され、貫通配線22が形成される。 Next, a resist layer (not shown) is formed on the region other than the opening 42 in the seed layer (not shown). Then, metal is filled in the opening 42 using the resist layer as a mask. For example, electrolytic plating is used for this filling. Examples of the metal to be filled include copper or copper alloy, aluminum or aluminum alloy, gold or gold alloy, silver or silver alloy, nickel or nickel alloy, and the like. Thus, the conductive material is embedded in the opening 42 to form the through wiring 22.
 次いで、図示しないレジスト層を除去する。
 なお、貫通配線22の形成箇所は、図示の位置に限定されない。例えば、半導体チップ23上に被っている感光性樹脂層210を貫通する位置に設けられていてもよい。
Then, the resist layer not shown is removed.
In addition, the formation location of the penetration wiring 22 is not limited to the position of illustration. For example, it may be provided at a position passing through the photosensitive resin layer 210 covering the semiconductor chip 23.
 [6]
 次に、図4(g)に示すように、有機絶縁層21の上面側に上層配線層25を形成する。上層配線層25は、例えば、フォトリソグラフィー法およびめっき法を用いて形成される。
[6]
Next, as shown in FIG. 4G, the upper wiring layer 25 is formed on the upper surface side of the organic insulating layer 21. The upper wiring layer 25 is formed, for example, using a photolithography method and a plating method.
 [7]
 次に、図4(h)に示すように、基板202を剥離する。これにより、有機絶縁層21の下面が露出することとなる。
[7]
Next, as shown in FIG. 4H, the substrate 202 is peeled off. Thereby, the lower surface of the organic insulating layer 21 is exposed.
 [8]
 次に、図4(i)に示すように、有機絶縁層21の下面側に下層配線層24を形成する。下層配線層24は、例えば、フォトリソグラフィー法およびめっき法を用いて形成される。このようにして形成された下層配線層24は、貫通配線22を介して上層配線層25と電気的に接続される。
[8]
Next, as shown in FIG. 4I, the lower wiring layer 24 is formed on the lower surface side of the organic insulating layer 21. The lower wiring layer 24 is formed using, for example, a photolithography method and a plating method. The lower wiring layer 24 thus formed is electrically connected to the upper wiring layer 25 through the through wiring 22.
 [9]
 次に、図4(j)に示すように、下層配線層24に半田バンプ26を形成する。また、上層配線層25や下層配線層24には、必要に応じてソルダーレジスト層のような保護膜を形成するようにしてもよい。
[9]
Next, as shown in FIG. 4J, the solder bumps 26 are formed in the lower wiring layer 24. In addition, a protective film such as a solder resist layer may be formed on the upper wiring layer 25 and the lower wiring layer 24 as necessary.
 以上のようにして、貫通電極基板2が得られる。
 なお、図4(j)に示す貫通電極基板2は、複数の領域に分割可能になっている。したがって、例えば図4(j)に示す一点鎖線に沿って貫通電極基板2を個片化することにより、複数の貫通電極基板2を効率よく製造することができる。なお、個片化には、例えばダイヤモンドカッター等を用いることができる。
As described above, the through electrode substrate 2 is obtained.
The through electrode substrate 2 shown in FIG. 4 (j) can be divided into a plurality of regions. Therefore, for example, the through electrode substrate 2 can be efficiently manufactured by dividing the through electrode substrate 2 along the alternate long and short dash line shown in FIG. 4 (j). In addition, a diamond cutter etc. can be used for individualization, for example.
 [10]
 次に、個片化した貫通電極基板2上に半導体パッケージ3を配置する。これにより、図1に示す半導体装置1が得られる。
[10]
Next, the semiconductor package 3 is disposed on the singulated through electrode substrate 2. Thereby, the semiconductor device 1 shown in FIG. 1 is obtained.
 このような半導体装置1の製造方法は、大面積の基板を用いたウエハーレベルプロセスやパネルレベルプロセスに適用することが可能である。 Such a method of manufacturing the semiconductor device 1 can be applied to a wafer level process or a panel level process using a large area substrate.
 また、感光性樹脂組成物を含む感光性樹脂層210を用いることにより、半導体チップ23の配置、半導体チップ23の埋め込み、貫通配線22の形成、上層配線層25の形成および下層配線層24の形成を、ウエハーレベルプロセスやパネルレベルプロセスで行うことができる。これにより、半導体装置1の製造効率を高め、低コスト化を図ることができる。 Also, by using the photosensitive resin layer 210 containing the photosensitive resin composition, the arrangement of the semiconductor chip 23, the embedding of the semiconductor chip 23, the formation of the through wiring 22, the formation of the upper wiring layer 25, and the formation of the lower wiring layer 24. Can be performed in a wafer level process or a panel level process. As a result, the manufacturing efficiency of the semiconductor device 1 can be enhanced and the cost can be reduced.
<<第2実施形態>>
 次に、本発明の半導体装置の第2実施形態について説明する。
<< Second Embodiment >>
Next, a second embodiment of the semiconductor device of the present invention will be described.
 図5は、本発明の半導体装置の第2実施形態を示す縦断面図である。また、図6は、図5の鎖線で囲まれた領域の部分拡大図である。なお、以下の説明では、図5中の上側を「上」、下側を「下」と言う。 FIG. 5 is a longitudinal sectional view showing a second embodiment of the semiconductor device of the present invention. 6 is a partially enlarged view of a region surrounded by a dashed line in FIG. In the following description, the upper side in FIG. 5 is referred to as “upper” and the lower side as “lower”.
 以下、半導体装置の第2実施形態について、前記第1実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。 Hereinafter, the second embodiment of the semiconductor device will be described focusing on differences from the first embodiment, and the description of the same matters will be omitted.
1.半導体装置
 第2実施形態の半導体装置1では、有機絶縁層21に形成される貫通配線の構成が異なる点、および、上層配線層25が後述する感光性樹脂組成物を用いて形成されている点で前述した第1実施形態の半導体装置と異なるが、それ以外は、前述した第1実施形態の半導体装置1と同様である。
1. Semiconductor Device In the semiconductor device 1 of the second embodiment, the configuration of the through wiring formed in the organic insulating layer 21 is different, and the upper wiring layer 25 is formed using a photosensitive resin composition described later. The semiconductor device of the second embodiment is the same as the semiconductor device 1 of the first embodiment described above except for the semiconductor device of the first embodiment described above.
 本実施形態の半導体装置1では、図5および6に示すように、有機絶縁層21に、有機絶縁層21を貫通するように貫通配線221が設けられている。これにより、下層配線層24と上層配線層25との間が電気的に接続され、貫通電極基板2と半導体パッケージ3との積層が可能になるため、半導体装置1の高機能化を図ることができる。なお、貫通配線221の直径W(図6参照)は、特に限定されないが、前述した第1実施形態の半導体装置1の貫通配線22の直径Wと同じサイズとすることができる。
 また、本実施形態の半導体装置1は、貫通配線221の他に、半導体チップ23の上面に位置する有機絶縁層21を貫通するように設けられた貫通配線222も備えている。これにより、半導体チップ23の上面と上層配線層25との電気的接続を図ることができる。
In the semiconductor device 1 of the present embodiment, as shown in FIGS. 5 and 6, the organic insulating layer 21 is provided with the through wiring 221 so as to penetrate the organic insulating layer 21. As a result, the lower wiring layer 24 and the upper wiring layer 25 are electrically connected, and the through electrode substrate 2 and the semiconductor package 3 can be stacked. Therefore, the semiconductor device 1 can be highly functional. it can. The diameter W (see FIG. 6) of the through wiring 221 is not particularly limited, but may be the same size as the diameter W of the through wiring 22 of the semiconductor device 1 of the first embodiment described above.
In addition to the through wiring 221, the semiconductor device 1 according to the present embodiment also includes a through wiring 222 provided so as to penetrate the organic insulating layer 21 located on the top surface of the semiconductor chip 23. Thereby, the electrical connection between the upper surface of the semiconductor chip 23 and the upper wiring layer 25 can be achieved.
 さらに、図6に示す上層配線層25に含まれる配線層253は、貫通配線221や半田バンプ35と接続されている。このため、上層配線層25は、半導体チップ23と電気的に接続されることとなり、半導体チップ23の再配線層として機能するとともに、半導体チップ23とパッケージ基板31との間に介在するインターポーザーとしても機能する。
 また、上層配線層25は、後述する感光性樹脂組成物を用いて形成されており、感光性樹脂組成物の樹脂膜中に配線層253が埋設された構成を有する。このような半導体装置1では、配線層253に対する上層配線層25の密着性が良好であるため、信頼性が高くなる。
Furthermore, the wiring layer 253 included in the upper wiring layer 25 shown in FIG. 6 is connected to the through wiring 221 and the solder bump 35. Therefore, the upper wiring layer 25 is electrically connected to the semiconductor chip 23 and functions as a rewiring layer of the semiconductor chip 23 and as an interposer interposed between the semiconductor chip 23 and the package substrate 31. Also works.
The upper wiring layer 25 is formed by using a photosensitive resin composition described later, and has a structure in which the wiring layer 253 is embedded in the resin film of the photosensitive resin composition. In such a semiconductor device 1, the adhesion of the upper wiring layer 25 to the wiring layer 253 is good, so the reliability is high.
2.半導体装置の製造方法
 次に、図5に示す半導体装置1を製造する方法について説明する。
2. Method of Manufacturing Semiconductor Device Next, a method of manufacturing the semiconductor device 1 shown in FIG. 5 will be described.
 図7は、図5に示す半導体装置1を製造する方法を示す工程図である。また、図8~図10は、それぞれ図5に示す半導体装置1を製造する方法を説明するための図である。 FIG. 7 is a process diagram showing a method of manufacturing the semiconductor device 1 shown in FIG. 8 to 10 are views for explaining a method of manufacturing the semiconductor device 1 shown in FIG. 5, respectively.
 本実施形態の半導体装置1の製造方法は、基板202上に設けられた半導体チップ23および貫通配線221、222を埋め込むように有機絶縁層21を得るチップ配置工程S1と、有機絶縁層21上および半導体チップ23上に上層配線層25を形成する上層配線層形成工程S2と、基板202を剥離する基板剥離工程S3と、下層配線層24を形成する下層配線層形成工程S4と、半田バンプ26を形成し、貫通電極基板2を得る半田バンプ形成工程S5と、貫通電極基板2上に半導体パッケージ3を積層する積層工程S6と、を有する。 In the method of manufacturing the semiconductor device 1 of the present embodiment, a chip disposing step S1 of obtaining the organic insulating layer 21 so as to embed the semiconductor chip 23 and the through wires 221 and 222 provided on the substrate 202; The upper wiring layer forming step S2 for forming the upper wiring layer 25 on the semiconductor chip 23, the substrate peeling step S3 for peeling the substrate 202, the lower wiring layer forming step S4 for forming the lower wiring layer 24, and the solder bumps 26. A solder bump forming step S5 for forming the through electrode substrate 2 and a laminating step S6 for laminating the semiconductor package 3 on the through electrode substrate 2 are provided.
 このうち、上層配線層形成工程S2は、有機絶縁層21上および半導体チップ23上に感光性樹脂ワニス5を配置し、感光性樹脂層2510を得る第1樹脂膜配置工程S20と、感光性樹脂層2510に露光処理を施す第1露光工程S21と、感光性樹脂層2510に現像処理を施す第1現像工程S22と、感光性樹脂層2510に硬化処理を施す第1硬化工程S23と、配線層253を形成する配線層形成工程S24と、感光性樹脂層2510および配線層253上に感光性樹脂ワニス5を配置し、感光性樹脂層2520を得る第2樹脂膜配置工程S25と、感光性樹脂層2520に露光処理を施す第2露光工程S26と、感光性樹脂層2520に現像処理を施す第2現像工程S27と、感光性樹脂層2520に硬化処理を施す第2硬化工程S28と、開口部424(貫通孔)に貫通配線254を形成する貫通配線形成工程S29と、を含む。 Among them, in the upper wiring layer forming step S2, a photosensitive resin varnish 5 is disposed on the organic insulating layer 21 and the semiconductor chip 23, and a first resin film disposing step S20 for obtaining a photosensitive resin layer 2510; A first exposure step S21 for exposing the layer 2510, a first development step S22 for developing the photosensitive resin layer 2510, a first curing step S23 for curing the photosensitive resin layer 2510, and a wiring layer Wiring layer forming step S 24 for forming the second resin film, a second resin film arranging step S 25 for arranging the photosensitive resin varnish 5 on the photosensitive resin layer 25 10 and the wiring layer 253 to obtain the photosensitive resin layer 25 20, and photosensitive resin A second exposure step S26 for exposing the layer 2520, a second development step S27 for developing the photosensitive resin layer 2520, and a second curing for curing the photosensitive resin layer 2520 Extent including the S28, and the through wiring forming step S29 of forming the through wiring 254 to the opening 424 (the through hole), the.
 以下、各工程について順次説明する。なお、以下の製造方法は一例であり、これに限定されるものではない。 The respective steps will be sequentially described below. In addition, the following manufacturing method is an example, and is not limited to this.
 [1]チップ配置工程S1
 まず、図8(a)に示すように、基板202と、基板202上に設けられた半導体チップ23および貫通配線221、222と、これらを埋め込むように設けられた有機絶縁層21と、を備えるチップ埋込構造体27を用意する。
[1] Chip placement step S1
First, as shown in FIG. 8A, the substrate 202, the semiconductor chip 23 and the through wires 221 and 222 provided on the substrate 202, and the organic insulating layer 21 provided to embed them are provided. The chip embedded structure 27 is prepared.
 基板202の構成材料としては、特に限定されないが、例えば、金属材料、ガラス材料、セラミック材料、半導体材料、有機材料等が挙げられる。また、基板202には、シリコンウエハーのような半導体ウエハー、ガラスウエハー等を用いるようにしてもよい。 The constituent material of the substrate 202 is not particularly limited, and examples thereof include metal materials, glass materials, ceramic materials, semiconductor materials, organic materials and the like. Further, as the substrate 202, a semiconductor wafer such as a silicon wafer, a glass wafer, or the like may be used.
 半導体チップ23は、基板202上に接着されている。本製造方法では、一例として、複数の半導体チップ23を互いに離間させつつ同一の基板202上に併設する。複数の半導体チップ23は、互いに同じ種類のものであってもよいし、互いに異なる種類のものであってもよい。また、ダイアタッチフィルムのような接着剤層(図示せず)を介して基板202と半導体チップ23との間を固定するようにしてもよい。 The semiconductor chip 23 is bonded onto the substrate 202. In this manufacturing method, as an example, a plurality of semiconductor chips 23 are provided on the same substrate 202 while being separated from each other. The plurality of semiconductor chips 23 may be of the same type as each other or may be of different types. Alternatively, the substrate 202 and the semiconductor chip 23 may be fixed via an adhesive layer (not shown) such as a die attach film.
 なお、必要に応じて、基板202と半導体チップ23との間にインターポーザー(図示せず)を設けるようにしてもよい。インターポーザーは、例えば半導体チップ23の再配線層として機能する。したがって、インターポーザーは、後述する半導体チップ23の電極と電気的に接続させるための図示しないパッドを備えていてもよい。これにより、半導体チップ23のパッド間隔や配列パターンを変換することができ、半導体装置1の設計自由度をより高めることができる。 Note that, if necessary, an interposer (not shown) may be provided between the substrate 202 and the semiconductor chip 23. The interposer functions as, for example, a rewiring layer of the semiconductor chip 23. Therefore, the interposer may be provided with a pad (not shown) for electrically connecting with the electrode of the semiconductor chip 23 described later. Thereby, the pad spacing and the arrangement pattern of the semiconductor chip 23 can be converted, and the design freedom of the semiconductor device 1 can be further enhanced.
 このようなインターポーザーには、例えば、シリコン基板、セラミック基板、ガラス基板のような無機系基板、樹脂基板のような有機系基板等が用いられる。 For example, a silicon substrate, a ceramic substrate, an inorganic substrate such as a glass substrate, an organic substrate such as a resin substrate, or the like is used for such an interposer.
 有機絶縁層21は、例えば後述する感光性樹脂組成物の成分として挙げたような熱硬化性樹脂や熱可塑性樹脂を含む樹脂膜である。 The organic insulating layer 21 is, for example, a resin film containing a thermosetting resin or a thermoplastic resin as mentioned as a component of the photosensitive resin composition described later.
 貫通配線221、222の構成材料としては、例えば銅または銅合金、アルミニウムまたはアルミニウム合金、金または金合金、銀または銀合金、ニッケルまたはニッケル合金等が挙げられる。 As a constituent material of penetration wiring 221 and 222, copper or copper alloy, aluminum or aluminum alloy, gold or gold alloy, silver or silver alloy, nickel or nickel alloy etc. are mentioned, for example.
 なお、上記とは異なる方法で作製したチップ埋込構造体27を用意するようにしてもよい。 The chip embedded structure 27 manufactured by a method different from the above may be prepared.
 [2]上層配線層形成工程S2
 次に、有機絶縁層21上および半導体チップ23上に、上層配線層25を形成する。
[2] Upper Wiring Layer Forming Step S2
Next, the upper wiring layer 25 is formed on the organic insulating layer 21 and the semiconductor chip 23.
  [2-1]第1樹脂膜配置工程S20
 まず、図8(b)に示すように、有機絶縁層21上および半導体チップ23上に感光性樹脂ワニス5を塗布する(配置する)。これにより、図8(c)に示すように、感光性樹脂ワニス5の液状被膜が得られる。感光性樹脂ワニス5は、後述する感光性樹脂組成物のワニスである。
[2-1] First resin film disposing step S20
First, as shown in FIG. 8B, the photosensitive resin varnish 5 is applied (disposed) on the organic insulating layer 21 and the semiconductor chip 23. Thereby, as shown in FIG. 8C, a liquid film of the photosensitive resin varnish 5 is obtained. The photosensitive resin varnish 5 is a varnish of a photosensitive resin composition described later.
 感光性樹脂ワニス5の塗布は、例えば、スピンコーター、バーコーター、スプレー装置、インクジェット装置等を用いて行われる。 The application of the photosensitive resin varnish 5 is performed using, for example, a spin coater, a bar coater, a spray device, an inkjet device, or the like.
 感光性樹脂ワニス5の粘度は、特に限定されないが、10~700mPa・sであるのが好ましく、30~400mPa・sであるのがより好ましい。感光性樹脂ワニス5の粘度が前記範囲内であることにより、より薄い感光性樹脂層2510(図8(d)参照)を形成することができる。その結果、上層配線層25をより薄くすることができ、半導体装置1の薄型化が容易になる。 The viscosity of the photosensitive resin varnish 5 is not particularly limited, but is preferably 10 to 700 mPa · s, and more preferably 30 to 400 mPa · s. By setting the viscosity of the photosensitive resin varnish 5 within the above range, a thinner photosensitive resin layer 2510 (see FIG. 8D) can be formed. As a result, the upper wiring layer 25 can be made thinner, and the semiconductor device 1 can be easily made thinner.
 なお、感光性樹脂ワニス5の粘度は、例えば、コーンプレート型粘度計(TV-25、東機産業製)を用い、回転速度50rpm、測定時間300秒の条件で測定された値とされる。 The viscosity of the photosensitive resin varnish 5 is, for example, a value measured using a cone-plate viscometer (TV-25, manufactured by Toki Sangyo Co., Ltd.) under the conditions of a rotational speed of 50 rpm and a measuring time of 300 seconds.
 次に、感光性樹脂ワニス5の液状被膜を乾燥させる。これにより、図8(d)に示す感光性樹脂層2510を得る。 Next, the liquid film of the photosensitive resin varnish 5 is dried. Thereby, the photosensitive resin layer 2510 shown in FIG. 8D is obtained.
 感光性樹脂ワニス5の乾燥条件は、特に限定されないが、例えば80~150℃の温度で、1~60分間加熱する条件が挙げられる。 The drying conditions of the photosensitive resin varnish 5 are not particularly limited, and for example, the conditions of heating at a temperature of 80 to 150 ° C. for 1 to 60 minutes may be mentioned.
 なお、本工程では、感光性樹脂ワニス5を塗布するプロセスに代えて、感光性樹脂ワニス5をフィルム化してなる感光性樹脂フィルムを配置するプロセスを採用するようにしてもよい。 In this process, instead of the process of applying the photosensitive resin varnish 5, a process of disposing a photosensitive resin film formed by converting the photosensitive resin varnish 5 into a film may be adopted.
 感光性樹脂フィルムは、例えば感光性樹脂ワニス5を各種塗布装置によってキャリアーフィルム等の下地上に塗布し、その後、得られた塗膜を乾燥させることによって製造される。 The photosensitive resin film is manufactured, for example, by applying the photosensitive resin varnish 5 on the lower surface of the carrier film or the like by various coating devices and then drying the obtained coating film.
 その後、必要に応じて、感光性樹脂層2510に対して露光前加熱処理を施す。露光前加熱処理を施すことにより、感光性樹脂層2510に含まれる分子が安定化して、後述する第1露光工程S21における反応の安定化を図ることができ、その一方、後述するような加熱条件で加熱されることで、加熱による光酸発生剤への悪影響を最小限に留めることができる。 Thereafter, the photosensitive resin layer 2510 is subjected to a pre-exposure heat treatment, as necessary. By performing the pre-exposure heat treatment, the molecules contained in the photosensitive resin layer 2510 can be stabilized, and the reaction in the first exposure step S21 described later can be stabilized, while the heating conditions as described later By heating with the above, the adverse effect of the heating on the photoacid generator can be minimized.
 露光前加熱処理の温度は、好ましくは70~130℃とされ、より好ましくは75~120℃とされ、さらに好ましくは80~110℃とされる。露光前加熱処理の温度が前記下限値を下回ると、露光前加熱処理による分子の安定化という目的が果たされないおそれがある。一方、露光前加熱処理の温度が前記上限値を上回ると、光酸発生剤の動きが活発になりすぎ、後述する第1露光工程S21において光が照射されても酸が発生しにくくなるという影響が広範囲化してパターニングの加工精度が低下するおそれがある。 The temperature of the heat treatment before exposure is preferably 70 to 130 ° C., more preferably 75 to 120 ° C., and still more preferably 80 to 110 ° C. If the temperature of the pre-exposure heat treatment is below the lower limit value, the purpose of the stabilization of molecules by the pre-exposure heat treatment may not be achieved. On the other hand, when the temperature of the pre-exposure heat treatment exceeds the upper limit value, the movement of the photoacid generator becomes too active, and the acid is less likely to be generated even when light is irradiated in the first exposure step S21 described later. However, the processing accuracy of patterning may be lowered.
 また、露光前加熱処理の時間は、露光前加熱処理の温度に応じて適宜設定されるが、前記温度において好ましくは1~10分間とされ、より好ましくは2~8分間とされ、さらに好ましくは3~6分間とされる。露光前加熱処理の時間が前記下限値を下回ると、加熱時間が不足するため、露光前加熱処理による分子の安定化という目的が果たされないおそれがある。一方、露光前加熱処理の時間が前記上限値を上回ると、加熱時間が長すぎるため、露光前加熱処理の温度が前記範囲内に収まっていたとしても、光酸発生剤の作用が阻害されてしまうおそれがある。 The time of the pre-exposure heat treatment is appropriately set according to the temperature of the pre-exposure heat treatment, but is preferably 1 to 10 minutes, more preferably 2 to 8 minutes at the temperature, and more preferably 3 to 6 minutes. If the time of the pre-exposure heat treatment is below the lower limit value, the heating time is insufficient, so that the purpose of the stabilization of the molecules by the pre-exposure heat treatment may not be achieved. On the other hand, if the pre-exposure heat treatment time exceeds the upper limit value, the heating time is too long, so even if the pre-exposure heat treatment temperature falls within the above range, the action of the photoacid generator is inhibited. There is a risk of
 また、加熱処理の雰囲気は、特に限定されず、不活性ガス雰囲気や還元性ガス雰囲気等であってもよいが、作業効率等を考慮すれば大気下とされる。 Further, the atmosphere of the heat treatment is not particularly limited, and may be an inert gas atmosphere, a reducing gas atmosphere, or the like, but it is in the air in consideration of work efficiency and the like.
 また、雰囲気圧力は、特に限定されず、減圧下や加圧下であってもよいが、作業効率等を考慮すれば常圧とされる。なお、常圧とは、30~150kPa程度の圧力のことをいい、好ましくは大気圧である。 Further, the atmospheric pressure is not particularly limited, and may be under reduced pressure or under pressure, but it is normal pressure in consideration of work efficiency and the like. The normal pressure means a pressure of about 30 to 150 kPa, preferably atmospheric pressure.
  [2-2]第1露光工程S21
 次に、感光性樹脂層2510に露光処理を施す。
[2-2] First Exposure Step S21
Next, the photosensitive resin layer 2510 is exposed.
 まず、図8(d)に示すように、感光性樹脂層2510上の所定の領域にマスク412を配置する。そして、マスク412を介して光(活性放射線)を照射する。これにより、マスク412のパターンに応じて感光性樹脂層2510に露光処理が施される。 First, as shown in FIG. 8D, a mask 412 is disposed in a predetermined region on the photosensitive resin layer 2510. Then, light (actinic radiation) is emitted through the mask 412. Thus, the photosensitive resin layer 2510 is exposed according to the pattern of the mask 412.
 なお、図8(d)では、感光性樹脂層2510がいわゆるネガ型の感光性を有している場合を図示している。この例では、感光性樹脂層2510のうち、マスク412の遮光部に対応する領域に対して、現像液に対する溶解性が付与されることとなる。 FIG. 8D shows the case where the photosensitive resin layer 2510 has so-called negative type photosensitivity. In this example, in the photosensitive resin layer 2510, the solubility in the developing solution is given to the region corresponding to the light shielding portion of the mask 412.
 一方、マスク412の透過部に対応する領域では、感光剤の作用によって例えば酸のような触媒が発生する。発生した酸は、後述する工程において、熱硬化性樹脂の反応の触媒として作用する。 On the other hand, in the region corresponding to the transmission part of the mask 412, a catalyst such as an acid is generated by the action of the photosensitizer. The generated acid acts as a catalyst for the reaction of the thermosetting resin in the process described later.
 また、露光処理における露光量は、特に限定されないが、100~2000mJ/cmであるのが好ましく、200~1000mJ/cmであるのがより好ましい。これにより、感光性樹脂層2510における露光不足および露光過剰を抑制することができる。その結果、最終的に高いパターニング精度を実現することができる。
 その後、必要に応じて、感光性樹脂層2510に露光後加熱処理を施す。
The exposure dose in the exposure process is not particularly limited, but is preferably 100 to 2000 mJ / cm 2 , and more preferably 200 to 1000 mJ / cm 2 . Thereby, underexposure and overexposure in the photosensitive resin layer 2510 can be suppressed. As a result, high patterning accuracy can finally be realized.
Thereafter, if necessary, the photosensitive resin layer 2510 is subjected to a post-exposure heat treatment.
 露光後加熱処理の温度は、特に限定されないが、好ましくは50~150℃とされ、より好ましくは50~130℃とされ、さらに好ましくは55~120℃とされ、特に好ましくは60~110℃とされる。このような温度で露光後加熱処理を施すことにより、発生した酸の触媒作用が十分に増強され、熱硬化性樹脂をより短時間でかつ十分に反応させることができる。一方、温度が高すぎると、酸の拡散が促進されることとなり、パターニングの加工精度が低下するおそれがあるが、前記範囲内であればかかる懸念を低減することができる。 The temperature of the heat treatment after exposure is not particularly limited, but is preferably 50 to 150 ° C., more preferably 50 to 130 ° C., still more preferably 55 to 120 ° C., particularly preferably 60 to 110 ° C. Be done. By performing the post-exposure heat treatment at such a temperature, the catalytic action of the generated acid is sufficiently enhanced, and the thermosetting resin can be sufficiently reacted in a short time. On the other hand, if the temperature is too high, the diffusion of the acid is promoted, and there is a possibility that the processing accuracy of the patterning may be reduced, but if it is within the above range, such concern can be reduced.
 なお、露光後加熱処理の温度が前記下限値を下回ると、酸のような触媒の作用が十分に高められないため、熱硬化性樹脂の反応率が低下したり、時間を要したりするおそれがある。一方、露光後加熱処理の温度が前記上限値を上回ると、酸の拡散が促進され(広範囲化し)、パターニングの加工精度が低下するおそれがある。 If the temperature of the post-exposure heat treatment is below the lower limit, the action of the catalyst such as acid can not be sufficiently enhanced, which may lower the reaction rate of the thermosetting resin or require time. There is. On the other hand, when the temperature of the post-exposure heat treatment exceeds the upper limit value, the diffusion of the acid is promoted (widened), and the processing accuracy of patterning may be lowered.
 一方、露光後加熱処理の時間は、露光後加熱処理の温度に応じて適宜設定されるが、前記温度において好ましくは1~30分間とされ、より好ましくは2~20分間とされ、さらに好ましくは3~15分間とされる。このような時間で露光後加熱処理を施すことにより、熱硬化性樹脂を十分に反応させることができるとともに、酸の拡散を抑えてパターニングの加工精度が低下するのを抑制することができる。 On the other hand, although the time of post-exposure heat treatment is appropriately set according to the temperature of post-exposure heat treatment, it is preferably 1 to 30 minutes, more preferably 2 to 20 minutes at the temperature, and more preferably 3-15 minutes. By performing the post-exposure heat treatment for such time, the thermosetting resin can be reacted sufficiently, and the diffusion of the acid can be suppressed to suppress the decrease in the processing accuracy of the patterning.
 また、露光後加熱処理の雰囲気は、特に限定されず、不活性ガス雰囲気や還元性ガス雰囲気等であってもよいが、作業効率等を考慮すれば大気下とされる。 Further, the atmosphere for the post-exposure heat treatment is not particularly limited, and may be an inert gas atmosphere, a reducing gas atmosphere, or the like, but it is under the atmosphere in consideration of work efficiency and the like.
 また、露光後加熱処理の雰囲気圧力は、特に限定されず、減圧下や加圧下であってもよいが、作業効率等を考慮すれば常圧とされる。これにより、比較的容易に露光前加熱処理を施すことができる。なお、常圧とは、30~150kPa程度の圧力のことをいい、好ましくは大気圧である。 Further, the atmospheric pressure of the post-exposure heat treatment is not particularly limited, and may be under reduced pressure or under pressure, but it is normal pressure in consideration of work efficiency and the like. Thus, the pre-exposure heat treatment can be performed relatively easily. The normal pressure means a pressure of about 30 to 150 kPa, preferably atmospheric pressure.
  [2-3]第1現像工程S22
 次に、感光性樹脂層2510に現像処理を施す。これにより、マスク412の遮光部に対応した領域に、感光性樹脂層2510を貫通する開口部423が形成される(図9(e)参照)。
 現像液としては、例えば、有機系現像液、水溶性現像液等が挙げられる。
[2-3] First Development Step S22
Next, the photosensitive resin layer 2510 is developed. Thus, an opening 423 penetrating the photosensitive resin layer 2510 is formed in a region corresponding to the light shielding portion of the mask 412 (see FIG. 9E).
As a developing solution, an organic type developing solution, a water-soluble developing solution, etc. are mentioned, for example.
  [2-4]第1硬化工程S23
 現像処理の後、感光性樹脂層2510に対して硬化処理(現像後加熱処理)を施す。硬化処理の条件は、特に限定されないが、160~250℃程度の加熱温度で、30~240分程度の加熱時間とされる。これにより、半導体チップ23に対する熱影響を抑えつつ、感光性樹脂層2510を硬化させ、有機絶縁層251を得ることができる。
[2-4] 1st hardening process S23
After the development process, the photosensitive resin layer 2510 is cured (heat treatment after development). Conditions for the curing treatment are not particularly limited, but the heating temperature is about 160 to 250 ° C., and the heating time is about 30 to 240 minutes. Thus, the photosensitive resin layer 2510 can be cured to obtain the organic insulating layer 251 while suppressing the thermal influence on the semiconductor chip 23.
  [2-5]配線層形成工程S24
 次に、有機絶縁層251上に配線層253を形成する(図9(f)参照)。配線層253は、例えばスパッタリング法、真空蒸着法等の気相成膜法を用いて金属層を得た後、フォトリソグラフィー法およびエッチング法によりパターニングされることによって形成される。
[2-5] Wiring layer formation process S24
Next, the wiring layer 253 is formed on the organic insulating layer 251 (see FIG. 9F). The wiring layer 253 is formed, for example, by obtaining a metal layer using a vapor deposition method such as a sputtering method or a vacuum evaporation method, and then patterning the metal layer using a photolithography method and an etching method.
 なお、配線層253の形成に先立ち、プラズマ処理のような表面改質処理を施すようにしてもよい。 Before the formation of the wiring layer 253, a surface modification process such as a plasma process may be performed.
  [2-6]第2樹脂膜配置工程S25
 次に、図9(g)に示すように、第1樹脂膜配置工程S20と同様にして感光性樹脂層2520を得る。感光性樹脂層2520は、配線層253を覆うように配置される。
[2-6] Second resin film disposing step S25
Next, as shown in FIG. 9G, a photosensitive resin layer 2520 is obtained in the same manner as in the first resin film disposing step S20. The photosensitive resin layer 2520 is disposed to cover the wiring layer 253.
 その後、必要に応じて、感光性樹脂層2520に対して露光前加熱処理を施す。処理条件は、例えば第1樹脂膜配置工程S20で記載した条件とされる。 Thereafter, the photosensitive resin layer 2520 is subjected to a pre-exposure heat treatment, as necessary. The processing conditions are, for example, the conditions described in the first resin film disposing step S20.
  [2-7]第2露光工程S26
 次に、感光性樹脂層2520に露光処理を施す。処理条件は、例えば第1露光工程S21で記載した条件とされる。
[2-7] Second Exposure Step S26
Next, the photosensitive resin layer 2520 is exposed. The processing conditions are, for example, the conditions described in the first exposure step S21.
 その後、必要に応じて、感光性樹脂層2520に対して露光後加熱処理を施す。処理条件は、例えば第1露光工程S21で記載した条件とされる。 Thereafter, the photosensitive resin layer 2520 is subjected to a post-exposure heat treatment, as necessary. The processing conditions are, for example, the conditions described in the first exposure step S21.
  [2-8]第2現像工程S27
 次に、感光性樹脂層2520に現像処理を施す。処理条件は、例えば第1現像工程S22で記載した条件とされる。これにより、感光性樹脂層2510、2520を貫通する開口部424が形成される(図9(h)参照)。
[2-8] Second Development Step S27
Next, the photosensitive resin layer 2520 is developed. The processing conditions are, for example, the conditions described in the first development step S22. Thus, an opening 424 penetrating the photosensitive resin layers 2510 and 2520 is formed (see FIG. 9H).
  [2-9]第2硬化工程S28
 現像処理の後、感光性樹脂層2520に対して硬化処理(現像後加熱処理)を施す。硬化条件は、例えば第1硬化工程S23で記載した条件とされる。これにより、感光性樹脂層2520を硬化させ、有機絶縁層252を得る(図10(i)参照)。
[2-9] Second curing step S28
After the development process, the photosensitive resin layer 2520 is cured (heat treatment after development). The curing conditions are, for example, the conditions described in the first curing step S23. Thus, the photosensitive resin layer 2520 is cured to obtain the organic insulating layer 252 (see FIG. 10I).
 なお、本実施形態では、上層配線層25が有機絶縁層251と有機絶縁層252の2層を有しているが、3層以上を有していてもよい。この場合、第2硬化工程S28の後、配線層形成工程S24から第2硬化工程S28までの一連の工程を繰り返し追加するようにすればよい。 In the present embodiment, although the upper wiring layer 25 has two layers of the organic insulating layer 251 and the organic insulating layer 252, it may have three or more layers. In this case, after the second curing step S28, a series of steps from the wiring layer forming step S24 to the second curing step S28 may be repeatedly added.
  [2-10]貫通配線形成工程S29
 次に、開口部424に対し、図10(i)に示す貫通配線254を形成する。
[2-10] Through wiring forming process S29
Next, the through wiring 254 shown in FIG. 10I is formed in the opening 424.
 貫通配線254の形成には、公知の方法が用いられるが、例えば以下の方法が用いられる。 A known method is used to form the through wiring 254, and for example, the following method is used.
 まず、有機絶縁層252上に、図示しないシード層を形成する。シード層は、開口部424の内面(側面および底面)とともに、有機絶縁層252の上面に形成される。 First, on the organic insulating layer 252, a seed layer (not shown) is formed. The seed layer is formed on the top surface of the organic insulating layer 252 together with the inner surface (side surface and bottom surface) of the opening 424.
 シード層としては、例えば、銅シード層が用いられる。また、シード層は、例えばスパッタリング法により形成される。 As a seed layer, for example, a copper seed layer is used. Also, the seed layer is formed, for example, by sputtering.
 また、シード層は、形成しようとする貫通配線254と同種の金属で構成されていてもよいし、異種の金属で構成されていてもよい。 Also, the seed layer may be made of the same kind of metal as the through wiring 254 to be formed, or may be made of different kinds of metal.
 次いで、図示しないシード層のうち、開口部424以外の領域上に図示しないレジスト層を形成する。そして、このレジスト層をマスクとして、開口部424内に金属を充填する。この充填には、例えば電解めっき法が用いられる。充填される金属としては、例えば銅または銅合金、アルミニウムまたはアルミニウム合金、金または金合金、銀または銀合金、ニッケルまたはニッケル合金等が挙げられる。このようにして開口部424内に導電性材料が埋設され、貫通配線254が形成される。 Next, a resist layer (not shown) is formed on the region other than the opening 424 in the seed layer (not shown). Then, metal is filled in the opening 424 using the resist layer as a mask. For example, electrolytic plating is used for this filling. Examples of the metal to be filled include copper or copper alloy, aluminum or aluminum alloy, gold or gold alloy, silver or silver alloy, nickel or nickel alloy, and the like. Thus, the conductive material is embedded in the opening 424 to form the through wiring 254.
 次いで、図示しないレジスト層を除去する。さらに、有機絶縁層252上の図示しないシード層を除去する。これには、例えばフラッシュエッチング法を用いることができる。
 なお、貫通配線254の形成箇所は、図示の位置に限定されない。
Then, the resist layer not shown is removed. Further, the seed layer (not shown) on the organic insulating layer 252 is removed. For this, for example, a flash etching method can be used.
In addition, the formation location of the penetration wiring 254 is not limited to the position of illustration.
 [3]基板剥離工程S3
 次に、図10(j)に示すように、基板202を剥離する。これにより、有機絶縁層21の下面が露出することとなる。
[3] Substrate peeling process S3
Next, as shown in FIG. 10J, the substrate 202 is peeled off. Thereby, the lower surface of the organic insulating layer 21 is exposed.
 [4]下層配線層形成工程S4
 次に、図10(k)に示すように、有機絶縁層21の下面側に下層配線層24を形成する。下層配線層24は、いかなる方法で形成されてもよく、例えば上述した上層配線層形成工程S2と同様にして形成されてもよい。
[4] Lower layer wiring layer forming step S4
Next, as shown in FIG. 10K, the lower wiring layer 24 is formed on the lower surface side of the organic insulating layer 21. The lower wiring layer 24 may be formed by any method, and may be formed, for example, in the same manner as the above-described upper wiring layer forming step S2.
 このようにして形成された下層配線層24は、貫通配線221を介して上層配線層25と電気的に接続される。 The lower wiring layer 24 formed in this manner is electrically connected to the upper wiring layer 25 through the through wiring 221.
 [5]半田バンプ形成工程S5
 次に、図10(L)に示すように、下層配線層24に半田バンプ26を形成する。また、上層配線層25や下層配線層24には、必要に応じてソルダーレジスト層のような保護膜を形成するようにしてもよい。
 以上のようにして、貫通電極基板2が得られる。
[5] Solder bump forming step S5
Next, as shown in FIG. 10L, the solder bumps 26 are formed in the lower wiring layer 24. In addition, a protective film such as a solder resist layer may be formed on the upper wiring layer 25 and the lower wiring layer 24 as necessary.
As described above, the through electrode substrate 2 is obtained.
 なお、図10(L)に示す貫通電極基板2は、複数の領域に分割可能になっている。したがって、例えば図10(L)に示す一点鎖線に沿って貫通電極基板2を個片化することにより、複数の貫通電極基板2を効率よく製造することができる。なお、個片化には、例えばダイヤモンドカッター等を用いることができる。 The through electrode substrate 2 shown in FIG. 10L can be divided into a plurality of regions. Therefore, the plurality of through electrode substrates 2 can be efficiently manufactured, for example, by dividing the through electrode substrate 2 along the alternate long and short dash line shown in FIG. 10 (L). In addition, a diamond cutter etc. can be used for individualization, for example.
 [6]積層工程S6
 次に、個片化した貫通電極基板2上に半導体パッケージ3を配置する。これにより、図5に示す半導体装置1が得られる。
[6] Stacking process S6
Next, the semiconductor package 3 is disposed on the singulated through electrode substrate 2. Thereby, the semiconductor device 1 shown in FIG. 5 is obtained.
 このような半導体装置1の製造方法は、大面積の基板を用いたウエハーレベルプロセスやパネルレベルプロセスに適用することが可能である。これにより、半導体装置1の製造効率を高め、低コスト化を図ることができる。 Such a method of manufacturing the semiconductor device 1 can be applied to a wafer level process or a panel level process using a large area substrate. As a result, the manufacturing efficiency of the semiconductor device 1 can be enhanced and the cost can be reduced.
<ネガ型感光性樹脂組成物>
 次に、本実施形態に係るネガ型感光性樹脂組成物(以下、単に「感光性樹脂組成物」ともいう。)の各成分について説明する。なお、本発明の感光性樹脂組成物は、ワニス状の溶液でも、フィルム状であってもよい。
<Negative photosensitive resin composition>
Next, each component of the negative photosensitive resin composition (hereinafter, also simply referred to as "photosensitive resin composition") according to the present embodiment will be described. The photosensitive resin composition of the present invention may be a varnish-like solution or a film.
 本実施形態に係る感光性樹脂組成物は、熱硬化性樹脂と、感光剤としての光重合開始剤と、官能基として酸無水物を含有するカップリング剤と、を含む。このような感光性樹脂組成物は、カップリング剤の作用により、半導体チップ23、貫通配線22、221、222および配線層253等の無機材料および金属材料に対する密着性が良好な有機絶縁層21の形成が可能になる。 The photosensitive resin composition according to the present embodiment contains a thermosetting resin, a photopolymerization initiator as a photosensitizer, and a coupling agent containing an acid anhydride as a functional group. Such a photosensitive resin composition has good adhesion to inorganic materials and metal materials such as the semiconductor chip 23, the through wires 22, 221 and 222 and the wiring layer 253 by the action of the coupling agent. It becomes possible to form.
 (熱硬化性樹脂)
 熱硬化性樹脂は、例えば常温(25℃)において半硬化(固形)の熱硬化性樹脂を含むことが好ましい。このような熱硬化性樹脂は、成形時に加熱、加圧されることによって溶融し、所望の形状に成形されつつ硬化に至る。これにより、熱硬化性樹脂の特性を活かした有機絶縁層21、251、252が得られる。
(Thermosetting resin)
The thermosetting resin preferably includes, for example, a semi-hardening (solid) thermosetting resin at normal temperature (25 ° C.). Such a thermosetting resin is melted by being heated and pressurized at the time of molding, and is cured while being molded into a desired shape. As a result, organic insulating layers 21, 251, 252 utilizing the characteristics of the thermosetting resin can be obtained.
 熱硬化性樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂のようなノボラック型エポキシ樹脂、クレゾールナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フェノキシ樹脂、ナフタレン骨格型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールAジグリシジルエーテル型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールFジグリシジルエーテル型エポキシ樹脂、ビスフェノールSジグリシジルエーテル型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、芳香族多官能エポキシ樹脂、脂肪族エポキシ樹脂、脂肪族多官能エポキシ樹脂、脂環式エポキシ樹脂、多官能脂環式エポキシ樹脂等のエポキシ樹脂;ユリア(尿素)樹脂、メラミン樹脂等のトリアジン環を有する樹脂;不飽和ポリエステル樹脂;ビスマレイミド化合物等のマレイミド樹脂;ポリウレタン樹脂;ジアリルフタレート樹脂;シリコーン系樹脂;ベンゾオキサジン樹脂;ポリイミド樹脂;ポリアミドイミド樹脂;ベンゾシクロブテン樹脂、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のシアネート樹脂等のシアネートエステル樹脂等が挙げられる。また、熱硬化性樹脂では、これらの中の1種類を単独で用いてもよいし、異なる重量平均分子量を有する2種類以上を併用してもよく、1種類または2種類以上と、それらのプレポリマーとを併用してもよい。 As the thermosetting resin, for example, phenol novolac epoxy resin, novolac epoxy resin such as cresol novolac epoxy resin, cresol naphthol epoxy resin, biphenyl epoxy resin, biphenyl aralkyl epoxy resin, phenoxy resin, naphthalene skeleton Epoxy resin, bisphenol A epoxy resin, bisphenol A diglycidyl ether epoxy resin, bisphenol F epoxy resin, bisphenol F diglycidyl ether epoxy resin, bisphenol S diglycidyl ether epoxy resin, glycidyl ether epoxy resin, cresol Novolak type epoxy resin, aromatic polyfunctional epoxy resin, aliphatic epoxy resin, aliphatic polyfunctional epoxy resin, alicyclic epoxy resin, polyfunctional Epoxy resin such as alicyclic epoxy resin; resin having a triazine ring such as urea (urea) resin, melamine resin; unsaturated polyester resin; maleimide resin such as bismaleimide compound; polyurethane resin; diallyl phthalate resin; silicone resin; Benzoxazine resin; polyimide resin; polyamideimide resin; benzocyclobutene resin, novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, cyanate resin such as tetramethyl bisphenol F type cyanate resin, etc. Can be mentioned. Moreover, in the thermosetting resin, one of these may be used alone, or two or more having different weight average molecular weights may be used in combination, and one or two or more of them may be used. You may use together with a polymer.
 このうち、熱硬化性樹脂としては、エポキシ樹脂を含むものが好ましく用いられる。
 エポキシ樹脂としては、例えば1分子中にエポキシ基が2個以上である多官能エポキシ樹脂が挙げられる。多官能エポキシ樹脂は1分子中に複数のエポキシ基を有しているため、光重合開始剤との反応性が高い。そのため、感光性樹脂組成物の樹脂膜に対して比較的少量、短時間の露光処理を行う場合でも、十分に樹脂膜を硬化させることができる。また、多官能エポキシ樹脂は単独で用いても、上述した複数の各種熱硬化性樹脂と組み合わせて用いてもよい。
Among them, as the thermosetting resin, those containing an epoxy resin are preferably used.
Examples of the epoxy resin include polyfunctional epoxy resins in which two or more epoxy groups are contained in one molecule. The polyfunctional epoxy resin has a plurality of epoxy groups in one molecule, and thus has high reactivity with the photopolymerization initiator. Therefore, the resin film can be sufficiently cured even when the exposure process is performed for a relatively small amount and a short time on the resin film of the photosensitive resin composition. Also, the polyfunctional epoxy resin may be used alone or in combination with the above-mentioned plurality of various thermosetting resins.
 また、エポキシ樹脂としては、3官能以上の多官能エポキシ樹脂が用いられてもよい。
 多官能エポキシ樹脂としては、特に限定されないが、例えば、2-[4-(2,3-エポキシプロポキシ)フェニル]-2-[4-[1,1-ビス[4-(2,3-エポキシプロポキシ)フェニル]エチル]フェニル]プロパン、フェノールノボラック型エポキシ、テトラキス(グリシジルオキシフェニル)エタン、α-2,3-エポキシプロポキシフェニル-ω-ヒドロポリ(n=1~7){2-(2,3-エポキシプロポキシ)ベンジリデン-2,3-エポキシプロポキシフェニレン}、1-クロロ-2,3-エポキシプロパン・ホルムアルデヒド・2,7-ナフタレンジオール重縮合物、ジシクロペンタジエン型エポキシ樹脂等が挙げられる。これらは単独で用いても複数組み合わせて用いてもよい。
Further, as the epoxy resin, a trifunctional or higher polyfunctional epoxy resin may be used.
The polyfunctional epoxy resin is not particularly limited, and examples thereof include 2- [4- (2,3-epoxypropoxy) phenyl] -2- [4- [1,1-bis [4- (2,3-epoxy) Propoxy) phenyl] ethyl] phenyl] propane, phenol novolac type epoxy, tetrakis (glycidyloxyphenyl) ethane, α-2,3-epoxypropoxyphenyl-ω-hydropoly (n = 1 to 7) {2- (2,3) —Epoxypropoxy) benzylidene-2,3-epoxypropoxyphenylene}, 1-chloro-2,3-epoxypropane • formaldehyde • 2,7-naphthalenediol polycondensate, dicyclopentadiene type epoxy resin and the like. These may be used alone or in combination of two or more.
 また、熱硬化性樹脂は、特に、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、およびテトラメチルビスフェノールF型エポキシ樹脂からなる群より選択される1種以上のエポキシ樹脂を含むことが好ましく、多官能エポキシ樹脂を含むことがより好ましく、多官能芳香族エポキシ樹脂を含むことがさらに好ましい。このような熱硬化性樹脂は剛直であるため、硬化性が良好で耐熱性が高く、熱膨張係数の比較的低い有機絶縁層21、251、252が得られる。 The thermosetting resin is, in particular, phenol novolac epoxy resin, cresol novolac epoxy resin, triphenylmethane epoxy resin, dicyclopentadiene epoxy resin, bisphenol A epoxy resin, and tetramethyl bisphenol F epoxy resin It is preferable to include one or more epoxy resins selected from the group consisting of, more preferably include a polyfunctional epoxy resin, and still more preferably include a polyfunctional aromatic epoxy resin. Since such a thermosetting resin is rigid, it has good curability, high heat resistance, and organic insulating layers 21, 251, 252 having a relatively low coefficient of thermal expansion.
 なお、熱硬化性樹脂は、前述したように常温で固形の樹脂を含むことが好ましく、常温で固形の樹脂と常温で液体の樹脂の双方を含んでいてもよい。このような熱硬化性樹脂を含む感光性樹脂組成物は、半導体チップ23等の良好な埋め込み性と、フィルム化されたときのタック(べたつき)の改善と、硬化物である有機絶縁層21、251、252の機械的強度と、を両立させることができる。その結果、ボイドの発生を抑えつつ、平坦化が図られた機械的強度の高い有機絶縁層21、251、252が得られる。 The thermosetting resin preferably contains a solid resin at normal temperature as described above, and may contain both a resin solid at normal temperature and a resin liquid at normal temperature. The photosensitive resin composition containing such a thermosetting resin has good embedding property of the semiconductor chip 23 etc., improvement of tack (stickiness) when formed into a film, and an organic insulating layer 21 which is a cured product, The mechanical strengths of 251 and 252 can be made compatible. As a result, it is possible to obtain the organic insulating layers 21, 251, 252 having high mechanical strength in which planarization is achieved while suppressing the generation of voids.
 常温で固形の樹脂と常温で液体の樹脂を併用する場合、常温で固形の樹脂100質量部に対して、常温で液状の樹脂の量は5~150質量部程度であるのが好ましく、10~100質量部程度であるのがより好ましく、15~80質量部程度であるのがさらに好ましい。液状の樹脂の比率が前記下限値を下回ると、感光性樹脂組成物に対する半導体チップ23の埋め込み性が低下したり、フィルム化したときの安定性が低下したりするおそれがある。一方、液状の樹脂の比率が前記上限値を上回ると、感光性樹脂組成物をフィルム化したときのタックが悪化したり、硬化物である有機絶縁層21、251、252の機械的強度が低下したりするおそれがある。 When a resin solid at room temperature and a resin liquid at room temperature are used in combination, the amount of the resin liquid at room temperature is preferably about 5 to 150 parts by mass with respect to 100 parts by mass of the resin solid at room temperature. It is more preferably about 100 parts by mass, and even more preferably about 15 to 80 parts by mass. When the ratio of the liquid resin is below the lower limit value, the embeddability of the semiconductor chip 23 in the photosensitive resin composition may be reduced, or the stability when formed into a film may be reduced. On the other hand, when the ratio of liquid resin exceeds the above upper limit, the tack when forming a film of the photosensitive resin composition is deteriorated, or the mechanical strength of the organic insulating layers 21, 251, 252 which is a cured product is reduced. There is a risk of
 常温で固形の樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノキシ樹脂等が挙げられる。 Examples of the solid resin at normal temperature include phenol novolac epoxy resin, cresol novolac epoxy resin, and phenoxy resin.
 一方、常温で液状の樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、アルキルグリシジルエーテル、ブタンテトラカルボン酸テトラ(3,4-エポキシシクロヘキシルメチル)修飾ε-カプロラクトン、3’,4’-エポキシシクロヘキシルメチル3,4-エポキシシクロヘキサンカルボキシレート、2-エチルヘキシルグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル等が挙げられる。これらは単独で用いても複数組み合わせて用いてもよい。 On the other hand, as liquid resin at normal temperature, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, alkyl glycidyl ether, butanetetracarboxylic acid tetra (3,4-epoxycyclohexylmethyl) modified ε-caprolactone, 3 ', 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 2-ethylhexyl glycidyl ether, trimethylolpropane polyglycidyl ether and the like. These may be used alone or in combination of two or more.
 また、常温で液状の樹脂は、芳香族化合物と脂肪族化合物の双方を含むことが好ましい。このような化合物を含む感光性樹脂組成物は、主に脂肪族化合物によってフィルム化されたときに適度な柔軟性が付与されるとともに、主に芳香族化合物によってフィルム化されたときに保形性が付与される。その結果、柔軟性と保形性とを両立する感光性樹脂フィルムが得られる。 The resin which is liquid at normal temperature preferably contains both an aromatic compound and an aliphatic compound. A photosensitive resin composition containing such a compound imparts appropriate flexibility when filmed mainly by an aliphatic compound, and retains shape when filmed mainly by an aromatic compound. Is granted. As a result, a photosensitive resin film having compatibility between flexibility and shape retention can be obtained.
 さらに、常温で固形の樹脂と常温で液体の樹脂の双方を含むこと、あるいは、常温で液状の樹脂が芳香族化合物と脂肪族化合物の双方を含むこと等により、感光性樹脂組成物の硬化物において、パターニング性を損なうことなく、ガラス転移温度を高めたり、あるいは、パターニング性を損なうことなく、線膨張係数を低くしたりすることができる。 Furthermore, a cured product of the photosensitive resin composition by containing both a resin that is solid at room temperature and a resin that is liquid at room temperature, or that the resin that is liquid at room temperature contains both an aromatic compound and an aliphatic compound In the above, it is possible to increase the glass transition temperature without deteriorating the patternability or to lower the linear expansion coefficient without impairing the patternability.
 芳香族化合物100質量部に対して、脂肪族化合物の量は5~150質量部程度であるのが好ましく、10~80質量部程度であるのがより好ましく、15~50質量部程度であるのがさらに好ましい。脂肪族化合物の比率が前記下限値を下回ると、感光性樹脂組成物の組成等によっては、フィルムの柔軟性が低下するおそれがある。一方、脂肪族化合物の比率が前記上限値を上回ると、感光性樹脂組成物の組成等によっては、フィルムの保形性が低下するおそれがある。 The amount of the aliphatic compound is preferably about 5 to 150 parts by mass, more preferably about 10 to 80 parts by mass, and about 15 to 50 parts by mass with respect to 100 parts by mass of the aromatic compound. Is more preferred. When the ratio of the aliphatic compound is below the lower limit value, the flexibility of the film may be lowered depending on the composition of the photosensitive resin composition and the like. On the other hand, when the ratio of the aliphatic compound exceeds the upper limit value, the shape retention of the film may be lowered depending on the composition of the photosensitive resin composition and the like.
 エポキシ樹脂の含有量は、特に限定されないが、感光性樹脂組成物の固形分全体の40~80質量%程度であるのが好ましく、45~75質量%程度であるのがより好ましく、50~70質量%程度であるのがさらに好ましい。エポキシ樹脂の含有量を前記範囲内に設定することにより、感光性樹脂組成物を含む感光性樹脂層210、2510、2520のパターニング性を高めるとともに、有機絶縁層21、251、252の耐熱性や機械的強度を十分に高めることができる。 The content of the epoxy resin is not particularly limited, but is preferably about 40 to 80% by mass, more preferably about 45 to 75% by mass, of the total solid content of the photosensitive resin composition, and more preferably 50 to 70 It is more preferable that the content is about% by mass. By setting the content of the epoxy resin within the above range, the patterning properties of the photosensitive resin layers 210, 2510, 2520 containing the photosensitive resin composition are enhanced, and the heat resistance of the organic insulating layers 21, 251, 252 and Mechanical strength can be sufficiently enhanced.
 なお、感光性樹脂組成物の固形分とは、感光性樹脂組成物中における不揮発分を指し、水や溶媒等の揮発成分を除いた残部を指す。また、本実施形態において、感光性樹脂組成物の固形分全体に対する含有量とは、溶媒を含む場合には、感光性樹脂組成物のうちの溶媒を除く固形分全体に対する含有量を指す。 In addition, solid content of the photosensitive resin composition refers to the non volatile matter in the photosensitive resin composition, and refers to the remainder except volatile components, such as water and a solvent. Moreover, in the present embodiment, the content of the photosensitive resin composition with respect to the entire solid content refers to the content with respect to the entire solid content excluding the solvent in the photosensitive resin composition when the solvent is contained.
 (硬化剤)
 また、本発明の感光性樹脂組成物は、硬化剤を含んでいてもよい。硬化剤としては、熱硬化性樹脂の重合反応を促進させるものであれば特に限定されないが、例えば、熱硬化性樹脂がエポキシ樹脂を含む場合には、フェノール性水酸基を有する硬化剤が用いられる。具体的には、フェノール樹脂を用いることができる。
(Hardening agent)
The photosensitive resin composition of the present invention may contain a curing agent. The curing agent is not particularly limited as long as it accelerates the polymerization reaction of the thermosetting resin. For example, when the thermosetting resin contains an epoxy resin, a curing agent having a phenolic hydroxyl group is used. Specifically, a phenol resin can be used.
 フェノール樹脂としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂、トリスフェニルメタン型フェノール樹脂、アリールアルキレン型フェノール樹脂等が挙げられる。これらの中でも、特にノボラック型フェノール樹脂が好ましく用いられる。これにより、良好な硬化性を有するとともに現像特性が良好な感光性樹脂層210、2510、2520が得られる。 As a phenol resin, a novolak-type phenol resin, a resol-type phenol resin, a trisphenylmethane-type phenol resin, an aryl alkylene type phenol resin etc. are mentioned, for example. Among these, novolac type phenol resins are particularly preferably used. Thereby, photosensitive resin layers 210, 2510, 2520 having good curability and good development characteristics can be obtained.
 硬化剤の添加量は、特に限定されないが、樹脂100質量部に対して25質量部以上100質量部以下であるのが好ましく、30質量部以上90質量部以下であるのがより好ましく、35質量部以上80質量部以下であるのがさらに好ましい。硬化剤の添加量を前記範囲内に設定することにより、耐熱性が高く、熱膨張係数の比較的低い有機絶縁層21が得られる。 The addition amount of the curing agent is not particularly limited, but is preferably 25 parts by mass or more and 100 parts by mass or less, more preferably 30 parts by mass or more and 90 parts by mass or less, with respect to 100 parts by mass of the resin More preferably, it is from 80 parts by weight to 80 parts by weight. By setting the addition amount of the curing agent within the above range, the organic insulating layer 21 having high heat resistance and a relatively low coefficient of thermal expansion can be obtained.
(熱可塑性樹脂)
 また、感光性樹脂組成物は、さらに熱可塑性樹脂を含んでいてもよい。これにより、感光性樹脂組成物の成形性をより高めることができるとともに、感光性樹脂組成物の硬化物の可撓性をより高めることができる。その結果、熱応力等が発生しにくい有機絶縁層21、251、252が得られる。
(Thermoplastic resin)
The photosensitive resin composition may further contain a thermoplastic resin. While being able to improve the moldability of the photosensitive resin composition more by this, the flexibility of the hardened | cured material of the photosensitive resin composition can be improved more. As a result, organic insulating layers 21 251 and 252 which hardly generate thermal stress and the like are obtained.
 熱可塑性樹脂としては、例えば、フェノキシ樹脂、アクリル系樹脂、ポリアミド系樹脂(例えばナイロン等)、熱可塑性ウレタン系樹脂、ポリオレフィン系樹脂(例えばポリエチレン、ポリプロピレン等)、ポリカーボネート、ポリエステル系樹脂(例えばポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリアセタール、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、液晶ポリマー、フッ素樹脂(例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン等)、変性ポリフェニレンエーテル、ポリサルフォン、ポリエーテルサルフォン、ポリアリレート、ポリアミドイミド、ポリエーテルイミド、熱可塑性ポリイミド等が挙げられる。また、感光性樹脂組成物では、これらの中の1種類を単独で用いてもよいし、異なる重量平均分子量を有する2種類以上を併用してもよく、1種類または2種類以上と、それらのプレポリマーとを併用してもよい。 As a thermoplastic resin, for example, phenoxy resin, acrylic resin, polyamide resin (for example, nylon etc.), thermoplastic urethane resin, polyolefin resin (for example, polyethylene, polypropylene etc.), polycarbonate, polyester resin (for example polyethylene terephthalate) , Polybutylene terephthalate etc.), polyacetal, polyphenylene sulfide, polyether ether ketone, liquid crystal polymer, fluorocarbon resin (eg polytetrafluoroethylene, polyvinylidene fluoride etc.), modified polyphenylene ether, polysulfone, polyether sulfone, polyarylate, polyamide An imide, a polyether imide, a thermoplastic polyimide etc. are mentioned. In the photosensitive resin composition, one of these may be used alone, or two or more having different weight average molecular weights may be used in combination, and one or more of them may be used. You may use together with a prepolymer.
 このうち、熱可塑性樹脂としては、フェノキシ樹脂が好ましく用いられる。フェノキシ樹脂は、ポリヒドロキシポリエーテルとも呼ばれ、エポキシ樹脂よりも分子量が大きい特徴を有する。このようなフェノキシ樹脂を含むことにより、感光性樹脂組成物の硬化物の可撓性が低下するのを抑制することができる。 Among them, phenoxy resin is preferably used as the thermoplastic resin. Phenoxy resins, also called polyhydroxy polyethers, are characterized by having a larger molecular weight than epoxy resins. By including such a phenoxy resin, it is possible to suppress the decrease in the flexibility of the cured product of the photosensitive resin composition.
 フェノキシ樹脂としては、例えば、ビスフェノールA型フェノキシ樹脂、ビスフェノールF型フェノキシ樹脂、ビスフェノールA型とビスフェノールF型との共重合フェノキシ樹脂、ビフェニル型フェノキシ樹脂、ビスフェノールS型フェノキシ樹脂、ビフェニル型フェノキシ樹脂とビスフェノールS型フェノキシ樹脂との共重合フェノキシ樹脂等が挙げられ、これらのうちの1種または2種以上の混合物が用いられる。 As the phenoxy resin, for example, bisphenol A type phenoxy resin, bisphenol F type phenoxy resin, copolymerized phenoxy resin of bisphenol A type and bisphenol F type, biphenyl type phenoxy resin, bisphenol S type phenoxy resin, biphenyl type phenoxy resin and bisphenol Copolymerized phenoxy resin etc. with S type phenoxy resin etc. are mentioned, and 1 type, or 2 or more types of mixtures of these are used.
 これらの中でも、ビスフェノールA型フェノキシ樹脂またはビスフェノールA型とビスフェノールF型との共重合フェノキシ樹脂が好ましく用いられる。 Among these, bisphenol A-type phenoxy resin or copolymerized phenoxy resin of bisphenol A-type and bisphenol F-type is preferably used.
 また、フェノキシ樹脂としては、分子鎖両末端にエポキシ基を有するものが好ましく用いられる。このようなフェノキシ樹脂によれば、熱硬化性樹脂としてエポキシ樹脂が用いられた場合、感光性樹脂組成物の硬化物に対して優れた耐溶剤性および耐熱性を付与することができる。 Moreover, as phenoxy resin, what has an epoxy group in molecular chain both ends is used preferably. According to such a phenoxy resin, when an epoxy resin is used as the thermosetting resin, excellent solvent resistance and heat resistance can be imparted to a cured product of the photosensitive resin composition.
 また、フェノキシ樹脂としては、常温で固形であるものが好ましく用いられる。具体的には、不揮発分が90質量%以上であるフェノキシ樹脂が好ましく用いられる。このようなフェノキシ樹脂を用いることにより、硬化物の機械的特性を良好にすることができる。 Moreover, as phenoxy resin, what is solid at normal temperature is used preferably. Specifically, a phenoxy resin having a nonvolatile content of 90% by mass or more is preferably used. By using such a phenoxy resin, the mechanical properties of the cured product can be improved.
 熱可塑性樹脂の重量平均分子量は、特に限定されないが、10000~100000程度であるのが好ましく、20000~80000程度であるのがより好ましい。このような比較的高分子量の熱可塑性樹脂が用いられることにより、硬化物に対して良好な可撓性を付与するとともに、溶媒への十分な溶解性を付与することができる。 The weight average molecular weight of the thermoplastic resin is not particularly limited, but is preferably about 10000 to 100000, and more preferably about 20000 to 80000. By using such a relatively high molecular weight thermoplastic resin, it is possible to impart good flexibility to the cured product and also to impart sufficient solubility in a solvent.
 なお、熱可塑性樹脂の重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)法のポリスチレン換算値として測定される。 In addition, the weight average molecular weight of a thermoplastic resin is measured as a polystyrene conversion value by the gel permeation chromatography (GPC) method, for example.
 熱可塑性樹脂の添加量は、特に限定されないが、熱硬化性樹脂100質量部に対して10質量部以上90質量部以下であるのが好ましく、15質量部以上80質量部以下であるのがより好ましく、20質量部以上70質量部以下であるのがさらに好ましい。熱可塑性樹脂の添加量を前記範囲内に設定することにより、感光性樹脂組成物の硬化物について、機械的特性のバランスを高めることができる。 The addition amount of the thermoplastic resin is not particularly limited, but is preferably 10 parts by mass or more and 90 parts by mass or less, and more preferably 15 parts by mass or more and 80 parts by mass or less with respect to 100 parts by mass of the thermosetting resin. Preferably, it is more preferably 20 parts by mass or more and 70 parts by mass or less. By setting the addition amount of the thermoplastic resin within the above range, the balance of the mechanical properties can be enhanced for the cured product of the photosensitive resin composition.
 なお、熱可塑性樹脂の添加量が前記下限値を下回ると、感光性樹脂組成物に含まれる成分やその配合比によっては、感光性樹脂組成物の硬化物に十分な可撓性が付与されないおそれがある。一方、熱可塑性樹脂の添加量が前記上限値を上回ると、感光性樹脂組成物に含まれる成分やその配合比によっては、感光性樹脂組成物の硬化物の機械的強度が低下するおそれがある。 In addition, when the addition amount of a thermoplastic resin is less than the said lower limit, depending on the component contained in the photosensitive resin composition and its compounding ratio, sufficient flexibility may not be provided to the hardened | cured material of the photosensitive resin composition. There is. On the other hand, when the addition amount of the thermoplastic resin exceeds the upper limit, the mechanical strength of the cured product of the photosensitive resin composition may be lowered depending on the components contained in the photosensitive resin composition and the compounding ratio thereof. .
 (感光剤)
 感光剤としては、例えば光酸発生剤を用いることができる。光酸発生剤としては、紫外線等の活性光線の照射により酸を発生して、上述した硬化性樹脂の光重合開始剤として機能する光酸発生剤を含有する。
(Photosensitizer)
As a photosensitizer, a photo-acid generator can be used, for example. The photoacid generator contains a photoacid generator which generates an acid upon irradiation with an actinic ray such as ultraviolet light and functions as a photopolymerization initiator of the curable resin described above.
 光酸発生剤としては、例えばオニウム塩化合物が挙げられる。具体的には、ジアゾニウム塩、ジアリールヨードニウム塩等のヨードニウム塩、トリアリールスルホニウム塩のようなスルホニウム塩、トリアリールビリリウム塩、ベンジルピリジニウムチオシアネート、ジアルキルフェナシルスルホニウム塩、ジアルキルヒドロキシフェニルホスホニウム塩のようなカチオン型光重合開始剤等が挙げられる。 As a photo-acid generator, an onium salt compound is mentioned, for example. Specifically, iodonium salts such as diazonium salts and diaryliodonium salts, sulfonium salts such as triaryl sulfonium salts, triaryl bilillium salts, benzyl pyridinium thiocyanate, dialkyl phenacyl sulfonium salts, dialkyl hydroxyphenyl phosphonium salts A cationic type photoinitiator etc. are mentioned.
 なお、感光剤は、感光性組成物が金属に接するため、メチド塩型やボレート塩型のような、分解によるフッ化水素の発生がないものが好ましい。
 特に、感光剤として、ボレートアニオンを対アニオンとするトリアリールスルホニウム塩を用いることが好ましい。係るトリアリールスルホニウム塩は、金属に対して低腐食性のボレートアニオンを対アニオンとして含有しているため、貫通配線22、221、222および配線層253等の金属材料が腐食するのをより長期間にわたって防止することができる。その結果、半導体装置1の信頼性をより高くすることができる。
In addition, since a photosensitive composition contacts a metal, as a photosensitive agent, what does not generate | occur | produce the hydrogen fluoride by decomposition | disassembly like a methide salt type and a borate salt type is preferable.
In particular, it is preferable to use a triarylsulfonium salt having a borate anion as a counter anion as a photosensitizer. Since such triarylsulfonium salt contains a borate anion which is less corrosive to metal as a counter anion, corrosion of metal materials such as through interconnections 22, 221 and 222 and wiring layer 253 is further prolonged. Can be prevented. As a result, the reliability of the semiconductor device 1 can be further enhanced.
 感光剤の添加量は、特に限定されないが、感光性樹脂組成物の固形分全体の0.3~5質量%程度であるのが好ましく、0.5~4.5質量%程度であるのがより好ましく、1~4質量%程度であるのがさらに好ましい。感光剤の添加量を前記範囲内に設定することにより、感光性樹脂組成物を含む感光性樹脂層210、2510、2520のパターニング性を高めるとともに、感光性樹脂組成物の長期保管性を向上させることができる。 Although the addition amount of the photosensitizer is not particularly limited, it is preferably about 0.3 to 5% by mass of the total solid content of the photosensitive resin composition, but is preferably about 0.5 to 4.5% by mass. More preferably, it is about 1 to 4% by mass. By setting the addition amount of the photosensitizer within the above range, the patterning properties of the photosensitive resin layers 210, 2510 and 2520 containing the photosensitive resin composition are enhanced, and the long-term storage performance of the photosensitive resin composition is enhanced. be able to.
 なお、感光剤は、感光性樹脂組成物にネガ型の感光性を付与するものであってもよいし、ポジ型の感光性を付与するものであってもよいが、高アスペクト比の開口部を高精度に形成可能な点等を考慮すれば、ネガ型であるのが好ましい。 The photosensitizer may be one which imparts negative photosensitivity to the photosensitive resin composition, or may be one which imparts positive photosensitivity, but an opening with a high aspect ratio. In view of the point that it can be formed with high accuracy, etc., it is preferable to be negative.
 (カップリング剤)
 本実施形態に係る感光性樹脂組成物は、官能基として酸無水物を含有するカップリング剤を有する。このような感光性樹脂組成物は、無機材料および金属材料に対する密着性が良好な樹脂膜の形成を可能にする。これにより、例えば貫通配線22、221、222、配線層253や半導体チップ23に対する密着性が良好な有機絶縁層21、251、252が得られる。
(Coupling agent)
The photosensitive resin composition according to the present embodiment has a coupling agent containing an acid anhydride as a functional group. Such a photosensitive resin composition enables formation of a resin film having good adhesion to inorganic materials and metal materials. As a result, for example, organic insulating layers 21, 251, 252 having good adhesion to the through wires 22, 221, 222, the wiring layer 253, and the semiconductor chip 23 can be obtained.
 このような酸無水物含有カップリング剤は、官能基である酸無水物が無機酸化物を溶解させるとともに、陽イオン(金属陽イオン等)と配位結合する。 In such an acid anhydride-containing coupling agent, the acid anhydride which is a functional group dissolves the inorganic oxide and coordinates with a cation (such as a metal cation).
 一方、酸無水物含有カップリング剤に含まれるアルコキシ基は、加水分解して例えばシラノールとなる。このシラノールは、無機材料の表面水酸基と水素結合する。 On the other hand, the alkoxy group contained in the acid anhydride-containing coupling agent is hydrolyzed to become, for example, silanol. The silanol hydrogen bonds with the surface hydroxyl group of the inorganic material.
 したがって、これらの結合機構に基づいて、無機材料および金属材料に対する密着性が良好な感光性樹脂組成物が得られると考えられる。 Therefore, based on these bonding mechanisms, it is considered that a photosensitive resin composition having good adhesion to inorganic materials and metal materials can be obtained.
 カップリング剤には、官能基として酸無水物を含有するカップリング剤(以下、省略して「酸無水物含有カップリング剤」ともいう。)が用いられる。 As the coupling agent, a coupling agent containing an acid anhydride as a functional group (hereinafter, also abbreviated to as “acid anhydride-containing coupling agent”) is used.
 具体的には、アルコキシシリル基を含む化合物が好ましく用いられ、アルコキシシリル基含有アルキルカルボン酸無水物が好ましく用いられる。このようなカップリング剤によれば、無機材料および金属材料に対する密着性がより良好であり、かつ感度が良好でパターニング性に優れた感光性樹脂組成物が得られる。 Specifically, a compound containing an alkoxysilyl group is preferably used, and an alkoxysilyl group-containing alkylcarboxylic acid anhydride is preferably used. According to such a coupling agent, a photosensitive resin composition having better adhesion to the inorganic material and the metal material, good sensitivity, and excellent patternability can be obtained.
 アルコキシシリル基を含む化合物の具体例としては、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシシリルプロピルコハク酸無水物、3-ジメチルメトキシシリルプロピルコハク酸無水物、3-ジメチルエトキシシリルプロピルコハク酸無水物のようなコハク酸無水物、3-トリメトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-トリエトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-ジメチルメトキシシリルプロピルシクロヘキシルジカルボン酸無水物、3-ジメチルエトキシシリルプロピルシクロヘキシルジカルボン酸無水物のようなジカルボン酸無水物、3-トリメトキシシリルプロピルフタル酸無水物、3-トリエトキシシリルプロピルフタル酸無水物、3-ジメチルメトキシシリルプロピルフタル酸無水物、3-ジメチルエトキシシリルプロピルフタル酸無水物のようなフタル酸無水物等のアルコキシシリル基含有アルキルカルボン酸無水物が挙げられる。これらは単独で用いても複数組み合わせて用いてもよい。 Specific examples of the compound containing an alkoxysilyl group include 3-trimethoxysilylpropylsuccinic anhydride, 3-triethoxysilyl silylsuccinic anhydride, 3-dimethylmethoxysilylpropylsuccinic anhydride, 3-dimethylethoxy Succinic anhydride such as silylpropylsuccinic anhydride, 3-trimethoxysilylpropylcyclohexyldicarboxylic acid anhydride, 3-triethoxysilylpropylcyclohexyldicarboxylic acid anhydride, 3-dimethylmethoxysilylpropylcyclohexyl dicarboxylic acid anhydride, Dicarboxylic acid anhydride such as 3-dimethylethoxysilylpropylcyclohexyl dicarboxylic acid anhydride, 3-trimethoxysilylpropylphthalic anhydride, 3-triethoxysilylpropylphthalic anhydride, 3-dimethylmethoxy Silyl propyl phthalic anhydride, alkoxysilyl group-containing alkyl carboxylic acid anhydride such as phthalic anhydride, such as 3-dimethyl-ethoxysilylpropyl phthalic anhydride. These may be used alone or in combination of two or more.
 これらの中でもアルコキシシリル基含有コハク酸無水物が好ましく用いられ、特に3-トリメトキシシリルプロピルコハク酸無水物がより好ましく用いられる。かかるカップリング剤によれば、分子長や分子構造が最適化されるため、前述した密着性およびパターニング性がより良好になる。 Among these, alkoxysilyl group-containing succinic anhydride is preferably used, and in particular 3-trimethoxysilylpropyl succinic anhydride is more preferably used. According to such a coupling agent, the molecular length and the molecular structure are optimized, and thus the adhesion and the patterning property described above become better.
 なお、ここではシランカップリング剤を列挙したが、チタンカップリング剤やジルコニウムカップリング剤等であってもよい。 In addition, although the silane coupling agent was listed here, a titanium coupling agent, a zirconium coupling agent, etc. may be sufficient.
 酸無水物含有カップリング剤の添加量は、特に限定されないが、感光性樹脂組成物の固形分全体の0.3~5質量%程度であるのが好ましく、0.5~4.5質量%程度であるのがより好ましく、1~4質量%程度であるのがさらに好ましい。酸無水物含有カップリング剤の添加量を前記範囲内に設定することにより、例えば貫通配線22、221、222、配線層253や半導体チップ23のような無機材料および金属材料に対する密着性が特に良好な有機絶縁層21、251、252が得られる。これにより、有機絶縁層21、251、252の絶縁性が長期にわたって維持される等、信頼性の高い半導体装置1の実現に寄与する。 Although the addition amount of the acid anhydride-containing coupling agent is not particularly limited, it is preferably about 0.3 to 5% by mass of the total solid content of the photosensitive resin composition, and 0.5 to 4.5% by mass The degree is more preferably about 1 to 4% by mass. By setting the addition amount of the acid anhydride-containing coupling agent within the above range, the adhesion to inorganic materials such as the through wires 22, 221 and 222, the wiring layer 253 and the semiconductor chip 23 and metal materials is particularly good. Organic insulating layers 21, 251, 252 are obtained. This contributes to the realization of the semiconductor device 1 with high reliability, such as maintaining the insulation properties of the organic insulating layers 21, 251, 252 for a long period of time.
 なお、酸無水物含有カップリング剤の添加量が前記下限値を下回ると、酸無水物含有カップリング剤の組成等によっては、無機材料および金属材料に対する密着性が低下するおそれがある。一方、酸無水物含有カップリング剤の添加量が前記上限値を上回ると、酸無水物含有カップリング剤の組成等によっては、感光性樹脂組成物の感光性や機械的特性が低下するおそれがある。 In addition, when the addition amount of an acid anhydride containing coupling agent is less than the said lower limit, there exists a possibility that the adhesiveness with respect to an inorganic material and a metal material may fall depending on a composition etc. of an acid anhydride containing coupling agent. On the other hand, when the addition amount of the acid anhydride-containing coupling agent exceeds the upper limit value, depending on the composition of the acid anhydride-containing coupling agent, the photosensitivity and mechanical properties of the photosensitive resin composition may be deteriorated. is there.
 また、このような酸無水物含有カップリング剤に加えて、他のカップリング剤がさらに添加されてもよい。 In addition to such an acid anhydride containing coupling agent, other coupling agents may be further added.
 他のカップリング剤としては、例えば、官能基としてアミノ基、エポキシ基、アクリル基、メタクリル基、メルカプト基、ビニル基、ウレイド基、スルフィド基等を含むカップリング剤が挙げられる。これらは単独で用いても複数組み合わせて用いてもよい。 As another coupling agent, the coupling agent which contains an amino group, an epoxy group, an acryl group, an acryl group, a methacryl group, a mercapto group, a vinyl group, a ureido group, a sulfide group etc. as a functional group is mentioned, for example. These may be used alone or in combination of two or more.
 このうち、アミノ基含有カップリング剤としては、例えばビス(2-ヒドロキシエチル)-3-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジエトキシシラン、N-フェニル-γ-アミノ-プロピルトリメトキシシラン等が挙げられる。 Among them, as the amino group-containing coupling agent, for example, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropylmethyl Diethoxysilane, γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ And -aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldiethoxysilane, N-phenyl-γ-amino-propyltrimethoxysilane and the like.
 エポキシ基含有カップリング剤としては、例えばγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシジルプロピルトリメトキシシラン等が挙げられる。 As an epoxy group-containing coupling agent, for example, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidyl propyl Trimethoxysilane etc. are mentioned.
 アクリル基含有カップリング剤としては、例えばγ-(メタクリロキシプロピル)トリメトキシシラン、γ-(メタクリロキシプロピル)メチルジメトキシシラン、γ-(メタクリロキシプロピル)メチルジエトキシシラン等が挙げられる。 Examples of the acrylic group-containing coupling agent include γ- (methacryloxypropyl) trimethoxysilane, γ- (methacryloxypropyl) methyldimethoxysilane, and γ- (methacryloxypropyl) methyldiethoxysilane.
 メルカプト基含有カップリング剤としては、例えば3-メルカプトプロピルトリメトキシシラン等が挙げられる。 Examples of mercapto group-containing coupling agents include 3-mercaptopropyltrimethoxysilane.
 ビニル基含有カップリング剤としては、例えばビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン等が挙げられる。 Examples of the vinyl group-containing coupling agent include vinyltris (β-methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane and the like.
 ウレイド基含有カップリング剤としては、例えば3-ウレイドプロピルトリエトキシシラン等が挙げられる。 Examples of ureido group-containing coupling agents include 3-ureidopropyltriethoxysilane and the like.
 スルフィド基含有カップリング剤としては、例えばビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド等が挙げられる。 Examples of the sulfide group-containing coupling agent include bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide and the like.
 その他のカップリング剤の添加量は、特に限定されないが、酸無水物含有カップリング剤の1~200質量%程度であるのが好ましく、3~150質量%程度であるのがより好ましく、5~100質量%程度であるのがさらに好ましいい。添加量をこの範囲内に設定することにより、酸無水物含有カップリング剤による前述した作用が損なわれることなく、その他のカップリング剤の添加によって別の作用が追加されることとなる。その結果、双方のカップリング剤によってもたらされる効果の両立を図ることができる。 The addition amount of the other coupling agent is not particularly limited, but is preferably about 1 to 200% by mass, more preferably about 3 to 150% by mass, of the acid anhydride-containing coupling agent, and more preferably 5 to More preferably, it is about 100% by mass. By setting the amount to be added within this range, another effect is added by the addition of other coupling agents without the above-mentioned effects of the acid anhydride-containing coupling agent being impaired. As a result, it is possible to achieve both of the effects provided by both coupling agents.
 (その他の添加剤)
 感光性樹脂組成物には、必要に応じて、その他の添加剤が添加されていてもよい。その他の添加剤としては、例えば、酸化防止剤、シリカ等の充填材、界面活性剤、増感剤、フィルム化剤等が挙げられる。
(Other additives)
Other additives may be added to the photosensitive resin composition as required. Examples of other additives include antioxidants, fillers such as silica, surfactants, sensitizers, and film-forming agents.
 界面活性剤としては、例えば、フッ素系界面活性剤、シリコン系界面活性剤、アルキル系界面活性剤、アクリル系界面活性剤等が挙げられる。 Examples of the surfactant include fluorine-based surfactants, silicon-based surfactants, alkyl-based surfactants, and acrylic-based surfactants.
 (溶剤)
 感光性樹脂組成物は、溶剤を含んでいてもよい。この溶剤としては、感光性樹脂組成物の各構成成分を溶解可能なもので、かつ、各構成成分と反応しないものであれば特に制限なく用いることができる。
(solvent)
The photosensitive resin composition may contain a solvent. Any solvent can be used without particular limitation as long as it can dissolve the components of the photosensitive resin composition and does not react with the components.
 溶剤としては、例えば、アセトン、メチルエチルケトン、トルエン、プロピレングリコールメチルエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコール1-モノメチルエーテル2-アセテート、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ベンジルアルコール、プロピレンカーボネート、エチレングリコールジアセテート、プロピレングリコールジアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらは単独で用いても複数組み合わせて用いてもよい。 Examples of the solvent include acetone, methyl ethyl ketone, toluene, propylene glycol methyl ethyl ether, propylene glycol dimethyl ether, propylene glycol 1-monomethyl ether 2-acetate, diethylene glycol ethyl methyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, benzyl alcohol And propylene carbonate, ethylene glycol diacetate, propylene glycol diacetate, propylene glycol monomethyl ether acetate and the like. These may be used alone or in combination of two or more.
<感光性樹脂ワニス>
 感光性樹脂組成物は、ワニス状をなしていてもよい。
<Photosensitive resin varnish>
The photosensitive resin composition may be in the form of a varnish.
 ワニス状の感光性樹脂組成物は、例えば原料と溶剤とを均一に混合することによって調製される。なお、溶剤は必要に応じて添加され、溶剤を用いることなくワニス化することも可能である。また、その後、フィルターによる濾過、脱泡等の処理に供されてもよい。 The varnish-like photosensitive resin composition is prepared, for example, by uniformly mixing the raw material and the solvent. In addition, a solvent is added as needed, and it is also possible to make it varnish, without using a solvent. Moreover, after that, it may be subjected to processing such as filtration with a filter, degassing and the like.
 ワニス状の感光性樹脂組成物における固形分濃度は、特に限定されないが、20~80質量%程度であるのが好ましい。このような固形分濃度を有するワニス状の感光性樹脂組成物は、粘度が最適化されるため、狭い隙間にも浸透しやすい良好な流動性を有し、かつ、膜切れを生じさせにくいものとなる。 The solid content concentration in the varnish-like photosensitive resin composition is not particularly limited, but is preferably about 20 to 80% by mass. A varnish-like photosensitive resin composition having such a solid content concentration has good flowability that easily penetrates into a narrow gap and is difficult to cause film breakage because the viscosity is optimized. It becomes.
<感光性樹脂フィルム>
 次に、本実施形態に係る感光性樹脂フィルムについて説明する。
<Photosensitive resin film>
Next, the photosensitive resin film according to the present embodiment will be described.
 感光性樹脂フィルムは、前述したように、感光性樹脂組成物をフィルム化して形成してもよいし、キャリアーフィルムに感光性樹脂組成物が塗布されて得られたフィルムであってもよい。 As described above, the photosensitive resin film may be formed by converting the photosensitive resin composition into a film, or may be a film obtained by applying the photosensitive resin composition to the carrier film.
 後者の感光性樹脂フィルムの製造方法としては、例えば、キャリアーフィルム上にワニス状の感光性樹脂組成物を塗布した後、乾燥させる方法が挙げられる。 Examples of the method for producing the photosensitive resin film of the latter include a method in which a varnish-like photosensitive resin composition is applied on a carrier film and then dried.
 塗布装置としては、例えば、スピンコーター、スプレー装置、インクジェット装置等が挙げられる。 As a coating apparatus, a spin coater, a spray apparatus, an inkjet apparatus etc. are mentioned, for example.
 感光性樹脂フィルムにおける溶剤の含有率は、特に限定されないが、感光性樹脂フィルム全体の10質量%以下であるのが好ましい。これにより、感光性樹脂フィルムのタックの改善を図るとともに、感光性樹脂フィルムの硬化性を高めることができる。また、溶剤の揮発によるボイドの発生を抑制することができる。 The content of the solvent in the photosensitive resin film is not particularly limited, but is preferably 10% by mass or less of the entire photosensitive resin film. Thus, the tackiness of the photosensitive resin film can be improved, and the curability of the photosensitive resin film can be enhanced. In addition, the generation of voids due to the evaporation of the solvent can be suppressed.
 乾燥条件としては、例えば80~150℃の温度で、5~30分間加熱する条件が挙げられる。 The drying conditions include, for example, heating at a temperature of 80 to 150 ° C. for 5 to 30 minutes.
 キャリアーフィルムに積層された感光性樹脂フィルムは、取り扱い性、表面の清浄性等の観点から有用である。このとき、キャリアーフィルムは巻取り可能なロール形態であってもよく、枚葉形態であってもよい。 The photosensitive resin film laminated on the carrier film is useful from the viewpoint of handleability, surface cleanliness and the like. At this time, the carrier film may be in the form of a roll that can be wound, or may be in the form of a sheet.
 キャリアーフィルムの構成材料としては、例えば、樹脂材料、金属材料等が挙げられる。このうち、樹脂材料としては、例えば、ポリエチレン、ポリプロピレンのようなポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレートのようなポリエステル、ポリカーボネート、シリコーン、フッ素系樹脂、ポリイミド系樹脂等が挙げられる。また、金属材料としては、例えば、銅または銅合金、アルミニウムまたはアルミニウム合金、鉄または鉄合金等が挙げられる。 As a constituent material of a carrier film, a resin material, a metal material, etc. are mentioned, for example. Among these, as the resin material, for example, polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polycarbonates, silicones, fluorine resins, polyimide resins and the like can be mentioned. Moreover, as a metal material, copper or copper alloy, aluminum or aluminum alloy, iron or iron alloy etc. are mentioned, for example.
 これらの中でも、ポリエステルを含むキャリアーフィルムが好ましく用いられる。このようなキャリアーフィルムは、感光性樹脂フィルムを好適に支持しつつ、剥離容易性も比較的良好である。 Among these, a carrier film containing polyester is preferably used. Such a carrier film has relatively good peelability while suitably supporting the photosensitive resin film.
 また、感光性樹脂フィルムの表面には、必要に応じてカバーフィルムが設けられていてもよい。このカバーフィルムは、貼り付け作業までの間、感光性樹脂フィルムの表面を保護する。 Moreover, the cover film may be provided in the surface of the photosensitive resin film as needed. The cover film protects the surface of the photosensitive resin film until the bonding operation.
 カバーフィルムの構成材料としては、キャリアーフィルムの構成材料として列挙したものの中から適宜選択されるが、保護性、剥離容易性の観点からポリエステルを含むカバーフィルムが好ましく用いられる。 The constituent material of the cover film is appropriately selected from those listed as constituent materials of the carrier film, but a cover film containing polyester is preferably used from the viewpoint of the protective property and the releasability.
<電子機器>
 本実施形態に係る電子機器は、前述した本実施形態に係る半導体装置を備えている。
<Electronic equipment>
The electronic device according to the present embodiment includes the semiconductor device according to the present embodiment described above.
 かかる半導体装置は、耐薬品性に優れた保護膜を備えているため、信頼性が高い。このため、本実施形態に係る電子機器にも高い信頼性が付与される。 Such a semiconductor device is highly reliable because it has a protective film excellent in chemical resistance. Therefore, high reliability is given to the electronic device according to the present embodiment.
 本実施形態に係る電子機器は、このような半導体装置を備えていれば、特に限定されないものの、例えば、携帯電話、スマートフォン、タブレット端末、パソコンのような情報機器、サーバー、ルーターのような通信機器、車両制御用コンピューター、カーナビゲーションシステムのような車載機器等が挙げられる。 The electronic device according to the present embodiment is not particularly limited as long as it has such a semiconductor device, but, for example, a mobile phone, a smartphone, a tablet terminal, an information device such as a personal computer, a communication device such as a server or a router , A vehicle control computer, an in-vehicle device such as a car navigation system, and the like.
 以上、本発明を、図示の実施形態に基づいて説明したが、本発明はこれらに限定されるものではない。 Although the present invention has been described above based on the illustrated embodiments, the present invention is not limited to these.
 例えば、本発明の感光性樹脂組成物、半導体装置および電子機器は、前記実施形態に任意の要素が付加されたものであってもよい。 For example, the photosensitive resin composition, the semiconductor device, and the electronic device of the present invention may be obtained by adding an arbitrary element to the above-described embodiment.
 また、感光性樹脂組成物および感光性樹脂フィルムは、半導体装置の他、例えばMEMS(Micro Electro Mechanical Systems)や各種センサーの構造形成材料、液晶表示装置、有機EL装置のような表示装置の構造形成材料等にも適用可能である。 In addition to the semiconductor device, the photosensitive resin composition and the photosensitive resin film may be, for example, structure forming materials of MEMS (Micro Electro Mechanical Systems) and various sensors, formation of structures of display devices such as liquid crystal display devices and organic EL devices. It is applicable also to material etc.
 次に、本発明の具体的実施例について説明する。
 1.感光性樹脂組成物の作製
 (実施例1)
 まず、表1、2に示す原料をプロピレングリコールモノメチルエーテルアセテート(PGMEA)に溶解させ、溶液を調製した。
Next, specific examples of the present invention will be described.
1. Preparation of Photosensitive Resin Composition (Example 1)
First, the raw materials shown in Tables 1 and 2 were dissolved in propylene glycol monomethyl ether acetate (PGMEA) to prepare a solution.
 次に、調製した溶液を、孔径0.2μmのポリプロピレンフィルターでろ過し、ネガ型の感光性樹脂組成物を得た。 Next, the prepared solution was filtered with a polypropylene filter having a pore size of 0.2 μm to obtain a negative photosensitive resin composition.
 (実施例2~11)
 原料を表1、2に示すように変更した以外は、実施例1と同様にして感光性樹脂組成物を得た。
(Examples 2 to 11)
A photosensitive resin composition was obtained in the same manner as in Example 1 except that the raw materials were changed as shown in Tables 1 and 2.
 (比較例1~4)
 原料を表1、2に示すように変更した以外は、実施例1と同様にして感光性樹脂組成物を得た。
(Comparative Examples 1 to 4)
A photosensitive resin composition was obtained in the same manner as in Example 1 except that the raw materials were changed as shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 2.感光性樹脂組成物の評価
 2.1 試験片の作製
 まず、サイズが8インチ、厚さ725μmのシリコンウエハーを用意した。
2. Evaluation of Photosensitive Resin Composition 2.1 Preparation of Test Piece First, a silicon wafer having a size of 8 inches and a thickness of 725 μm was prepared.
 次に、ワニス状の感光性樹脂組成物を、シリコンウエハー上にスピンコーターで塗布した。これにより、厚さ10μmの液状被膜を得た。 Next, a varnish-like photosensitive resin composition was applied on a silicon wafer by a spin coater. Thus, a liquid film having a thickness of 10 μm was obtained.
 次に、ホットプレートにて液状被膜を120℃で5分間乾燥させ、塗膜を得た。
 次に、得られた塗膜に対して、700mJ/cmで全面露光した。
Next, the liquid film was dried at 120 ° C. for 5 minutes on a hot plate to obtain a film.
Next, the entire surface of the resulting coating film was exposed at 700 mJ / cm 2 .
 次に、露光後の塗膜に対して、70℃で5分間のPEB(Post Exposure Bake)を行った。
 次に、200℃で90分間加熱して、硬化膜を有する試験片を得た。
Next, PEB (Post Exposure Bake) for 5 minutes at 70 ° C. was applied to the film after exposure.
Next, it heated at 200 degreeC for 90 minutes, and obtained the test piece which has a cured film.
 2.2 密着試験
  2.2.1 シリコン密着試験(常温)
 次に、得られた試験片について、以下のようにしてJIS K 5600-5-6:1999に規定されたクロスカット法に準ずる密着試験を行った。
2.2 Adhesion test 2.2.1 Silicon adhesion test (normal temperature)
Next, the adhesion test according to the cross cut method defined in JIS K 5600-5-6: 1999 was performed on the obtained test piece as follows.
 まず、工具を用いて感光性樹脂フィルムに切れ込みを入れた。この切れ込みは、1mm間隔で縦横に10本ずつ、感光性樹脂フィルムを貫通するように入れた。これにより、感光性樹脂フィルムから1mm角の正方形が全部100個形成された。 First, a slit was made in the photosensitive resin film using a tool. The slits were inserted at intervals of 1 mm so as to penetrate the photosensitive resin film, ten each in the vertical and horizontal directions. As a result, 100 squares of 1 mm square were all formed from the photosensitive resin film.
 次に、これらの100個の正方形に重ねるようにセロハン粘着テープを貼り付けた。そして、セロハン粘着テープを剥がし、100個の正方形のうち、いくつ剥がれるかを数えた。
 数えた結果を、表2に示す。
Next, a cellophane adhesive tape was attached so as to overlap these 100 squares. Then, the cellophane adhesive tape was peeled off, and the number of the 100 squares to be peeled off was counted.
The counted results are shown in Table 2.
  2.2.2 シリコン密着試験(高温)
 得られた試験片を下記の条件で高温高湿下に置いた後、2.2.1と同様にして密着試験を行った。評価結果を表2に示す。
2.2.2 Silicon adhesion test (high temperature)
The test piece obtained was placed under high temperature and high humidity under the following conditions, and the adhesion test was conducted in the same manner as 2.2.1. The evaluation results are shown in Table 2.
 ・温度85℃
 ・相対湿度85%
 ・試験時間:24時間
・ Temperature 85 ° C
-Relative humidity 85%
・ Testing time: 24 hours
  2.2.3 銅密着試験(常温)
 2.1のシリコンウエハーを、Tiで下地処理したのち膜厚300nmの銅を蒸着したシリコンウエハーに変更した試験片を用いるようにした以外は、2.2.1と同様にして常温での密着試験を行った。評価結果を表2に示す。
2.2.3 Copper adhesion test (normal temperature)
Adhesion at normal temperature in the same manner as in 2.2.1, except that a test piece in which a silicon wafer of 2.1 was subjected to a base treatment with Ti and then changed to a silicon wafer on which copper was deposited with a film thickness of 300 nm was used. The test was done. The evaluation results are shown in Table 2.
  2.2.4 銅密着試験(高温)
 2.1のシリコンウエハーを、Tiで下地処理したのち膜厚300nmの銅を蒸着したシリコンウエハーに変更した試験片を用いるようにした以外は、2.2.2と同様にして高温での密着試験を行った。評価結果を表2に示す。
2.2.4 Copper adhesion test (high temperature)
Adhesion at high temperature in the same manner as 2.2.2, except that a test piece in which a silicon wafer of 2.1 was subjected to a base treatment with Ti and then changed to a silicon wafer on which copper was deposited with a film thickness of 300 nm was used. The test was done. The evaluation results are shown in Table 2.
 2.3 パターニング性評価
 まず、2.1に示すようにしてワニス状の感光性樹脂組成物をシリコンウエハー上にスピンコーターで塗布した。これにより、厚さ10μmの液状被膜を得た。
2.3 Evaluation of Patternability First, as shown in 2.1, a varnish-like photosensitive resin composition was applied on a silicon wafer by a spin coater. Thus, a liquid film having a thickness of 10 μm was obtained.
 次に、ホットプレートにて液状被膜を120℃で5分間乾燥させ、塗膜を得た。
 次に、ネガ型パターン用マスクを介し、塗膜に対してi線ステッパー(ニコン社製、NSR-4425i)を用いて露光処理を行った。その後、70℃で5分の露光後加熱処理を施した。
Next, the liquid film was dried at 120 ° C. for 5 minutes on a hot plate to obtain a film.
Next, the coating film was exposed to light using an i-line stepper (NSR-4425i, manufactured by Nikon Corporation) through a negative pattern mask. Thereafter, a post-exposure heat treatment was performed at 70 ° C. for 5 minutes.
 次に、現像液として25℃のプロピレングリコールモノメチルエーテルアセテート(PGMEA)用いて、スプレー現像を行うことによって未露光部を溶解除去した後、イソプロピルアルコール(IPA)でリンスした。 Next, the unexposed area was dissolved and removed by performing spray development using propylene glycol monomethyl ether acetate (PGMEA) at 25 ° C. as a developer, and then rinsing with isopropyl alcohol (IPA).
 次に、パターニングすることができたか否かを目視にて確認し、以下の評価基準に照らしてパターニング性を評価した。 Next, it was visually confirmed whether or not patterning was possible, and the patterning property was evaluated in light of the following evaluation criteria.
 <パターニング性の評価基準>
 ○:未露光部が溶解することでパターンを得ることができた
 ×:全溶解または不溶によりパターンを得ることができなかった
 評価結果を表2に示す。
<Evaluation criteria for patternability>
○: The pattern could be obtained by dissolution of the unexposed area. ×: The pattern could not be obtained due to total dissolution or insolubility. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、各実施例で得られた感光性樹脂フィルムは、無機材料および金属材料に対して良好な密着性を示すことが明らかとなった。 As apparent from Table 2, it became clear that the photosensitive resin films obtained in the respective examples exhibit good adhesion to inorganic materials and metal materials.
 本発明のネガ型感光性樹脂組成物は、熱硬化性樹脂と、光重合開始剤と、官能基として酸無水物を含有するカップリング剤とを含む。官能基として酸無水物を含有するカップリング剤を用いることにより、ネガ型感光性樹脂組成物で形成された樹脂膜は、無機材料や金属材料で形成された半導体チップや各種金属配線との密着性が良好となる。そのため、係るネガ型感光性樹脂組成物を用いた半導体装置の信頼性を高くすることができる。したがって、本発明は、産業上の利用可能性を有する。 The negative photosensitive resin composition of the present invention comprises a thermosetting resin, a photopolymerization initiator, and a coupling agent containing an acid anhydride as a functional group. By using a coupling agent containing an acid anhydride as a functional group, a resin film formed of a negative photosensitive resin composition adheres to a semiconductor chip formed of an inorganic material or a metal material or various metal wires. The quality is good. Therefore, the reliability of a semiconductor device using such a negative photosensitive resin composition can be increased. Thus, the present invention has industrial applicability.

Claims (11)

  1.  熱硬化性樹脂と、
     光重合開始剤と、
     官能基として酸無水物を含有するカップリング剤と、
    を含むことを特徴とするネガ型感光性樹脂組成物。
    Thermosetting resin,
    A photopolymerization initiator,
    A coupling agent containing an acid anhydride as a functional group,
    The negative photosensitive resin composition characterized by including.
  2.  前記熱硬化性樹脂は、常温で固形状の成分を含む請求項1に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1, wherein the thermosetting resin contains a solid component at normal temperature.
  3.  前記熱硬化性樹脂は、多官能エポキシ樹脂を含む請求項1または2に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 1, wherein the thermosetting resin comprises a polyfunctional epoxy resin.
  4.  前記多官能エポキシ樹脂の含有量は、前記感光性樹脂組成物の不揮発成分に対して40~80質量%である請求項3に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 3, wherein the content of the polyfunctional epoxy resin is 40 to 80% by mass with respect to the non-volatile component of the photosensitive resin composition.
  5.  前記カップリング剤は、アルコキシシリル基を含む化合物である請求項1ないし4のいずれか1項に記載のネガ型感光性樹脂組成物。 The negative type photosensitive resin composition according to any one of claims 1 to 4, wherein the coupling agent is a compound containing an alkoxysilyl group.
  6.  前記酸無水物は、コハク酸無水物である請求項1ないし5のいずれか1項に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to any one of claims 1 to 5, wherein the acid anhydride is succinic anhydride.
  7.  前記ネガ型感光性樹脂組成物は、さらに溶剤を含む請求項1ないし6のいずれか1項に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to any one of claims 1 to 6, wherein the negative photosensitive resin composition further comprises a solvent.
  8.  前記ネガ型感光性樹脂組成物は、前記溶剤に溶解されてワニス状をなす請求項7に記載のネガ型感光性樹脂組成物。 The negative photosensitive resin composition according to claim 7, wherein the negative photosensitive resin composition is dissolved in the solvent to form a varnish.
  9.  半導体チップと、
     前記半導体チップ上に設けられている、請求項1ないし8のいずれか1項に記載のネガ型感光性樹脂組成物の硬化物を含む樹脂膜と、
    を備えることを特徴とする半導体装置。
    A semiconductor chip,
    A resin film containing a cured product of the negative photosensitive resin composition according to any one of claims 1 to 8, provided on the semiconductor chip.
    A semiconductor device comprising:
  10.  前記樹脂膜中に、前記半導体チップと電気的に接続される再配線層が埋設されている請求項9に記載の半導体装置。 The semiconductor device according to claim 9, wherein a rewiring layer electrically connected to the semiconductor chip is embedded in the resin film.
  11.  請求項9または10に記載の半導体装置を備えることを特徴とする電子機器。 An electronic device comprising the semiconductor device according to claim 9.
PCT/JP2018/031738 2017-08-28 2018-08-28 Negative photosensitive resin composition, semiconductor device and electronic device WO2019044817A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880055884.7A CN111033379A (en) 2017-08-28 2018-08-28 Negative photosensitive resin composition, semiconductor device, and electronic device
KR1020207020144A KR20200087876A (en) 2017-08-28 2018-08-28 Negative photosensitive resin composition, semiconductor device and electronic device
JP2019522344A JP6631752B2 (en) 2017-08-28 2018-08-28 Negative photosensitive resin composition, semiconductor device and electronic equipment
KR1020207005419A KR102135599B1 (en) 2017-08-28 2018-08-28 Negative photosensitive resin composition, semiconductor device and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017163704 2017-08-28
JP2017-163704 2017-08-28

Publications (1)

Publication Number Publication Date
WO2019044817A1 true WO2019044817A1 (en) 2019-03-07

Family

ID=65527669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031738 WO2019044817A1 (en) 2017-08-28 2018-08-28 Negative photosensitive resin composition, semiconductor device and electronic device

Country Status (5)

Country Link
JP (2) JP6631752B2 (en)
KR (2) KR102135599B1 (en)
CN (1) CN111033379A (en)
TW (1) TWI768111B (en)
WO (1) WO2019044817A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023286747A1 (en) * 2021-07-16 2023-01-19
WO2023286748A1 (en) * 2021-07-16 2023-01-19 富士フイルム株式会社 Electronic device and method for manufacturing electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059167A (en) * 2013-09-18 2015-03-30 三菱化学株式会社 Curable resin composition, cured product and laminate
WO2015194639A1 (en) * 2014-06-20 2015-12-23 大阪有機化学工業株式会社 Photosensitive composition and cured film of same
JP2017111382A (en) * 2015-12-18 2017-06-22 住友ベークライト株式会社 Positive photosensitive resin composition, cured film, protective film, insulating film, and electronic device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW538092B (en) * 2001-05-24 2003-06-21 Ind Tech Res Inst Photo/thermo-curable resin composition
JP2003209104A (en) 2002-01-15 2003-07-25 Hitachi Chemical Dupont Microsystems Ltd Semiconductor device and its material
WO2005093514A1 (en) * 2004-03-26 2005-10-06 Tokyo Ohka Kogyo Co., Ltd. Photosensitive resin composition and method of forming pattern with the composition
CN1737072B (en) * 2004-08-18 2011-06-08 播磨化成株式会社 Conductive adhesive agent and process for manufacturing article using the conductive adhesive agent
JP4711208B2 (en) * 2006-03-17 2011-06-29 山栄化学株式会社 Photosensitive thermosetting resin composition, resist film-coated smoothed printed wiring board, and method for producing the same.
CN101416111B (en) * 2006-03-28 2012-07-04 富士胶片株式会社 Photosensitive composition, photosensitive film, method of forming permanent pattern, and printed wiring board
JP5465453B2 (en) * 2009-03-26 2014-04-09 パナソニック株式会社 Epoxy resin composition for forming optical waveguide, curable film for forming optical waveguide, flexible printed wiring board for optical transmission, and electronic information device
JP5364460B2 (en) * 2009-06-16 2013-12-11 株式会社デンソー Light curable epoxy adhesive
JPWO2011086981A1 (en) 2010-01-12 2013-05-20 旭硝子株式会社 Negative photosensitive resin composition and method for producing cured film and substrate using the same
JP5657414B2 (en) * 2010-02-16 2015-01-21 旭化成イーマテリアルズ株式会社 Negative photosensitive resin composition, method for producing cured relief pattern, and semiconductor device
TWI504681B (en) * 2010-03-08 2015-10-21 Lintec Corp A hardening composition, a hardened product, and a hardening composition
JP5583467B2 (en) * 2010-04-30 2014-09-03 パナソニック株式会社 Metal-clad laminate, photoelectric composite wiring board, method for producing metal-clad laminate, and method for producing photoelectric composite wiring board
TWI459051B (en) 2012-03-01 2014-11-01 Chi Mei Corp Photosensitive resin composition, black matrix, color filter and liquid crystal display element
KR101719045B1 (en) * 2012-05-07 2017-03-22 아사히 가세이 이-매터리얼즈 가부시키가이샤 Negative photosensitive resin composition, method for manufacturing hardening relief pattern, and semiconductor device
CN104241210A (en) * 2014-09-29 2014-12-24 华进半导体封装先导技术研发中心有限公司 Low-cost ultrathin fanout packaging structure and manufacturing method thereof
KR102378992B1 (en) * 2015-02-03 2022-03-24 쇼와덴코머티리얼즈가부시끼가이샤 Epoxy resin composition, film type epoxy resin composition, cured product and electronic device
CN108027561B (en) 2015-09-30 2021-10-08 东丽株式会社 Negative photosensitive resin composition, cured film, element and display device provided with cured film, and method for producing same
TWI735496B (en) * 2015-12-22 2021-08-11 日商琳得科股份有限公司 Curable composition, production method of curable composition, cured product and use method of curable composition
JP2018164072A (en) 2017-03-27 2018-10-18 住友ベークライト株式会社 Method for manufacturing electronic device, and photosensitive adhesive resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059167A (en) * 2013-09-18 2015-03-30 三菱化学株式会社 Curable resin composition, cured product and laminate
WO2015194639A1 (en) * 2014-06-20 2015-12-23 大阪有機化学工業株式会社 Photosensitive composition and cured film of same
JP2017111382A (en) * 2015-12-18 2017-06-22 住友ベークライト株式会社 Positive photosensitive resin composition, cured film, protective film, insulating film, and electronic device

Also Published As

Publication number Publication date
JP2020060773A (en) 2020-04-16
JP6631752B2 (en) 2020-01-15
KR20200087876A (en) 2020-07-21
TWI768111B (en) 2022-06-21
KR20200027032A (en) 2020-03-11
TW201917489A (en) 2019-05-01
CN111033379A (en) 2020-04-17
KR102135599B1 (en) 2020-07-20
JPWO2019044817A1 (en) 2019-11-07
JP6870724B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP7173103B2 (en) Photosensitive resin composition, method for producing electronic device, and electronic device
JP6870724B2 (en) Negative photosensitive resin compositions, semiconductor devices and electronic devices
JP2021096486A (en) Negative type photosensitive resin composition, and semiconductor device using the same
JP2019109295A (en) Photosensitive resin composition and electronic device
JP7259317B2 (en) Negative photosensitive resin composition, semiconductor device and electronic equipment using the same
JP7375406B2 (en) Photosensitive resin composition, electronic device manufacturing method, and electronic device
JP2019113739A (en) Photosensitive resin composition and electronic device
JP6729818B2 (en) Photosensitive resin composition for bump protective film, semiconductor device, method for manufacturing semiconductor device, and electronic device
JP2019062016A (en) Method for manufacturing semiconductor device
JP2021076728A (en) Photosensitive resin composition, method for producing electronic device and electronic device
JP2019060960A (en) Photosensitive resin composition, photosensitive resin film, semiconductor device, and electronic apparatus
JP7210978B2 (en) Negative photosensitive resin composition and semiconductor device
JP2019158949A (en) Photosensitive resin composition and electronic device
JP2019060959A (en) Photosensitive resin composition, patterning method and method for manufacturing semiconductor device
JP2019060958A (en) Patterning method and method for manufacturing semiconductor device
JP6903961B2 (en) Manufacturing method of electronic device
JP2019113756A (en) Patterning method and manufacturing method of semiconductor device
JP2021067815A (en) Photosensitive resin composition for bump protective film, semiconductor device, method for manufacturing semiconductor device and electronic apparatus
JP2019040134A (en) Photosensitive resin composition and electronic apparatus
JP2024003100A (en) Photosensitive resin composition
TW202309150A (en) Photosensitive resin composition, method for producing electronic device and electronic device
JP2021128300A (en) Photosensitive resin composition and method of manufacturing semiconductor device
JP2018151475A (en) Method for manufacturing electronic device
JP2019038963A (en) Photosensitive resin composition and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522344

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207005419

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852488

Country of ref document: EP

Kind code of ref document: A1