WO2019044557A1 - アイソレータ、光源装置、光送信機、光スイッチ、光増幅器、及びデータセンター - Google Patents

アイソレータ、光源装置、光送信機、光スイッチ、光増幅器、及びデータセンター Download PDF

Info

Publication number
WO2019044557A1
WO2019044557A1 PCT/JP2018/030645 JP2018030645W WO2019044557A1 WO 2019044557 A1 WO2019044557 A1 WO 2019044557A1 JP 2018030645 W JP2018030645 W JP 2018030645W WO 2019044557 A1 WO2019044557 A1 WO 2019044557A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
core
electromagnetic wave
isolator
substrate surface
Prior art date
Application number
PCT/JP2018/030645
Other languages
English (en)
French (fr)
Inventor
直樹 松井
丈也 杉田
吉川 博道
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN201880054973.XA priority Critical patent/CN111065956A/zh
Priority to JP2019539370A priority patent/JP7004730B2/ja
Priority to US16/643,473 priority patent/US10976564B2/en
Publication of WO2019044557A1 publication Critical patent/WO2019044557A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12002Three-dimensional structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12157Isolator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements

Definitions

  • the present disclosure relates to an isolator, a light source device, an optical switch, an optical amplifier, and a data center.
  • An isolator includes a first waveguide and a second waveguide located along the substrate surface on a substrate having a substrate surface and overlapping each other when viewed from the substrate.
  • Each of the first waveguide and the second waveguide has a core and a cladding.
  • the core has a first surface facing the substrate surface, and a second surface opposite to the first surface.
  • the cladding is positioned in contact with the first and second surfaces of the core.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the core of the second waveguide includes a nonreciprocal member in at least a part of a cross section which intersects the direction in which the second waveguide extends.
  • a light source device includes an optical isolator and a light source.
  • the optical isolator includes a first waveguide and a second waveguide located along the substrate surface on the substrate having the substrate surface and overlapping each other when viewed from the substrate.
  • Each of the first waveguide and the second waveguide has a core and a cladding.
  • the core has a first surface facing the substrate surface, and a second surface opposite to the first surface.
  • the cladding is positioned in contact with the first and second surfaces of the core.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the core of the second waveguide includes a nonreciprocal member in at least a part of a cross section which intersects the direction in which the second waveguide extends.
  • the light source is optically connected to the port.
  • An isolator comprises a first waveguide and at least one second waveguide.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the second waveguide has both ends, is located along the first waveguide, and is coupled to the first waveguide.
  • the first waveguide and the second waveguide have the second end more than a coupling coefficient when an electromagnetic wave input from the first end propagates toward the second end. Coupling is performed such that the coupling coefficient in the case where the electromagnetic wave input from is propagated toward the first end is larger.
  • a light source device includes an optical isolator and a light source.
  • the optical isolator comprises a first waveguide and at least one second waveguide.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the second waveguide has both ends, is located along the first waveguide, and is coupled to the first waveguide.
  • the first waveguide and the second waveguide have the second end more than a coupling coefficient when an electromagnetic wave input from the first end propagates toward the second end. Coupling is performed such that the coupling coefficient in the case where the electromagnetic wave input from is propagated toward the first end is larger.
  • the light source is optically connected to the port.
  • An isolator includes a first waveguide and a second waveguide that are arranged side by side along the substrate surface on a substrate having a substrate surface.
  • Each of the first waveguide and the second waveguide has a core and a cladding.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the core of the second waveguide includes a nonreciprocal member in at least a part of a cross section which intersects the direction in which the second waveguide extends.
  • a light source device includes an optical isolator and a light source.
  • the optical isolator comprises a first waveguide and a second waveguide which are located side by side along the substrate surface on a substrate having a substrate surface.
  • Each of the first waveguide and the second waveguide has a core and a cladding.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the core of the second waveguide includes a nonreciprocal member in at least a part of a cross section which intersects the direction in which the second waveguide extends.
  • the light source is optically connected to the port.
  • An optical transmitter mounts a light source device including an optical isolator and a light source.
  • the optical isolator includes a first waveguide and a second waveguide located along the substrate surface on the substrate having the substrate surface and overlapping each other when viewed from the substrate.
  • Each of the first waveguide and the second waveguide has a core and a cladding.
  • the core has a first surface facing the substrate surface, and a second surface opposite to the first surface.
  • the cladding is positioned in contact with the first and second surfaces of the core.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the core of the second waveguide includes a nonreciprocal member in at least a part of a cross section which intersects the direction in which the second waveguide extends.
  • the light source is optically connected to the port.
  • the optical transmitter has a light modulation function.
  • An optical transmitter mounts a light source device including an optical isolator and a light source.
  • the optical isolator comprises a first waveguide and at least one second waveguide.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the second waveguide has both ends, is located along the first waveguide, and is coupled to the first waveguide.
  • the first waveguide and the second waveguide have the second end more than a coupling coefficient when an electromagnetic wave input from the first end propagates toward the second end. Coupling is performed such that the coupling coefficient in the case where the electromagnetic wave input from is propagated toward the first end is larger.
  • the light source is optically connected to the port.
  • the optical transmitter has a light modulation function.
  • An optical transmitter mounts a light source device including an optical isolator and a light source.
  • the optical isolator comprises a first waveguide and a second waveguide which are located side by side along the substrate surface on a substrate having a substrate surface.
  • Each of the first waveguide and the second waveguide has a core and a cladding.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the core of the second waveguide includes a nonreciprocal member in at least a part of a cross section which intersects the direction in which the second waveguide extends.
  • the light source is optically connected to the port.
  • the optical transmitter has a light modulation function.
  • An optical switch includes an optical isolator.
  • the optical isolator includes a first waveguide and a second waveguide located along the substrate surface on the substrate having the substrate surface and overlapping each other when viewed from the substrate.
  • Each of the first waveguide and the second waveguide has a core and a cladding.
  • the core has a first surface facing the substrate surface, and a second surface opposite to the first surface.
  • the cladding is positioned in contact with the first and second surfaces of the core.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the core of the second waveguide includes a nonreciprocal member in at least a part of a cross section which intersects the direction in which the second waveguide extends.
  • An optical switch includes an optical isolator.
  • the optical isolator comprises a first waveguide and at least one second waveguide.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the second waveguide has both ends, is located along the first waveguide, and is coupled to the first waveguide.
  • the first waveguide and the second waveguide have the second end more than a coupling coefficient when an electromagnetic wave input from the first end propagates toward the second end. Coupling is performed such that the coupling coefficient in the case where the electromagnetic wave input from is propagated toward the first end is larger.
  • An optical switch includes an optical isolator.
  • the optical isolator comprises a first waveguide and a second waveguide which are located side by side along the substrate surface on a substrate having a substrate surface.
  • Each of the first waveguide and the second waveguide has a core and a cladding.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the core of the second waveguide includes a nonreciprocal member in at least a part of a cross section which intersects the direction in which the second waveguide extends.
  • An optical amplifier includes an optical isolator.
  • the optical isolator includes a first waveguide and a second waveguide located along the substrate surface on the substrate having the substrate surface and overlapping each other when viewed from the substrate.
  • Each of the first waveguide and the second waveguide has a core and a cladding.
  • the core has a first surface facing the substrate surface, and a second surface opposite to the first surface.
  • the cladding is positioned in contact with the first and second surfaces of the core.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the core of the second waveguide includes a nonreciprocal member in at least a part of a cross section which intersects the direction in which the second waveguide extends.
  • An optical amplifier includes an optical isolator.
  • the optical isolator comprises a first waveguide and at least one second waveguide.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the second waveguide has both ends, is located along the first waveguide, and is coupled to the first waveguide.
  • the first waveguide and the second waveguide have the second end more than a coupling coefficient when an electromagnetic wave input from the first end propagates toward the second end. Coupling is performed such that the coupling coefficient in the case where the electromagnetic wave input from is propagated toward the first end is larger.
  • An optical amplifier includes an optical isolator.
  • the optical isolator comprises a first waveguide and a second waveguide which are located side by side along the substrate surface on a substrate having a substrate surface.
  • Each of the first waveguide and the second waveguide has a core and a cladding.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the core of the second waveguide includes a nonreciprocal member in at least a part of a cross section which intersects the direction in which the second waveguide extends.
  • a data center in accordance with an embodiment of the present disclosure communicates by means of a device comprising an optical isolator.
  • the optical isolator includes a first waveguide and a second waveguide located along the substrate surface on the substrate having the substrate surface and overlapping each other when viewed from the substrate.
  • Each of the first waveguide and the second waveguide has a core and a cladding.
  • the core has a first surface facing the substrate surface, and a second surface opposite to the first surface.
  • the cladding is positioned in contact with the first and second surfaces of the core.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the core of the second waveguide includes a nonreciprocal member in at least a part of a cross section which intersects the direction in which the second waveguide extends.
  • a data center in accordance with an embodiment of the present disclosure communicates by means of a device comprising an optical isolator.
  • the optical isolator comprises a first waveguide and at least one second waveguide.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the second waveguide has both ends, is located along the first waveguide, and is coupled to the first waveguide.
  • the first waveguide and the second waveguide have the second end more than a coupling coefficient when an electromagnetic wave input from the first end propagates toward the second end. Coupling is performed such that the coupling coefficient in the case where the electromagnetic wave input from is propagated toward the first end is larger.
  • a data center in accordance with an embodiment of the present disclosure communicates by means of a device comprising an optical isolator.
  • the optical isolator comprises a first waveguide and a second waveguide which are located side by side along the substrate surface on a substrate having a substrate surface.
  • Each of the first waveguide and the second waveguide has a core and a cladding.
  • the first waveguide has a first end and a second end, and has a port through which an electromagnetic wave is input / output at each of the first end and the second end.
  • the core of the second waveguide includes a nonreciprocal member in at least a part of a cross section which intersects the direction in which the second waveguide extends.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG. It is sectional drawing which shows the structural example of a non-reciprocal member. It is a graph which shows an example of the phase difference in the non-reciprocal member of FIG. It is sectional drawing which shows the structural example of a non-reciprocal member. It is a graph which shows an example of the phase difference in the non-reciprocal member of FIG. It is sectional drawing which shows the structural example of a non-reciprocal member. It is a graph which shows an example of the coupling
  • an isolator 10 includes a first waveguide 20 and a second waveguide 30.
  • the first waveguide 20 and the second waveguide 30 are located along the substrate surface 50a and extend in the X-axis direction on the substrate 50 having the substrate surface 50a.
  • the substrate 50 may be configured to include a conductor such as metal, a semiconductor such as silicon, glass, a resin, or the like.
  • first waveguide 20 and the second waveguide 30 are in contact with the substrate surface 50a.
  • the first waveguide 20 is in contact with the substrate surface 50 a
  • the second waveguide 30 is located above the first waveguide 20.
  • the first waveguide 20 is located above the second waveguide 30.
  • the first waveguide 20 and the second waveguide 30 can be said to overlap with each other when viewed from the substrate 50.
  • the first waveguide 20 is in contact with the substrate surface 50a.
  • the second waveguide 30 is located above the first waveguide 20.
  • the first waveguide 20 has a first end 201 and a second end 202 on the positive and negative sides of the X axis, respectively.
  • the first waveguide 20 includes, at the first end 201 and the second end 202, a first port 211 and a second port 212 to which an electromagnetic wave is input / output.
  • the electromagnetic wave input from the first port 211 to the first waveguide 20 travels along the X axis toward the second port 212.
  • the electromagnetic wave input from the second port 212 to the first waveguide 20 travels along the X axis toward the first port 211.
  • Each of the first port 211 and the second port 212 may be configured as an end face of the core 21, or may be connected to an external device and configured as a coupler capable of propagating an electromagnetic wave.
  • the second waveguide 30 has ends 301 and 302 on the positive and negative sides of the X axis, respectively. In other words, the second waveguide 30 has both ends.
  • the second waveguide 30 is located along the first waveguide 20 and is coupled to the first waveguide 20.
  • the number of second waveguides 30 is not limited to one, and may be two or more.
  • the first waveguide 20 and the second waveguide 30 may be located along each other in at least a part of the extending direction.
  • the first waveguide 20 and the second waveguide 30 may be positioned so as to be parallel to each other in at least a part of the extending direction.
  • the first waveguide 20 or the second waveguide 30 may have a linear structure.
  • the first waveguide 20 and the second waveguide 30 can be easily formed on the substrate 50 by having a simple structure such as these.
  • the two waveguides located along each other are also referred to as parallel waveguides.
  • an electromagnetic wave input to one of the waveguides can transfer to the other waveguide while propagating in the waveguide. That is, the electromagnetic wave propagating in the first waveguide 20 can be transferred to the second waveguide 30. The electromagnetic wave propagating in the second waveguide 30 can be transferred to the first waveguide 20.
  • a parameter representing the proportion of electromagnetic waves transferred from one waveguide to the other is also referred to as a coupling coefficient. If no electromagnetic wave travels from one waveguide to the other, the coupling coefficient is assumed to be zero. When all the electromagnetic waves move from one waveguide to the other, the coupling coefficient is assumed to be 1.
  • the coupling coefficient may be a value of 0 or more and 1 or less.
  • the coupling coefficient may be determined based on the shape of each waveguide, the distance between each waveguide, or the length along which the waveguides are aligned with each other. For example, the coupling coefficient can be as high as the shape of each waveguide approximates.
  • the distance between the waveguides for example, the distance between the first waveguide 20 and the second waveguide 30 may be the distance between the core 21 and the core 31.
  • the coupling coefficient can vary depending on the distance the electromagnetic wave propagates in the waveguide. That is, in the parallel waveguide, the coupling coefficient may differ depending on the position along the direction in which the waveguide extends.
  • the maximum value of the coupling coefficient may be determined based on the shape of each waveguide or the distance between each waveguide.
  • the maximum value of the coupling coefficient may be a value of 1 or less.
  • the coupling coefficient at the start of the section along which the waveguides are along each other is zero.
  • the length from the start point to the position where the coupling coefficient is the maximum value is also referred to as the coupling length. If the lengths of the waveguides along one another are equal to the coupling length, the coupling coefficient at the end of the section along which the waveguides are along one another may be a local maximum.
  • the coupling length may be determined based on the shape of each waveguide or the distance between each waveguide.
  • the electromagnetic wave transferred from the first waveguide 20 propagates in the same direction as in the first waveguide 20 among the second waveguides 30.
  • the electromagnetic wave may be emitted from the end 301 or 302 or reflected at the end 301 or 302 to travel in the reverse direction.
  • the first waveguide 20 includes a core 21 and claddings 22 and 23.
  • the core 21 and the clads 22 and 23 extend in the X-axis direction.
  • the claddings 22 and 23 are located on the negative side and the positive side of the Z axis with respect to the core 21.
  • the cladding 22 is located on the side of the substrate 50 as viewed from the core 21.
  • the cladding 23 is located on the opposite side of the substrate 50 as viewed from the core 21. It can be said that the cladding 23 is located on the side of the second waveguide 30 as viewed from the core 21. Seeing from the substrate 50, it can be said that the cladding 22, the core 21, and the cladding 23 are sequentially stacked.
  • the claddings 22 and 23 can be said to be positioned sandwiching the core 21 in the direction in which the first waveguide 20 and the second waveguide 30 overlap.
  • the claddings 22 and 23 can be said to be located on both sides of the core 21 along the direction in which the first waveguide 20 and the second waveguide 30 overlap.
  • the core 21 may have a first surface 21 a located on the substrate 50 side and a second surface 21 b located on the opposite side of the first surface 21 a.
  • the claddings 22 and 23 may be positioned in contact with the first surface 21 a and the second surface 21 b, respectively.
  • the second waveguide 30 includes a core 31, a nonreciprocal member 32, and claddings 33 and 34.
  • the core 31, the nonreciprocal member 32, and the claddings 33 and 34 extend in the X-axis direction.
  • the non-reciprocal member 32 may be located on the positive side of the Z axis with respect to the core 31.
  • the non-reciprocal member 32 may be located on the side of the core 31 in the negative direction of the Z axis.
  • the non-reciprocal member 32 may be positioned side by side with respect to the core 31 in the positive direction or the negative direction of the Y axis.
  • the shapes of the core 31 and the non-reciprocity member 32 viewed from a cross section intersecting the X-axis are configured so as not to be point-symmetrical.
  • the shapes of the core 31 and the non-reciprocal member 32 may be further configured so as not to be line symmetrical.
  • the core 31 and the nonreciprocal member 32 are collectively referred to as an asymmetric core.
  • the asymmetric core is configured to include the core 31 and the non-reciprocal member 32.
  • the asymmetric core may have the non-reciprocal member 32 in at least a part of the cross section intersecting the X axis.
  • the core 31 may be configured to include at least one type of dielectric.
  • the non-reciprocal member 32 may be in contact with the surface on the side of the substrate 50 of the at least one dielectric or the opposite surface.
  • the degree of symmetry can be used as an index indicating whether or not the cross section of the asymmetric core is close to point symmetry.
  • the degree of symmetry may be represented by a ratio including a matching portion between the cross-sectional shape of the asymmetric core and the cross-sectional shape obtained by rotating the cross-sectional shape by 180 degrees about a predetermined point.
  • the cross-sectional shape with high degree of symmetry can be said to be close to point symmetry.
  • the asymmetric core may be configured such that the degree of symmetry of its cross-sectional shape is low.
  • the area of the core 31 may be larger than the area of the non-reciprocal member 32. In this way, most of the electromagnetic waves can propagate in the core 31. As a result, the loss of electromagnetic waves in the second waveguide 30 can be reduced.
  • the cross section of the asymmetric core may be configured such that the core 31 is located in a portion of the asymmetric core where the intensity of the propagating electromagnetic wave is maximum. By doing this, a portion where the intensity of the electromagnetic wave is high can propagate in the core 31. As a result, the loss of electromagnetic waves in the second waveguide 30 can be reduced.
  • the claddings 33 and 34 are located on the negative side and the positive side of the Z axis with respect to the asymmetric core.
  • the cladding 33 is located on the side of the substrate 50 as viewed from the asymmetric core.
  • the cladding 34 is located on the opposite side of the substrate 50 as viewed from the asymmetric core.
  • the cladding 34 can be said to be located on the side of the second waveguide 30 as viewed from the asymmetric core.
  • the cladding 33, the asymmetric core, and the cladding 34 may be sequentially stacked.
  • the claddings 33 and 34 can be said to be located across the asymmetric core.
  • the claddings 33 and 34 can be said to be located on both sides of the asymmetric core along the direction in which the first waveguide 20 and the second waveguide 30 overlap.
  • the core 31 may have a first surface 31 a located on the substrate 50 side and a second surface 31 b located on the opposite side of the first surface 31 a.
  • the claddings 33 and 34 may be positioned in contact with the first surface 31 a and the second surface 31 b, respectively.
  • the cores 21 and 31 and the claddings 22, 23, 33 and 34 may include dielectrics.
  • the cores 21 and 31 are also referred to as dielectric lines.
  • the dielectric constant of the core 21 may be higher than the dielectric constant of each of the claddings 22 and 23.
  • the relative permittivity of the core 31 may be higher than the relative permittivity of each of the claddings 33 and 34.
  • the cladding 23 and the cladding 33 may be made of the same dielectric material.
  • the cladding 23 and the cladding 33 may be integrally configured. When the cladding 23 and the cladding 33 are integrally formed, the formation of the isolator 10 can be facilitated.
  • the dielectric constants of the cores 21 and 31 and the claddings 22, 23, 33 and 34 may be higher than the dielectric constant of air.
  • the dielectric constants of the cores 21 and 31 and the claddings 22, 23, 33 and 34 are made higher than the dielectric constant of air, whereby the leakage of electromagnetic waves from the first waveguide 20 and the second waveguide 30 is suppressed. It can be done. As a result, the loss due to the electromagnetic wave being emitted from the isolator 10 to the outside can be reduced.
  • the core 21 or 31 may be made of, for example, silicon (Si).
  • the cladding 22, 23, 33 or 34 may be made of, for example, quartz glass (SiO 2 ).
  • the relative dielectric constants of silicon and quartz glass are about 12 and about 2, respectively.
  • Silicon can propagate electromagnetic waves having near infrared wavelengths of about 1.2 ⁇ m to about 6 ⁇ m with low loss.
  • the core 21 or 31 is made of silicon, it can propagate an electromagnetic wave having a wavelength of 1.3 ⁇ m band or 1.55 ⁇ m band used in optical communication with low loss.
  • the first waveguide 20 including the core 21 and the claddings 22 and 23, and the second waveguide 30 including the asymmetric core and the claddings 33 and 34 have a single-mode guiding condition. You may meet When the first waveguide 20 and the second waveguide 30 satisfy the waveguide conditions in the single mode, the waveforms of the signals propagating through the first waveguide 20 and the second waveguide 30 are less likely to be broken.
  • the isolator 10 in which the first waveguide 20 and the second waveguide 30 combined to satisfy the single-mode waveguide condition can be suitable for optical communication.
  • the relative permittivity of the core 21 or 31 may be uniformly distributed along the Z-axis direction, or may be distributed to vary along the Z-axis direction.
  • the relative permittivity of the core 21 may be distributed so as to be highest at the central portion in the Z-axis direction and to be lower as it approaches the claddings 22 and 23.
  • the core 21 can propagate an electromagnetic wave on the same principle as a graded-index optical fiber.
  • the electromagnetic wave input from the first end 201 of the first waveguide 20 to the core 21 through the first port 211 is the second end of the core 21 of the first waveguide 20 extending along the X axis. Propagate towards 202.
  • the direction from the first end 201 to the second end 202 is also referred to as a first direction.
  • the electromagnetic wave propagating in the core 21 can be transferred to the core 31 of the second waveguide 30 at a rate according to the coupling coefficient based on the distance propagated in the first direction in the core 21.
  • the coupling coefficient when the electromagnetic wave propagates in the first direction in the core 21 is also referred to as a first coupling coefficient.
  • the electromagnetic wave input to the core 21 from the second end 202 of the first waveguide 20 through the second port 212 is a first end of the core 21 of the first waveguide 20 extending along the X axis. It propagates toward 201.
  • the direction from the second end 202 to the first end 201 is also referred to as a second direction.
  • the electromagnetic wave propagating in the core 21 propagates to the core 31 of the second waveguide 30 at a rate according to the coupling coefficient based on the distance propagated in the second direction in the core 21.
  • the coupling coefficient when the electromagnetic wave propagates in the second direction in the core 21 is also referred to as a second coupling coefficient.
  • the asymmetric core of the second waveguide 30 may have different propagation characteristics when the electromagnetic wave propagates in the first direction and when the electromagnetic wave propagates in the second direction. If the propagation characteristics of the asymmetric core differ based on the propagation direction of the electromagnetic wave, the first coupling coefficient and the second coupling coefficient may be different from each other. That is, the non-reciprocal member 32 can make the first coupling coefficient and the second coupling coefficient different.
  • the nonreciprocal member 32 may be made of a material having different propagation characteristics in the case where the electromagnetic wave propagates in the first direction and in the case where the electromagnetic wave propagates in the second direction.
  • a material having different propagation characteristics depending on the propagation direction of the electromagnetic wave is also referred to as a nonreciprocal material.
  • the non-reciprocal member 32 may include, for example, a magnetic material such as magnetic garnet, ferrite, iron, cobalt and the like.
  • the relative permittivity of the non-reciprocal member 32 can be expressed by a tensor as shown in equation (1). Each element of the tensor may be represented by a complex number.
  • each element may correspond to the X axis, Y axis and Z axis.
  • a tensor having a complex number as an element and representing a relative permittivity is also referred to as a complex relative permittivity tensor.
  • the non-reciprocal member 32 may include a non-reciprocal material at a predetermined concentration.
  • the predetermined concentration may vary in the cross section intersecting the X axis.
  • the predetermined concentration may change at least in part along the polarization direction of the electromagnetic wave input to the isolator 10.
  • the second waveguide 30 may have the shape shown in FIG. 3 in a cross section intersecting the X axis.
  • the dimension in the Y-axis direction of the second waveguide 30 is represented by A.
  • the dimension in the Z-axis direction of each of the core 31 and the nonreciprocal member 32 is represented by B.
  • the dimension in the Y-axis direction of the nonreciprocal member 32 is represented by C.
  • the non-reciprocal members 32 are aligned with the core 31 and the Y axis, and are positioned on the negative side of the Y axis.
  • the second waveguide 30 extends in the X-axis direction so that the dimension in the X-axis direction becomes a predetermined length.
  • the non-reciprocal member 32 has a relative dielectric constant represented by a complex relative dielectric constant tensor.
  • the difference between the phase of the electromagnetic wave propagating in the first direction in the second waveguide 30 and the phase of the electromagnetic wave propagating in the second direction may be calculated by simulation.
  • the difference between the phase of the electromagnetic wave propagating in the first direction and the phase of the electromagnetic wave propagating in the second direction is also referred to as a phase difference.
  • the phase difference may change according to the value of C / A.
  • the value of C / A represents the proportion occupied by the non-reciprocal member 32 when viewing the asymmetric core in the Z-axis direction.
  • the phase difference may increase.
  • the phase difference can be adjusted by changing the value of C / A.
  • the nonreciprocity of the attenuation of the electromagnetic wave may be large. That is, the larger the phase difference, the larger the difference between the amount of attenuation when the electromagnetic wave propagates in the first direction and the amount of attenuation when the electromagnetic wave propagates in the second direction.
  • the second waveguide 30 can be configured such that the attenuation of the electromagnetic wave varies depending on the propagation direction of the electromagnetic wave by adjusting the value of C / A.
  • the property that the attenuation of the electromagnetic wave differs depending on the propagation direction of the electromagnetic wave is also called nonreciprocity.
  • the value of C / A approaches 0.5, it can be said that the degree of symmetry of the asymmetric core becomes low. That is, by decreasing the degree of symmetry of the asymmetric core, the nonreciprocity of the second waveguide 30 can be increased.
  • the second waveguide 30 may have the shape shown in FIG. 5 in a cross section intersecting the X axis.
  • the dimension of the second waveguide 30 in the Y-axis direction and the dimension of the core 31 in the Y-axis direction are represented by A.
  • the dimension in the Z-axis direction of the core 31 is represented by B.
  • the dimensions of the nonreciprocal member 32 in the Y-axis direction and the Z-axis direction are represented by C and D, respectively.
  • the nonreciprocal member 32 is located on the positive direction side of the Z axis with respect to the core 31 and is located on the negative direction side of the Y axis in the second waveguide 30.
  • the second waveguide 30 extends in the X-axis direction so that the dimension in the X-axis direction becomes a predetermined length.
  • the non-reciprocal member 32 has a relative dielectric constant represented by a complex relative dielectric constant tensor.
  • the difference between the phase of the electromagnetic wave propagating in the first direction in the second waveguide 30 and the phase of the electromagnetic wave propagating in the second direction may be calculated by simulation.
  • the phase difference may change according to the value of C / A.
  • the relationship between the phase difference and the value of C / A may change depending on the value of D / B.
  • the phase difference can be adjusted by changing the value of C / A.
  • the phase difference may increase.
  • the phase difference can be adjusted by changing the value of D / B.
  • the second waveguide 30 can be configured to have nonreciprocity by adjusting the values of C / A and D / B.
  • D / B increases in the range illustrated in FIG. 6, it can be said that the degree of symmetry of the asymmetric core decreases. That is, by decreasing the degree of symmetry of the asymmetric core, the nonreciprocity of the second waveguide 30 can be increased.
  • the second waveguide 30 may have the shape shown in FIG. 7 in a cross section intersecting the X axis. In this case, the asymmetric core is not point symmetric. Thus, the second waveguide 30 illustrated in FIG. 7 may have non-reciprocity.
  • the maximum value of the coupling coefficient when the electromagnetic wave propagates in the first direction is different from the maximum value of the coupling coefficient when the electromagnetic wave propagates in the second direction sell.
  • the maximum value of the coupling coefficient between the first waveguide 20 and the second waveguide 30 when electromagnetic waves propagate in the first direction can be configured to be a value close to 0.
  • the maximum value of the coupling coefficient between the first waveguide 20 and the second waveguide 30 when the electromagnetic wave propagates in the second direction can be configured to be a value close to 1 .
  • the transmittance of the electromagnetic wave may differ for each propagation direction of the electromagnetic wave.
  • the horizontal axis and the vertical axis respectively represent the traveling distance of the electromagnetic wave in the parallel waveguide and the coupling coefficient.
  • the coupling coefficient between the first waveguide 20 and the second waveguide 30 may differ depending on the propagation direction of the electromagnetic wave. That is, when the second waveguide 30 has nonreciprocity, the first coupling coefficient of the isolator 10 may be different from the second coupling coefficient.
  • the second coupling coefficient can be made larger than the first coupling coefficient.
  • the electromagnetic wave input to the first waveguide 20 from the first port 211 propagates in the first direction, at least a portion of the input electromagnetic wave transferred to the second waveguide 30 reaches the end 302 sell.
  • the electromagnetic wave that has reached the end 302 of the second waveguide 30 may not be output from the second port 212 of the first waveguide 20, but may be emitted to the outside from the end 302 or may be reflected at the end 302.
  • the ratio of the electromagnetic waves that reach the end 302 by moving to the second waveguide 30 among the electromagnetic waves input to the first waveguide 20 may be large. In this case, the ratio of the electromagnetic waves output from the second port 212 to the electromagnetic waves input to the first waveguide 20 may be small.
  • the ratio of the intensity of the electromagnetic wave output from the second port 212 to the intensity of the electromagnetic wave input to the first port 211 may be small.
  • the ratio of the intensity of the electromagnetic wave output from the second port 212 to the intensity of the electromagnetic wave input to the first port 211 is also referred to as the transmittance of the isolator 10 for the electromagnetic wave propagating in the first direction.
  • the transmittance for the electromagnetic wave propagating in the first direction may be low.
  • the ratio of the electromagnetic wave transferred to the second waveguide 30 may be small, so the transmittance for the electromagnetic wave propagating in the first direction may be high.
  • the electromagnetic wave that is input from the second port 212 to the first waveguide 20 and propagates in the second direction can receive the same action as the electromagnetic wave propagating in the first direction is received from the isolator 10. By this action, a part of the electromagnetic wave propagating in the second direction can reach the end 301 of the second waveguide 30. If the second coupling coefficient is large, the transmittance for the electromagnetic wave propagating in the second direction may be low. When the second coupling coefficient is small, the transmittance of the electromagnetic wave propagating in the second direction may be high.
  • the transmittance for the electromagnetic wave propagating in the first direction may be different from the transmittance for the electromagnetic wave propagating in the second direction. That is, by making the first coupling coefficient and the second coupling coefficient different, the isolator 10 can function to easily propagate the electromagnetic wave in one direction and to make it difficult to propagate the electromagnetic wave in the reverse direction. If the second coupling coefficient is greater than the first coupling coefficient, the isolator 10 may function to facilitate the propagation of the electromagnetic wave in the first direction and the propagation of the electromagnetic wave in the second direction.
  • the first coupling coefficient and the second coupling coefficient are approximately 0 and 1, respectively, the difference between the transmittance for the electromagnetic wave propagating in the first direction and the transmittance for the electromagnetic wave propagating in the second direction can be increased . As a result, the functionality of the isolator 10 may be improved.
  • the coupling length of the parallel waveguide to the electromagnetic wave propagating in the first direction may be different from the coupling length of the parallel waveguide to the electromagnetic wave propagating in the second direction.
  • the coupling length for an electromagnetic wave propagating in the first direction in the isolator 10 may be represented as L 1 .
  • the coupling length for the electromagnetic waves propagating in the isolator 10 in the second direction may be expressed as L 2.
  • the isolator 10 may be configured such that L 1 and L 2 are different.
  • the coupling coefficient may be a maximum. For example, in parallel waveguide having a relationship shown in the graph of FIG. 8, when the length of the two waveguides along each other is L 1, the coupling coefficient can be a maximum value. If the length along which the two waveguides meet each other is equal to twice the coupling length, the coupling coefficient can be a local minimum. For example, in parallel waveguide having a relationship shown in FIG. 8, when the length of the two waveguides along each other is 2L 1, the coupling coefficient can be a minimum value.
  • the relationship shown in the graph of FIG. 8 can be repeated even in a region where the travel distance of the electromagnetic wave is long. That is, if the lengths of the two waveguides along each other are an odd multiple of L 1 , the coupling coefficient may be a maximum value. If the length along which the two waveguides meet each other is an even multiple of L 1 , the coupling coefficient may be a local minimum. Also in parallel waveguide having a relationship shown in FIG. 9, when the length of the two waveguides along each other is an odd multiple of L 2, and, in each case with an even multiple of L 2, the coupling coefficient is the maximum value And it can be a local minimum.
  • L 1 and L 2 are lengths that can be the shortest coupling length in the parallel waveguide, and are also referred to as unit coupling lengths. That is, the bond length may be an odd multiple of the unit bond length.
  • the first coupling coefficient and the second coupling coefficient can be adjusted by adjusting the lengths of the first waveguide 20 and the second waveguide 30 along each other.
  • the lengths of the first waveguide 20 and the second waveguide 30 along each other may be substantially the same as the odd multiple of the unit coupling length for the electromagnetic wave propagating in the second direction. By doing this, the second coupling coefficient can be increased.
  • the lengths of the first waveguide 20 and the second waveguide 30 along each other may be substantially the same as an even multiple of a unit coupling length for an electromagnetic wave propagating in the first direction. By doing this, the first coupling coefficient can be reduced. By doing so, the second coupling coefficient may be made larger than the first coupling coefficient.
  • the amount of electromagnetic waves not output from the other port is also referred to as an attenuation amount.
  • the attenuation amount of the electromagnetic wave traveling in the first direction and the second direction in the isolator 10 can be calculated by simulation using a finite element method or the like.
  • the relationship between the attenuation amount of the electromagnetic wave propagating in the second direction and the frequency of the electromagnetic wave is represented by a solid line graph represented by S12.
  • the relationship between the attenuation amount of the electromagnetic wave propagating in the first direction and the frequency of the electromagnetic wave is represented by a broken line graph represented by S21.
  • the horizontal axis and the vertical axis of the graph respectively indicate the frequency of the electromagnetic wave propagating through the first waveguide 20 and the attenuation amount of the electromagnetic wave.
  • the amount of attenuation of the electromagnetic wave is expressed in decibels (dB).
  • the plot located above along the vertical axis indicates that the attenuation of the electromagnetic wave is small.
  • a plot located below along the vertical axis represents that the attenuation of the electromagnetic wave is high.
  • the attenuation of the electromagnetic wave propagating in the second direction may be larger than the attenuation of the electromagnetic wave propagating in the first direction.
  • the isolator 10 makes it easy to propagate an electromagnetic wave of a predetermined frequency band from the first port 211 toward the second port 212 while making it difficult to propagate the electromagnetic wave from the second port 212 to the first port 211. It can work.
  • the predetermined frequency band in which the isolator 10 can function to make the amount of attenuation different for each propagation direction of the electromagnetic waves is also referred to as the operating frequency of the isolator 10.
  • the operating frequency of the isolator 10 can be arbitrarily determined based on the configuration of the isolator 10. That is, at any operating frequency, the second coupling coefficient may be larger than the first coupling coefficient.
  • the isolator 10 has a function of making the transmittance for the electromagnetic wave propagating in the first direction different from the transmittance for the electromagnetic wave propagating in the second direction. Such a function can also be realized by the isolator 90 according to the comparative example shown in FIG.
  • the isolator 90 includes an input end 91, a branching coupler 92, a reciprocal phase shifter 93, a non-reciprocal phase shifter 94, a branching coupler 95, and an output end 96.
  • the electromagnetic wave input from the input end 91 is branched by the branching coupler 92 and propagates to the reciprocal phase shifter 93 and the non-reciprocal phase shifter 94.
  • the electromagnetic wave is phase-shifted by the reciprocal phase shifter 93 and the non-reciprocal phase shifter 94, coupled by the branch coupler 95, and propagated to the output end 96.
  • the reciprocal phase shifter 93 and the non-reciprocal phase shifter 94 can be configured such that the electromagnetic wave input from the input end 91 is output from the output end 96.
  • the electromagnetic wave input from the output end 96 is branched by the branching coupler 95 and propagates to the reciprocal phase shifter 93 and the non-reciprocal phase shifter 94.
  • the electromagnetic waves are phase-shifted by the reciprocal phase shifter 93 and the non-reciprocal phase shifter 94 respectively, coupled by the branch coupler 92, and propagated to the input end 91.
  • the reciprocal phase shifter 93 and the non-reciprocal phase shifter 94 can be configured such that the electromagnetic wave input from the output end 96 is not output from the input end 91.
  • the loss of electromagnetic waves in the nonreciprocal phase shifter 94 and the branching couplers 92 and 95 is relatively large.
  • the electromagnetic wave propagates through the core 31 in principle.
  • the loss of the electromagnetic wave in the isolator 10 according to the present embodiment may be smaller than the loss of the electromagnetic wave in the isolator 90 according to the comparative example. That is, the isolator 10 according to the present embodiment can function to easily transmit the electromagnetic wave in one direction and less in the opposite direction while reducing the loss of the electromagnetic wave.
  • the first waveguide 20 and the second waveguide 30 are also referred to as a reciprocal line and a non-reciprocal line, respectively.
  • the non-reciprocal phase shifter 94 and the branch couplers 92 and 95 are mounted to be connected in series, and are not easily miniaturized.
  • the isolator 10 according to the present embodiment is easily miniaturized on the substrate 50.
  • the isolator 10 according to the present embodiment can be integrated and mounted on the substrate 50. That is, the isolator 10 according to the present embodiment can function so as to easily transmit an electromagnetic wave in one direction and hardly transmit it in the opposite direction due to the integrated configuration.
  • the isolator 10 may further include an antenna 60 at the end portions 301 and 302 of the second waveguide 30 to emit an electromagnetic wave.
  • the antenna 60 can efficiently radiate the electromagnetic waves reaching the end portions 301 and 302.
  • the antenna 60 makes it difficult for the end portions 301 and 302 to reflect electromagnetic waves. As a result, the functionality of the isolator 10 may be improved.
  • the second waveguide 30 may have cut surfaces at the ends 301 and 302.
  • the cut surfaces at both ends of the second waveguide 30 may function as the antenna 60.
  • the normal vectors of the cutting planes at the end portions 301 and 302 of the second waveguide 30 may be configured to point in a direction having an inclination with respect to the X axis.
  • the angle between the direction of the normal vector of the cutting plane and the X-axis direction may be greater than 0 degrees.
  • the normal vector of the cutting plane may have a component in a direction intersecting the propagation direction of the electromagnetic wave in the second waveguide 30.
  • the angle between the direction of the normal vector of the cutting plane and the X-axis direction may have a value close to 90 degrees.
  • the second waveguide 30 When the angle between the direction of the normal vector of the cut surface and the X axis is close to 90 degrees, the second waveguide 30 has a tapered shape in which the thickness gradually decreases at the end portions 301 and 302. As a result, the reflectivity of the electromagnetic waves at the ends 301 and 302 can be reduced.
  • the second waveguide 30 When the second waveguide 30 is located above the first waveguide 20 as viewed from the substrate 50, the cut surfaces at both ends of the second waveguide 30 are easily formed by processing on the substrate 50.
  • the isolator 10 may further include an electromagnetic wave absorbing member 70 outside the ends 301 and 302 of the second waveguide 30.
  • the electromagnetic wave absorbing member 70 can absorb the electromagnetic waves emitted from the end portions 301 and 302. In this way, the electromagnetic wave emitted from the isolator 10 hardly affects other circuits located around the isolator 10.
  • the isolator 10 may include a plurality of second waveguides 30.
  • the number of second waveguides 30 is not limited to two, and may be three or more.
  • Each of the second waveguides 30 may be coupled in series to the first waveguide 20.
  • the lengths along which the second waveguides 30 and the first waveguides 20 are along each other may be substantially the same as the coupling length for the electromagnetic wave propagating in the second direction.
  • the first waveguide 20 may include a matching adjustment circuit 25.
  • the matching adjustment circuit 25 can adjust the propagation characteristics of the electromagnetic waves propagating in the first waveguide 20 for each frequency.
  • the alignment adjustment circuit 25 may be provided as a structure in which the core 21 has a plurality of holes 24.
  • the second waveguide 30 is shown by a phantom line of a two-dot chain line.
  • the hole 24 may penetrate the core 21 in the Y-axis direction.
  • the hole 24 may penetrate from the first surface 21 a to the second surface 21 b of the core 21.
  • the hole 24 may penetrate to the clads 22 and 23 in the Y-axis direction.
  • the holes 24 may be aligned in the X-axis direction. That is, the holes 24 may be arranged in the direction in which the core 21 extends.
  • the number of holes 24 is not limited to nine.
  • the shape of the hole 24 viewed in the Z-axis direction is not limited to the rectangular shape, and may be various shapes such as a circular shape or a polygonal shape.
  • the holes 24 may be periodically arranged in the X-axis direction.
  • the first waveguide 20 including the core 21 can constitute a Bragg diffraction grating.
  • an electromagnetic wave is input to the first waveguide 20 from the first port 211, an electromagnetic wave having a wavelength satisfying the Bragg reflection condition among the input electromagnetic waves may be reflected back to the first port 211.
  • electromagnetic waves having other wavelengths may propagate toward the second port 212. That is, the first waveguide 20 provided with the hole 24 can function as a filter for an electromagnetic wave having a predetermined wavelength.
  • the attenuation amount of the electromagnetic wave propagating in the first direction is in the second direction in a predetermined frequency band represented by fb2. It may be larger than the attenuation of the propagating electromagnetic wave.
  • fb2 may be a frequency band different from the frequency band indicated by fb1 in FIG.
  • the non-reciprocal member 32 may be configured to have non-reciprocity when a magnetic field in a predetermined direction is applied.
  • the nonreciprocal member 32 may be configured to have nonreciprocity when a magnetic field having a component in the Z-axis direction is applied.
  • the predetermined direction is not limited to the Z-axis direction, and may be various directions. The predetermined direction may be determined based on the cross-sectional shape or the degree of symmetry of the asymmetric core.
  • the non-reciprocal members 32 may be configured to have different magnitudes of non-reciprocity in response to changes in the strength or orientation of the magnetic field. With this configuration of the isolator 10, it can be controlled whether or not the non-reciprocal member 32 has non-reciprocity, or the size of the non-reciprocal member 32 has.
  • the isolator 10 may further include a magnetic field application unit 80 that applies a magnetic field.
  • the magnetic field application unit 80 may be located in the positive direction of the Z axis with respect to the second waveguide 30.
  • the magnetic field application unit 80 may be located on the substrate 50 side with respect to the second waveguide 30 via the first waveguide 20.
  • the magnetic field application unit 80 may be positioned in a mode different from the mode illustrated in FIG.
  • the magnetic field application unit 80 may be a permanent magnet such as a ferrite magnet or a neodymium magnet.
  • the magnetic field application unit 80 may be an electromagnet.
  • Propagation modes of electromagnetic waves in parallel waveguides may include even modes and odd modes.
  • the even mode is a mode in which the electric field of the propagating electromagnetic wave is directed in the same direction in each of the waveguides constituting the parallel waveguide.
  • the odd mode is a mode in which the electric field of the propagating electromagnetic wave is directed in the opposite direction in each of the waveguides constituting the parallel waveguide.
  • An electromagnetic wave can propagate through a parallel waveguide based on the effective refractive index of the parallel waveguide.
  • the effective refractive index of the parallel waveguide can be determined based on the shape of each waveguide constituting the parallel waveguide, the relative permittivity of the material constituting the waveguide, or the propagation mode of the electromagnetic wave.
  • the effective refractive index of a parallel waveguide when electromagnetic waves propagate in even mode is also referred to as even mode refractive index.
  • the effective refractive index of the parallel waveguide when the electromagnetic wave propagates in the odd mode is also referred to as the odd mode refractive index.
  • the even mode index and the odd mode index are represented as n even and n odd , respectively.
  • the coupling length in the parallel waveguide can be expressed by the following equation (2). (L: bond length, m: odd, ⁇ 0 : wavelength in vacuum)
  • the isolator 10 can be used in combination with a light input configuration.
  • the isolator 10 is also referred to as an optical isolator.
  • the light source device 100 includes an isolator 10, a light source 110, a lens 112, and a power supply 114 that supplies power to the light source 110.
  • the light source 110 may be, for example, a semiconductor laser such as an LD (Laser Diode) or a VCSEL (Vertical Cavity Surface Emitting LASER).
  • the light source 110 may be formed on the substrate 50.
  • the lens 112 focuses the light output from the light source 110 on the first port 211 of the first waveguide 20 of the isolator 10.
  • the shape of the lens 112 is not particularly limited.
  • a small spherical lens, a biconvex lens, or a plano-convex lens may be employed.
  • the lens 112 may be comprised of a material that is light transmissive to the wavelength of light being propagated.
  • the light source 110 is optically connected to the first port 211 via the lens 112.
  • the positional relationship between the light source 110, the lens 112, and the first port 211 may be fixed so as not to cause misalignment.
  • the light source 110, the lens 112, and the first port 211 may be integrally integrated on the substrate 50.
  • the light source 110 may input, to the first port 211, linearly polarized light whose polarization direction is the Y-axis direction.
  • the light source device 100 may not have the lens 112. When the light source device 100 does not have the lens 112, the light emitted from the light source 110 may be directly input to the first port 211.
  • the method of inputting light from the light source 110 to the first port 211 is not limited to the method of inputting the light of the light source 110 directly or through the lens 112.
  • the light source 110 may be coupled to the first port 211 via an optical fiber.
  • the light propagating in the optical fiber may be input to the first port 211 by connecting a free space via a lens or the like, directly abutting the exit surface of the optical fiber with the first port 211, or connecting light.
  • Various methods may be included, such as using the waveguide 120 (see FIG. 20).
  • the light source device 100 can output the light output from the light source 110 in the first direction through the isolator 10 by including the light source 110 and the isolator 10.
  • the isolator 10 makes it difficult to propagate the light returning in the second direction, and the light may not easily return to the light source 110 side. As a result, light can be output efficiently.
  • the first waveguide 20 may be configured to be in contact with the substrate surface 50a. That is, the first waveguide 20 may be located closer to the substrate surface 50 a than the second waveguide 30. By doing this, the light source 110 integrated on the substrate 50 and the first port 211 can be easily optically connected.
  • the connection waveguide 120 may have a core 121 and claddings 122 and 123.
  • the relative permittivity of the core 121 may be substantially the same as the relative permittivity of the core 21 of the first waveguide 20.
  • the core 121 may be formed of the same material as the core 21.
  • the relative permittivity of the claddings 122 and 123 may be lower than the relative permittivity of the core 121.
  • the relative permittivity of the claddings 122 and 123 may be substantially the same as the relative permittivity of the claddings 22 and 23 of the first waveguide 20.
  • the claddings 122 and 123 may be formed of the same material as the claddings 22 and 23.
  • the end face on the positive direction side of the X axis of the core 121 is in contact with the first port 211 located on the end face on the negative direction side of the X axis of the core 21.
  • the thickness of the core 121 in the Z-axis direction may be thicker than the thickness of the core 21 of the first waveguide 20 in the Z-axis direction.
  • the thickness in the Z-axis direction of the core 121 may be substantially the same as the thickness in the Z-axis direction of the core 21 of the first waveguide 20.
  • the light input to the core 121 from the side of the negative direction of the X axis may be linearly polarized light whose polarization direction is the Y axis direction.
  • the polarization direction of light input to the core 121 from the side of the negative direction of the X axis may be parallel to the substrate surface 50a.
  • the light source 110 integrated on the substrate 50 is a semiconductor laser
  • the polarization direction of the light emitted from the semiconductor laser is parallel to the substrate surface 50 a.
  • the semiconductor laser is easily integrated on the substrate 50. As a result, the formation of the light source device 100 can be facilitated.
  • the width in the Y-axis direction of the core 121 may be substantially the same as the width in the Y-axis direction of the core 21.
  • the width in the Y-axis direction of the core 121 and the core 21 changes discontinuously at the connection portion between the core 121 and the core 21, light whose polarization direction is the Y-axis direction is easily emitted at the connection portion.
  • the loss due to radiation can be reduced by making the widths in the Y-axis direction of the core 121 and the core 21 substantially the same at the connection portion between the core 121 and the core 21.
  • the core 121 of the connection waveguide 120 may be configured in a tapered shape in which the thickness in the Z-axis direction decreases as the connection with the core 21 of the first waveguide 20 approaches.
  • the input light can be matched to the propagation mode of light in the core 21.
  • a mismatch in propagation mode of light is less likely to occur.
  • the occurrence of loss when light enters the core 21 from the core 121 can be reduced.
  • the isolator 10 includes a first waveguide 20 and a second conductor, which are located side by side along the substrate surface 50 a (see FIG. 1 etc.) on the substrate 50. And a waveguide 30.
  • the isolator 10 may further comprise a first waveguide 20 and a cladding 40 located around the second.
  • the first waveguide 20 has a first end 201 and a second end 202 on the positive direction side and the negative direction side of the X axis, respectively.
  • the first waveguide 20 includes, at the first end 201 and the second end 202, a first port 211 and a second port 212 to which an electromagnetic wave is input / output.
  • the electromagnetic wave input from the first port 211 to the first waveguide 20 travels along the X axis toward the second port 212.
  • the electromagnetic wave input from the second port 212 to the first waveguide 20 travels along the X axis toward the first port 211.
  • Each of the first port 211 and the second port 212 may be configured as an end face of the core 21 (see FIG. 24), or may be connected to an external device and configured as a coupler capable of propagating an electromagnetic wave.
  • the second waveguide 30 has ends 301 and 302 on the positive and negative sides of the X axis, respectively. In other words, the second waveguide 30 has both ends.
  • the second waveguide 30 is located along the first waveguide 20 and is coupled to the first waveguide 20.
  • the number of second waveguides 30 is not limited to one, and may be two or more.
  • the first waveguide 20 and the second waveguide 30 may be located along each other in at least a part of the extending direction.
  • the first waveguide 20 and the second waveguide 30 may be positioned so as to be parallel to each other in at least a part of the extending direction.
  • the first waveguide 20 or the second waveguide 30 may have a linear structure.
  • the first waveguide 20 and the second waveguide 30 can be easily formed on the substrate 50 by having a simple structure such as these.
  • the electromagnetic wave transferred from the first waveguide 20 propagates in the same direction as in the first waveguide 20 among the second waveguides 30.
  • the electromagnetic wave may be emitted from the end 301 or 302 or reflected at the end 301 or 302 to travel in the reverse direction.
  • the first waveguide 20 includes a core 21 and claddings 22 and 23.
  • the core 21 and the clads 22 and 23 extend in the X-axis direction.
  • the claddings 22 and 23 are located on the negative side and the positive side of the Z axis with respect to the core 21.
  • the cladding 22 is located on the side of the substrate 50 as viewed from the core 21.
  • the cladding 23 is located on the opposite side of the substrate 50 as viewed from the core 21. Seeing from the substrate 50, it can be said that the cladding 22, the core 21, and the cladding 23 are sequentially stacked.
  • the core 21 may have a first surface 21 a located on the substrate 50 side and a second surface 21 b located on the opposite side of the first surface 21 a.
  • the claddings 22 and 23 may be positioned in contact with the first surface 21 a and the second surface 21 b, respectively.
  • the second waveguide 30 includes a core 31, a nonreciprocal member 32, and claddings 33 and 34.
  • the core 31, the nonreciprocal member 32, and the claddings 33 and 34 extend in the X-axis direction.
  • the non-reciprocal member 32 may be positioned side by side with respect to the core 31 in the positive direction or the negative direction of the Y axis. In other words, the core 31 and the non-reciprocal member 32 may be positioned side by side in the substrate surface.
  • the non-reciprocal member 32 may be located on the side of the core 31 in the positive direction or the negative direction of the Z axis.
  • the shapes of the core 31 and the non-reciprocal member 32 viewed from the cross section intersecting the X-axis are configured so as not to be point-symmetrical.
  • the shapes of the core 31 and the non-reciprocal member 32 may be further configured so as not to be line symmetrical.
  • the core 31 and the nonreciprocal member 32 are collectively referred to as an asymmetric core.
  • the asymmetric core is configured to include the core 31 and the non-reciprocal member 32.
  • the asymmetric core may have the non-reciprocal member 32 in at least a part of the cross section intersecting the X axis.
  • the core 31 may be configured to include at least one type of dielectric.
  • the non-reciprocal member 32 may be in contact with the surface on the side of the substrate 50 of the at least one dielectric or the opposite surface.
  • the first waveguide 20 may include the core 21 as a first dielectric and the cladding 40 as a second dielectric.
  • the second dielectric may be a different type of dielectric than the first dielectric.
  • the first dielectric and the second dielectric may be aligned in a direction parallel to the substrate surface 50a.
  • the second waveguide 30 may include the core 31 as a third dielectric and the cladding 40 as a fourth dielectric.
  • the fourth dielectric may be a different type of dielectric than the third dielectric.
  • the third dielectric, the fourth dielectric, and the nonreciprocal member 32 may be aligned in a direction parallel to the substrate surface 50a.
  • the third dielectric, the fourth dielectric, and the nonreciprocal member 32 may be in contact with each other in the in-plane direction of the substrate surface 50a.
  • At least one of the claddings 22 and 23 of the first waveguide 20 may be integral with at least one of the claddings 33 and 34 of the second waveguide 30.
  • At least one of the claddings 22 and 23 of the first waveguide 20 may be integral with the cladding 40.
  • At least one of the claddings 33 and 34 of the second waveguide 30 may be integral with the cladding 40.
  • the isolator 10 is compared with the isolator 90 according to the comparative example shown in FIG. It can be miniaturized.
  • the reason that the isolator 10 can be miniaturized is that the branching coupler 92 is not required.
  • the attenuation of the electromagnetic wave propagating in the first direction is higher than the attenuation of the electromagnetic wave propagating in the second direction in the predetermined frequency band represented by fb3. It can be big.
  • fb3 may be a frequency band different from the frequency band indicated by fb1 in FIG. 10 or fb2 in FIG. Descriptions of matters common to the graphs of FIGS. 10 and 17 regarding the graph of FIG. 25 will be omitted.
  • the isolator 10 and the light source device 100 according to the present disclosure may be mounted on an optical transmitter having a modulation function.
  • the isolator 10 according to the present disclosure may be used in an optical switch or an optical amplifier.
  • the isolator 10 according to the present disclosure may be used in a device.
  • Devices comprising the isolator 10 according to the present disclosure may be used to communicate in a data center.
  • the descriptions such as “first” and “second” are identifiers for distinguishing the configurations.
  • the configurations distinguished in the description of “first”, “second” and the like in the present disclosure can exchange the numbers in the configurations.
  • the first port can exchange the second port with the identifiers "first” and "second”.
  • the exchange of identifiers takes place simultaneously.
  • the configuration is also distinguished after the exchange of identifiers. Identifiers may be deleted.
  • the configuration from which the identifier is deleted is distinguished by a code. The interpretation of the order of the configuration and the basis for the existence of the small-numbered identifiers should not be used based on only the descriptions of the "first” and “second” identifiers etc. in the present disclosure.
  • the X-axis, the Y-axis, and the Z-axis are provided for convenience of description and may be interchanged with each other.
  • the configuration according to the present disclosure has been described using an orthogonal coordinate system configured by the X axis, the Y axis, and the Z axis.
  • the positional relationship of each configuration according to the present disclosure is not limited to the orthogonal relationship.
  • Isolator 20 1st waveguide 201 1st end 202 2nd end 21 core 211 1st port 212 2nd port 22, 23 clad 24 hole part 25 matching adjustment circuit 30 2nd waveguide 301, 302 end part 31 core 32 Reciprocal members 33 and 34 clad 40 clad 50 substrate 50 a substrate surface 60 antenna 70 electromagnetic wave absorbing member 80 magnetic field application unit 100 light source device 110 light source 112 lens 114 power source 120 connection waveguide 121 core 122 and 123 clad

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)

Abstract

アイソレータは、基板面を有する基板の上において、基板面に沿って位置し、基板から見て互いに重なる第1導波路と第2導波路とを備える。第1導波路及び第2導波路はそれぞれ、コアとクラッドとを有する。コアは、基板面の側を向く第1面と、第1面の反対側の第2面とを有する。クラッドは、コアの第1面及び第2面に接するように位置する。第1導波路は、第1端と第2端とを有し、第1端及び第2端それぞれに電磁波が入出力されるポートを有する。第2導波路のコアは、第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む。

Description

アイソレータ、光源装置、光送信機、光スイッチ、光増幅器、及びデータセンター 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2017-164820号(2017年8月29日出願)及び日本国特許出願2017-164822号(2017年8月29日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本開示は、アイソレータ、光源装置、光スイッチ、光増幅器、及びデータセンターに関する。
 電磁波の伝搬方向によって透過率が異なるアイソレータが非相反位相器を含む構成が知られている(例えば、特許文献1参照)。
特開2003-302603号公報
 本開示の一実施形態に係るアイソレータは、基板面を有する基板の上において、前記基板面に沿って位置し、前記基板から見て互いに重なる第1導波路と第2導波路とを備える。前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有する。前記コアは、前記基板面の側を向く第1面と、前記第1面の反対側の第2面とを有する。前記クラッドは、前記コアの第1面及び第2面に接するように位置する。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む。
 本開示の一実施形態に係る光源装置は、光アイソレータと光源とを備える。前記光アイソレータは、基板面を有する基板の上において、前記基板面に沿って位置し、前記基板から見て互いに重なる第1導波路と第2導波路とを備える。前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有する。前記コアは、前記基板面の側を向く第1面と、前記第1面の反対側の第2面とを有する。前記クラッドは、前記コアの第1面及び第2面に接するように位置する。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む。前記光源は、前記ポートに光学的に接続される。
 本開示の一実施形態に係るアイソレータは、第1導波路と、少なくとも1つの第2導波路とを備える。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路は、両端を有し、前記第1導波路に沿って位置し、前記第1導波路と互いに結合する。任意の動作周波数において、前記第1導波路と前記第2導波路とは、前記第1端から入力された電磁波が前記第2端に向けて伝搬する場合の結合係数よりも、前記第2端から入力された電磁波が前記第1端に向けて伝搬する場合の結合係数の方が大きくなるように結合する。
 本開示の一実施形態に係る光源装置は、光アイソレータと、光源とを備える。前記光アイソレータは、第1導波路と、少なくとも1つの第2導波路とを備える。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路は、両端を有し、前記第1導波路に沿って位置し、前記第1導波路と互いに結合する。任意の動作周波数において、前記第1導波路と前記第2導波路とは、前記第1端から入力された電磁波が前記第2端に向けて伝搬する場合の結合係数よりも、前記第2端から入力された電磁波が前記第1端に向けて伝搬する場合の結合係数の方が大きくなるように結合する。前記光源は、前記ポートに光学的に接続される。
 本開示の一実施形態に係るアイソレータは、基板面を有する基板の上において、前記基板面に沿って並んで位置する第1導波路と第2導波路とを備える。前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有する。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む。
 本開示の一実施形態に係る光源装置は、光アイソレータと、光源とを備える。前記光アイソレータは、基板面を有する基板の上において、前記基板面に沿って並んで位置する第1導波路と第2導波路とを備える。前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有する。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む。前記光源は、前記ポートに光学的に接続される。
 本開示の一実施形態に係る光送信機は、光アイソレータと光源とを備える光源装置を搭載する。前記光アイソレータは、基板面を有する基板の上において、前記基板面に沿って位置し、前記基板から見て互いに重なる第1導波路と第2導波路とを備える。前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有する。前記コアは、前記基板面の側を向く第1面と、前記第1面の反対側の第2面とを有する。前記クラッドは、前記コアの第1面及び第2面に接するように位置する。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む。前記光源は、前記ポートに光学的に接続される。前記光送信機は、光の変調機能を有する。
 本開示の一実施形態に係る光送信機は、光アイソレータと光源とを備える光源装置を搭載する。前記光アイソレータは、第1導波路と、少なくとも1つの第2導波路とを備える。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路は、両端を有し、前記第1導波路に沿って位置し、前記第1導波路と互いに結合する。任意の動作周波数において、前記第1導波路と前記第2導波路とは、前記第1端から入力された電磁波が前記第2端に向けて伝搬する場合の結合係数よりも、前記第2端から入力された電磁波が前記第1端に向けて伝搬する場合の結合係数の方が大きくなるように結合する。前記光源は、前記ポートに光学的に接続される。前記光送信機は、光の変調機能を有する。
 本開示の一実施形態に係る光送信機は、光アイソレータと光源とを備える光源装置を搭載する。前記光アイソレータは、基板面を有する基板の上において、前記基板面に沿って並んで位置する第1導波路と第2導波路とを備える。前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有する。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む。前記光源は、前記ポートに光学的に接続される。前記光送信機は、光の変調機能を有する。
 本開示の一実施形態に係る光スイッチは、光アイソレータを備える。前記光アイソレータは、基板面を有する基板の上において、前記基板面に沿って位置し、前記基板から見て互いに重なる第1導波路と第2導波路とを備える。前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有する。前記コアは、前記基板面の側を向く第1面と、前記第1面の反対側の第2面とを有する。前記クラッドは、前記コアの第1面及び第2面に接するように位置する。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む。
 本開示の一実施形態に係る光スイッチは、光アイソレータを備える。前記光アイソレータは、第1導波路と、少なくとも1つの第2導波路とを備える。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路は、両端を有し、前記第1導波路に沿って位置し、前記第1導波路と互いに結合する。任意の動作周波数において、前記第1導波路と前記第2導波路とは、前記第1端から入力された電磁波が前記第2端に向けて伝搬する場合の結合係数よりも、前記第2端から入力された電磁波が前記第1端に向けて伝搬する場合の結合係数の方が大きくなるように結合する。
 本開示の一実施形態に係る光スイッチは、光アイソレータを備える。前記光アイソレータは、基板面を有する基板の上において、前記基板面に沿って並んで位置する第1導波路と第2導波路とを備える。前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有する。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む。
 本開示の一実施形態に係る光増幅器は、光アイソレータを備える。前記光アイソレータは、基板面を有する基板の上において、前記基板面に沿って位置し、前記基板から見て互いに重なる第1導波路と第2導波路とを備える。前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有する。前記コアは、前記基板面の側を向く第1面と、前記第1面の反対側の第2面とを有する。前記クラッドは、前記コアの第1面及び第2面に接するように位置する。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む。
 本開示の一実施形態に係る光増幅器は、光アイソレータを備える。前記光アイソレータは、第1導波路と、少なくとも1つの第2導波路とを備える。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路は、両端を有し、前記第1導波路に沿って位置し、前記第1導波路と互いに結合する。任意の動作周波数において、前記第1導波路と前記第2導波路とは、前記第1端から入力された電磁波が前記第2端に向けて伝搬する場合の結合係数よりも、前記第2端から入力された電磁波が前記第1端に向けて伝搬する場合の結合係数の方が大きくなるように結合する。
 本開示の一実施形態に係る光増幅器は、光アイソレータを備える。前記光アイソレータは、基板面を有する基板の上において、前記基板面に沿って並んで位置する第1導波路と第2導波路とを備える。前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有する。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む。
 本開示の一実施形態に係るデータセンターは、光アイソレータを備えるデバイスによって通信する。前記光アイソレータは、基板面を有する基板の上において、前記基板面に沿って位置し、前記基板から見て互いに重なる第1導波路と第2導波路とを備える。前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有する。前記コアは、前記基板面の側を向く第1面と、前記第1面の反対側の第2面とを有する。前記クラッドは、前記コアの第1面及び第2面に接するように位置する。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む。
 本開示の一実施形態に係るデータセンターは、光アイソレータを備えるデバイスによって通信する。前記光アイソレータは、第1導波路と、少なくとも1つの第2導波路とを備える。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路は、両端を有し、前記第1導波路に沿って位置し、前記第1導波路と互いに結合する。任意の動作周波数において、前記第1導波路と前記第2導波路とは、前記第1端から入力された電磁波が前記第2端に向けて伝搬する場合の結合係数よりも、前記第2端から入力された電磁波が前記第1端に向けて伝搬する場合の結合係数の方が大きくなるように結合する。
 本開示の一実施形態に係るデータセンターは、光アイソレータを備えるデバイスによって通信する。前記光アイソレータは、基板面を有する基板の上において、前記基板面に沿って並んで位置する第1導波路と第2導波路とを備える。前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有する。前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する。前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む。
一実施形態に係るアイソレータの構成例を示す側面図である。 図1のA-A断面図である。 非相反性部材の構成例を示す断面図である。 図3の非相反性部材における位相差の一例を示すグラフである。 非相反性部材の構成例を示す断面図である。 図5の非相反性部材における位相差の一例を示すグラフである。 非相反性部材の構成例を示す断面図である。 第1方向に進む電磁波に対する結合長の一例を示すグラフである。 第2方向に進む電磁波に対する結合長の一例を示すグラフである。 透過特性のシミュレーション結果の一例を示すグラフである。 比較例に係るアイソレータを示すブロック図である。 第2導波路の両端にアンテナを備える例を示す側面図である。 第2導波路の両端に電磁波吸収部材を備える例を示す側面図である。 複数の第2導波路を備える例を示す側面図である。 導波路に整合回路を有するアイソレータの構成例を示す側面図である。 整合回路の構成例を示す平面図である。 透過特性のシミュレーション結果の一例を示すグラフである。 磁場印加部をさらに備えるアイソレータの構成例を示す側面図である。 一実施形態に係る光源装置の構成例を示す側面図である。 接続導波路と第1導波路との接続例を示す断面図である。 接続導波路と第1導波路との接続例を示す断面図である。 他の実施形態に係るアイソレータの構成例を示す斜視図である。 他の実施形態に係るアイソレータの構成例を示す平面図である。 図23のB-B断面図である。 透過特性のシミュレーション結果の一例を示すグラフである。
 図1に示されるように、一実施形態に係るアイソレータ10は、第1導波路20と、第2導波路30とを備える。第1導波路20及び第2導波路30は、基板面50aを有する基板50の上において、基板面50aに沿って位置し、X軸方向に延在する。
 基板50は、金属等の導体、シリコン等の半導体、ガラス、又は樹脂等を含んで構成されてよい。
 第1導波路20及び第2導波路30のいずれか一方は、基板面50aに接する。第1導波路20が基板面50aに接する場合、第2導波路30が第1導波路20の上に位置する。第2導波路30が基板面50aに接する場合、第1導波路20が第2導波路30の上に位置する。第1導波路20と第2導波路30とは、基板50から見て互いに重なるといえる。以下、第1導波路20が基板面50aに接するものとする。この場合、第2導波路30は、第1導波路20の上に位置する。
 第1導波路20は、X軸の正の方向の側及び負の方向の側それぞれに、第1端201及び第2端202を有する。第1導波路20は、第1端201及び第2端202それぞれに、電磁波が入出力される第1ポート211及び第2ポート212を備える。第1ポート211から第1導波路20に入力される電磁波は、X軸に沿って第2ポート212に向けて進む。第2ポート212から第1導波路20に入力される電磁波は、X軸に沿って第1ポート211に向けて進む。第1ポート211及び第2ポート212はそれぞれ、コア21の端面として構成されてよいし、外部装置と接続され、電磁波を伝搬可能なカプラとして構成されてもよい。
 第2導波路30は、X軸の正の方向の側及び負の方向の側それぞれに、端部301及び302を有する。言い換えれば、第2導波路30は、両端を有する。第2導波路30は、第1導波路20に沿って位置し、第1導波路20と互いに結合する。第2導波路30の数は、1つに限られず、2つ以上であってよい。
 第1導波路20と第2導波路30とは、延在する方向の少なくとも一部において、互いに沿って位置してよい。第1導波路20と第2導波路30とは、延在する方向の少なくとも一部において、互いに平行となるように位置してよい。第1導波路20又は第2導波路30は、直線状の構造を有してよい。第1導波路20と第2導波路30とは、これらのような簡易な構造を有することによって、基板50の上で容易に形成されうる。
 互いに沿って位置する2つの導波路は、平行導波路ともいう。平行導波路において、一方の導波路に入力された電磁波は、その導波路の中で伝搬する間に他方の導波路に移りうる。つまり、第1導波路20の中で伝搬する電磁波は、第2導波路30に移りうる。第2導波路30の中で伝搬する電磁波は、第1導波路20に移りうる。
 平行導波路において、一方の導波路から他方の導波路へ移る電磁波の割合を表すパラメータは、結合係数ともいう。一方の導波路から他方の導波路へ電磁波が全く移らない場合、結合係数は0であるものとする。一方の導波路から他方の導波路へ全ての電磁波が移る場合、結合係数は1であるものとする。結合係数は、0以上且つ1以下の値でありうるものとする。結合係数は、各導波路の形状、各導波路間の距離、又は、導波路が互いに沿う長さ等に基づいて決定されうる。例えば、結合係数は、各導波路の形状が近似するほど高くなりうる。各導波路間の距離について、例えば第1導波路20と第2導波路30との間の距離は、コア21とコア31との間の距離であってよい。結合係数は、電磁波が導波路の中で伝搬する距離に応じて変化しうる。つまり、平行導波路において、導波路が延在する方向に沿った位置に応じて、結合係数は異なりうる。結合係数の極大値は、各導波路の形状又は各導波路間の距離等に基づいて決定されうる。結合係数の極大値は、1以下の値でありうる。
 平行導波路において、導波路が互いに沿う区間の始点における結合係数は0である。始点から、結合係数が極大値となる位置までの長さは、結合長ともいう。導波路が互いに沿う長さが結合長に等しい場合、導波路が互いに沿う区間の終点における結合係数は、極大値でありうる。結合長は、各導波路の形状又は各導波路間の距離等に基づいて決定されうる。
 第2導波路30において、第1導波路20から移ってきた電磁波は、第2導波路30の中でも第1導波路20の中と同じ方向に伝搬する。第2導波路30において、電磁波が端部301又は302に到達した場合、電磁波は、端部301又は302から放射されたり、端部301又は302で反射されて逆方向に進んだりしうる。
 図2に示されるように、第1導波路20は、コア21と、クラッド22及び23とを備える。コア21、並びに、クラッド22及び23は、X軸方向に延在する。クラッド22及び23は、コア21に対して、Z軸の負の方向の側及び正の方向の側に位置する。クラッド22は、コア21から見て基板50の側に位置する。クラッド23は、コア21から見て基板50の反対側に位置する。クラッド23は、コア21から見て第2導波路30の側に位置するともいえる。基板50から見て、クラッド22、コア21、及び、クラッド23が順番に積層されるともいえる。クラッド22及び23は、第1導波路20と第2導波路30とが重なる方向に沿って、コア21を挟んで位置するともいえる。クラッド22及び23は、第1導波路20と第2導波路30とが重なる方向に沿って、コア21の両側に位置するともいえる。コア21は、基板50の側に位置する第1面21aと、第1面21aの反対側に位置する第2面21bとを有してよい。クラッド22及び23はそれぞれ、第1面21a及び第2面21bに接するように位置してよい。
 第2導波路30は、コア31と、非相反性部材32と、クラッド33及び34とを備える。コア31、非相反性部材32、並びに、クラッド33及び34は、X軸方向に延在する。非相反性部材32は、コア31に対して、Z軸の正の方向の側に位置してよい。非相反性部材32は、コア31に対して、Z軸の負の方向の側に位置してもよい。非相反性部材32は、コア31に対して、Y軸の正の方向又は負の方向に並んで位置してもよい。
 図2に示されるように、X軸に交差する断面から見たコア31及び非相反性部材32の形状は、点対称とならないように構成される。コア31及び非相反性部材32の形状は、さらに線対称とならないように構成されてもよい。コア31と非相反性部材32とは、まとめて非対称コアともいう。非対称コアは、コア31と非相反性部材32とを含んで構成される。非対称コアは、X軸に交差する断面の少なくとも一部に非相反性部材32を有してよい。コア31は、少なくとも1種類の誘電体を含んで構成されてよい。非相反性部材32は、少なくとも1種類の誘電体の基板50の側の面、又は、その反対側の面に接してよい。
 非対称コアの断面が点対称に近いか否かを表す指標として、対称度が用いられうる。対称度は、非対称コアの断面形状と、所定点を中心としてその断面形状を180度回転させて得られる断面形状との間で、一致する部分が含まれる割合によって表されてよい。対称度が高い断面形状は、点対称に近いといえる。非対称コアは、その断面形状の対称度が低くなるように構成されてよい。
 非対称コアの断面において、コア31の面積は、非相反性部材32の面積よりも大きく構成されてよい。このようにすることで、電磁波の大部分がコア31の中で伝搬しうる。結果として、第2導波路30における電磁波の損失が低減されうる。
 非対称コアの断面は、非対称コアの中で伝搬する電磁波の強度が最大となる部分にコア31が位置するように構成されてよい。このようにすることで、電磁波の強度が高い部分がコア31の中で伝搬しうる。結果として、第2導波路30における電磁波の損失が低減されうる。
 クラッド33及び34は、非対称コアに対して、Z軸の負の方向の側及び正の方向の側に位置する。クラッド33は、非対称コアから見て基板50の側に位置する。クラッド34は、非対称コアから見て基板50の反対側に位置する。クラッド34は、非対称コアから見て第2導波路30の側に位置するともいえる。基板50から見て、クラッド33、非対称コア、及び、クラッド34が順番に積層されるともいえる。クラッド33及び34は、非対称コアを挟んで位置するともいえる。クラッド33及び34は、第1導波路20と第2導波路30とが重なる方向に沿って、非対称コアの両側に位置するともいえる。コア31は、基板50の側に位置する第1面31aと、第1面31aの反対側に位置する第2面31bとを有してよい。クラッド33及び34はそれぞれ、第1面31a及び第2面31bに接するように位置してよい。
 コア21及び31、並びに、クラッド22、23、33及び34は、誘電体を含んで構成されてよい。コア21及び31は、誘電体線路ともいう。コア21の比誘電率は、クラッド22及び23それぞれの比誘電率よりも高くされてよい。コア31の比誘電率は、クラッド33及び34それぞれの比誘電率よりも高くされてよい。クラッド23とクラッド33とは、同一の誘電体材料で構成されてよい。クラッド23とクラッド33とは、一体に構成されてよい。クラッド23とクラッド33とが一体に構成される場合、アイソレータ10の形成が容易になりうる。コア21及び31、並びに、クラッド22、23、33及び34の比誘電率は、空気の比誘電率よりも高くされてよい。コア21及び31、並びに、クラッド22、23、33及び34の比誘電率が空気の比誘電率よりも高くされることで、第1導波路20及び第2導波路30からの電磁波の漏れが抑制されうる。結果として、アイソレータ10から外部に電磁波が放射されることによる損失が低減されうる。
 コア21又は31は、例えば、シリコン(Si)で構成されてよい。クラッド22、23、33又は34は、例えば、石英ガラス(SiO2)で構成されてよい。シリコン及び石英ガラスの比誘電率はそれぞれ、約12及び約2である。シリコンは、約1.2μm~約6μmの近赤外波長を有する電磁波を低損失で伝搬させうる。コア21又は31は、シリコンで構成される場合、光通信で使用される1.3μm帯又は1.55μm帯の波長を有する電磁波を低損失で伝搬させうる。
 コア21とクラッド22及び23とを含んで構成される第1導波路20、並びに、非対称コアとクラッド33及び34とを含んで構成される第2導波路30は、シングルモードでの導波条件を満たしてよい。第1導波路20及び第2導波路30がシングルモードでの導波条件を満たす場合、第1導波路20及び第2導波路30を伝搬する信号の波形が崩れにくくなる。シングルモードでの導波条件を満たす第1導波路20及び第2導波路30を組み合わせたアイソレータ10は、光通信に適したものとなりうる。
 コア21又は31の比誘電率は、Z軸方向に沿って一様に分布してよいし、Z軸方向に沿って変化するように分布してもよい。例えば、コア21の比誘電率は、Z軸方向の中央部で最も高くなり、クラッド22及び23に近づくにつれて低くなるように分布してよい。この場合、コア21は、グレーデッド・インデックス型光ファイバと同様の原理で電磁波を伝搬させうる。
 第1ポート211を介して第1導波路20の第1端201からコア21に入力された電磁波は、X軸に沿って延在する第1導波路20のコア21の中で、第2端202に向けて伝搬する。第1端201から第2端202に向かう方向は、第1方向ともいう。コア21の中で伝搬する電磁波は、コア21の中で第1方向に伝搬した距離に基づく結合係数に応じた割合で、第2導波路30のコア31に移りうる。電磁波がコア21の中で第1方向に伝搬する場合の結合係数は、第1結合係数ともいう。
 第2ポート212を介して第1導波路20の第2端202からコア21に入力された電磁波は、X軸に沿って延在する第1導波路20のコア21の中で、第1端201に向けて伝搬する。第2端202から第1端201に向かう方向は、第2方向ともいう。コア21の中で伝搬する電磁波は、コア21の中で第2方向に伝搬した距離に基づく結合係数に応じた割合で、第2導波路30のコア31に伝搬する。電磁波がコア21の中で第2方向に伝搬する場合の結合係数は、第2結合係数ともいう。
 第2導波路30の非対称コアは、電磁波が第1方向に伝搬する場合と、電磁波が第2方向に伝搬する場合とで、異なる伝搬特性を有しうる。非対称コアの伝搬特性が電磁波の伝搬方向に基づいて異なる場合、第1結合係数と第2結合係数とは互いに異なりうる。つまり、非相反性部材32は、第1結合係数と第2結合係数とを異ならせうる。
 非相反性部材32は、電磁波が第1方向に伝搬する場合と第2方向に伝搬する場合とにおいて、それぞれ異なる伝搬特性を有するような材料で構成されてよい。電磁波の伝搬方向によって異なる伝搬特性を有する材料は、非相反性材料ともいう。非相反性部材32は、例えば、磁性ガーネット、フェライト、鉄、コバルト等の磁性体を含んで構成されてよい。非相反性部材32の比誘電率は、式(1)のようにテンソルで表されうる。
Figure JPOXMLDOC01-appb-M000001
テンソルの各要素は、複素数で表されてよい。各要素の添え字として用いられている数字は、X軸、Y軸及びZ軸に対応してよい。要素として複素数を有し、比誘電率を表すテンソルは、複素比誘電率テンソルともいう。
 非相反性部材32は、非相反性材料を所定の濃度で含んでよい。所定の濃度は、X軸に交差する断面の中で変化してよい。所定の濃度は、アイソレータ10に入力される電磁波の偏光方向に沿って見た少なくとも一部において変化してよい。
 第2導波路30は、X軸に交差する断面において、図3に示される形状を有してよい。第2導波路30のY軸方向の寸法は、Aで表されるものとする。コア31及び非相反性部材32それぞれのZ軸方向の寸法は、Bで表されるものとする。非相反性部材32のY軸方向の寸法は、Cで表されるものとする。非相反性部材32は、コア31とY軸に沿って並び、Y軸の負の方向の側に偏って位置するものとする。第2導波路30は、X軸方向の寸法が所定の長さとなるようにX軸方向に延在するものとする。非相反性部材32は、複素比誘電率テンソルで表される比誘電率を有するものとする。
 図3に例示される第2導波路30について、第2導波路30を第1方向に伝搬する電磁波の位相と第2方向に伝搬する電磁波の位相との差がシミュレーションによって計算されうる。第1方向に伝搬する電磁波の位相と第2方向に伝搬する電磁波の位相との差は、位相差ともいう。図4のグラフに示されるように、位相差は、C/Aの値に応じて変化しうる。C/Aの値は、非対称コアをZ軸方向に見て、非相反性部材32によって占有される割合を表す。図4のグラフによれば、C/Aの値が0.5に近づく場合に、位相差が大きくなりうる。位相差は、C/Aの値を変化させることによって調整されうる。位相差が大きい場合、電磁波の減衰量の非相反性が大きくなりうる。つまり、位相差が大きいほど、電磁波が第1方向に伝搬する場合の減衰量と、第2方向に伝搬する場合の減衰量との差が大きくなりうる。第2導波路30は、C/Aの値が調整されることによって、電磁波の伝搬方向に応じて電磁波の減衰量が異なる性質を有するように構成されうる。電磁波の伝搬方向に応じて電磁波の減衰量が異なる性質は、非相反性ともいう。C/Aの値が0.5に近づく場合、非対称コアの対称度が低くなるといえる。つまり、非対称コアの対称度が低くされることによって、第2導波路30の非相反性が大きくされうる。
 第2導波路30は、X軸に交差する断面において、図5に示される形状を有してよい。第2導波路30のY軸方向の寸法、及び、コア31のY軸方向の寸法は、Aで表されるものとする。コア31のZ軸方向の寸法は、Bで表されるものとする。非相反性部材32のY軸方向及びZ軸方向それぞれの寸法は、C及びDで表されるものとする。非相反性部材32は、コア31よりもZ軸の正の方向の側に位置し、第2導波路30の中でY軸の負の方向の側に偏って位置するものとする。第2導波路30は、X軸方向の寸法が所定の長さとなるようにX軸方向に延在するものとする。非相反性部材32は、複素比誘電率テンソルで表される比誘電率を有するものとする。
 図5に例示される第2導波路30について、第2導波路30を第1方向に伝搬する電磁波の位相と第2方向に伝搬する電磁波の位相との差がシミュレーションによって計算されうる。図6のグラフに示されるように、位相差は、C/Aの値に応じて変化しうる。位相差とC/Aの値との関係は、D/Bの値に応じて変化しうる。図6のグラフによれば、C/Aの値が0.5に近づく場合に、位相差が大きくなりうる。位相差は、C/Aの値を変化させることによって調整されうる。図6のグラフによれば、D/Bの値が大きくなる場合に、位相差が大きくなりうる。位相差は、D/Bの値を変化させることによって調整されうる。第2導波路30は、C/Aの値及びD/Bの値が調整されることによって、非相反性を有するように構成されうる。D/Bの値が図6に例示される範囲で大きくなる場合、非対称コアの対称度が低くなるといえる。つまり、非対称コアの対称度が低くされることによって、第2導波路30の非相反性が大きくされうる。
 第2導波路30は、X軸に交差する断面において、図7に示される形状を有してよい。この場合、非対称コアは点対称ではない。よって、図7に例示される第2導波路30は、非相反性を有しうる。
 平行導波路の一方の導波路が非相反性を有する場合、電磁波が第1方向に伝搬する場合の結合係数の極大値は、電磁波が第2方向に伝搬する場合の結合係数の極大値と異なりうる。例えば図8に示されるように、電磁波が第1方向に伝搬する場合における第1導波路20と第2導波路30との結合係数の極大値は、0に近い値となるように構成されうる。例えば図9に示されるように、電磁波が第2方向に伝搬する場合における第1導波路20と第2導波路30との結合係数の極大値は、1に近い値となるように構成されうる。電磁波の伝搬方向ごとに結合係数の極大値が異なることによって、電磁波の伝搬方向ごとに電磁波の透過率が異なりうる。図8及び図9において、横軸及び縦軸はそれぞれ、平行導波路における電磁波の進行距離、及び、結合係数を表す。
 第2導波路30が非相反性を有する場合、第1導波路20と第2導波路30との結合係数は、電磁波の伝搬方向に応じて異なりうる。つまり、第2導波路30が非相反性を有する場合、アイソレータ10の第1結合係数は、第2結合係数と異なりうる。第2導波路30の非相反性の大きさが調整されることによって、第2結合係数は、第1結合係数よりも大きくされうる。
 第1ポート211から第1導波路20に入力された電磁波が第1方向に伝搬する場合、入力された電磁波のうち第2導波路30に移った電磁波の少なくとも一部が端部302に到達しうる。第2導波路30の端部302に到達した電磁波は、第1導波路20の第2ポート212から出力されず、端部302から外部に放射されたり、端部302で反射されたりしうる。第1結合係数が大きい場合、第1導波路20に入力された電磁波のうち、第2導波路30に移って、端部302に到達する電磁波の割合が大きくなりうる。この場合、第1導波路20に入力された電磁波のうち、第2ポート212から出力される電磁波の割合が小さくなりうる。つまり、第1ポート211に入力される電磁波の強度に対する、第2ポート212から出力される電磁波の強度の比が小さくなりうる。第1ポート211に入力される電磁波の強度に対する、第2ポート212から出力される電磁波の強度の比は、第1方向に伝搬する電磁波に対するアイソレータ10の透過率ともいう。第1結合係数が大きい場合、第1方向に伝搬する電磁波に対する透過率が低くなりうる。一方で、第1結合係数が小さい場合、第2導波路30に移る電磁波の割合が小さくなりうるので、第1方向に伝搬する電磁波に対する透過率が高くなりうる。
 第2ポート212から第1導波路20に入力され第2方向に伝搬する電磁波は、第1方向に伝搬する電磁波がアイソレータ10から受ける作用と同一の作用を受けうる。その作用によって、第2方向に伝搬する電磁波の一部は、第2導波路30の端部301に到達しうる。第2結合係数が大きい場合、第2方向に伝搬する電磁波に対する透過率が低くなりうる。第2結合係数が小さい場合、第2方向に伝搬する電磁波に対する透過率が高くなりうる。
 第1結合係数と第2結合係数とが異なる場合、第1方向に伝搬する電磁波に対する透過率と、第2方向に伝搬する電磁波に対する透過率とが異なりうる。つまり、アイソレータ10は、第1結合係数と第2結合係数とを異ならせることによって、一方向に電磁波を伝搬させやすくし、逆方向に電磁波を伝搬させにくくするように機能しうる。第2結合係数が第1結合係数よりも大きい場合、アイソレータ10は、第1方向に電磁波を伝搬させやすくし、第2方向に電磁波を伝搬させにくくするように機能しうる。第1結合係数及び第2結合係数がそれぞれ略0及び略1とされる場合、第1方向に伝搬する電磁波に対する透過率と、第2方向に伝搬する電磁波に対する透過率との差が大きくされうる。結果として、アイソレータ10の機能が向上されうる。
 平行導波路の一方の導波路が非相反性を有する場合、第1方向に伝搬する電磁波に対する平行導波路の結合長は、第2方向に伝搬する電磁波に対する平行導波路の結合長と異なりうる。例えば図8に示されるように、アイソレータ10において第1方向に伝搬する電磁波に対する結合長は、L1と表されうる。例えば図9に示されるように、アイソレータ10において第2方向に伝搬する電磁波に対する結合長は、L2と表されうる。アイソレータ10は、L1とL2とが異なるように構成されてよい。
 平行導波路において2つの導波路が互いに沿う長さが結合長に等しい場合、結合係数が極大値となりうる。例えば図8のグラフに示される関係を有する平行導波路において、2つの導波路が互いに沿う長さがL1である場合、結合係数が極大値となりうる。2つの導波路が互いに沿う長さが結合長の2倍に等しい場合、結合係数が極小値となりうる。例えば図8に示される関係を有する平行導波路において、2つの導波路が互いに沿う長さが2L1である場合、結合係数が極小値となりうる。
 図8のグラフに示される関係は、電磁波の進行距離が長くなった領域でも繰り返されうる。つまり、2つの導波路が互いに沿う長さがL1の奇数倍である場合、結合係数が極大値となりうる。2つの導波路が互いに沿う長さがL1の偶数倍である場合、結合係数が極小値となりうる。図9に示される関係を有する平行導波路においても、2つの導波路が互いに沿う長さがL2の奇数倍である場合、及び、L2の偶数倍ある場合それぞれで、結合係数が極大値及び極小値となりうる。L1及びL2は、平行導波路における最短の結合長となりうる長さであり、単位結合長ともいう。つまり、結合長は、単位結合長の奇数倍であってよい。
 第1導波路20と第2導波路30とが互いに沿う長さが調整されることによって、第1結合係数及び第2結合係数が調整されうる。第1導波路20と第2導波路30とが互いに沿う長さは、第2方向に伝搬する電磁波に対する単位結合長の奇数倍と略同一であってよい。このようにすることで、第2結合係数が大きくされうる。第1導波路20と第2導波路30とが互いに沿う長さは、第1方向に伝搬する電磁波に対する単位結合長の偶数倍と略同一であってよい。このようにすることで、第1結合係数が小さくされうる。このようにすることで、第2結合係数が第1結合係数より大きくされてよい。
 アイソレータ10の一方のポートに入力される電磁波のうち、他方のポートから出力されない電磁波の量は、減衰量ともいう。電磁波の減衰量が大きい場合、その電磁波の透過率は低いといえる。アイソレータ10における第1方向及び第2方向に進む電磁波の減衰量は、有限要素法等を用いたシミュレーションによって算出されうる。図10において、第2方向に伝搬する電磁波の減衰量と電磁波の周波数との関係は、S12で表される実線のグラフで表される。第1方向に伝搬する電磁波の減衰量と電磁波の周波数との関係は、S21で表される破線のグラフで表される。グラフの横軸及び縦軸はそれぞれ、第1導波路20を伝搬する電磁波の周波数、及び、その電磁波の減衰量を表す。電磁波の減衰量は、デシベル(dB)を単位として表されるものとする。縦軸に沿って見て上方に位置するプロットは、電磁波の減衰量が少ないことを表す。縦軸に沿って見て下方に位置するプロットは、電磁波の減衰量が多いことを表す。
 図10に示されるように、fb1で表される所定の周波数帯において、第2方向に伝搬する電磁波の減衰量は、第1方向に伝搬する電磁波の減衰量よりも大きくなりうる。この場合、アイソレータ10は、所定の周波数帯の電磁波を、第1ポート211から第2ポート212に向けて伝搬させやすくする一方で、第2ポート212から第1ポート211へ伝搬させにくくするように機能しうる。アイソレータ10が電磁波の伝搬方向ごとに減衰量を異ならせるように機能しうる所定の周波数帯は、アイソレータ10の動作周波数ともいう。アイソレータ10の動作周波数は、アイソレータ10の構成に基づいて、任意に決定されうる。つまり、任意の動作周波数において、第1結合係数よりも第2結合係数の方が大きくされうる。
 本実施形態に係るアイソレータ10は、第1方向に伝搬する電磁波に対する透過率と第2方向に伝搬する電磁波に対する透過率とを異ならせる機能を有する。このような機能は、図11に示される比較例に係るアイソレータ90によっても実現されうる。
 アイソレータ90は、入力端91と、分岐結合器92と、相反移相器93と、非相反移相器94と、分岐結合器95と、出力端96とを備える。入力端91から入力された電磁波は、分岐結合器92で分岐され、相反移相器93と非相反移相器94とに伝搬する。電磁波は、相反移相器93と非相反移相器94とでそれぞれ移相され、分岐結合器95で結合され、出力端96に伝搬する。相反移相器93と非相反移相器94とは、入力端91から入力された電磁波が出力端96から出力されるように構成されうる。一方で、出力端96から入力された電磁波は、分岐結合器95で分岐され、相反移相器93と非相反移相器94とに伝搬する。電磁波は、相反移相器93と非相反移相器94とでそれぞれ移相され、分岐結合器92で結合され、入力端91に伝搬する。相反移相器93と非相反移相器94とは、出力端96から入力された電磁波が入力端91からは出力されないように構成されうる。
 比較例に係るアイソレータ90において、非相反移相器94、並びに、分岐結合器92及び95における電磁波の損失が比較的大きい。一方、本実施形態に係るアイソレータ10において、電磁波は原則としてコア31を伝搬する。結果として、本実施形態に係るアイソレータ10における電磁波の損失は、比較例に係るアイソレータ90における電磁波の損失よりも小さくなりうる。つまり、本実施形態に係るアイソレータ10は、電磁波の損失を低減しつつ、電磁波を一方向に透過しやすく、逆方向に透過しにくいように機能しうる。本実施形態に係るアイソレータ10において、第1導波路20及び第2導波路30はそれぞれ、相反線路及び非相反線路ともいう。
 比較例に係るアイソレータ90において、非相反移相器94、並びに、分岐結合器92及び95は、直列に接続されるように実装され、小型化されにくい。一方、本実施形態に係るアイソレータ10は、第1導波路20と第2導波路30とが重なることで、基板50の上で小型化されやすい。結果として、本実施形態に係るアイソレータ10は、基板50の上で、集積して実装されうる。つまり、本実施形態に係るアイソレータ10は、集積化された構成によって、電磁波を一方向に透過しやすく、逆方向に透過しにくいように機能しうる。
 図12に示されるように、アイソレータ10は、第2導波路30の端部301及び302に、電磁波を放射するアンテナ60をさらに備えてよい。アンテナ60は、端部301及び302に到達した電磁波を効率よく放射しうる。アンテナ60によって、端部301及び302で電磁波が反射しにくくなる。結果として、アイソレータ10の機能が向上されうる。
 第2導波路30は、端部301及び302に切断面を有してよい。第2導波路30の両端の切断面は、アンテナ60として機能してよい。第2導波路30の端部301及び302における切断面の法線ベクトルは、X軸に対して傾きを有する方向を向くように構成されてよい。切断面の法線ベクトルの向きとX軸方向との間の角度は、0度より大きくてよい。言い換えれば、切断面の法線ベクトルは、第2導波路30における電磁波の伝搬方向に交差する方向の成分を有してよい。切断面の法線ベクトルの向きとX軸方向との間の角度は、90度に近い値であってよい。切断面の法線ベクトルの向きとX軸との間の角度が90度に近い場合、第2導波路30は、端部301及び302において、その厚みが緩やかに減少するテーパ形状となる。結果として、端部301及び302における電磁波の反射率が低減されうる。第2導波路30が基板50から見て第1導波路20の上に位置する場合、第2導波路30の両端の切断面は、基板50の上における加工によって形成されやすくなる。
 図13に示されるように、アイソレータ10は、第2導波路30の端部301及び302の外側に、電磁波吸収部材70をさらに備えてよい。電磁波吸収部材70は、端部301及び302から放射される電磁波を吸収しうる。このようにすることで、アイソレータ10から放射される電磁波がアイソレータ10の周辺に位置する他の回路に影響を及ぼしにくくなる。
 図14に示されるように、アイソレータ10は、複数の第2導波路30を備えてよい。第2導波路30の数は、2つに限られず、3つ以上であってよい。第2導波路30それぞれは、第1導波路20に直列に結合してよい。第2導波路30それぞれと第1導波路20とが互いに沿う長さは、第2方向に伝搬する電磁波に対する結合長と略同一であってよい。アイソレータ10が複数の第2導波路30を備えることによって、第2方向に伝搬する電磁波が第2導波路30から放射されやすくなり、第2端202から第1端201まで到達しにくくなる。結果として、電磁波を一方向に伝搬させやすくするとともに、逆方向に伝搬させにくくするというアイソレータ10の機能が向上されうる。
 図15に示されるように、第1導波路20は、整合調整回路25を含んでよい。整合調整回路25は、第1導波路20の中で伝搬する電磁波の周波数ごとの伝搬特性を調整しうる。整合調整回路25は、例えば図16に示されるように、コア21が複数の孔部24を有する構造として設けられてよい。図16において、第2導波路30は、二点鎖線の仮想線で示される。孔部24は、Y軸方向にコア21を貫通してよい。孔部24は、コア21の第1面21aから第2面21bまで貫通してよい。孔部24は、Y軸方向にクラッド22及び23まで貫通してもよい。孔部24は、X軸方向に並んでよい。つまり、孔部24は、コア21が延在する方向に並んでよい。孔部24の数は、9個に限られない。孔部24をZ軸方向から見た形状は、矩形状に限られず、円状又は多角形状等の種々の形状であってよい。
 孔部24は、X軸方向に周期的に並んでよい。コア21がX軸方向に周期的に並ぶ孔部24を有する場合、コア21を含む第1導波路20は、ブラッグ回折格子を構成しうる。第1導波路20に第1ポート211から電磁波が入力された場合、入力された電磁波のうちブラッグ反射条件を満たす波長を有する電磁波は、反射されて第1ポート211に戻りうる。一方で、その他の波長を有する電磁波は、第2ポート212に向けて伝搬しうる。つまり、孔部24を備える第1導波路20は、所定の波長を有する電磁波に対するフィルタとして機能しうる。
 第1導波路20が整合調整回路25を含む場合、例えば図17に示されるように、fb2で表される所定の周波数帯において、第1方向に伝搬する電磁波の減衰量は、第2方向に伝搬する電磁波の減衰量よりも大きくなりうる。fb2は、図10のfb1で示される周波数帯と異なる周波数帯とされてよい。整合調整回路25の構成が調整されることによって、fb2は、fb1で示される周波数帯よりも、高い周波数帯とされたり、低い周波数帯とされたりしうる。図17のグラフに関して図10のグラフと共通する事項の説明は省略される。
 非相反性部材32は、所定方向の磁場が印加される場合に非相反性を有するように構成されてよい。非相反性部材32は、Z軸方向の成分を有する磁場が印加される場合に非相反性を有するように構成されてよい。所定方向は、Z軸方向に限られず、種々の方向であってよい。所定方向は、非対称コアの断面形状、又は、対称度に基づいて決定されてよい。非相反性部材32は、磁場の強度又は向きの変化に応じて異なる大きさの非相反性を有するように構成されてよい。アイソレータ10がこのように構成されることで、非相反性部材32が非相反性を有するか否か、又は、非相反性部材32が有する非相反性の大きさが制御されうる。
 図18に示されるように、アイソレータ10は、磁場を印加する磁場印加部80をさらに備えてよい。磁場印加部80は、第2導波路30に対してZ軸の正の方向に位置してよい。磁場印加部80は、第2導波路30に対して第1導波路20を介して基板50の側に位置してよい。磁場印加部80は、図18に例示される態様とは異なる態様で位置してもよい。磁場印加部80は、フェライト磁石又はネオジム磁石等の永久磁石であってよい。磁場印加部80は、電磁石であってもよい。
 平行導波路における電磁波の伝搬モードは、偶モードと奇モードとを含みうる。偶モードは、平行導波路を構成する各導波路において、伝搬する電磁波の電場が同じ方向を向くモードである。奇モードは、平行導波路を構成する各導波路において、伝搬する電磁波の電場が反対の方向を向くモードである。電磁波は、平行導波路の実効屈折率に基づいて、平行導波路を伝搬しうる。平行導波路の実効屈折率は、平行導波路を構成する各導波路の形状、導波路を構成する材料の比誘電率、又は、電磁波の伝搬モード等に基づいて決定されうる。電磁波が偶モードで伝搬する場合の平行導波路の実効屈折率は、偶モード屈折率ともいう。電磁波が奇モードで伝搬する場合の平行導波路の実効屈折率は、奇モード屈折率ともいう。偶モード屈折率及び奇モード屈折率はそれぞれ、neven及びnoddと表されるものとする。平行導波路における結合長は、以下の式(2)で表されうる。
Figure JPOXMLDOC01-appb-M000002
(L:結合長、m:奇数、λ0:真空中の波長)
 アイソレータ10は、光を入力する構成と組み合わされて使用されうる。この場合、アイソレータ10は、光アイソレータともいう。図19に示されるように、光源装置100は、アイソレータ10と、光源110と、レンズ112と、光源110に電力を供給する電源114とを含む。光源110は、例えば、LD(Laser Diode)又はVCSEL(Vertical Cavity Surface Emitting LASER)等の半導体レーザであってよい。光源110は、基板50上に形成されてよい。
 レンズ112は、光源110から出力された光を、アイソレータ10の第1導波路20の第1ポート211に集光させる。レンズ112の形状は特に限定されない。レンズ112として、小球レンズ、両凸レンズ、又は平凸レンズ等が採用されうる。レンズ112は、伝搬される光の波長に対して光透過性の材料を含んで構成されてよい。
 光源110は、レンズ112を介して第1ポート211に光学的に接続されるともいえる。光源110、レンズ112、及び、第1ポート211は、位置ずれを生じないように相互の位置関係が固定されてよい。光源110、レンズ112、及び、第1ポート211は、基板50の上に一体として集積されてよい。光源110は、偏光方向がY軸方向となるような直線偏光の光を、第1ポート211に入力してよい。光源装置100は、レンズ112を有しなくてもよい。光源装置100は、レンズ112を有しない場合、光源110から出射した光を第1ポート211に直接入力してよい。
 光源110から第1ポート211への光の入力方法は、光源110の光を直接又はレンズ112を介して入力する方法に限られない。光源110は、光ファイバを介して第1ポート211に結合してよい。光ファイバを伝搬する光を第1ポート211に入力する方法は、レンズ等を介して自由空間を接続する方法、光ファイバの出射面と第1ポート211とを直接突き合わせる方法、又は、接続導波路120(図20参照)を用いる方法等、種々の方法を含んでよい。
 光源装置100は、光源110とアイソレータ10とを備えることによって、光源110から出力される光を、アイソレータ10を通して第1方向に向けて出力しうる。一方で、光源装置100は、アイソレータ10によって第2方向に戻る光を伝搬させにくくし、光源110の側に光が戻りにくくしうる。結果として、光が効率よく出力されうる。
 光源装置100において、第1導波路20が基板面50aに接するように構成されてよい。つまり、第1導波路20が第2導波路30より基板面50aに近い側に位置してよい。このようにすることで、基板50の上に集積された光源110と第1ポート211とが容易に光学的に接続されうる。
 図20に示されるように、接続導波路120は、コア121とクラッド122及び123とを有してよい。コア121の比誘電率は、第1導波路20のコア21の比誘電率と略同一であってよい。コア121は、コア21と同じ材料で形成されてよい。クラッド122及び123の比誘電率は、コア121の比誘電率よりも低くされてよい。クラッド122及び123の比誘電率は、第1導波路20のクラッド22及び23の比誘電率と略同一であってよい。クラッド122及び123は、クラッド22及び23と同じ材料で形成されてよい。コア121のX軸の正の方向の側の端面は、コア21のX軸の負の方向の側の端面に位置する第1ポート211と接するものとする。コア121のZ軸方向の厚みは、第1導波路20のコア21のZ軸方向の厚みよりも厚くてよい。コア121のZ軸方向の厚みは、第1導波路20のコア21のZ軸方向の厚みと略同一であってもよい。
 コア121にX軸の負の方向の側から入力される光は、Y軸方向を偏光方向とする直線偏光であってよい。言い換えれば、コア121にX軸の負の方向の側から入力される光の偏光方向は、基板面50aに平行であってよい。基板50の上に集積された光源110が半導体レーザである場合、半導体レーザが射出する光の偏光方向は基板面50aに平行となる。半導体レーザは、基板50の上に集積しやすい。結果として、光源装置100の形成が容易になりうる。
 コア121とコア21との接続部において、コア121のY軸方向の幅は、コア21のY軸方向の幅と略同一であってよい。コア121及びコア21のY軸方向の幅が、コア121とコア21との接続部で不連続に変化する場合、Y軸方向を偏光方向とする光は、接続部において放射しやすくなる。コア121とコア21との接続部において、コア121及びコア21それぞれのY軸方向の幅が略同一とされることで、放射による損失が低減されうる。
 図21に示されるように、接続導波路120のコア121は、第1導波路20のコア21との接続部に近づくにつれて、Z軸方向の厚みが薄くなるテーパ形状に構成されてよい。このようにすることで、接続導波路120にY軸方向を偏光方向とする光が入力された場合に、入力された光は、コア21における光の伝搬モードに整合されうる。コア121からコア21に光が入射する際、光の伝搬モードの不整合が発生しにくくなる。結果として、コア121からコア21に光が入射する際の損失の発生が低減されうる。
 図22に示されるように、他の実施形態に係るアイソレータ10は、基板50の上に、基板面50a(図1等参照)に沿って並んで位置する第1導波路20と、第2導波路30とを備える。アイソレータ10は、第1導波路20及び第2周囲に位置するクラッド40をさらに備えてよい。
 図23に示されるように、第1導波路20は、X軸の正の方向の側及び負の方向の側それぞれに、第1端201及び第2端202を有する。第1導波路20は、第1端201及び第2端202それぞれに、電磁波が入出力される第1ポート211及び第2ポート212を備える。第1ポート211から第1導波路20に入力される電磁波は、X軸に沿って第2ポート212に向けて進む。第2ポート212から第1導波路20に入力される電磁波は、X軸に沿って第1ポート211に向けて進む。第1ポート211及び第2ポート212はそれぞれ、コア21(図24参照)の端面として構成されてよいし、外部装置と接続され、電磁波を伝搬可能なカプラとして構成されてもよい。
 第2導波路30は、X軸の正の方向の側及び負の方向の側それぞれに、端部301及び302を有する。言い換えれば、第2導波路30は、両端を有する。第2導波路30は、第1導波路20に沿って位置し、第1導波路20と互いに結合する。第2導波路30の数は、1つに限られず、2つ以上であってよい。
 第1導波路20と第2導波路30とは、延在する方向の少なくとも一部において、互いに沿って位置してよい。第1導波路20と第2導波路30とは、延在する方向の少なくとも一部において、互いに平行となるように位置してよい。第1導波路20又は第2導波路30は、直線状の構造を有してよい。第1導波路20と第2導波路30とは、これらのような簡易な構造を有することによって、基板50の上で容易に形成されうる。
 第2導波路30において、第1導波路20から移ってきた電磁波は、第2導波路30の中でも第1導波路20の中と同じ方向に伝搬する。第2導波路30において、電磁波が端部301又は302に到達した場合、電磁波は、端部301又は302から放射されたり、端部301又は302で反射されて逆方向に進んだりしうる。
 図24に示されるように、第1導波路20は、コア21と、クラッド22及び23とを備える。コア21、並びに、クラッド22及び23は、X軸方向に延在する。クラッド22及び23は、コア21に対して、Z軸の負の方向の側及び正の方向の側に位置する。クラッド22は、コア21から見て基板50の側に位置する。クラッド23は、コア21から見て基板50の反対側に位置する。基板50から見て、クラッド22、コア21、及び、クラッド23が順番に積層されるともいえる。コア21は、基板50の側に位置する第1面21aと、第1面21aの反対側に位置する第2面21bとを有してよい。クラッド22及び23はそれぞれ、第1面21a及び第2面21bに接するように位置してよい。
 第2導波路30は、コア31と、非相反性部材32と、クラッド33及び34とを備える。コア31、非相反性部材32、並びに、クラッド33及び34は、X軸方向に延在する。非相反性部材32は、コア31に対して、Y軸の正の方向又は負の方向に並んで位置してよい。言い換えれば、コア31と非相反性部材32とは、基板面内に並んで位置してよい。非相反性部材32は、コア31に対して、Z軸の正の方向又は負の方向の側に位置してもよい。
 図24に示されるように、X軸に交差する断面から見たコア31及び非相反性部材32の形状は、点対称とならないように構成される。コア31及び非相反性部材32の形状は、さらに線対称とならないように構成されてもよい。コア31と非相反性部材32とは、まとめて非対称コアともいう。非対称コアは、コア31と非相反性部材32とを含んで構成される。非対称コアは、X軸に交差する断面の少なくとも一部に非相反性部材32を有してよい。コア31は、少なくとも1種類の誘電体を含んで構成されてよい。非相反性部材32は、少なくとも1種類の誘電体の基板50の側の面、又は、その反対側の面に接してよい。
 図24に示されるように、第1導波路20は、第1誘電体としてコア21を含み、第2誘電体としてクラッド40を含んでよい。第2誘電体は、第1誘電体と異なる種類の誘電体であってよい。第1誘電体と第2誘電体とは、基板面50aに平行な方向に並んでよい。第2導波路30は、第3誘電体としてコア31を含み、第4誘電体としてクラッド40を含んでよい。第4誘電体は、第3誘電体と異なる種類の誘電体であってよい。第3誘電体と第4誘電体と非相反性部材32とは、基板面50aに平行な方向に並んでよい。第3誘電体と第4誘電体と非相反性部材32とは、基板面50aの面内方向に接触していてよい。第1導波路20のクラッド22及び23の少なくとも一方は、第2導波路30のクラッド33及び34の少なくとも一方と一体であってよい。第1導波路20のクラッド22及び23の少なくとも一方は、クラッド40と一体であってよい。第2導波路30のクラッド33及び34の少なくとも一方は、クラッド40と一体であってよい。
 第1導波路20と第2導波路30とが基板面50aに沿って並んでいる場合であっても、アイソレータ10は、図11に示されている比較例に係るアイソレータ90と比較して、小型化されうる。アイソレータ10が小型化されうる理由は、分岐結合器92が必要とされないことによる。
 本実施形態において、図25に例示されているように、fb3で表される所定の周波数帯において、第1方向に伝搬する電磁波の減衰量は、第2方向に伝搬する電磁波の減衰量よりも大きくなりうる。fb3は、図10のfb1又は図17のfb2で示される周波数帯と異なる周波数帯とされてよい。図25のグラフに関して図10及び図17のグラフと共通する事項の説明は省略される。
 図22において、第2導波路30の端部がクラッド40に囲まれている場合であっても、第2導波路30を伝搬する電磁波は、第2導波路30の端部からクラッド40に放射されうる。
 本開示に係るアイソレータ10及び光源装置100は、変調機能を有する光送信機に搭載されてよい。本開示に係るアイソレータ10は、光スイッチ又は光増幅器に用いられてよい。本開示に係るアイソレータ10は、デバイスで用いられてよい。本開示に係るアイソレータ10を備えるデバイスは、データセンターにおいて通信するために用いられてよい。
 本開示に係る実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部又は各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部又はステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。本開示に係る実施形態について装置を中心に説明してきたが、本開示に係る実施形態は装置の各構成部が実行するステップを含む方法としても実現し得るものである。本開示に係る実施形態は装置が備えるプロセッサにより実行される方法、プログラム、又はプログラムを記録した記憶媒体としても実現し得るものである。本開示の範囲にはこれらも包含されるものと理解されたい。
 本開示において「第1」及び「第2」等の記載は、当該構成を区別するための識別子である。本開示における「第1」及び「第2」等の記載で区別された構成は、当該構成における番号を交換することができる。例えば、第1ポートは、第2ポートと識別子である「第1」と「第2」とを交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。本開示における「第1」及び「第2」等の識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠に利用してはならない。
 本開示において、X軸、Y軸、及びZ軸は、説明の便宜上設けられたものであり、互いに入れ替えられてよい。本開示に係る構成は、X軸、Y軸、及びZ軸によって構成される直交座標系を用いて説明されてきた。本開示に係る各構成の位置関係は、直交関係にあると限定されるものではない。
 10 アイソレータ
 20 第1導波路
 201 第1端
 202 第2端
 21 コア
 211 第1ポート
 212 第2ポート
 22、23 クラッド
 24 孔部
 25 整合調整回路
 30 第2導波路
 301、302 端部
 31 コア
 32 非相反性部材
 33、34 クラッド
 40 クラッド
 50 基板
 50a 基板面
 60 アンテナ
 70 電磁波吸収部材
 80 磁場印加部
 100 光源装置
 110 光源
 112 レンズ
 114 電源
 120 接続導波路
 121 コア
 122、123 クラッド

Claims (60)

  1.  基板面を有する基板の上において、前記基板面に沿って位置し、前記基板から見て互いに重なる第1導波路と第2導波路とを備え、
     前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有し、
     前記コアは、前記基板面の側を向く第1面と、前記第1面の反対側の第2面とを有し、
     前記クラッドは、前記コアの第1面及び第2面に接するように位置し、
     前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有し、
     前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む、
    アイソレータ。
  2.  前記第2導波路の両端は、前記第1導波路から移ってきた電磁波を放射するアンテナとして機能する、請求項1に記載のアイソレータ。
  3.  前記基板面に交差する方向に磁場を印加する磁場印加部をさらに備える、請求項1又は2に記載のアイソレータ。
  4.  前記第1端に入力される電磁波の偏光方向は、前記基板面に平行である、請求項1乃至3のいずれか一項に記載のアイソレータ。
  5.  前記コアの誘電率は、前記クラッドの誘電率より高い、請求項1乃至4のいずれか一項に記載のアイソレータ。
  6.  前記非相反性部材は、所定の濃度の非相反性材料を含み、
     前記所定の濃度は、前記第1端に入力される電磁波の偏光方向に沿う方向に見た少なくとも一部において変化する、請求項1乃至5のいずれか一項に記載のアイソレータ。
  7.  前記第2導波路のコアは、前記非相反性部材と少なくとも1種類の誘電体とを含み、前記非相反性部材の少なくとも一部は、前記少なくとも1種類の誘電体の、前記基板面に交差する方向に接する、請求項1乃至6のいずれか一項に記載のアイソレータ。
  8.  前記第1導波路の、前記第2導波路の側に位置するクラッドは、前記第2導波路の、前記第1導波路の側に位置するクラッドと一体である、請求項1乃至7のいずれか一項に記載のアイソレータ。
  9.  前記第1導波路は、前記第2導波路より前記基板面に近い側に位置する、請求項1乃至8のいずれか一項に記載のアイソレータ。
  10.  前記第1端及び前記第2端に入力された電磁波は、シングルモードで伝搬される、請求項1乃至9のいずれか一項に記載のアイソレータ。
  11.  前記第1導波路及び前記第2導波路それぞれのコアの比誘電率は、空気の比誘電率よりも高い、請求項1乃至10のいずれか一項に記載のアイソレータ。
  12.  前記第2導波路の両端は、切断面を有する、請求項1乃至11のいずれか一項に記載のアイソレータ。
  13.  前記切断面の法線ベクトルは、前記第2導波路における電磁波の伝搬方向に交差する方向の成分を有する、請求項12に記載のアイソレータ。
  14.  前記第2導波路の長さは、前記第2端から前記第1端に伝搬する電磁波に対する、前記第1導波路と前記第2導波路との結合長の奇数倍である、請求項1乃至13のいずれか一項に記載のアイソレータ。
  15.  前記第2導波路の長さを表すLは、前記第1導波路と前記第2導波路との結合における、前記第2端から前記第1端に伝搬する電磁波に対する、偶モード屈折率を表すnevenと、奇モード屈折率を表すnoddとを含む式
    L=mλ0/2|(neven-nodd)|  (m:奇数、λ0:真空中の波長)
    によって算出される、請求項1乃至13のいずれか一項に記載のアイソレータ。
  16.  前記第2導波路の長さは、前記第1端から前記第2端に伝搬する電磁波に対する、前記第1導波路と前記第2導波路との結合長の偶数倍である、請求項1乃至15のいずれか一項に記載のアイソレータ。
  17.  前記第1導波路のコアは、前記第1面から前記第2面まで貫通する複数の孔部を有し、
     前記複数の孔部は、前記コアが延在する方向に並ぶ、請求項1乃至16のいずれか一項に記載のアイソレータ。
  18.  前記ポートに接続する接続導波路をさらに備え、
     前記接続導波路のコアの比誘電率は、前記第1導波路のコアの少なくとも一部の比誘電率と略同一であり、
     前記基板面に沿い、且つ、前記第1導波路が延在する方向に交差する方向に見て、前記接続導波路のコアの幅は、前記第1導波路のコアの幅と略同一である、請求項1乃至17のいずれか一項に記載のアイソレータ。
  19.  基板面を有する基板の上において、前記基板面に沿って位置し、前記基板から見て互いに重なる第1導波路と第2導波路とを備える光アイソレータと、光源とを備え、
     前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有し、
     前記コアは、前記基板面の側を向く第1面と、前記第1面の反対側の第2面とを有し、
     前記クラッドは、前記コアの第1面及び第2面に接するように位置し、
     前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有し、
     前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含み、
     前記光源は、前記ポートに光学的に接続される、光源装置。
  20.  前記光源に電力を供給する電源をさらに備える、請求項19に記載の光源装置。
  21.  第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する第1導波路と、
     両端を有し、前記第1導波路に沿って位置し、前記第1導波路と互いに結合する、少なくとも1つの第2導波路と
    を備え、
     任意の動作周波数において、前記第1導波路と前記第2導波路とは、前記第1端から入力された電磁波が前記第2端に向けて伝搬する場合の結合係数よりも、前記第2端から入力された電磁波が前記第1端に向けて伝搬する場合の結合係数の方が大きくなるように結合する、アイソレータ。
  22.  前記第1導波路と前記第2導波路とは、互いに平行となるように位置する、請求項21に記載のアイソレータ。
  23.  前記第2導波路は、直線状の構造を有する、請求項21又は22に記載のアイソレータ。
  24.  前記第1導波路と前記第2導波路とが互いに沿う長さは、前記第2端から前記第1端に向けて伝搬する電磁波に対する、前記第1導波路と前記第2導波路との間の結合長と略同一である、請求項21乃至23のいずれか一項に記載のアイソレータ。
  25.  前記第2導波路の両端は、前記第1導波路から移ってきた電磁波を放射するアンテナとして機能する、請求項21乃至24のいずれか一項に記載のアイソレータ。
  26.  前記第2導波路は、両端の外側に電磁波吸収部材を有する、請求項21乃至25のいずれか一項に記載のアイソレータ。
  27.  前記第1導波路は、前記第2導波路と結合する部分に整合調整回路を有する、請求項21乃至26のいずれか一項に記載のアイソレータ。
  28.  複数の前記第2導波路を備え、
     複数の前記第2導波路はそれぞれ、前記第1導波路に直列に結合する、請求項21乃至27のいずれか一項に記載のアイソレータ。
  29.  前記第1端及び前記第2端に入力された電磁波は、シングルモードで伝搬される、請求項21乃至28のいずれか一項に記載のアイソレータ。
  30.  前記第1導波路及び前記第2導波路それぞれの比誘電率は、空気の比誘電率よりも高い、請求項21乃至29のいずれか一項に記載のアイソレータ。
  31.  前記第1導波路と前記第2導波路とが並ぶ方向に磁場を印加する磁場印加部をさらに備える、請求項21乃至30のいずれか一項に記載のアイソレータ。
  32.  第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する第1導波路と、
     両端を有し、前記第1導波路に沿って位置し、前記第1導波路と互いに結合する、少なくとも1つの第2導波路と
    を備える光アイソレータと、
     前記ポートに光学的に接続される光源と
    を備え、
     任意の動作周波数において、前記第1導波路と前記第2導波路とは、前記第1端から入力された電磁波が前記第2端に向けて伝搬する場合の結合係数よりも、前記第2端から入力された電磁波が前記第1端に向けて伝搬する場合の結合係数の方が大きくなるように結合する、光源装置。
  33.  前記光源に電力を供給する電源をさらに備える、請求項32に記載の光源装置。
  34.  基板面を有する基板の上において、前記基板面に沿って並んで位置する第1導波路と第2導波路とを備え、
     前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有し、
     前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有し、
     前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む、
    アイソレータ。
  35.  前記基板面に交差する方向に磁場を印加する磁場印加部をさらに備える、請求項34に記載のアイソレータ。
  36.  前記第1端に入力される電磁波の偏光方向は、前記基板面に平行である、請求項34又は35に記載のアイソレータ。
  37.  前記コアの誘電率は、前記クラッドの誘電率より高い、請求項34乃至36のいずれか一項に記載のアイソレータ。
  38.  前記第1導波路は、前記基板面に平行な方向に並ぶ、第1誘電体と、前記第1誘電体と異なる種類の第2誘電体とを含み、
     前記第2導波路は、前記基板面に平行な方向に並ぶ、第3誘電体と、前記第3誘電体と異なる種類の第4誘電体と、前記非相反性部材とを含み、
     前記第3誘電体と前記第4誘電体と前記非相反性部材とは、前記基板面の面内方向に接触している、請求項34乃至37のいずれか一項に記載のアイソレータ。
  39.  前記第1導波路のクラッドは、前記第2導波路のクラッドと一体である、請求項34乃至38のいずれか一項に記載のアイソレータ。
  40.  前記第2導波路の両端は、前記第1導波路から移ってきた電磁波を放射するアンテナとして機能する、請求項34乃至39のいずれか一項に記載のアイソレータ。
  41.  前記第1端及び前記第2端に入力された電磁波は、シングルモードで伝搬される、請求項34乃至40のいずれか一項に記載のアイソレータ。
  42.  前記第1導波路及び前記第2導波路それぞれのコアの比誘電率は、空気の比誘電率よりも高い、請求項34乃至41のいずれか一項に記載のアイソレータ。
  43.  前記第2導波路の両端は、切断面を有する、請求項34乃至42のいずれか一項に記載のアイソレータ。
  44.  前記切断面の法線ベクトルは、前記第2導波路における電磁波の伝搬方向に交差する方向の成分を有する、請求項43に記載のアイソレータ。
  45.  前記第2導波路の長さは、前記第2端から前記第1端に伝搬する電磁波に対する、前記第1導波路と前記第2導波路との結合長の奇数倍である、請求項34乃至44のいずれか一項に記載のアイソレータ。
  46.  前記第2導波路の長さを表すLは、前記第1導波路と前記第2導波路との結合における、前記第2端から前記第1端に伝搬する電磁波に対する、偶モード屈折率を表すnevenと、奇モード屈折率を表すnoddとを含む式
    L=mλ0/2|(neven-nodd)|  (m:奇数、λ0:真空中の波長)
    によって算出される、請求項34乃至44のいずれか一項に記載のアイソレータ。
  47.  基板面を有する基板の上において、前記基板面に沿って並んで位置する第1導波路と第2導波路とを備える光アイソレータと、光源とを備え、
     前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有し、
     前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有し、
     前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含み、
     前記光源は、前記ポートに光学的に接続される、光源装置。
  48.  前記光源に電力を供給する電源をさらに備える、請求項47に記載の光源装置。
  49.  基板面を有する基板の上において、前記基板面に沿って位置し、前記基板から見て互いに重なる第1導波路と第2導波路とを備える光アイソレータと、光源とを備え、
     前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有し、
     前記コアは、前記基板面の側を向く第1面と、前記第1面の反対側の第2面とを有し、
     前記クラッドは、前記コアの第1面及び第2面に接するように位置し、
     前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有し、
     前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含み、
     前記光源は、前記ポートに光学的に接続される、光源装置を搭載し、
     光の変調機能を有する光送信機。
  50.  第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する第1導波路と、
     両端を有し、前記第1導波路に沿って位置し、前記第1導波路と互いに結合する、少なくとも1つの第2導波路と
    を備える光アイソレータと、
     前記ポートに光学的に接続される光源と
    を備え、
     任意の動作周波数において、前記第1導波路と前記第2導波路とは、前記第1端から入力された電磁波が前記第2端に向けて伝搬する場合の結合係数よりも、前記第2端から入力された電磁波が前記第1端に向けて伝搬する場合の結合係数の方が大きくなるように結合する、光源装置を搭載し、
     光の変調機能を有する光送信機。
  51.  基板面を有する基板の上において、前記基板面に沿って並んで位置する第1導波路と第2導波路とを備える光アイソレータと、光源とを備え、
     前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有し、
     前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有し、
     前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含み、
     前記光源は、前記ポートに光学的に接続される、光源装置を搭載し、
     光の変調機能を有する光送信機。
  52.  基板面を有する基板の上において、前記基板面に沿って位置し、前記基板から見て互いに重なる第1導波路と第2導波路とを備え、
     前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有し、
     前記コアは、前記基板面の側を向く第1面と、前記第1面の反対側の第2面とを有し、
     前記クラッドは、前記コアの第1面及び第2面に接するように位置し、
     前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有し、
     前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む、光アイソレータを備える光スイッチ。
  53.  第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する第1導波路と、
     両端を有し、前記第1導波路に沿って位置し、前記第1導波路と互いに結合する、少なくとも1つの第2導波路と
    を備え、
     任意の動作周波数において、前記第1導波路と前記第2導波路とは、前記第1端から入力された電磁波が前記第2端に向けて伝搬する場合の結合係数よりも、前記第2端から入力された電磁波が前記第1端に向けて伝搬する場合の結合係数の方が大きくなるように結合する、光アイソレータを備える光スイッチ。
  54.  基板面を有する基板の上において、前記基板面に沿って並んで位置する第1導波路と第2導波路とを備え、
     前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有し、
     前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有し、
     前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む、光アイソレータを備える光スイッチ。
  55.  基板面を有する基板の上において、前記基板面に沿って位置し、前記基板から見て互いに重なる第1導波路と第2導波路とを備え、
     前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有し、
     前記コアは、前記基板面の側を向く第1面と、前記第1面の反対側の第2面とを有し、
     前記クラッドは、前記コアの第1面及び第2面に接するように位置し、
     前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有し、
     前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む、光アイソレータを備える光増幅器。
  56.  第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する第1導波路と、
     両端を有し、前記第1導波路に沿って位置し、前記第1導波路と互いに結合する、少なくとも1つの第2導波路と
    を備え、
     任意の動作周波数において、前記第1導波路と前記第2導波路とは、前記第1端から入力された電磁波が前記第2端に向けて伝搬する場合の結合係数よりも、前記第2端から入力された電磁波が前記第1端に向けて伝搬する場合の結合係数の方が大きくなるように結合する、光アイソレータを備える光増幅器。
  57.  基板面を有する基板の上において、前記基板面に沿って並んで位置する第1導波路と第2導波路とを備え、
     前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有し、
     前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有し、
     前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む、光アイソレータを備える光増幅器。
  58.  基板面を有する基板の上において、前記基板面に沿って位置し、前記基板から見て互いに重なる第1導波路と第2導波路とを備え、
     前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有し、
     前記コアは、前記基板面の側を向く第1面と、前記第1面の反対側の第2面とを有し、
     前記クラッドは、前記コアの第1面及び第2面に接するように位置し、
     前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有し、
     前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む、光アイソレータを備えるデバイスによって通信するデータセンター。
  59.  第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有する第1導波路と、
     両端を有し、前記第1導波路に沿って位置し、前記第1導波路と互いに結合する、少なくとも1つの第2導波路と
    を備え、
     任意の動作周波数において、前記第1導波路と前記第2導波路とは、前記第1端から入力された電磁波が前記第2端に向けて伝搬する場合の結合係数よりも、前記第2端から入力された電磁波が前記第1端に向けて伝搬する場合の結合係数の方が大きくなるように結合する、光アイソレータを備えるデバイスによって通信するデータセンター。
  60.  基板面を有する基板の上において、前記基板面に沿って並んで位置する第1導波路と第2導波路とを備え、
     前記第1導波路及び前記第2導波路はそれぞれ、コアとクラッドとを有し、
     前記第1導波路は、第1端と第2端とを有し、前記第1端及び前記第2端それぞれに電磁波が入出力されるポートを有し、
     前記第2導波路のコアは、前記第2導波路が延在する方向に交差する断面の少なくとも一部に非相反性部材を含む、光アイソレータを備えるデバイスによって通信するデータセンター。
PCT/JP2018/030645 2017-08-29 2018-08-20 アイソレータ、光源装置、光送信機、光スイッチ、光増幅器、及びデータセンター WO2019044557A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880054973.XA CN111065956A (zh) 2017-08-29 2018-08-20 隔离器、光源设备、光发射器、光开关、光放大器和数据中心
JP2019539370A JP7004730B2 (ja) 2017-08-29 2018-08-20 アイソレータ、光源装置、光送信機、光スイッチ、光増幅器、及びデータセンター
US16/643,473 US10976564B2 (en) 2017-08-29 2018-08-20 Isolator, light source device, optical transmitter, and optical amplifier

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-164822 2017-08-29
JP2017164820 2017-08-29
JP2017164822 2017-08-29
JP2017-164820 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019044557A1 true WO2019044557A1 (ja) 2019-03-07

Family

ID=65526381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030645 WO2019044557A1 (ja) 2017-08-29 2018-08-20 アイソレータ、光源装置、光送信機、光スイッチ、光増幅器、及びデータセンター

Country Status (4)

Country Link
US (1) US10976564B2 (ja)
JP (1) JP7004730B2 (ja)
CN (1) CN111065956A (ja)
WO (1) WO2019044557A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134845A (ja) * 2019-02-25 2020-08-31 京セラ株式会社 アイソレータ、光源装置、光送信機、光スイッチ、光増幅器、及びデータセンター
JP2021021830A (ja) * 2019-07-26 2021-02-18 京セラ株式会社 アイソレータ及び光送信機
JP2022182107A (ja) * 2021-05-27 2022-12-08 京セラ株式会社 非相反性導波路、アイソレータ、光スイッチ、光送受信機、データセンタ、及び製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11921365B2 (en) * 2019-07-26 2024-03-05 Kyocera Corporation Isolator, method of manufacturing isolator, electromagnetic wave transmitter, and light transmitter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666819A (en) * 1979-11-02 1981-06-05 Nec Corp Waveguide type magneto-optic photo circuit element
JPS618403B2 (ja) * 1974-11-05 1986-03-14 Siemens Ag
JPH0310212A (ja) * 1989-06-08 1991-01-17 Nippon Telegr & Teleph Corp <Ntt> 光非相反移相器
JPH0764023A (ja) * 1993-08-26 1995-03-10 Kyocera Corp ファイバ型光アイソレータ
US20080266644A1 (en) * 2007-04-26 2008-10-30 Mihali Sigalas Micron-size optical Faraday rotator
US20110311181A1 (en) * 2008-07-01 2011-12-22 Duke University Optical Isolator
US20160341981A1 (en) * 2015-05-18 2016-11-24 Government Of The United States, As Represented By The Secretary Of The Air Force Nonreciprocal Coupler Isolator
US20170102565A1 (en) * 2015-04-21 2017-04-13 Inha-Industry Partnership Institute Integratable planar waveguide type non-reciprocal polarization rotator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618403A (ja) * 1984-06-21 1986-01-16 Daikin Ind Ltd スクロ−ル形流体機械
JP3407046B1 (ja) 2002-04-11 2003-05-19 東京工業大学長 干渉計型光アイソレータ及び光サーキュレータ
CN100557483C (zh) * 2008-04-16 2009-11-04 浙江大学 一种偏振无关磁光波导光隔离器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618403B2 (ja) * 1974-11-05 1986-03-14 Siemens Ag
JPS5666819A (en) * 1979-11-02 1981-06-05 Nec Corp Waveguide type magneto-optic photo circuit element
JPH0310212A (ja) * 1989-06-08 1991-01-17 Nippon Telegr & Teleph Corp <Ntt> 光非相反移相器
JPH0764023A (ja) * 1993-08-26 1995-03-10 Kyocera Corp ファイバ型光アイソレータ
US20080266644A1 (en) * 2007-04-26 2008-10-30 Mihali Sigalas Micron-size optical Faraday rotator
US20110311181A1 (en) * 2008-07-01 2011-12-22 Duke University Optical Isolator
US20170102565A1 (en) * 2015-04-21 2017-04-13 Inha-Industry Partnership Institute Integratable planar waveguide type non-reciprocal polarization rotator
US20160341981A1 (en) * 2015-05-18 2016-11-24 Government Of The United States, As Represented By The Secretary Of The Air Force Nonreciprocal Coupler Isolator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134845A (ja) * 2019-02-25 2020-08-31 京セラ株式会社 アイソレータ、光源装置、光送信機、光スイッチ、光増幅器、及びデータセンター
JP7191720B2 (ja) 2019-02-25 2022-12-19 京セラ株式会社 アイソレータ、光源装置、光送信機、光スイッチ、光増幅器、及びデータセンター
JP2021021830A (ja) * 2019-07-26 2021-02-18 京セラ株式会社 アイソレータ及び光送信機
JP7309503B2 (ja) 2019-07-26 2023-07-18 京セラ株式会社 アイソレータ及び光送信機
JP2022182107A (ja) * 2021-05-27 2022-12-08 京セラ株式会社 非相反性導波路、アイソレータ、光スイッチ、光送受信機、データセンタ、及び製造方法
JP7328276B2 (ja) 2021-05-27 2023-08-16 京セラ株式会社 非相反性導波路、アイソレータ、光スイッチ、光送受信機、データセンタ、及び製造方法

Also Published As

Publication number Publication date
CN111065956A (zh) 2020-04-24
US20200363584A1 (en) 2020-11-19
JP7004730B2 (ja) 2022-01-21
JPWO2019044557A1 (ja) 2020-08-06
US10976564B2 (en) 2021-04-13

Similar Documents

Publication Publication Date Title
JP7004730B2 (ja) アイソレータ、光源装置、光送信機、光スイッチ、光増幅器、及びデータセンター
US9207461B2 (en) Fiber optical package interconnect
JPWO2008084584A1 (ja) 光導波路素子および偏光分離方法
JPWO2007088998A1 (ja) 光アイソレータ
US20240168323A1 (en) Isolator, method of manufacturing isolator, electromagnetic wave transmitter, and light transmitter
CN113826041B (zh) 光隔离器和光源装置
JP7191720B2 (ja) アイソレータ、光源装置、光送信機、光スイッチ、光増幅器、及びデータセンター
WO2020110612A1 (ja) アイソレータ、光源装置、光送受信機、光スイッチ、光増幅器、及びデータセンター
JP7325254B2 (ja) アイソレータ、アイソレータの製造方法、及び電磁波送信器
JP7330005B2 (ja) アイソレータ、アイソレータの製造方法、及び電磁波送信器
JP7309503B2 (ja) アイソレータ及び光送信機
JP2004191954A (ja) 光機能素子および光モジュール
JP3457711B2 (ja) ファイバ型光アイソレータ
WO2019117313A1 (ja) 光偏波素子およびその製造方法
JP2728421B2 (ja) 光導波路
WO2014156959A1 (ja) 端面光結合型シリコン光集積回路
JP7245744B2 (ja) アイソレータ及び光送信機
JP2989982B2 (ja) ファイバ型光アイソレータ
JP4514773B2 (ja) 光アイソレータ
JPH04125602A (ja) 光導波路型偏光子
KR20130067613A (ko) 코어 및 광 도파로
JP2021021833A (ja) アイソレータ及び光送信機
JP2004138785A (ja) 光合分波回路
JPH05215937A (ja) 光結合部品
JPH11248950A (ja) 導波路型光アイソレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539370

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849753

Country of ref document: EP

Kind code of ref document: A1