WO2019043844A1 - 光学部品及び透明封止部材 - Google Patents

光学部品及び透明封止部材 Download PDF

Info

Publication number
WO2019043844A1
WO2019043844A1 PCT/JP2017/031211 JP2017031211W WO2019043844A1 WO 2019043844 A1 WO2019043844 A1 WO 2019043844A1 JP 2017031211 W JP2017031211 W JP 2017031211W WO 2019043844 A1 WO2019043844 A1 WO 2019043844A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing member
transparent sealing
optical component
mounting substrate
recess
Prior art date
Application number
PCT/JP2017/031211
Other languages
English (en)
French (fr)
Inventor
菊池芳郎
岩井真
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2019538829A priority Critical patent/JP7030126B2/ja
Priority to DE112017007951.9T priority patent/DE112017007951T5/de
Priority to KR1020207006029A priority patent/KR20200040788A/ko
Priority to CN201780094531.3A priority patent/CN111052420A/zh
Priority to PCT/JP2017/031211 priority patent/WO2019043844A1/ja
Publication of WO2019043844A1 publication Critical patent/WO2019043844A1/ja
Priority to US16/801,691 priority patent/US11733434B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting

Definitions

  • the present invention relates to a transparent sealing member used for an optical component and an optical component, for example, to an optical component and a transparent sealing member suitable for use in, for example, an LED (light emitting diode) or an LD (semiconductor laser).
  • a transparent sealing member used for an optical component and an optical component, for example, to an optical component and a transparent sealing member suitable for use in, for example, an LED (light emitting diode) or an LD (semiconductor laser).
  • the ultraviolet LED device requires a transparent sealing member to protect the light emitting element from the open air and moisture. Glass and quartz glass are used for this transparent sealing member from the viewpoint of the permeability to ultraviolet light and durability.
  • JP-A-2014-216532 has a non-light transmitting substrate on the upper surface of which a semiconductor light emitting element is mounted, and a concave portion opened downward and a light transmitting protective material surrounding the semiconductor light emitting element.
  • a semiconductor light emitting device package is disclosed.
  • JP-A-2017-011200 includes a light emitting element that emits ultraviolet light, a base on which the light emitting element is mounted, and a translucent protective member that covers the light emitting element and transmits ultraviolet light.
  • a semiconductor light emitting device package is disclosed in which the light emitting device is housed in a region (recess) formed by the base and the light transmissive protective member.
  • the refractive index of the translucent protective material and the refractive index of the recess are largely different, the light emitted from the semiconductor light emitting element may be surface-reflected by the translucent protective material. Therefore, it is conceivable to fill the recess with a refractive index matching agent having a refractive index between the refractive index of the translucent protective material and the refractive index of the recess.
  • a refractive index matching agent having a refractive index between the refractive index of the translucent protective material and the refractive index of the recess.
  • air bubbles are mixed in the refractive index matching agent, and there is a problem that the effect by the refractive index matching agent (prevention of surface reflection) can not be sufficiently exhibited.
  • the present invention has been made in consideration of such problems, and it is possible to suppress the mixing of air bubbles into the refractive index matching agent, and to realize the effect (suppression of surface reflection) by the refractive index matching agent. It is an object of the present invention to provide an optical component and a transparent sealing member capable of improving the performance of the optical component.
  • An optical component includes at least one optical element and a package in which the optical element is accommodated, the package being a mounting substrate on which the optical element is mounted;
  • the package includes a transparent sealing member bonded onto the mounting substrate, a recess surrounding the optical element mounted on the mounting substrate, and a refractive index matching agent filled in the recess.
  • At least one groove communicating with the outside from the recess is characterized.
  • the said recessed part may be provided in the said transparent sealing member, and may be provided in the said mounting substrate.
  • the refractive index matching agent is filled in the recess.
  • the refractive index matching agent has a refractive index between the refractive index of the transparent sealing member and the refractive index of the recess (the accommodation space of the optical element).
  • the package is provided with at least one groove communicating from the recess to the outside.
  • the refractive index matching agent is filled in the recess of the transparent sealing member. Thereafter, the mounting substrate on which the optical element is mounted and the transparent sealing member are bonded. In this case, the optical element is bonded so as to be embedded in the recess filled with the refractive index matching agent. At the time of this bonding, a part of the refractive index matching agent is discharged to the outside through the groove, and the air bubble is also released to the outside.
  • the inclusion of air bubbles in the refractive index matching agent can be suppressed, and the effect by the refractive index matching agent (suppression of surface reflection) can be realized, and the performance of the optical component is improved. be able to.
  • the groove may be formed in a portion of the transparent sealing member to be bonded to the mounting substrate.
  • the groove may be formed in at least a portion of the mounting substrate to be bonded to the transparent sealing member.
  • a plurality of the grooves may be provided, and the plurality of grooves may be formed radially.
  • a step communicating with the recess may be formed around the recess.
  • the step is a path for guiding the air bubbles to the grooves, and the air bubbles are smoothly released to the outside.
  • the projected area of the portion where the transparent sealing member and the mounting substrate are joined with respect to the bottom surface of the optical component is A
  • the projected area of the groove with respect to the bottom surface of the optical component is B.
  • the height of the groove is preferably smaller than the thickness of the optical element. If the height of the groove is too large, air bubbles will remain around the optical element. Therefore, the height of the groove is preferably smaller than the thickness of the optical element. In addition, when the height of the groove is too small, air bubbles are less likely to come out of the groove when bonding the transparent sealing member and the mounting substrate.
  • the height of the grooves is preferably 50 to 600 ⁇ m.
  • the transparent sealing member is made of quartz glass or optical glass
  • the refractive index matching agent is a silicone resin or a fluorine resin.
  • a transparent sealing member includes at least one optical element, a mounting substrate on which the optical element is mounted, and a recess surrounding the optical element mounted on the mounting substrate. It is used for the optical component which it has, and is a transparent sealing member which comprises the package which accommodates the said optical element with the said mounting substrate.
  • the transparent sealing member is bonded to the mounting substrate in a state where the recess is filled with a refractive index matching agent, and at least a portion connected to the mounting substrate communicates with the outside from the recess. It is characterized by having one groove.
  • a plurality of the grooves may be provided, and the plurality of grooves may be formed radially.
  • a step communicating with the recess may be formed around the recess in a portion to be joined to the mounting substrate.
  • the height of the groove is preferably smaller than the thickness of the optical element.
  • the transparent sealing member is made of quartz glass or optical glass
  • the refractive index matching agent is a silicone resin or a fluorine resin.
  • the optical component and the transparent sealing member according to the present invention it is possible to suppress the mixing of air bubbles into the refractive index matching agent, and the effect by the refractive index matching agent (suppression of surface reflection) And can improve the performance of the optical component.
  • FIG. 3A is a longitudinal sectional view showing the configuration of an optical component according to Comparative Example 1
  • FIG. 3B is a longitudinal sectional view showing the configuration of an optical component according to Comparative Example 2.
  • FIG. 4A is a process drawing showing a state in which the refractive index matching agent is filled in the recess in a state where the opening of the recess is directed upward in the optical component according to Comparative Example 2, and FIG. 4B is for closing the opening of the recess.
  • FIG. 4A is a process drawing showing a state in which the refractive index matching agent is filled in the recess in a state where the opening of the recess is directed upward in the optical component according to Comparative Example 2
  • FIG. 4B is for closing the opening of the recess.
  • FIG. 6 is a process diagram showing a state in which the mounting substrate is bonded to the transparent sealing member with the optical element facing downward.
  • FIG. 5A is a process diagram showing a state in which the refractive index matching agent is filled in the concave portion in a state where the opening of the concave portion is directed upward in the optical component according to the present embodiment
  • FIG. It is a process drawing showing a state where the mounting substrate is bonded to the transparent sealing member with the optical element facing downward.
  • FIG. 6A is a longitudinal sectional view showing the configuration of an optical component (first optical component) according to a first modification
  • FIG. 6B is a perspective view showing the bottom surface (bonding surface) side of the transparent sealing member of the first optical component.
  • FIG. 10A is a perspective view showing the configuration of an optical component (fifth optical component) according to the fifth modification
  • FIG. 10B is a plan view showing the bottom surface (bonding surface) of the transparent sealing member of the fifth optical component.
  • 11A is a perspective view showing a configuration of an optical component (sixth optical component) according to a sixth modification
  • FIG. 11B is a plan view showing an upper surface (bonding surface) of a mounting substrate of the sixth optical component.
  • the optical component 10 has, as shown in FIG. 1, at least one optical element 12 for emitting ultraviolet light, and a package 14 in which the optical element 12 is accommodated.
  • the package 14 has a mounting substrate 16 on which the optical element 12 is mounted, and a transparent sealing member 20 joined on the mounting substrate 16 via, for example, an organic adhesive layer 18.
  • the mounting substrate 16 is made of, for example, AlN (aluminum nitride).
  • the transparent sealing member 20 is made of, for example, quartz glass or optical glass.
  • an epoxy-based adhesive, a silicone-based adhesive, a urethane-based adhesive or the like can be preferably used.
  • the optical element 12 is mounted on the mounting substrate 16 as described above.
  • the optical element 12 is configured, for example, by laminating a GaN-based crystal layer having a quantum well structure on a sapphire substrate (thermal expansion coefficient: 7.7 ⁇ 10 ⁇ 6 / ° C.).
  • a so-called face-up mounting in which the light emitting surface 12a is mounted to face the transparent sealing member 20 is adopted. That is, a terminal (not shown) derived from the optical element 12 and a circuit wiring (not shown) formed on the mounting substrate 16 are electrically connected by, for example, a bonding wire (not shown) .
  • the transparent sealing member 20 has an annular pedestal 22 disposed to surround the optical element 12 mounted on the mounting substrate 16, and a lens body 24 integrally formed on the pedestal 22. Further, in the pedestal 22 of the transparent sealing member 20, a recess 26 (housing space) of the lower surface opening is formed. At least the optical element 12 is accommodated in the recess 26.
  • the planar shape of the bottom surface of the lens body 24 is, for example, circular, and the outer shape of the pedestal 22 is, for example, square.
  • the planar shape of the bottom surface of the lens body 24 may be an elliptical shape, a track shape, or the like, and the outer shape of the pedestal 22 may be a polygonal shape such as a circular shape, a rectangular shape, a triangular shape, or a hexagonal shape.
  • the manufacturing method of the transparent sealing member 20 having such a shape includes (a) cutting out from a bulk base material, (b) high temperature molding, (c) powder sintering and the like.
  • a cutting process is performed from the bulk base material of the transparent sealing member 20, and as shown in FIG. 1, the transparent sealing member 20 is manufactured.
  • high temperature molding a material is poured into a mold at a high temperature, or a piece of material is placed in a mold, and is deformed into a mold at a high temperature to produce a transparent sealing member 20 as shown in FIG.
  • a molding slurry containing silica powder and an organic compound is cast in a molding die and solidified by a chemical reaction between organic compounds, for example, a chemical reaction between a dispersion medium and a curing agent or curing agent, and then molding It releases from a type
  • the height ha of the transparent sealing member 20 is 0.5 to 10 mm
  • the outer diameter Da of the pedestal 22 is 3.0 to 10 mm
  • the height hb of the pedestal 22 is 0.2 to It is 1 mm.
  • the lens body 24 has a bottom maximum length Lm of 2.0 to 10 mm, a maximum height hm of 0.5 to 10 mm, and an aspect ratio (hm / Lm) of 0.3 to 1.0 or the like. .
  • the concave portion 26 of the transparent sealing member 20 is filled with the refractive index matching agent 28 (liquid), and a plurality of the transparent sealing member 20 is bonded to the mounting substrate 16. Grooves 30 are formed.
  • a fluorine resin, a silicone resin or the like can be preferably adopted as the refractive index matching agent.
  • the refractive index of air is 1, the refractive index of quartz glass is 1.57 (wavelength 185 nm) to 1.47 (wavelength 399 nm), the refractive index of fluorine resin is 1.36 (wavelength 238 nm) to 1.35 (wavelength)
  • the refractive index of the silicone resin is 1.41 (wavelength 238 nm) to 1.57 (wavelength 589 nm).
  • the plurality of grooves 30 are radially formed, for example, as shown in FIGS. 2A to 2C.
  • FIG. 2A shows an example in which two grooves 30a and 30b are formed on one straight line
  • FIG. 2B shows an example in which four grooves 30a to 30d are formed on two straight lines orthogonal to each other.
  • FIG. 2C shows an example in which four grooves 30a to 30d are formed on two diagonals respectively.
  • the number of grooves 30, the radial direction (the direction in which the grooves 30 are formed), and the like can be appropriately selected depending on the size, shape, and the like of the transparent sealing member 20.
  • the planar shape of the recess 26 is rectangular.
  • the planar shape of the recess 26 may be circular.
  • the plurality of grooves 30 may be formed radially.
  • the outer shape of the base 22 may be circular, and the planar shape of the recess may be rectangular, or both the outer shape of the pedestal 22 and the outer shape of the recess may be circular, and the planar shape of the recess may be rectangular.
  • the optical component 100a according to Comparative Example 1 has almost the same configuration as the optical component 10, but the groove 30 is not formed in the transparent sealing member 20, and the transparent sealing
  • the refractive index matching agent 28 is not filled in the recess 26 of the stopper 20. That is, the air layer 32 is formed. Therefore, the refractive index of the lens body 24 in the transparent sealing member 20 and the refractive index of the air layer 32 in the recess 26 are largely different, and the light emitted from the optical element 12 is surface-reflected by the transparent sealing member 20.
  • the loss due to surface reflection is about 10%.
  • the refractive index matching agent 28 is formed in the recess 26 of the transparent sealing member 20. Is filled. However, there is a problem that air bubbles 34 mix in the assembly of the optical component 100b.
  • the refractive index matching agent 28 is filled in the recess 26 with the opening of the recess 26 directed upward.
  • the mounting substrate 16 is bonded to the transparent sealing member 20 with the optical element 12 facing downward so as to close the opening of the recess 26.
  • air bubbles 34 will be mixed. Therefore, for example, as shown in FIG. 3B, when the air bubble 34 moves on the optical path when using the optical component 100b, the effect of the refractive index matching agent 28 (suppression of surface reflection) can not be sufficiently exhibited.
  • the refractive index matching agent 28 is filled in the recess 26 of the transparent sealing member 20 as shown in FIG. Among them, a plurality of grooves 30 are formed in a portion to be bonded to the mounting substrate 16.
  • the refractive index matching agent 28 is filled in the recess 26 with the opening of the recess 26 directed upward.
  • the mounting substrate 16 is bonded to the transparent sealing member 20 with the optical element 12 facing downward so as to close the opening of the recess 26.
  • part of the refractive index matching agent 28 (volume integral of the optical element 12) is discharged to the outside through the groove 30 and the air bubble 34 is also released to the outside at the time of the above-mentioned bonding Become.
  • the mixing of the air bubble 34 into the refractive index matching agent 28 can be suppressed, and the effect by the refractive index matching agent 28 (suppression of surface reflection) is realized. And the performance of the optical component 10 can be improved.
  • a plurality of grooves 30 are radially formed as shown in FIGS. 2A to 2F and the like.
  • the projected area of the transparent sealing member 20 in the portion joined to the mounting substrate 16 with respect to the bottom surface of the optical component 10 is A
  • the projected area of the groove 30 with respect to the bottom surface of the optical component 10 is B. It is preferable that (B / A) ⁇ 100 is 5% or more and 30% or less.
  • the projected area A refers to the area of the portion to be bonded to the mounting substrate 16 when the groove 30 is not formed.
  • the height hc (maximum depth) of the groove 30 is preferably smaller than the thickness hd of the optical element 12. If the height hc of the groove 30 is too large, the air bubble 34 (see FIG. 3B) remains around the optical element 12. If the height hc of the groove 30 is too small, the air bubble 34 will not easily come out of the groove 30 when the transparent sealing member 20 and the mounting substrate 16 are bonded.
  • the thickness hd of the optical element 12 is 100 to 1000 ⁇ m
  • the height hc of the groove 30 is preferably 50 to 600 ⁇ m.
  • optical component 10 Next, some variations of the optical component 10 will be described with reference to FIGS. 6A-11B.
  • the first optical component 10A has substantially the same configuration as the above-described optical component 10, but as shown in FIGS. 6A and 6B, the concave portion of the portion of the transparent sealing member 20 to be bonded to the mounting substrate 16 The difference is that a frame-like step 40 communicating with the recess 26 is formed around the periphery 26.
  • the step 40 serves as a path for guiding the air bubble 34 to the groove 30, and the air bubble 34 is smoothly released to the outside.
  • the groove 30 is formed in at least a portion of the mounting substrate 16 to be bonded to the transparent sealing member 20. Differ in that they are formed. That is, the difference is that the groove 30 does not exist in the transparent sealing member 20 and the groove 30 is formed in the mounting substrate 16.
  • a plurality of grooves 30 are formed from the portion of the upper surface 16 a of the mounting substrate 16 on which the optical element 12 is mounted to the outer periphery of the mounting substrate 16. Also in this case, it is preferable to form the plurality of grooves 30 radially (see FIGS. 2A to 2F).
  • the transparent sealing member 20 and the mounting substrate 16 are bonded in such a manner that the optical element 12 is embedded in the recess 26 filled with the refractive index matching agent 28, the refractive index While a part of the alignment agent 28 is discharged to the outside through the groove 30 formed in the mounting substrate 16, the air bubble 34 is also released to the outside.
  • the third optical component 10C has substantially the same configuration as the above-described optical component 10, but as shown in FIG. That is, the transparent sealing member 20 is integrally formed with the lens body 24 and the pedestal 44 whose outer shape is, for example, rectangular or circular.
  • a recess 42 for housing the optical element 12 is formed not on the base 44 of the transparent sealing member 20 but on the mounting substrate 16. That is, the mounting substrate 16 has a recess 42 with an upper surface opening, and the optical element 12 is mounted on the bottom of the recess 42.
  • a plurality of grooves 30 are formed in the frame-like upper end portion of the mounting substrate 16. Also in this case, it is preferable to form the plurality of grooves 30 radially.
  • the refractive index matching agent While a part of 28 is discharged to the outside through the groove 30 formed in the mounting substrate 16, the air bubble 34 also escapes to the outside.
  • the fourth optical component 10D has substantially the same configuration as the above-described third optical component 10C, but as shown in FIG. 9, a bulging portion 46 is formed at the central portion of the lower surface of the pedestal 22. It differs in the point.
  • the area of the bulging portion 46 when viewed from above is smaller than the opening area of the recess 42 of the mounting substrate 16.
  • the refractive index matching agent 28 moves laterally outward by the volume integral of the bulging portion 46 rather than the third optical component 10C, the air bubble 34 also easily moves outward, and the air bubble 34 34 can be discharged to the outside smoothly.
  • the fifth optical component 10E is different in that the plurality of optical components 10 described above are arranged in an array.
  • the transparent sealing member 20 is configured by integrally arranging a plurality of lens bodies 24 in a matrix, for example, on one pedestal 22. Recesses 26 (see FIG. 10B) are formed in the pedestal 22 corresponding to the lens bodies 24 respectively. A plurality of grooves 30 are formed in a portion of the pedestal 22 to be bonded to the mounting substrate 16.
  • the plurality of grooves 30 have a plurality of second grooves 30 b communicating with the first grooves 30 a in addition to the plurality of first grooves 30 a communicating with the concave portion 26 of the transparent sealing member 20.
  • the first groove 30 a and the second groove 30 b are respectively formed up to the outer periphery of the pedestal 22.
  • the discharge directions of the excess refractive index matching agent 28 flowing through the first groove 30a in the vicinity of the array center in the transparent sealing member 20 interfere with each other, and the refractive index matching is performed.
  • the flow of the agent 28 is delayed.
  • the air bubble 34 is likely to remain in the recess 26 in the portion where the flow is stagnant.
  • the remaining refractive index matching agent 28 flowing through the first groove 30a is discharged from the recess 26 of each transparent sealing member 20 through the second groove 30b, so that air bubbles to the recess 26 can be obtained. 34 can be suppressed.
  • the sixth optical component 10F has substantially the same configuration as the fifth optical component 10E described above, but, for example, a plurality of third optical components 10C (see FIG. 8) Are different in that they are arranged in an array.
  • the transparent sealing member 20 is configured by integrally arranging a plurality of lens bodies 24 in a matrix, for example, on one pedestal 22. Recesses 42 (see FIG. 11B) are formed in the mounting substrate 16 corresponding to the lens bodies 24 respectively. A plurality of grooves 30 are formed in a portion of the mounting substrate 16 to be joined to the pedestal 22 of the transparent sealing member 20.
  • the plurality of grooves 30 in addition to the plurality of first grooves 30a in communication with the concave portion 42 of the mounting substrate 16, the plurality of grooves 30 have a plurality of second grooves 30b in communication with the first grooves 30a.
  • the first groove 30 a and the second groove 30 b are formed up to the outer periphery of the mounting substrate 16 respectively.
  • the remaining refractive index matching agent 28 flowing through the first groove 30a is discharged from each recess 42 of the mounting substrate 16 through the second groove 30b.
  • the mixing of the air bubbles 34 into the respective recesses 42 can be suppressed.
  • optical component and the transparent sealing member according to the present invention are, of course, not limited to the above embodiment, and various configurations can be adopted without departing from the scope of the present invention.

Abstract

本発明は、光学部品及び透明封止部材に関する。光学部品(10)は、少なくとも1つの光学素子(12)と、光学素子(12)が収容されるパッケージ(14)とを有する。パッケージ(14)は、光学素子(12)が実装される実装基板(16)と、実装基板(16)上に接合される透明封止部材(20)と、実装基板(16)に実装された光学素子(12)を囲む凹部(26)と、凹部(26)内に充填された屈折率整合剤(28)とを有する。パッケージ(14)は、凹部(26)から外部に連通する少なくとも1つの溝(30)を有する。

Description

光学部品及び透明封止部材
 本発明は、光学部品及び光学部品に用いられる透明封止部材に関し、例えばLED(発光ダイオード)、LD(半導体レーザー)等に用いて好適な光学部品及び透明封止部材に関する。
 近時、殺菌や浄化用途に紫外線を出射する発光素子(紫外線LED)を用いる方式が普及しつつある。紫外線LEDデバイスには、発光素子を外気や水分から保護するために、透明封止部材が必要である。この透明封止部材には紫外線に対する透過性や耐久性の観点からガラスや石英ガラスが使用される。
 特開2014-216532号公報には、上面に半導体発光素子が実装された非透光性基板と、下に開口した凹部を有し、且つ、半導体発光素子を囲む透光性保護材とを有する半導体発光素子パッケージが開示されている。
 特開2017-011200公報には、紫外光を放射する発光素子と、該発光素子が実装された基体と、発光素子を覆い、且つ、紫外光を透過する透光性保護部材とを有し、該基体と該透光性保護部材とで形成された領域(凹部)に該発光素子を収納した半導体発光素子パッケージが開示されている。
 ところで、透光性保護材の屈折率と凹部の屈折率が大きく異なると、半導体発光素子から出射された光が透光性保護材で表面反射するおそれがある。そこで、凹部内に、透光性保護材の屈折率と凹部の屈折率との間の屈折率を有する屈折率整合剤を充填することが考えられる。しかし、半導体発光素子パッケージの組み立て時に、屈折率整合剤に気泡が混入し、屈折率整合剤による効果(表面反射の抑止)を十分に発揮させることができないという問題がある。
 本発明はこのような課題を考慮してなされたものであり、屈折率整合剤への気泡の混入を抑制することができ、屈折率整合剤による効果(表面反射の抑止)を実現することができ、光学部品の性能を向上させることができる光学部品及び透明封止部材を提供することを目的とする。
[1] 第1の本発明に係る光学部品は、少なくとも1つの光学素子と、前記光学素子が収容されるパッケージと、を有し、前記パッケージは、前記光学素子が実装される実装基板と、前記実装基板上に接合される透明封止部材と、前記実装基板に実装された前記光学素子を囲む凹部と、前記凹部内に充填された屈折率整合剤と、を有し、前記パッケージは、前記凹部から外部に連通する少なくとも1つの溝を有することを特徴とする。なお、前記凹部は、前記透明封止部材に設けられていてもよいし、前記実装基板に設けられていてもよい。
 透光性保護材の屈折率と凹部(光学素子の収容空間)の屈折率が大きく異なると、光学素子から出射された光が透光性保護材で表面反射するおそれがある。そこで、本発明では、凹部内に屈折率整合剤が充填されている。屈折率整合剤は、透明封止部材の屈折率と凹部(光学素子の収容空間)の屈折率との間の屈折率を有する。さらに、本発明は、パッケージに、凹部から外部に連通する少なくとも1つの溝が設けられている。
 光学部品を組み立てる場合は、例えば透明封止部材の凹部内に屈折率整合剤を充填する。その後、光学素子が実装された実装基板と透明封止部材とを接合する。この場合、屈折率整合剤が充填されている凹部内に光学素子を埋めるようにして接合する。この接合の際に、屈折率整合剤の一部が溝を通じて外部に排出されると共に、気泡も外部に抜けることになる。
 すなわち、本発明においては、屈折率整合剤への気泡の混入を抑制することができ、屈折率整合剤による効果(表面反射の抑止)を実現することができると共に、光学部品の性能を向上させることができる。
[2] 第1の本発明において、前記透明封止部材のうち、前記実装基板と接合する部分に前記溝が形成されていてもよい。
[3] 第1の本発明において、前記実装基板のうち、少なくとも前記透明封止部材と接合する部分に前記溝が形成されていてもよい。
[4] 第1の本発明において、複数の前記溝を有し、複数の前記溝は、放射状に形成されていてもよい。これにより、透明封止部材と実装基板との接合の際に、屈折率整合剤の一部が溝を通じて外部に排出されやすくなり、気泡の外部への抜けも容易に行われることとなる。
[5] 第1の本発明において、前記透明封止部材と前記実装基板とが接合する部分のうち、前記凹部の周囲に、前記凹部に連通する段差が形成されていてもよい。透明封止部材と実装基板との接合の際に、段差が気泡を溝へ導く通り道になり、気泡の外部への抜けがスムーズに行われることとなる。
[6] 第1の本発明において、前記透明封止部材と前記実装基板とが接合する部分の前記光学部品の底面に対する投影面積をA、前記溝の前記光学部品の底面に対する投影面積をBとしたとき、(B/A)×100が5%以上30%以下であることが好ましい。
 溝の投影面積が大きすぎると、透明封止部材と実装基板との接着強度が小さくなり、透明封止部材が実装基板から外れ易くなる。反対に、溝の投影面積が小さすぎると、透明封止部材と実装基板との接合の際に、気泡が溝から抜けにくくなる。そこで、(B/A)×100が5%以上30%以下であることが好ましい。
[7] 第1の本発明において、前記溝の高さは、前記光学素子の厚みより小さいことが好ましい。溝の高さが大きすぎると、光学素子の周囲に気泡が残存する。そこで、溝の高さは、光学素子の厚みより小さいことが好ましい。なお、溝の高さが小さすぎると、透明封止部材と実装基板との接合の際に、気泡が溝から抜けにくくなる。溝の高さは、好ましくは、50~600μmである。
[8] 第1の本発明において、前記透明封止部材が石英ガラス又は光学ガラスにて構成され、前記屈折率整合剤がシリコーン樹脂又はフッ素樹脂であることが好ましい。
[9] 第2の本発明に係る透明封止部材は、少なくとも1つの光学素子と、前記光学素子が実装された実装基板と、前記実装基板に実装された前記光学素子を囲む凹部と、を有する光学部品に用いられ、前記実装基板と共に前記光学素子を収容するパッケージを構成する透明封止部材である。そして、前記透明封止部材は、前記凹部に屈折率整合剤が充填された状態で前記実装基板に接合されるものであって、前記実装基板と接合する部分に前記凹部から外部に連通する少なくとも1つの溝を有することを特徴とする。
[10] 第2の本発明において、複数の前記溝を有し、複数の前記溝は、放射状に形成されていてもよい。
[11] 第2の本発明において、前記実装基板と接合する部分のうち、前記凹部の周囲に、前記凹部に連通する段差が形成されていてもよい。
[12] 第2の本発明において、前記実装基板と接合する部分の前記光学部品の底面に対する投影面積をA、前記溝の前記光学部品の底面に対する投影面積をBとしたとき、(B/A)×100が5%以上30%以下であることが好ましい。
[13] 第2の本発明において、前記溝の高さは、前記光学素子の厚みより小さいことが好ましい。
[14] 第2の本発明において、前記透明封止部材が石英ガラス又は光学ガラスにて構成され、前記屈折率整合剤がシリコーン樹脂又はフッ素樹脂であることが好ましい。
 以上説明したように、本発明に係る光学部品及び透明封止部材によれば、屈折率整合剤への気泡の混入を抑制することができ、屈折率整合剤による効果(表面反射の抑止)を実現することができ、光学部品の性能を向上させることができる。
本実施の形態に係る光学部品の構成を示す縦断面図である。 図2A~図2Fは透明封止部材の台座に複数の溝を放射状に形成する例を示す平面図である。 図3Aは比較例1に係る光学部品の構成を示す縦断面図であり、図3Bは比較例2に係る光学部品の構成を示す縦断面図である。 図4Aは比較例2に係る光学部品において凹部の開口を上方に向けた状態で、凹部内に屈折率整合剤を充填した状態を示す工程図であり、図4Bは凹部の開口を塞ぐようにして、実装基板を光学素子を下向きにして透明封止部材に接合した状態を示す工程図である。 図5Aは本実施の形態に係る光学部品において凹部の開口を上方に向けた状態で、凹部内に屈折率整合剤を充填した状態を示す工程図であり、図5Bは凹部の開口を塞ぐようにして、実装基板を光学素子を下向きにして透明封止部材に接合した状態を示す工程図である。 図6Aは第1の変形例に係る光学部品(第1光学部品)の構成を示す縦断面図であり、図6Bは第1光学部品の透明封止部材の底面(接合面)側を示す斜視図である。 第2の変形例に係る光学部品(第2光学部品)の構成を示す縦断面図である。 第3の変形例に係る光学部品(第3光学部品)の構成を示す縦断面図である。 第4の変形例に係る光学部品(第4光学部品)の構成を示す縦断面図である。 図10Aは第5の変形例に係る光学部品(第5光学部品)の構成を示す斜視図であり、図10Bは第5光学部品の透明封止部材の底面(接合面)を示す平面図である。 図11Aは第6の変形例に係る光学部品(第6光学部品)の構成を示す斜視図であり、図11Bは第6光学部品の実装基板の上面(接合面)を示す平面図である。
 以下、本発明に係る光学部品及び透明封止部材の実施の形態例を図1~図11Bを参照しながら説明する。
 本実施の形に係る光学部品10は、図1に示すように、紫外光を出射する少なくとも1つの光学素子12と、光学素子12が収容されるパッケージ14とを有する。パッケージ14は、光学素子12が実装される実装基板16と、実装基板16上に例えば有機系の接着層18を介して接合される透明封止部材20とを有する。実装基板16は例えばAlN(窒化アルミニウム)にて構成される。透明封止部材20は例えば石英ガラス又は光学ガラスにて構成される。接着層18としては、エポキシ系接着剤、シリコーン系接着剤、ウレタン系接着剤等を好ましく使用することができる。
 光学素子12は、上述したように、実装基板16に実装される。光学素子12は、図示しないが、例えばサファイヤ基板(熱膨張係数:7.7×10-6/℃)上に、量子井戸構造を具備したGaN系結晶層が積層されて構成されている。光学素子12の実装方法としては、例えば光出射面12aを透明封止部材20に対面させて実装する、いわゆるフェイスアップ実装を採用している。すなわち、光学素子12から導出された端子(図示せず)と、実装基板16上に形成された回路配線(図示せず)とを例えばボンディングワイヤ(図示せず)にて電気的に接続される。
 透明封止部材20は、実装基板16上に実装された光学素子12を周りから囲うように配置された環状の台座22と、台座22上に一体に形成されたレンズ体24とを有する。また、透明封止部材20の台座22には、下面開口の凹部26(収容空間)が形成されている。この凹部26に少なくとも光学素子12が収容される。
 レンズ体24の底面の平面形状は例えば円形状、台座22の外形形状は例えば正方形状である。もちろん、レンズ体24の底面の平面形状を楕円形状、トラック形状等にしてもよいし、台座22の外形形状を円形状、長方形状、三角形状、六角形状等の多角形状にしてもよい。
 このような形状の透明封止部材20の製法は、(a)バルク母材からの切出し加工、(b)高温モールド成形、(c)粉末焼結等がある。
 切り出し加工は、透明封止部材20のバルク母材から切り出し加工を行って、図1に示すように、透明封止部材20を作製する。高温モールド成形は、高温で型に材料を流し込む、又は型に材料片を入れておき、高温で型状に変形させて、図1に示すように、透明封止部材20を作製する。
 粉末焼結は、例えば成形型にシリカ粉体と有機化合物とを含む成形スラリーを鋳込み、有機化合物相互の化学反応、例えば分散媒と硬化剤若しくは硬化剤相互の化学反応により固化させた後、成形型から離型して、透明封止部材20の前駆体を作製する。その後、前駆体を焼成して、図1に示すように、透明封止部材20を作製する。
 透明封止部材20の寸法としては、透明封止部材20の高さhaが0.5~10mm、台座22の外径Daが3.0~10mm、台座22の高さhbが0.2~1mmである。レンズ体24は、底部の最大長さLmが2.0~10mm、最大高さhmが0.5~10mmであり、アスペクト比(hm/Lm)として0.3~1.0等が挙げられる。
 さらに、この光学部品10においては、透明封止部材20の凹部26内に屈折率整合剤28(液状)が充填され、さらに、透明封止部材20のうち、実装基板16と接合する部分に複数の溝30が形成されている。
 透明封止部材20の構成材料として、石英ガラス又は光学ガラスを用いた場合、屈折率整合剤28として、フッ素樹脂やシリコーン樹脂等を好ましく採用することができる。なお、空気の屈折率は1、石英ガラスの屈折率は1.57(波長185nm)~1.47(波長399nm)、フッ素樹脂の屈折率は1.36(波長238nm)~1.35(波長407nm)、シリコーン樹脂の屈折率は1.41(波長238nm)~1.57(波長589nm)である。
 複数の溝30は、例えば図2A~図2Cに示すように、放射状に形成されている。図2Aは、2つの溝30a、30bを1つの直線上に形成した例を示し、図2Bは、4つの溝30a~30dをそれぞれ直交する2つの直線上に形成した例を示す。図2Cは、4つの溝30a~30dをそれぞれ2つの対角線上に形成した例を示す。もちろん、溝30の個数や放射状の方向(溝30の形成方向)等は、透明封止部材20の大きさや形状等によって適宜選定することができる。
 上述の例では、凹部26の平面形状を矩形としたが、その他、図2D~図2Fに示すように、凹部26の平面形状を円形としてもよい。この場合も、複数の溝30を、放射状に形成してもよい。もちろん、台座22の外形形状を円形とし、凹部の平面形状を矩形としてもよいし、台座22の外形形状及び凹部の外形形状を共に円形とし、凹部の平面形状を矩形としてもよい
 ここで、光学部品10の効果について、比較例1及び比較例2と対比しながら説明する。
 先ず、比較例1に係る光学部品100aは、図3Aに示すように、光学部品10とほぼ同様の構成を有するが、透明封止部材20に溝30が形成されておらず、また、透明封止部材20の凹部26内に屈折率整合剤28が充填されていない。すなわち、空気層32となっている。そのため、透明封止部材20におけるレンズ体24の屈折率と、凹部26内の空気層32の屈折率とが大きく異なり、光学素子12から出射された光が透明封止部材20で表面反射する。表面反射による損失は約10%である。
 次に、比較例2に係る光学部品100bは、図3Bに示すように、透明封止部材20に溝30は形成されていないが、透明封止部材20の凹部26内に屈折率整合剤28が充填されている。しかし、光学部品100bの組み立ての際に気泡34が混入するという問題が生ずる。
 すなわち、図4Aに示すように、凹部26の開口を上方に向けた状態で、凹部26内に屈折率整合剤28を充填する。その後、図4Bに示すように、凹部26の開口を塞ぐようにして、実装基板16を光学素子12を下向きにして透明封止部材20に接合する。この接合の際に、気泡34が混入してしまう。そのため、例えば図3Bに示すように、光学部品100bの使用時において、光路上に気泡34が移動すると、屈折率整合剤28による効果(表面反射の抑止)を十分に発揮させることができない。
 これに対して、本実施の形態に係る光学部品10は、図1に示すように、透明封止部材20の凹部26内に屈折率整合剤28が充填され、さらに、透明封止部材20のうち、実装基板16と接合する部分に複数の溝30が形成されている。
 この光学部品10の組み立ては、上述した比較例2と同様に、図5Aに示すように、凹部26の開口を上方に向けた状態で、凹部26内に屈折率整合剤28を充填する。その後、図5Bに示すように、凹部26の開口を塞ぐようにして、実装基板16を光学素子12を下向きにして透明封止部材20に接合する。特に、この光学部品10では、上述の接合の際に、屈折率整合剤28の一部(光学素子12の体積分)が溝30を通じて外部に排出されると共に、気泡34も外部に抜けることになる。
 すなわち、光学部品10においては、図1に示すように、屈折率整合剤28への気泡34の混入を抑制することができ、屈折率整合剤28による効果(表面反射の抑止)を実現することができると共に、光学部品10の性能を向上させることができる。
 また、光学部品10は、図2A~図2F等に示すように、複数の溝30が放射状に形成されている。これにより、透明封止部材20と実装基板16との接合の際に、屈折率整合剤28の一部が溝30を通じて外部に排出されやすくなり、気泡34の外部への抜けも容易に行われることとなる。
 透明封止部材20のうち、実装基板16と接合する部分における光学部品10の底面(実装基板16の底面)に対する投影面積をA、溝30の光学部品10の底面に対する投影面積をBとしたとき、(B/A)×100が5%以上30%以下であることが好ましい。なお、投影面積Aは、溝30を形成しなかった場合の実装基板16と接合する部分の面積を指す。
 溝30の投影面積Bが大きすぎると、透明封止部材20と実装基板16との接着強度が小さくなり、透明封止部材20が実装基板16から外れ易くなるおそれがある。反対に、溝30の投影面積Bが小さすぎると、透明封止部材20と実装基板16との接合の際に、気泡34が溝30から抜けにくくなるおそれがある。そこで、上述したように、(B/A)×100が5%以上30%以下であることが好ましい。
 図1に示すように、溝30の高さhc(最大深さ)は、光学素子12の厚みhdより小さいことが好ましい。溝30の高さhcが大きすぎると、光学素子12の周囲に気泡34(図3B参照)が残存する。なお、溝30の高さhcが小さすぎると、透明封止部材20と実装基板16との接合の際に、気泡34が溝30から抜けにくくなる。光学素子12の厚みhdを100~1000μmとしたとき、溝30の高さhcは、好ましくは、50~600μmである。
 次に、光学部品10のいくつかの変形例について図6A~図11Bを参照しながら説明する。
 先ず、第1光学部品10Aは、上述した光学部品10とほぼ同様の構成を有するが、図6A及び図6Bに示すように、透明封止部材20の実装基板16と接合する部分のうち、凹部26の周囲に、凹部26に連通する枠状の段差40が形成されている点で異なる。
 この場合、透明封止部材20と実装基板16との接合の際に、段差40が気泡34を溝30へ導く通り道になり、気泡34の外部への抜けがスムーズに行われることとなる。
 次に、第2光学部品10Bは、上述した光学部品10とほぼ同様の構成を有するが、図7に示すように、実装基板16のうち、少なくとも透明封止部材20と接合する部分に溝30が形成されている点で異なる。すなわち、透明封止部材20には溝30が存在せず、実装基板16に溝30が形成されている点で異なる。実装基板16の上面16aのうち、光学素子12が実装されている部分から実装基板16の外周にかけて複数の溝30が形成されている。この場合も、複数の溝30を放射状に形成することが好ましい(図2A~図2F参照)。
 この第2光学部品10Bにおいては、透明封止部材20と実装基板16とを、屈折率整合剤28が充填されている凹部26内に光学素子12を埋めるようにして接合する際に、屈折率整合剤28の一部が実装基板16に形成された溝30を通じて外部に排出されると共に、気泡34も外部に抜けることになる。
 次に、第3光学部品10Cは、上述した光学部品10とほぼ同様の構成を有するが、図8に示すように、以下の点で異なる。すなわち、透明封止部材20がレンズ体24と外形形状が例えば矩形状、円形状等の台座44とで一体に形成されている。光学素子12を収容する凹部42が透明封止部材20の台座44ではなく、実装基板16に形成されている。すなわち、実装基板16は、上面開口の凹部42を有し、凹部42の底部に光学素子12が実装される。そして、実装基板16の枠状の上端部に、複数の溝30が形成される。この場合も、複数の溝30を放射状に形成することが好ましい。
 第3光学部品10Cでは、透明封止部材20と実装基板16とを、屈折率整合剤28が充填されている凹部42内に光学素子12を埋めるようにして接合する際に、屈折率整合剤28の一部が実装基板16に形成された溝30を通じて外部に排出されると共に、気泡34も外部に抜けることになる。
 次に、第4光学部品10Dは、上述した第3光学部品10Cとほぼ同様の構成を有するが、図9に示すように、台座22の下面の中央部に膨出部46が形成されている点で異なる。膨出部46を平面から見た面積は、実装基板16の凹部42の開口面積よりも小さい。この場合、第3光学部品10Cよりも、膨出部46の体積分だけ屈折率整合剤28が外側に向かって横方向に移動することから、気泡34も外側に向かって移動し易くなり、気泡34をスムーズに外部に排出することができる。
 次に、第5光学部品10Eは、図10A及び図10Bに示すように、上述した複数個の光学部品10がアレイ状に配列されている点で異なる。
 透明封止部材20は、1つの台座22に複数のレンズ体24が例えばマトリックス状に一体に配列されて構成されている。台座22には、それぞれレンズ体24に対応して凹部26(図10B参照)が形成されている。そして、台座22のうち、実装基板16と接合する部分に複数の溝30が形成されている。
 複数の溝30は、透明封止部材20の凹部26に連通する複数の第1溝30aに加えて、第1溝30a間を連通する複数の第2溝30bを有する。第1溝30a及び第2溝30bは、それぞれ台座22の外周まで形成されている。
 仮に、第2溝30bが形成されていない場合、透明封止部材20のうち、アレイ中央部付近の第1溝30aを流れる余った屈折率整合剤28の排出方向が干渉し合い、屈折率整合剤28の流れが滞ることとなる。その結果、流れが滞った部分の凹部26に気泡34が残り易くなる。
 そこで、第2溝30bを設けることで、第1溝30aを流れる余った屈折率整合剤28が第2溝30bを通じて各透明封止部材20の凹部26から排出されるため、凹部26への気泡34の混入を抑制することができる。
 次に、第6光学部品10Fは、図11A及び図11Bに示すように、上述した第5光学部品10Eとほぼ同様の構成を有するが、例えば複数個の第3光学部品10C(図8参照)がアレイ状に配列されている点で異なる。
 透明封止部材20は、1つの台座22に複数のレンズ体24が例えばマトリックス状に一体に配列されて構成されている。実装基板16には、それぞれレンズ体24に対応して凹部42(図11B参照)が形成されている。そして、実装基板16のうち、透明封止部材20の台座22と接合する部分に複数の溝30が形成されている。
 この場合も、複数の溝30は、実装基板16の凹部42に連通する複数の第1溝30aに加えて、第1溝30a間を連通する複数の第2溝30bを有する。第1溝30a及び第2溝30bは、それぞれ実装基板16の外周まで形成されている。
 従って、この第6光学部品10Fにおいても、第2溝30bが設けられているため、第1溝30aを流れる余った屈折率整合剤28が第2溝30bを通じて実装基板16の各凹部42から排出されるため、各凹部42への気泡34の混入を抑制することができる。
 なお、本発明に係る光学部品及び透明封止部材は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。

Claims (14)

  1.  少なくとも1つの光学素子(12)と、
     前記光学素子(12)が収容されるパッケージ(14)と、を有し、
     前記パッケージ(14)は、
     前記光学素子(12)が実装される実装基板(16)と、
     前記実装基板(16)上に接合される透明封止部材(20)と、
     前記実装基板(16)に実装された前記光学素子(12)を囲む凹部(26)と、
     前記凹部(26)内に充填された屈折率整合剤(28)と、を有し、
     前記パッケージ(14)は、前記凹部(26)から外部に連通する少なくとも1つの溝(30)を有することを特徴とする光学部品。
  2.  請求項1記載の光学部品において、
     前記透明封止部材(20)のうち、前記実装基板(16)と接合する部分に前記溝(30)が形成されていることを特徴とする光学部品。
  3.  請求項1又は2記載の光学部品において、
     前記実装基板(16)のうち、少なくとも前記透明封止部材(20)と接合する部分に前記溝(30)が形成されていることを特徴とする光学部品。
  4.  請求項1~3のいずれか1項に記載の光学部品において、
     複数の前記溝(30)を有し、
     複数の前記溝(30)は、放射状に形成されていることを特徴とする光学部品。
  5.  請求項1~4のいずれか1項に記載の光学部品において、
     前記透明封止部材(20)と前記実装基板(16)とが接合する部分のうち、前記凹部(26)の周囲に、前記凹部(26)に連通する段差(40)が形成されていることを特徴とする光学部品。
  6.  請求項1~5のいずれか1項に記載の光学部品において、
     前記透明封止部材(20)と前記実装基板(16)とが接合する部分の前記光学部品(10)の底面に対する投影面積をA、前記溝(30)の前記光学部品(10)の底面に対する投影面積をBとしたとき、(B/A)×100が5%以上30%以下であることを特徴とする光学部品。
  7.  請求項1~6のいずれか1項に記載の光学部品において、
     前記溝(30)の高さ(hc)は、前記光学素子(12)の厚み(hd)より小さいことを特徴とする光学部品。
  8.  請求項1~7のいずれか1項に記載の光学部品において、
     前記透明封止部材(20)が石英ガラス又は光学ガラスにて構成され、前記屈折率整合剤(28)がシリコーン樹脂又はフッ素樹脂であることを特徴とする光学部品。
  9.  少なくとも1つの光学素子(12)と、前記光学素子(12)が実装された実装基板(16)と、前記実装基板(16)に実装された前記光学素子(12)を囲む凹部(26)と、を有する光学部品(10)に用いられ、前記実装基板(16)と共に前記光学素子(12)を収容するパッケージ(14)を構成する透明封止部材(20)であって、
     前記透明封止部材(20)は、
     前記凹部(26)に屈折率整合剤(28)が充填された状態で前記実装基板(16)に接合されるものであって、
     前記実装基板(16)と接合する部分に前記凹部(26)から外部に連通する少なくとも1つの溝(30)を有することを特徴とする透明封止部材。
  10.  請求項9記載の透明封止部材において、
     複数の前記溝(30)を有し、
     複数の前記溝(30)は、放射状に形成されていることを特徴とする透明封止部材。
  11.  請求項9又は10記載の透明封止部材において、
     前記実装基板(16)と接合する部分のうち、前記凹部(26)の周囲に、前記凹部(26)に連通する段差(40)が形成されていることを特徴とする透明封止部材。
  12.  請求項9~11のいずれか1項に記載の透明封止部材において、
     前記実装基板(16)と接合する部分の前記光学部品(10)の底面に対する投影面積をA、前記溝(30)の前記光学部品(10)の底面に対する投影面積をBとしたとき、(B/A)×100が5%以上30%以下であることを特徴とする透明封止部材。
  13.  請求項9~12のいずれか1項に記載の透明封止部材において、
     前記溝(30)の高さ(hc)は、前記光学素子(12)の厚み(hd)より小さいことを特徴とする透明封止部材。
  14.  請求項9~13のいずれか1項に記載の透明封止部材において、
     前記透明封止部材(20)が石英ガラス又は光学ガラスにて構成され、前記屈折率整合剤(28)がシリコーン樹脂又はフッ素樹脂であることを特徴とする透明封止部材。
PCT/JP2017/031211 2017-08-30 2017-08-30 光学部品及び透明封止部材 WO2019043844A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019538829A JP7030126B2 (ja) 2017-08-30 2017-08-30 光学部品及び透明封止部材
DE112017007951.9T DE112017007951T5 (de) 2017-08-30 2017-08-30 Optische komponente und transparentes einkapselungselement
KR1020207006029A KR20200040788A (ko) 2017-08-30 2017-08-30 광학 부품 및 투명 밀봉 부재
CN201780094531.3A CN111052420A (zh) 2017-08-30 2017-08-30 光学部件及透明密封部件
PCT/JP2017/031211 WO2019043844A1 (ja) 2017-08-30 2017-08-30 光学部品及び透明封止部材
US16/801,691 US11733434B2 (en) 2017-08-30 2020-02-26 Optical component and transparent sealing member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/031211 WO2019043844A1 (ja) 2017-08-30 2017-08-30 光学部品及び透明封止部材

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/801,691 Continuation US11733434B2 (en) 2017-08-30 2020-02-26 Optical component and transparent sealing member

Publications (1)

Publication Number Publication Date
WO2019043844A1 true WO2019043844A1 (ja) 2019-03-07

Family

ID=65526391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031211 WO2019043844A1 (ja) 2017-08-30 2017-08-30 光学部品及び透明封止部材

Country Status (6)

Country Link
US (1) US11733434B2 (ja)
JP (1) JP7030126B2 (ja)
KR (1) KR20200040788A (ja)
CN (1) CN111052420A (ja)
DE (1) DE112017007951T5 (ja)
WO (1) WO2019043844A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145986A (zh) * 2020-07-31 2020-12-29 中节能晶和科技有限公司 一种高光效灯具的制造方法
CN113394180A (zh) * 2021-06-10 2021-09-14 广东气派科技有限公司 通信用高频功放芯片的封装结构及其封装方法
WO2022209031A1 (ja) * 2021-03-31 2022-10-06 日東電工株式会社 マイクロledディスプレイ装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4350405A2 (en) * 2017-06-16 2024-04-10 Kyocera Corporation Optical connector module
US11626547B2 (en) * 2017-11-08 2023-04-11 Xiamen Sanan Optoelectronics Technology, Co., Ltd. UV LED device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223112A (ja) * 2004-02-05 2005-08-18 Citizen Electronics Co Ltd 表面実装型発光ダイオード
JP2005322680A (ja) * 2004-05-06 2005-11-17 Rohm Co Ltd 発光装置
KR20110070120A (ko) * 2009-12-18 2011-06-24 서울반도체 주식회사 형광체 시트를 갖는 발광장치 및 그 제조방법
US20130095583A1 (en) * 2011-10-17 2013-04-18 Advanced Optoelectronic Technology, Inc. Method for manufacturing led
JP2014011364A (ja) * 2012-06-29 2014-01-20 Hoya Candeo Optronics株式会社 Ledモジュール
JP2015133369A (ja) * 2014-01-10 2015-07-23 アピックヤマダ株式会社 光デバイス及び光デバイスの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4661147B2 (ja) * 2004-09-24 2011-03-30 日亜化学工業株式会社 半導体装置
US8498504B2 (en) * 2008-03-27 2013-07-30 Kyocera Corporation Integrated optical transmission board and optical module
DE102011003969B4 (de) * 2011-02-11 2023-03-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines optoelektronischen Bauelements
JP2014216484A (ja) * 2013-04-25 2014-11-17 三菱樹脂株式会社 発光装置及びそのためのレンズ
JP6128938B2 (ja) 2013-04-26 2017-05-17 株式会社トクヤマ 半導体発光素子パッケージ
KR20150026253A (ko) * 2013-09-02 2015-03-11 삼성디스플레이 주식회사 렌즈 모듈, 이를 포함하는 광원 어셈블리 및 백라이트 어셈블리
JP2017011200A (ja) 2015-06-25 2017-01-12 株式会社トクヤマ 発光素子パッケージ
JP6337859B2 (ja) * 2015-09-08 2018-06-06 日亜化学工業株式会社 発光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223112A (ja) * 2004-02-05 2005-08-18 Citizen Electronics Co Ltd 表面実装型発光ダイオード
JP2005322680A (ja) * 2004-05-06 2005-11-17 Rohm Co Ltd 発光装置
KR20110070120A (ko) * 2009-12-18 2011-06-24 서울반도체 주식회사 형광체 시트를 갖는 발광장치 및 그 제조방법
US20130095583A1 (en) * 2011-10-17 2013-04-18 Advanced Optoelectronic Technology, Inc. Method for manufacturing led
JP2014011364A (ja) * 2012-06-29 2014-01-20 Hoya Candeo Optronics株式会社 Ledモジュール
JP2015133369A (ja) * 2014-01-10 2015-07-23 アピックヤマダ株式会社 光デバイス及び光デバイスの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112145986A (zh) * 2020-07-31 2020-12-29 中节能晶和科技有限公司 一种高光效灯具的制造方法
CN112145986B (zh) * 2020-07-31 2022-11-01 中节能晶和科技有限公司 一种高光效灯具的制造方法
WO2022209031A1 (ja) * 2021-03-31 2022-10-06 日東電工株式会社 マイクロledディスプレイ装置
CN113394180A (zh) * 2021-06-10 2021-09-14 广东气派科技有限公司 通信用高频功放芯片的封装结构及其封装方法

Also Published As

Publication number Publication date
JPWO2019043844A1 (ja) 2020-08-06
KR20200040788A (ko) 2020-04-20
US11733434B2 (en) 2023-08-22
JP7030126B2 (ja) 2022-03-04
DE112017007951T5 (de) 2020-07-09
CN111052420A (zh) 2020-04-21
US20200192003A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2019043844A1 (ja) 光学部品及び透明封止部材
US9484509B2 (en) Lighting device and method of manufacturing the same
KR101190414B1 (ko) 광학 요소를 가지는 플렉시블 필름을 포함한 반도체 발광소자들 및 이를 조립하는 방법
EP2162925B1 (en) Illumination device with a wavelength converting element held by a support structure having an aperture
JP6970685B2 (ja) 光学部品及び透明体
US7777247B2 (en) Semiconductor light emitting device mounting substrates including a conductive lead extending therein
US20180130934A1 (en) Light emitting package
EP2025009B1 (en) Packaged light emitting devices including multiple index lenses and methods of fabricating the same
JP5256848B2 (ja) 半導体装置
JP2007311445A (ja) 半導体発光装置及びその製造方法
JP2007073825A (ja) 半導体発光装置
JP2012520565A (ja) Ledリードフレームパッケージ、これを利用したledパッケージ及び前記ledパッケージの製造方法
JP2010177375A (ja) 発光装置及び発光装置の製造方法
JP2006066786A (ja) 発光ダイオード
JP2012069977A (ja) 発光装置及び発光装置の製造方法
WO2020075789A1 (ja) 透明封止部材及び光学部品
JP4884074B2 (ja) 半導体発光装置
KR102614672B1 (ko) 발광 다이오드 패키지
KR20180020829A (ko) 자외선 발광 다이오드 패키지
JP2011096974A (ja) 発光装置および発光装置の作製方法
JP2021077692A (ja) パッケージ及び透明封止部材
JP2018142567A (ja) 半導体発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538829

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207006029

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17923744

Country of ref document: EP

Kind code of ref document: A1