WO2019042436A1 - 电池均衡系统、车辆、电池均衡方法及存储介质 - Google Patents

电池均衡系统、车辆、电池均衡方法及存储介质 Download PDF

Info

Publication number
WO2019042436A1
WO2019042436A1 PCT/CN2018/103679 CN2018103679W WO2019042436A1 WO 2019042436 A1 WO2019042436 A1 WO 2019042436A1 CN 2018103679 W CN2018103679 W CN 2018103679W WO 2019042436 A1 WO2019042436 A1 WO 2019042436A1
Authority
WO
WIPO (PCT)
Prior art keywords
equalization
battery
module
cell
needs
Prior art date
Application number
PCT/CN2018/103679
Other languages
English (en)
French (fr)
Inventor
罗红斌
王超
沈晓峰
曾求勇
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019042436A1 publication Critical patent/WO2019042436A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the field of battery pack equalization, and in particular to a battery equalization system, a vehicle, a battery equalization method, and a storage medium.
  • battery packs are an important part of it. Since the battery pack is formed by connecting a plurality of single cells in series, the difference between the cells in the battery pack gradually increases with the use of the battery, resulting in poor consistency between the battery cells. Due to the short board effect of the battery, the battery pack capacity cannot be fully utilized, resulting in a decrease in the overall capacity of the battery pack. Therefore, effective balancing management of the battery pack of the electric vehicle is beneficial to improving the consistency of each unit battery in the battery pack, reducing the capacity loss of the battery, prolonging the service life of the battery and the driving range of the electric vehicle. significance.
  • the battery equalization system generally includes: a battery management controller and a plurality of battery information collectors, wherein each battery information collector includes three modules: a control unit, a battery sampling circuit, and a battery equalization circuit. And the battery sampling circuit and the battery equalization circuit respectively apply different channels. Each cell of the battery pack is provided with a battery detection circuit channel and a battery equalization circuit channel.
  • the workflow is as follows: the battery sampling circuit is responsible for real-time sampling of the battery voltage information, the control unit of the battery information collector sends battery sampling information to the battery management controller, and the battery management controller determines whether it is necessary to turn on the equalization, and then to the battery information collector. The control unit sends an equalization command, and the control unit of the battery information collector controls the battery equalization circuit to turn on the equalization.
  • each unit cell is equipped with a set of voltage sampling circuit and equalization circuit, the hardware cost is high.
  • the purpose of the present application is to provide a battery equalization system, a vehicle, a battery equalization method, and a storage medium, which are used to solve the technical problem of high hardware cost of the battery equalization system in the related art.
  • a battery equalization system including:
  • An acquisition module configured to collect parameter information of the single battery in the battery group
  • An equalization module configured to perform equalization processing on the single cells in the battery pack
  • control module configured to: when determining, according to parameter information of the battery pack, that a single battery in the battery pack needs to be balanced, the equalization module is controlled to perform equalization processing on the single-cell that needs to be balanced;
  • the multi-cell battery in the battery pack shares an equalization circuit
  • the controller is configured to control the equalization circuit to be connected to the single cell.
  • a battery for the equalization circuit to equalize the unit cell.
  • each end of each unit cell is correspondingly connected to two ends of a parallel branch, wherein the parallel branch is connected to an acquisition module, a control module, and an equalization module corresponding to the unit battery of the section, And the plurality of the parallel branches are connected to the same equalization module; when the control module determines that a single battery in the battery pack needs to be turned on, the control module is configured to control the single unit that needs to be balanced The parallel branch corresponding to the battery is turned on, so that the equalization module performs equalization processing on the single battery that needs to be turned on and equalized.
  • each of the parallel branches is provided with a parallel switch, wherein the parallel switch is used to control the conduction of the equalization module; when the control module determines that a single battery in the battery pack needs to be turned on, The parallel switch of the parallel branch corresponding to the unit cell that needs to be turned on is closed, so that the equalization module circuit performs equalization processing on the single cell that needs to be turned on and equalized.
  • control module is further configured to control, according to the target equalization duration of the unit that needs to be turned on, determined by the parameter information of the battery group, the equalization module to open the balanced unit battery Perform equalization processing.
  • the equalization module alternates with each of the at least two single cells that need to be balanced. connection.
  • the equalization module and each of the at least two single cells that need to be equalized have a single cell cycle. Alternately connected.
  • control module is further configured to control the single battery and the corresponding time when the equalization time of the single battery accumulated in the at least two single cells that need to be equalized reaches a target equalization time of the single battery.
  • the connection between the equalization modules is broken.
  • control module is configured to obtain, by using the following manner, a target equalization duration of the single battery that needs to be turned on:
  • the target equalization time of the single battery that needs to be turned on is calculated according to the parameter information of the battery pack.
  • the control module includes a first control unit disposed in the battery information collector and a second control unit disposed in the battery management controller, and the collection module transmits the collected to the second control unit by using the first control unit Parameter information of the single battery in the battery pack;
  • the acquisition module includes an acquisition circuit, the acquisition circuit is connected to the first control unit through a sampling channel, and the sampling channel is provided with a sampling switch; the equalization module includes an equalization circuit, and the equalization circuit passes an equalization The channel is connected to the first control unit, and the equalization channel is provided with an equalization switch.
  • control module includes a first control unit disposed in the battery information collector and a second control unit disposed in the battery management controller, and the collection module passes the first control unit to the second control The unit sends parameter information of the single battery in the collected battery pack; wherein, the plurality of single cells sharing one equalization module correspond to one channel of the first control unit.
  • the application also provides a vehicle including the battery equalization system described above.
  • the present application further provides a battery equalization method, which is applied to a battery equalization system, where the battery equalization system includes a control module, an acquisition module, and an equalization module; wherein, the multi-cell cells in the battery pack share an equalization module;
  • the method includes:
  • Controlling, by the control module, the equalization module is connected to the single battery
  • control module controlling, by the control module, the equalization module to perform equalization processing on the single battery that needs to be turned on.
  • both ends of each unit cell are correspondingly connected to two ends of a parallel branch, wherein the parallel branch is connected to an acquisition module, a control module, and an equalization module corresponding to the battery, and more The parallel branches are connected to an equalization module;
  • Controlling, by the control module, the equalization circuit is connected to the single battery, including:
  • the parallel branch corresponding to the unit cell that needs to be turned on is controlled by the control module.
  • the determining, by the control module, determining, according to the parameter information of the battery group, a single-cell battery that needs to be balanced in a multi-cell battery that shares an equalization module including:
  • the equalizing module controls the equalization module to perform equalization processing on the single battery that needs to be balanced, including:
  • control module controlling, by the control module, the equalization module to perform equalization processing on the single cell that needs to be balanced according to the target equalization duration of the unit cell that needs to be turned on.
  • controlling, by the controller, the equalization module is connected to the single battery, including:
  • the equalization module and each of the at least two single cells that need to be equalized are controlled by the control module.
  • the batteries are connected alternately.
  • it also includes:
  • the determining, by the control module, determining, according to the parameter information of the battery pack, a target of a single-cell battery that needs to be turned on in a multi-cell battery that shares an equalization module, and the target that needs to turn on the balanced single-cell battery Equilibrium duration including:
  • the control module calculates a target equalization duration of the single battery that needs to be turned on according to the parameter information of the battery.
  • the present application also provides a computer readable storage medium having stored thereon computer program instructions that, when executed by a processor, implement the battery equalization method described above.
  • An equalization module of the present application can perform equalization processing on the multi-cell single cells in the battery pack, that is, the multi-cell single cells in the battery pack share one equalization module, and when the multi-cell single cells need to be turned on, the equalization module needs to be balanced.
  • the single-cell battery is controlled by the control module, and the equalization module is connected to the single-cell battery, and the equalization module can perform equalization processing on the single-cell battery, and is configured according to each unit of the related art in the related art.
  • the equalization module reduces the number of equalization modules and reduces the number of channels between the control module and the equalization module, saves hardware costs, and solves the technical problem of high hardware cost of the battery equalization system in the related art.
  • FIG. 1 is a block diagram of a battery equalization system, according to an exemplary embodiment
  • FIG. 2 is another block diagram of a battery equalization system, according to an exemplary embodiment
  • FIG. 3 is a flowchart of a battery equalization method according to an exemplary embodiment
  • FIG. 4 is another flowchart of a battery equalization method according to an exemplary embodiment
  • FIG. 5 is another flowchart of a battery equalization method according to an exemplary embodiment
  • FIG. 6 is a flowchart of determining, in a step included in a battery equalization method, a unit cell that needs to turn on equalization and a target equalization duration thereof, according to an exemplary embodiment
  • FIG. 7 is another flow chart of a battery equalization method according to an exemplary embodiment.
  • FIG. 1 is a block diagram of a battery equalization system, according to an exemplary embodiment.
  • the battery equalization system includes an acquisition module 12 , an equalization module 13 , and a control module 14 , wherein the battery pack 11 is formed by connecting a plurality of single cells 111 in series.
  • the control module 14 is connected to the acquisition module 12 and the equalization module 13 corresponding to the same single cell 111 through the sampling channel 120 and the equalization channel 130 respectively.
  • the control module 14 includes a control chip, and the control chip is respectively connected to the acquisition module 12 and the equalization module 13 corresponding to the same single cell 111 through two pins, and the two pins and the sampling channel 120, One of the two pins is connected to the equalization module 13 through the equalization channel 130, and the other of the two pins passes through the sampling channel 120. Connected to the acquisition module 12.
  • the collecting module 12 is configured to collect parameter information of the single battery 111 in the battery pack 11 , and send the collected parameter information of the battery pack to the control module 14 , the battery pack 11 .
  • the unit cells 111 in the one-to-one correspondence with the acquisition module 12.
  • the parameter information includes information such as a battery voltage and a temperature.
  • the control module 14 controls the collection module 12 to collect the parameter information of the battery pack 11 by turning on the sampling channel 120.
  • the equalization module 13 is configured to perform equalization processing on the single cells 111 in the battery pack 11 , and the multi-cell single cells 111 in the battery pack 11 share an equalization module 13 .
  • the control module 14 controls the equalization channel 130 between the equalization module 13 and the control module 14 to be turned on, thereby controlling the The equalization module 13 performs equalization processing on the unit cells 111 that need to be equalized.
  • two unit cells 111 share an equalization module 13.
  • the control module 14 controls the two cells.
  • the equalization channel 13 shared by the control module 14 and the control module 14 are turned on, and the equalization module 13 is connected to the unit cells 111 of the two unit cells 111 that need to be balanced, thereby The equalization module 13 performs equalization processing on the unit cells 111 that need to be equalized.
  • the equalization module 13 may be an equalization processing method for discharging the unit cells 111 that need to be equalized. For example, a discharge resistor is connected in parallel across the two ends of the unit cells 111 that need to be equalized.
  • the equalization module 13 may also adopt an equalization processing method for charging the single-cell battery 111 that needs to be balanced. For example, the unit cell 111 that needs to be balanced is connected to a generator or a battery of the vehicle, and then passes through the The generator or the battery charges the unit cell 111 that needs to be equalized.
  • the control module 14 is connected to the collection module 12 and the equalization module 13 for receiving parameter information of the battery pack 11 and determining the parameter according to parameter information of the battery pack 11 .
  • the equalization module 13 is controlled to be connected to the cell 111, so that the equalization module 13 equalizes the cell 111.
  • control module 14 may further control, according to the target equalization duration of the unit cells 111 that need to be turned on, determined by the parameter information of the battery pack 11, to control the equalization module 13 to open the balance.
  • the unit cell 111 is subjected to equalization processing.
  • the control module 14 can obtain the target equalization duration of the unit cell 111 that needs to be turned on by the following method: determining the battery pack 11 according to the parameter information of the battery pack 11 collected by the collection module 12 Whether the single battery 111 needs to be turned on and equalized; when it is determined that the single battery 111 needs to be turned on in the battery pack 11, the target of the unit cell 111 that needs to be turned on is calculated according to the parameter information of the battery pack 11. Equilibrium duration.
  • the control module 14 can determine that the balance needs to be turned on by the following manner.
  • Single battery 111 :
  • the smallest voltage value among the voltage values of the single cells 111 in the battery pack 11 is used as a reference voltage value.
  • the unit cell 111 having a voltage difference greater than or equal to the preset voltage difference threshold is determined as It is described that the balanced unit cell 111 needs to be turned on.
  • the control module 14 can determine that the balance needs to be turned on by the following manner.
  • Single battery 111
  • the maximum voltage value among the voltage values of the single cells 111 in the battery pack 11 is used as a reference voltage value.
  • the unit cell 111 having a voltage difference greater than or equal to the preset voltage difference threshold is determined as It is described that the balanced unit cell 111 needs to be turned on.
  • the minimum voltage value among the voltage values of the individual cells 111 of the battery pack 11 can be used as the reference voltage value, and the preset voltage difference threshold can be 5 mV. (or other values).
  • the control module 14 compares the minimum voltage value Vmin in each of the single cells 111, and determines whether the difference between the voltage value of each of the single cells 111 of the battery pack 11 and Vmin is less than 5 mV. If so, the equalization consistency of the battery pack 11 is good, and no equalization is required; if it is greater than 5 mV, the single cell 111 having a difference of more than 5 mV from Vmin is used as the single cell 111 that needs to be turned on. Then, the control module 14 controls the unit cell 111 to be connected to the corresponding equalization module 13 to cause the equalization module 13 to discharge the unit cell 111.
  • the control module 14 can continuously read the voltage information of the unit cell 111 that needs to be turned on, and determine whether the voltage difference between Vmin and the unit cell is less than 5 mV. If yes, stop discharging, and the equalization ends; if it is still greater than 5 mV, continue to cyclically read the voltage information of the single-cell battery 111 that needs to be turned on, until the voltage difference between Vmin and the single battery is less than 5 mV, and stop discharging. The end of the balance.
  • the voltage value and the Vmin of the balanced unit cell 111 can be turned on according to the requirement, and the target equalization period of the unit cell 111 that needs to be balanced can be calculated. And after the start of the discharge, the discharge duration of the unit cell 111 that needs to be turned on is counted, and when the difference between the charge duration of the unit cell 111 and the target equalization period is within a threshold range, the discharge is stopped. The end of the equilibrium.
  • An equalization module of the present application can perform equalization processing on the multi-cell single cells in the battery pack, that is, the multi-cell single cells in the battery pack share one equalization module, and when the multi-cell single cells need to be turned on, the equalization module needs to be balanced.
  • the single-cell battery is controlled by the control module, and the equalization module is connected to the single-cell battery, and the equalization module can perform equalization processing on the single-cell battery, and is configured according to each unit of the related art in the related art.
  • the equalization module reduces the number of equalization modules and reduces the number of channels between the control module and the equalization module, saves hardware costs, and solves the technical problem of high hardware cost of the battery equalization system in the related art.
  • both ends of each unit cell 111 are correspondingly connected to two ends of a parallel branch 15 , wherein the parallel branch 15 is connected to the equalization module 13 corresponding to the unit cell 111 .
  • a plurality of the parallel branches 15 are connected to the same equalization module 13.
  • the control module 14 determines that the single battery 111 in the battery pack 11 needs to be turned on
  • the control module is configured to control the parallel branch 15 corresponding to the unit cell 111 that needs to be turned on to be turned on.
  • the equalization module 13 performs equalization processing on the single-cell battery 111 that needs to be turned on.
  • the control module 14 controls the multi-cell unit 111.
  • the parallel branch 15 corresponding to the unit cell 111 that needs to be balanced is turned on, and the parallel branch 15 corresponding to the unit cell 111 that does not need to be equalized in the multi-cell unit 111 is controlled to be turned off.
  • each of the parallel branches 15 is provided with a parallel switch 150 for controlling the conduction of the equalization module 13 .
  • the parallel switch 150 is controlled by the control module 14.
  • the control module 14 determines that the single battery 111 in the battery pack 11 needs to be turned on
  • the parallel switch 150 on the parallel branch 15 corresponding to the unit cell 111 that needs to be turned on is closed, so that The equalization module 13 performs equalization processing on the single-cell battery 111 that needs to be turned on.
  • the parallel switch 150 is a relay switch, and the control module 14 controls the parallel switch 150 to be closed or opened by outputting a control signal.
  • the control module 14 outputs a control signal to control the two.
  • the parallel switch 150 on the parallel branch 15 corresponding to the unit cell 111 that needs to be equalized in the unit cell 111 is closed, and the control signal can also control the unit cell 111 in the two unit cells 111 that does not need to be balanced.
  • the parallel switch 150 on the parallel branch 15 is open.
  • the equalization module 13 and the at least two single cells 111 that need to be equalized are included.
  • Each of the unit cells 111 is alternately connected.
  • the control module 14 is further configured to control the single battery 111 when the equalization time accumulated by the single battery 111 in the at least two single cells 111 that need to be equalized reaches the target equalization time of the single battery 11 The connection between the corresponding equalization modules 13 is broken.
  • the equalization module 13 and each of the at least two single cells 111 that need to be equalized are periodically alternately connected, that is, the parallel branches 15 corresponding to each of the at least two unit cells 111 that need to be equalized are periodically in an on state or an off state. .
  • two unit cells 111 share an equalization module 13.
  • the control module 14 can control the two unit cells 111.
  • the parallel switches 150 on the corresponding two parallel branches 15 are periodically alternately connected. For example, when the parallel switch 150 on the parallel branch 15 corresponding to one of the two single cells 111 is closed for 2 s under the control of the control module 14, the two single cells 111 The parallel switch 150 on the parallel branch 15 corresponding to the other unit cell 111 is disconnected for 2 s under the control of the control module 14, that is, each of the two unit cells 111 The parallel switch 150 on the corresponding parallel branch 15 is switched from the closed state to the open state or from the open state to the closed state every two seconds.
  • one of the two unit cells 111 has a target equalization time of 6 s and the other unit cell 111 has a target equalization time of 10 s.
  • the control module 14 controls the parallel branch 15 corresponding to the single cell 111.
  • the upper parallel switch 150 is kept in an off state, and the parallel switch 150 on the parallel branch 15 corresponding to the unit cell 111 whose target equalization period is 10 s is controlled to be in a closed state.
  • the battery equalization system includes an acquisition module 12, an equalization module 13, and a control module 14.
  • the difference from the battery equalization system in FIG. 1 is that a sampling switch 121 and an equalization switch 131 are respectively disposed on the sampling channel 120 and the equalization channel 130 of the battery equalization system in FIG. 2 .
  • the sampling switch 121 and the equalization switch 131 are both controlled by the control module 14.
  • the control module 14 can control the sampling switch 121 and the equalization switch 131 to be in an on state at the same time, that is, the collection function of the acquisition module 12 and the equalization function of the equalization module 13 can be simultaneously performed.
  • control module 14 can control the sampling switch 121 and the equalization switch 131 to be in an on state alternately, that is, the collection function of the acquisition module 12 and the equalization function of the equalization module 13 can be performed in a time-sharing manner.
  • the number of equalization channels is reduced, thereby reducing the hardware cost; and since the battery sampling and equalization can be performed separately, the equalization current does not affect the battery voltage, thereby Improve the accuracy of battery voltage sampling.
  • control module includes a first control unit disposed in the battery information collector and a second control unit disposed in the battery management controller, and the collection module passes the first control unit to the second control The unit sends the parameter information of the single battery in the collected battery pack.
  • the acquisition module includes an acquisition circuit, the acquisition circuit is connected to the first control unit through a sampling channel, and the sampling channel is provided with a sampling switch;
  • the equalization module includes an equalization circuit, and the equalization circuit passes an equalization The channel is connected to the first control unit, and the equalization channel is provided with an equalization switch.
  • the first control unit may control the sampling circuit to collect parameter information of the single battery in the battery pack by controlling the sampling switch to be in an on state.
  • the second control unit may also control the state of the sampling switch by the first control unit by transmitting an acquisition instruction to the first control unit.
  • the first control unit can control the equalization switch to be in an on state, and then control the equalization circuit to perform equalization processing on the single cell that needs to be turned on.
  • the first control unit may send parameter information of the battery pack collected by the acquisition circuit to the second control unit, and the second control unit determines, according to parameter information of the battery pack, a single battery that needs to be turned on, and
  • the state of the equalization switch is controlled by the first control unit by transmitting an equalization instruction to the first control unit.
  • control module includes a first control unit disposed in the battery information collector and a second control unit disposed in the battery management controller, and the collection module passes the first control unit to the second control
  • the unit sends parameter information of the single battery in the collected battery pack; wherein, the plurality of single cells sharing one equalization module correspond to one channel of the first control unit.
  • the two ends of the channel are respectively connected to the first control unit and the equalization module, and the equalization module is connected to a plurality of single cells sharing the equalization module.
  • the first control unit may send parameter information of the battery pack collected by the acquisition circuit to the second control unit, and the second control unit determines, according to parameter information of the battery pack, a single battery that needs to be turned on, and And sending, by the first control unit, the equalization instruction, the second control unit, according to the equalization instruction, controlling, by the channel, the equalization module to perform equalization processing on the single-cell that needs to be balanced.
  • the application also provides a vehicle including the battery equalization system described above.
  • the battery equalization system included in the vehicle is described in detail in the embodiment of the above battery equalization system, and will not be described in detail herein.
  • FIG. 3 is a flow chart showing a battery equalization method according to an exemplary embodiment.
  • the battery equalization method is applied to a battery equalization system, and the battery equalization system includes a battery pack, a control module, an acquisition module, and an equalization module; wherein, the multi-cell single battery in the battery pack shares an equalization module.
  • the method includes the following steps.
  • Step S31 collecting parameter information of the battery pack by using the collection module.
  • Step S32 the control module determines, according to the parameter information of the battery pack, a single-cell battery that needs to be balanced in a multi-cell battery that shares one equalization module.
  • Step S33 controlling, by the control module, the equalization module to be connected to the single battery.
  • Step S34 the equalization module is controlled by the control module to perform equalization processing on the single battery that needs to be turned on.
  • FIG. 4 is another flow chart of a battery equalization method according to an exemplary embodiment. As shown in FIG. 4, both ends of each unit cell are correspondingly connected to two ends of a parallel branch, wherein the parallel branch is connected to an equalization module corresponding to the battery, and the plurality of parallels The branch is connected to an equalization module; the method includes the following steps.
  • Step S41 collecting parameter information of the battery pack by using the collection module.
  • step S42 the control module determines, according to the parameter information of the battery pack, a single-cell battery that needs to be balanced in a multi-cell battery that shares one equalization module.
  • Step S43 controlling, by the control module, the parallel branch corresponding to the unit cell that needs to be turned on to be turned on.
  • Step S44 the equalization module is controlled by the control module to perform equalization processing on the single battery that needs to be turned on.
  • FIG. 5 is another flow chart of a battery equalization method according to an exemplary embodiment. As shown in FIG. 5, the method includes the following steps.
  • Step S51 collecting parameter information of the battery pack by using the collection module.
  • Step S52 the control module determines, according to the parameter information of the battery pack, a target equalization time length of the single-cell battery that needs to be turned on in the multi-cell battery that shares an equalization module and the single-cell battery that needs to be turned on.
  • Step S53 controlling, by the control module, the equalization module to be connected to the single battery.
  • step S54 the equalization module controls the equalization module to perform equalization processing on the single cell that needs to be turned on, according to the target equalization duration of the unit cell that needs to be turned on.
  • the target equalization duration of the single battery includes:
  • Step S521 the control module determines, according to the collected parameter information of the battery pack, whether a single battery needs to be turned on in the battery pack;
  • step S522 when it is determined that a single battery in the battery pack needs to be turned on, the control module calculates a target equalization duration of the single battery that needs to be turned on according to parameter information of the battery pack.
  • FIG. 7 is another flow chart of a battery equalization method according to an exemplary embodiment. As shown in Figure 7, the method includes the following steps.
  • Step S71 collecting parameter information of the battery pack by using the collection module.
  • Step S72 the control module determines, according to the parameter information of the battery pack, a target equalization time length of the single-cell battery that needs to be turned on in the multi-cell battery that shares an equalization module and the single-cell that needs to be turned on.
  • Step S73 when at least two of the multi-cell cells sharing one equalization module need to be equalized, the control module controls the equalization module and each of the at least two single cells that need to be equalized.
  • the individual cells are alternately connected.
  • step S74 the equalization module controls the equalization module to perform equalization processing on the unit cells that need to be balanced according to the target equalization duration of the unit cells that need to be turned on.
  • Step S75 when the equalization time accumulated by the single battery in the at least two single cells that need to be equalized reaches the target equalization time of the single battery, the single battery and the corresponding equalization module are controlled by the control module. The connection between them is broken.
  • the present application also provides a computer readable storage medium having stored thereon computer program instructions that, when executed by a processor, implement the battery equalization method described above.

Abstract

一种电池均衡系统、车辆、电池均衡方法及存储介质。所述电池均衡系统包括:采集模块(12);均衡模块(13);控制模块(14),用于控制均衡模块(13)对需要开启均衡的单体电池(111)进行均衡处理;其中,电池组(11)中的多节单体电池(111)共用一个均衡模块(13),当多节单体电池(111)有需要开启均衡的单体电池(111)时,控制模块(14)用于控制该均衡模块(13)连接于该单体电池(111),以使该均衡模块(13)对该单体电池(111)进行均衡处理。该一个均衡模块(13)可以对电池组(11)中的多节单体电池(111)进行均衡处理,即电池组(11)中的多节单体电池(111)共用一个均衡模块(13),减少了均衡模块(13)的数量需求,且减少了控制模块(14)与均衡模块(13)之间的通道数量,节约了硬件成本,解决了相关技术中电池均衡系统的硬件成本较高的技术问题。

Description

电池均衡系统、车辆、电池均衡方法及存储介质
相关申请的交叉引用
本申请基于申请号为201710773467.3,申请日为2017年8月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电池组均衡领域,具体地,涉及一种电池均衡系统、车辆、电池均衡方法及存储介质。
背景技术
在电动汽车中,电池组是其重要的组成部分。由于电池组是由多个单体电池串联连接而成,随着电池的使用,电池组中各单体间的差异性逐渐扩大,导致电池单体间一致性差。由于电池的短板效应,使电池组容量不能充分发挥,导致电池组的整体容量减少。因此,对电动汽车的电池组进行有效的均衡管理,有利于提高电池组中各单体电池的一致性,减少电池的容量损失,延长电池的使用寿命及电动汽车续驶里程,具有十分重要的意义。
在相关均衡技术中,电池均衡系统通常包括:一个电池管理控制器、多个电池信息采集器,其中,每个电池信息采集器都包括控制单元、电池采样电路、电池均衡电路等三个模块,且电池采样电路和电池均衡电路分别应用不同的通道。电池组的每节单体电池配置一个电池检测电路通道和电池均衡电路通道。其工作流程为:电池采样电路负责对电池电压信息进行实时采样,电池信息采集器的控制单元向电池管理控制器发送电池采样信息,电池管理控制器判断是否需要开启均衡,然后向电池信息采集器的控制单元发送均衡指令,由电池信息采集器的控制单元控制电池均衡电路开启均衡。
在相关均衡技术实际应用中,由于每一节单体电池都配置一套电压采样电路和均衡电路,导致硬件成本较高。
发明内容
本申请的目的是提供一种电池均衡系统、车辆、电池均衡方法及存储介质,用于解决相关技术中电池均衡系统的硬件成本较高的技术问题。
为了实现上述目的,本申请提供一种电池均衡系统,包括:
采集模块,用于采集电池组中单体电池的参数信息;
均衡模块,用于对所述电池组中的单体电池进行均衡处理;
控制模块,用于在根据所述电池组的参数信息确定所述电池组中有单体电池需要开启均衡时,控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理;
其中,所述电池组中的多节单体电池共用一个均衡电路,当所述多节单体电池有需要开启均衡的单体电池时,所述控制器用于控制该均衡电路连接于该单体电池,以使该均衡电路对该单体电池进行均衡处理。
可选地,每节单体电池的两端均对应连接于一个并联支路的两端,其中,所述并联支路连接于与该节单体电池对应的采集模块、控制模块和均衡模块,且多个所述并联支路连接于同一个均衡模块;当所述控制模块确定所述电池组中有单体电池需要开启均衡时,所述控制模块用于控制所述需要开启均衡的单体电池所对应的并联支路导通,以使所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
可选地,每一个所述并联支路上均设有并联开关,所述并联开关用于控制均衡模块的导通;当所述控制模块确定所述电池组中有单体电池需要开启均衡时,将所述需要开启均衡的单体电池所对应的并联支路上的并联开关闭合,以使所述均衡模块路对所述需要开启均衡的单体电池进行均衡处理。
可选地,所述控制模块还用于按照由所述电池组的参数信息确定的所述需 要开启均衡的单体电池的目标均衡时长控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
可选地,当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,该均衡模块与所述需要均衡的至少两节单体电池中的每节单体电池交替连接。
可选地,当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,该均衡模块与所述需要均衡的至少两节单体电池中的每节单体电池周期性地交替连接。
可选地,当所述需要均衡的至少两节单体电池中有单体电池累积的均衡时间达到该单体电池的目标均衡时长时,所述控制模块还用于控制该单体电池与对应的均衡模块之间的连接断开。
可选地,所述控制模块用于通过以下方式获取所述需要开启均衡的单体电池的目标均衡时长:
根据所述采集模块采集到的所述电池组的参数信息,确定所述电池组中是否有单体电池需要开启均衡;
在确定所述电池组中有单体电池需要开启均衡时,根据所述电池组的参数信息计算所述需要开启均衡的单体电池的目标均衡时长。
可选地,
所述控制模块包括设置在电池信息采集器的第一控制单元和设置在电池管理控制器的第二控制单元,所述采集模块通过所述第一控制单元向所述第二控制单元发送采集到的电池组中单体电池的参数信息;
所述采集模块包括采集电路,所述采集电路通过一个采样通道连接于所述第一控制单元,所述采样通道上设有采样开关;所述均衡模块包括均衡电路,所述均衡电路通过一个均衡通道连接于所述第一控制单元,所述均衡通道上设有均衡开关。
可选地,所述控制模块包括设置在电池信息采集器的第一控制单元和设置 在电池管理控制器的第二控制单元,所述采集模块通过所述第一控制单元向所述第二控制单元发送采集到的电池组中单体电池的参数信息;其中,共用一个均衡模块的多个单体电池对应第一控制单元的一个通道。
本申请还提供了一种车辆,包括上述的电池均衡系统。
本申请还提供了一种电池均衡方法,应用于电池均衡系统,所述电池均衡系统包括控制模块、采集模块和均衡模块;其中,电池组中的多节单体电池共用一个均衡模块;
该方法包括:
通过所述采集模块采集所述电池组的参数信息;
通过所述控制模块根据所述电池组的参数信息确定共用一个均衡模块的多节单体电池中需要开启均衡的单体电池;
通过所述控制模块控制该均衡模块连接于该单体电池;
通过所述控制模块控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
可选地,每节单体电池的两端均对应连接于一个并联支路的两端,其中,所述并联支路连接于与该节电池对应的采集模块、控制模块和均衡模块,且多个所述并联支路连接于一个均衡模块;
所述通过所述控制模块控制该均衡电路连接于该单体电池,包括:
通过所述控制模块控制所述需要开启均衡的单体电池所对应的并联支路导通。
可选地,所述通过所述控制模块根据所述电池组的参数信息确定共用一个均衡模块的多节单体电池中需要开启均衡的单体电池,包括:
通过所述控制模块根据所述电池组的参数信息确定共用一个均衡模块的多节单体电池中需要开启均衡的单体电池和所述需要开启均衡的单体电池的目标均衡时长;
所述通过所述控制模块控制所述均衡模块对所述需要开启均衡的单体电 池进行均衡处理,包括:
通过所述控制模块按照所述需要开启均衡的单体电池的目标均衡时长控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
可选地,所述通过所述控制器控制该均衡模块连接于该单体电池,包括:
当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,通过所述控制模块控制该均衡模块与所述需要均衡的至少两节单体电池中的每节单体电池交替连接。
可选地,还包括:
当所述需要均衡的至少两节单体电池中有单体电池累积的均衡时间达到该单体电池的目标均衡时长时,通过所述控制模块控制该单体电池与对应的均衡模块之间的连接断开。
可选地,所述通过所述控制模块根据所述电池组的参数信息确定共用一个均衡模块的多节单体电池中需要开启均衡的单体电池和所述需要开启均衡的单体电池的目标均衡时长,包括:
通过所述控制模块根据采集到的所述电池组的参数信息,确定所述电池组中是否有单体电池需要开启均衡;
在确定所述电池组中有单体电池需要开启均衡时,通过所述控制模块根据所述电池组的参数信息计算所述需要开启均衡的单体电池的目标均衡时长。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现上述的电池均衡方法。
本申请的实施例提供的技术方案可以包括以下有益效果:
本申请的一个均衡模块可以对电池组中的多节单体电池进行均衡处理,即所述电池组中的多节单体电池共用一个均衡模块,当所述多节单体电池有需要开启均衡的单体电池时,通过控制模块控制该均衡模块连接于该单体电池,进而该均衡模块可以对该单体电池进行均衡处理,相比于相关技术中每一节单体电池都配置一套均衡模块,本申请减少了均衡模块的数量需求,且减少了控制 模块与均衡模块之间的通道数量,节约了硬件成本,解决了相关技术中电池均衡系统的硬件成本较高的技术问题。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1是根据一示例性实施例示出的一种电池均衡系统的框图;
图2是根据一示例性实施例示出的一种电池均衡系统的另一框图;
图3是根据一示例性实施例示出的一种电池均衡方法的流程图;
图4是根据一示例性实施例示出的一种电池均衡方法的另一流程图;
图5是根据一示例性实施例示出的一种电池均衡方法的另一流程图;
图6是根据一示例性实施例示出的一种电池均衡方法包括的步骤中确定需要开启均衡的单体电池及其目标均衡时长的流程图;以及
图7是根据一示例性实施例示出的一种电池均衡方法的另一流程图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
图1是根据一示例性实施例示出的一种电池均衡系统的框图。如图1所示,所述电池均衡系统包括采集模块12、均衡模块13以及控制模块14,其中,电池组11是由多个单体电池111串联连接而成。
在图1中,所述控制模块14分别通过采样通道120、均衡通道130与对应于同一单体电池111的采集模块12和均衡模块13连接。所述控制模块14包括控制芯片,所述控制芯片通过两个引脚分别与对应于同一单体电池111的采集 模块12和均衡模块13连接,所述两个引脚与所述采样通道120、均衡通道130一一对应,所述两个引脚中的一个引脚通过所述均衡通道130与所述均衡模块13连接,所述两个引脚中的另一引脚通过所述采样通道120与所述采集模块12连接。
如图1所示,所述采集模块12用于采集电池组11中单体电池111的参数信息,并向所述控制模块14发送采集到的所述电池组的参数信息,所述电池组11中的单体电池111与采集模块12一一对应。其中,所述参数信息包括电池电压、温度等信息。所述控制模块14通过将采样通道120导通,进而控制所述述采集模块12采集电池组11的参数信息。
如图1所示,所述均衡模块13用于对所述电池组11中的单体电池111进行均衡处理,所述电池组11中的多节单体电池111共用一个均衡模块13。当所述多节单体电池111中有需要均衡的单体电池111时,所述控制模块14控制所述均衡模块13与所述控制模块14之间的均衡通道130导通,进而控制所述均衡模块13对所述需要均衡的单体电池111进行均衡处理。
在图1中,两节单体电池111共用一个均衡模块13,当所述两节单体电池111中有一个单体电池111需要均衡时,所述控制模块14控制所述两节单体电池111所共用的均衡模块13与所述控制模块14之间的均衡通道130导通,并控制所述均衡模块13与所述两节单体电池111中需要均衡的单体电池111连接,进而使得所述均衡模块13对所述需要均衡的单体电池111进行均衡处理。
其中,所述均衡模块13可以是采用对所述需要均衡的单体电池111进行放电的均衡处理方式,比如,在所述需要均衡的单体电池111的两端并联一个放电电阻。所述均衡模块13也可以是采用对所述需要均衡的单体电池111进行充电的均衡处理方式,比如,将所述需要均衡的单体电池111连接于车辆的发电机或蓄电池,进而通过所述发电机或所述蓄电池对所述需要均衡的单体电池111进行充电。
如图1所示,所述控制模块14连接于所述采集模块12和所述均衡模块13, 用于接收所述电池组11的参数信息,在根据所述电池组11的参数信息确定所述多节单体电池111中有需要均衡的单体电池111时,控制该均衡模块13连接于该单体电池111,以使该均衡模块13对该单体电池111进行均衡处理。
可选地,所述控制模块14还可以按照由所述电池组11的参数信息确定的所述需要开启均衡的单体电池111的目标均衡时长控制所述均衡模块13对所述需要开启均衡的单体电池111进行均衡处理。所述控制模块14可以通过以下方式获取所述需要开启均衡的单体电池111的目标均衡时长:根据所述采集模块12采集到的所述电池组11的参数信息,确定所述电池组11中是否有单体电池111需要开启均衡;在确定所述电池组11中有单体电池111需要开启均衡时,根据所述电池组11的参数信息计算所述需要开启均衡的单体电池111的目标均衡时长。
当所述电池均衡系统采用被动均衡方式对单体电池进行均衡处理,即对所述需要开启均衡的单体电池111进行放电时,所述控制模块14可以通过以下方式确定所述需要开启均衡的单体电池111:
首先,根据所述采集模块12采集到的所述电池组11中各单体电池111的电压值,将所述电池组11中各单体电池111的电压值中最小的电压值作为参考电压值;
然后,根据所述电池组11中各单体电池111的电压值与所述参考电压值之间的电压差值,将电压差值大于或等于预设电压差阈值的单体电池111确定为所述需要开启均衡的单体电池111。
当所述电池均衡系统采用主动均衡方式对单体电池进行均衡处理,即对所述需要开启均衡的单体电池111进行充电时,所述控制模块14可以通过以下方式确定所述需要开启均衡的单体电池111:
首先,根据所述采集模块12采集到的所述电池组11中各单体电池111的电压值,将所述电池组11中各单体电池111的电压值中最大的电压值作为参考电压值;
然后,根据所述电池组11中各单体电池111的电压值与所述参考电压值之间的电压差值,将电压差值大于或等于预设电压差阈值的单体电池111确定为所述需要开启均衡的单体电池111。
以采用被动均衡方式的电池均衡系统为例,可以将所述电池组11的各单体电池111的电压值中最小的电压值作为所述参考电压值,所述预设电压差阈值可以为5mV(或者其它数值)。首先,所述控制模块14经比较得到各单体电池111中最小电压值Vmin,并判定所述电池组11的各单体电池111的电压值与Vmin的差值是否小于5mV。如果是,则所述电池组11的均衡一致性很好,不需要均衡;如果大于5mV,则将与Vmin差值大于5mV的单体电池111作为需要开启均衡的单体电池111。然后,所述控制模块14控制该单体电池111与对应的均衡模块13连接,以使该均衡模块13对该单体电池111进行放电。
在放电过程中,所述控制模块14可以不断读取所述需要开启均衡的单体电池111的电压信息,并判断Vmin与该单体电池的电压差值是否小于5mV。如果是,则停止放电,均衡结束;如果仍大于5mV,则继续循环读取所述需要开启均衡的单体电池111的电压信息,直到Vmin与该单体电池的电压差值小于5mV,停止放电,均衡结束。
其中,在确定所述需要开启均衡的单体电池111后,也可以根据所述需要开启均衡的单体电池111的电压值和Vmin,计算所述需要开启均衡的单体电池111的目标均衡时长,进而在放电开始后,统计对所述需要开启均衡的单体电池111的放电时长,当该单体电池111的充电时长与所述目标均衡时长的差值在阈值范围内时,停止放电,均衡结束。
本申请的一个均衡模块可以对电池组中的多节单体电池进行均衡处理,即所述电池组中的多节单体电池共用一个均衡模块,当所述多节单体电池有需要开启均衡的单体电池时,通过控制模块控制该均衡模块连接于该单体电池,进而该均衡模块可以对该单体电池进行均衡处理,相比于相关技术中每一节单体电池都配置一套均衡模块,本申请减少了均衡模块的数量需求,且减少了控制 模块与均衡模块之间的通道数量,节约了硬件成本,解决了相关技术中电池均衡系统的硬件成本较高的技术问题。
请继续参照图1,每节单体电池111的两端均对应连接于一个并联支路15的两端,其中,所述并联支路15连接于与该节单体电池111对应的均衡模块13,且多个所述并联支路15连接于同一个均衡模块13。当所述控制模块14确定所述电池组11中有单体电池111需要开启均衡时,所述控制模块用于控制所述需要开启均衡的单体电池111所对应的并联支路15导通,以使所述均衡模块13对所述需要开启均衡的单体电池111进行均衡处理。
由于本申请中多节单体电池111共用一个均衡模块13,当所述多节单体电池111中有需要均衡的单体电池111时,所述控制模块14控制所述多节单体电池111中需要均衡的单体电池111所对应的并联支路15导通,并且控制所述多节单体电池111中不需要均衡的单体电池111所对应的并联支路15断开。
如图1所示,每一个所述并联支路15上均设有并联开关150,所述并联开关150用于控制均衡模块13的导通。所述并联开关150受控于所述控制模块14。当所述控制模块14确定所述电池组11中有单体电池111需要开启均衡时,将所述需要开启均衡的单体电池111所对应的并联支路15上的并联开关150闭合,以使所述均衡模块13对所述需要开启均衡的单体电池111进行均衡处理。
可选地,所述并联开关150为继电器开关,所述控制模块14通过输出控制信号控制所述并联开关150闭合或断开。在图1中,两节单体电池111共用一个均衡模块13,当所述两节单体电池111中有一个单体电池111需要均衡时,所述控制模块14输出控制信号给控制所述两节单体电池111中需要均衡的单体电池111所对应的并联支路15上的并联开关150闭合,该控制信号还可以控制所述两节单体电池111中不需要均衡的单体电池111所在的并联支路15上的并联开关150断开。
如图1所示,当共用一个均衡模块13的多节单体电池111中有至少两节单体电池111需要均衡时,该均衡模块13与所述需要均衡的至少两节单体电池 111中的每节单体电池111交替连接。当所述需要均衡的至少两节单体电池111中有单体电池111累积的均衡时间达到该单体电池11的目标均衡时长时,所述控制模块14还用于控制该单体电池111与对应的均衡模块13之间的连接断开。
可选地,当共用一个均衡模块13的多节单体电池111中有至少两节单体电池111需要均衡时,该均衡模块13与所述需要均衡的至少两节单体电池111中的每节单体电池111周期性地交替连接,即所述需要均衡的至少两节单体电池111中的每节单体电池111所对应的并联支路15周期性地处于导通状态或断开状态。
举例来讲,在图1中,两节单体电池111共用一个均衡模块13,当所述两节单体电池111均需要均衡时,所述控制模块14可以控制所述两节单体电池111所对应的两个并联支路15上的并联开关150周期性地交替连接。比如,所述两节单体电池111中的一个单体电池111所对应的并联支路15上的并联开关150在所述控制模块14的控制下闭合2s时,所述两节单体电池111中的另一个单体电池111所对应的并联支路15上的并联开关150在所述控制模块14的控制下断开2s,即所述两节单体电池111中的每个单体电池111对应的并联支路15上的并联开关150每隔两秒就从闭合状态切换为断开状态或者从断开状态切换为闭合状态。
假设在图1中,所述两节单体电池111中的一个单体电池111的目标均衡时长为6s,另一个单体电池111的目标均衡时长为10s。当目标均衡时长为6s的单体电池111所对应的并联支路15上的并联开关150闭合的累计时长达到6s后,则所述控制模块14控制该单体电池111所对应的并联支路15上的并联开关150保持断开状态,并控制目标均衡时长为10s的单体电池111所对应的并联支路15上的并联开关150处于闭合状态。
图2是根据一示例性实施例示出的一种电池均衡系统的另一框图。如图2所示,所述电池均衡系统包括采集模块12、均衡模块13以及控制模块14。与图1中的电池均衡系统的区别在于,在图2中电池均衡系统的采样通道120、 均衡通道130上分别设有采样开关121和均衡开关131。所述采样开关121和所述均衡开关131均受控于所述控制模块14。所述控制模块14可以控制所述采样开关121和所述均衡开关131同时处于导通状态,即采集模块12的采集功能和均衡模块13的均衡功能可以同时进行。
可选地,所述控制模块14可以控制所述采样开关121和所述均衡开关131交替处于导通状态,即采集模块12的采集功能和均衡模块13的均衡功能可以分时进行。
由于本申请电池组中的多节单体电池共用一个均衡模块,减少了均衡通道的数量要求,进而降低了硬件成本;并且由于电池采样和均衡可以分开进行,均衡电流不会影响电池电压,从而提高了电池电压采样的精度。
可选地,所述控制模块包括设置在电池信息采集器的第一控制单元和设置在电池管理控制器的第二控制单元,所述采集模块通过所述第一控制单元向所述第二控制单元发送采集到的电池组中单体电池的参数信息。所述采集模块包括采集电路,所述采集电路通过一个采样通道连接于所述第一控制单元,所述采样通道上设有采样开关;所述均衡模块包括均衡电路,所述均衡电路通过一个均衡通道连接于所述第一控制单元,所述均衡通道上设有均衡开关。
所述第一控制单元可以通过控制采样开关处于导通状态,进而控制所述采集电路采集电池组中单体电池的参数信息。所述第二控制单元也可以通过向所述第一控制单元发送采集指令,以通过所述第一控制单元控制所述采样开关的状态。
所述第一控制单元可以通过控制均衡开关处于导通状态,进而控制所述均衡电路对所述需要开启均衡的单体电池进行均衡处理。所述第一控制单元可以将所述采集电路采集的电池组的参数信息发给所述第二控制单元,所述第二控制单元根据电池组的参数信息确定需要开启均衡的单体电池,并通过向所述第一控制单元发送均衡指令,以通过所述第一控制单元控制所述均衡开关的状态。
可选地,所述控制模块包括设置在电池信息采集器的第一控制单元和设置 在电池管理控制器的第二控制单元,所述采集模块通过所述第一控制单元向所述第二控制单元发送采集到的电池组中单体电池的参数信息;其中,共用一个均衡模块的多个单体电池对应第一控制单元的一个通道。该通道的两端分别连接于第一控制单元和均衡模块,所述均衡模块连接于共用该均衡模块的多个单体电池。
所述第一控制单元可以将所述采集电路采集的电池组的参数信息发给所述第二控制单元,所述第二控制单元根据电池组的参数信息确定需要开启均衡的单体电池,并通过向所述第一控制单元发送均衡指令,所述第二控制单元根据所述均衡指令通过该通道控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理
本申请还提供了一种车辆,包括上述的电池均衡系统。
关于上述实施例中的车辆,其中车辆包括的电池均衡系统在上述电池均衡系统的实施例中进行了详细描述,此处将不做详细阐述说明。
图3是根据一示例性实施例示出的一种电池均衡方法的流程图。如图3所示,所述电池均衡方法应用于电池均衡系统,所述电池均衡系统包括电池组、控制模块、采集模块和均衡模块;其中,电池组中的多节单体电池共用一个均衡模块;该方法包括以下步骤。
步骤S31,通过所述采集模块采集所述电池组的参数信息。
步骤S32,通过所述控制模块根据所述电池组的参数信息确定共用一个均衡模块的多节单体电池中需要开启均衡的单体电池。
步骤S33,通过所述控制模块控制该均衡模块连接于该单体电池。
步骤S34,通过所述控制模块控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
图4是根据一示例性实施例示出的一种电池均衡方法的另一流程图。如图4所示,每节单体电池的两端均对应连接于一个并联支路的两端,其中,所述并联支路连接于与该节电池对应的均衡模块,且多个所述并联支路连接于一个 均衡模块;该方法包括以下步骤。
步骤S41,通过所述采集模块采集所述电池组的参数信息。
步骤S42,通过所述控制模块根据所述电池组的参数信息确定共用一个均衡模块的多节单体电池中需要开启均衡的单体电池。
步骤S43,通过所述控制模块控制所述需要开启均衡的单体电池所对应的并联支路导通。
步骤S44,通过所述控制模块控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
图5是根据一示例性实施例示出的一种电池均衡方法的另一流程图。如图5所示,该方法包括以下步骤。
步骤S51,通过所述采集模块采集所述电池组的参数信息。
步骤S52,通过所述控制模块根据所述电池组的参数信息确定共用一个均衡模块的多节单体电池中需要开启均衡的单体电池和所述需要开启均衡的单体电池的目标均衡时长。
步骤S53,通过所述控制模块控制该均衡模块连接于该单体电池。
步骤S54,通过所述控制模块按照所述需要开启均衡的单体电池的目标均衡时长控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
可选地,如图6所示,所述通过所述控制模块根据所述电池组的参数信息确定共用一个均衡模块的多节单体电池中需要开启均衡的单体电池和所述需要开启均衡的单体电池的目标均衡时长,包括:
步骤S521,通过所述控制模块根据采集到的所述电池组的参数信息,确定所述电池组中是否有单体电池需要开启均衡;
步骤S522,在确定所述电池组中有单体电池需要开启均衡时,通过所述控制模块根据所述电池组的参数信息计算所述需要开启均衡的单体电池的目标均衡时长。
图7是根据一示例性实施例示出的一种电池均衡方法的另一流程图。如图 7所示,该方法包括以下步骤。
步骤S71,通过所述采集模块采集所述电池组的参数信息。
步骤S72,通过所述控制模块根据所述电池组的参数信息确定共用一个均衡模块的多节单体电池中需要开启均衡的单体电池和所述需要开启均衡的单体电池的目标均衡时长。
步骤S73,当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,通过所述控制模块控制该均衡模块与所述需要均衡的至少两节单体电池中的每节单体电池交替连接。
步骤S74,通过所述控制模块按照所述需要开启均衡的单体电池的目标均衡时长控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
步骤S75,当所述需要均衡的至少两节单体电池中有单体电池累积的均衡时间达到该单体电池的目标均衡时长时,通过所述控制模块控制该单体电池与对应的均衡模块之间的连接断开。
关于上述实施例中的电池均衡方法,其中各个步骤的具体方式已经在有关该电池信均衡系统的实施例中进行了详细描述,此处将不做详细阐述说明。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现上述的电池均衡方法。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (18)

  1. 一种电池均衡系统,其特征在于,包括:
    采集模块,用于采集电池组中单体电池的参数信息;
    均衡模块,用于对所述电池组中的单体电池进行均衡处理;
    控制模块,用于在根据所述电池组的参数信息确定所述电池组中有单体电池需要开启均衡时,控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理;
    其中,所述电池组中的多节单体电池共用一个均衡模块,当所述多节单体电池有需要开启均衡的单体电池时,所述控制模块用于控制该均衡模块连接于该单体电池,以使该均衡模块对该单体电池进行均衡处理。
  2. 根据权利要求1所述的电池均衡系统,其特征在于,每节单体电池的两端均对应连接于一个并联支路的两端,其中,所述并联支路连接于与该节单体电池对应的采集模块、控制模块和均衡模块,且多个所述并联支路连接于同一个均衡模块;当所述控制模块确定所述电池组中有单体电池需要开启均衡时,所述控制模块用于控制所述需要开启均衡的单体电池所对应的并联支路导通,以使所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
  3. 根据权利要求2所述的电池均衡系统,其特征在于,每一个所述并联支路上均设有并联开关,所述并联开关用于控制均衡模块的导通;当所述控制模块确定所述电池组中有单体电池需要开启均衡时,将所述需要开启均衡的单体电池所对应的并联支路上的并联开关闭合,以使所述均衡模块路对所述需要开启均衡的单体电池进行均衡处理。
  4. 根据权利要求1至3中任意一项所述的电池均衡系统,其特征在于,所述控制模块还用于按照由所述电池组的参数信息确定的所述需要开启均衡的单体电池的目标均衡时长控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
  5. 根据权利要求4所述的电池均衡系统,其特征在于,当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,该均衡模块与所述需要均衡的至少两节单体电池中的每节单体电池交替连接。
  6. 根据权利要求5所述的电池均衡系统,其特征在于,当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,该均衡模块与所述需要均衡的至少两节单体电池中的每节单体电池周期性地交替连接。
  7. 根据权利要求5所述的电池均衡系统,其特征在于,当所述需要均衡的至少两节单体电池中有单体电池累积的均衡时间达到该单体电池的目标均衡时长时,所述控制模块还用于控制该单体电池与对应的均衡模块之间的连接断开。
  8. 根据权利要求4所述的电池均衡系统,其特征在于,所述控制模块用于通过以下方式获取所述需要开启均衡的单体电池的目标均衡时长:
    根据所述采集模块采集到的所述电池组的参数信息,确定所述电池组中是否有单体电池需要开启均衡;
    在确定所述电池组中有单体电池需要开启均衡时,根据所述电池组的参数信息计算所述需要开启均衡的单体电池的目标均衡时长。
  9. 根据权利要求1至8中任意一项所述的电池均衡系统,其特征在于,所述控制模块包括设置在电池信息采集器的第一控制单元和设置在电池管理控制器的第二控制单元,所述采集模块通过所述第一控制单元向所述第二控制单元发送采集到的电池组中单体电池的参数信息;
    所述采集模块包括采集电路,所述采集电路通过一个采样通道连接于所述第一控制单元,所述采样通道上设有采样开关;所述均衡模块包括均衡电路,所述均衡电路通过一个均衡通道连接于所述第一控制单元,所述均衡通道上设有均衡开关。
  10. 根据权利要求1至8中任意一项所述的电池均衡系统,其特征在于,所述控制模块包括设置在电池信息采集器的第一控制单元和设置在电池管理控制器的第二控制单元,所述采集模块通过所述第一控制单元向所述第二控制单 元发送采集到的电池组中单体电池的参数信息;其中,共用一个均衡模块的多个单体电池对应第一控制单元的一个通道。
  11. 一种车辆,其特征在于,包括权利要求1-10中任一项所述的电池均衡系统。
  12. 一种电池均衡方法,应用于电池均衡系统,其特征在于,所述电池均衡系统包括控制模块、采集模块和均衡模块;其中,电池组中的多节单体电池共用一个均衡模块;
    该方法包括:
    通过所述采集模块采集所述电池组的参数信息;
    通过所述控制模块根据所述电池组的参数信息确定共用一个均衡模块的多节单体电池中需要开启均衡的单体电池;
    通过所述控制模块控制该均衡模块连接于该单体电池;
    通过所述控制模块控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
  13. 根据权利要求12所述的方法,其特征在于,每节单体电池的两端均对应连接于一个并联支路的两端,其中,所述并联支路连接于与该节电池对应的采集模块、控制模块和均衡模块,且多个所述并联支路连接于一个均衡模块;
    所述通过所述控制模块控制该均衡电路连接于该单体电池,包括:
    通过所述控制模块控制所述需要开启均衡的单体电池所对应的并联支路导通。
  14. 根据权利要求12所述的方法,其特征在于,所述通过所述控制模块根据所述电池组的参数信息确定共用一个均衡模块的多节单体电池中需要开启均衡的单体电池,包括:
    通过所述控制模块根据所述电池组的参数信息确定共用一个均衡模块的多节单体电池中需要开启均衡的单体电池和所述需要开启均衡的单体电池的目标均衡时长;
    所述通过所述控制模块控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理,包括:
    通过所述控制模块按照所述需要开启均衡的单体电池的目标均衡时长控制所述均衡模块对所述需要开启均衡的单体电池进行均衡处理。
  15. 根据权利要求14所述的方法,其特征在于,所述通过所述控制器控制将该均衡模块连接于该单体电池,包括:
    当共用一个均衡模块的多节单体电池中有至少两节单体电池需要均衡时,通过所述控制模块控制该均衡模块与所述需要均衡的至少两节单体电池中的每节单体电池交替连接。
  16. 根据权利要求15所述的方法,其特征在于,还包括:
    当所述需要均衡的至少两节单体电池中有单体电池累积的均衡时间达到该单体电池的目标均衡时长时,通过所述控制模块控制该单体电池与对应的均衡模块之间的连接断开。
  17. 根据权利要求14所述的方法,其特征在于,所述通过所述控制模块根据所述电池组的参数信息确定共用一个均衡模块的多节单体电池中需要开启均衡的单体电池和所述需要开启均衡的单体电池的目标均衡时长,包括:
    通过所述控制模块根据采集到的所述电池组的参数信息,确定所述电池组中是否有单体电池需要开启均衡;
    在确定所述电池组中有单体电池需要开启均衡时,通过所述控制模块根据所述电池组的参数信息计算所述需要开启均衡的单体电池的目标均衡时长。
  18. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,该程序指令被处理器执行时实现权利要求12-17中任意一项所述的电池均衡方法。
PCT/CN2018/103679 2017-08-31 2018-08-31 电池均衡系统、车辆、电池均衡方法及存储介质 WO2019042436A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710773467.3 2017-08-31
CN201710773467.3A CN110015167B (zh) 2017-08-31 2017-08-31 电池均衡系统、车辆、电池均衡方法及存储介质

Publications (1)

Publication Number Publication Date
WO2019042436A1 true WO2019042436A1 (zh) 2019-03-07

Family

ID=65526202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103679 WO2019042436A1 (zh) 2017-08-31 2018-08-31 电池均衡系统、车辆、电池均衡方法及存储介质

Country Status (2)

Country Link
CN (1) CN110015167B (zh)
WO (1) WO2019042436A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2886896Y (zh) * 2005-12-30 2007-04-04 北京格林动力电源技术有限公司 一种锂电池组充电放电均衡控制装置
US20120223582A1 (en) * 2011-03-03 2012-09-06 Davide Andrea Cell modules for detecting temperature and voltage of cells
CN103036291A (zh) * 2012-12-15 2013-04-10 安徽工程大学 一种电动自行车蓄电池均衡装置
CN104716720A (zh) * 2015-04-11 2015-06-17 巫立斌 一种电池管理系统
CN105811529A (zh) * 2016-05-04 2016-07-27 合肥工业大学 一种混合均衡拓扑结构的均衡电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100033128A1 (en) * 2007-10-09 2010-02-11 O2Micro, Inc. Circuit and method for cell balancing
CN101777672A (zh) * 2009-12-01 2010-07-14 俞会根 一种电池组工作方法
CN103683341B (zh) * 2012-08-31 2017-06-13 中信国安盟固利动力科技有限公司 一种储能系统蓄电池模块在线自动双向均衡装置
JP6511686B2 (ja) * 2015-02-23 2019-05-15 日本蓄電器工業株式会社 コンバータ、太陽電池モジュール用コンバータシステム、及び蓄電モジュール用コンバータシステム
JP6561631B2 (ja) * 2015-07-06 2019-08-21 住友電気工業株式会社 充電状態均等化装置、充電状態均等化方法及びコンピュータプログラム
US20170237269A1 (en) * 2015-09-30 2017-08-17 Changs Ascending Enterprise Co., Ltd. Battery charge-discharge balancing circuit assembly
CN106712211B (zh) * 2017-02-21 2023-08-08 山东大学 一种基于多输入变换的双层主动均衡电路及实现方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2886896Y (zh) * 2005-12-30 2007-04-04 北京格林动力电源技术有限公司 一种锂电池组充电放电均衡控制装置
US20120223582A1 (en) * 2011-03-03 2012-09-06 Davide Andrea Cell modules for detecting temperature and voltage of cells
CN103036291A (zh) * 2012-12-15 2013-04-10 安徽工程大学 一种电动自行车蓄电池均衡装置
CN104716720A (zh) * 2015-04-11 2015-06-17 巫立斌 一种电池管理系统
CN105811529A (zh) * 2016-05-04 2016-07-27 合肥工业大学 一种混合均衡拓扑结构的均衡电路

Also Published As

Publication number Publication date
CN110015167A (zh) 2019-07-16
CN110015167B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
CN103326439B (zh) 电池组的均衡电路及方法
KR101702151B1 (ko) 배터리 시스템 및 동작 방법
WO2019042362A1 (zh) 电池均衡系统、车辆、电池均衡方法及存储介质
US11292360B2 (en) Battery equalization method and system, vehicle, storage medium, and electronic device
US11571981B2 (en) Battery equalization system, vehicle, battery equalization method and storage medium
CN103501025A (zh) 一种电池组主动均衡系统
CN109435775B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN110015175B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
WO2019042354A1 (zh) 电池均衡系统、车辆、电池均衡方法及存储介质
WO2019042364A1 (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN113659678A (zh) 电池组均衡控制方法、装置及电池组均衡系统
CN110911765B (zh) 一种电池均衡策略验证平台
WO2019042353A1 (zh) 电池均衡系统、车辆、电池均衡方法及存储介质
WO2019187680A1 (ja) 二次電池制御装置
CN109435770B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
WO2019042436A1 (zh) 电池均衡系统、车辆、电池均衡方法及存储介质
CN110015179B (zh) 电池均衡方法、系统、车辆、存储介质及电子设备
CN108382230A (zh) 动力电池的主动均衡控制方法
CN103560554B (zh) 电池组电量均衡装置
WO2019042441A1 (zh) 电池均衡系统、车辆、电池均衡方法及存储介质
JP2002008734A (ja) 電池電圧検出方法及び電池電圧検出装置
WO2018157534A1 (zh) 储能电池管理系统的均衡方法、装置、储能电池管理系统
WO2019042430A1 (zh) 电池信息采集器、电池均衡系统、车辆、方法及存储介质
WO2019042363A1 (zh) 电池均衡系统、车辆、电池均衡方法及存储介质
CN113675929B (zh) 电池模块控制电路、方法及储能系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852355

Country of ref document: EP

Kind code of ref document: A1