WO2018157534A1 - 储能电池管理系统的均衡方法、装置、储能电池管理系统 - Google Patents

储能电池管理系统的均衡方法、装置、储能电池管理系统 Download PDF

Info

Publication number
WO2018157534A1
WO2018157534A1 PCT/CN2017/092325 CN2017092325W WO2018157534A1 WO 2018157534 A1 WO2018157534 A1 WO 2018157534A1 CN 2017092325 W CN2017092325 W CN 2017092325W WO 2018157534 A1 WO2018157534 A1 WO 2018157534A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
management system
power
battery
equalization
Prior art date
Application number
PCT/CN2017/092325
Other languages
English (en)
French (fr)
Inventor
李家德
刘祥
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2018157534A1 publication Critical patent/WO2018157534A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the invention belongs to the technical field of batteries, and more particularly to an equalization method and device for an energy storage battery management system and an energy storage battery management system.
  • a large battery energy storage system usually includes a plurality of battery modules connected in series, and each battery module is formed by connecting one or more battery cells Cell in parallel.
  • battery modules are typically mounted in one or more battery compartments.
  • UPS Uninterruptible Power System/Uninterruptible Power Supply
  • the object of the present invention is to provide an equalization method and device for an energy storage battery management system capable of reducing an additional power supply, and an energy storage battery management system.
  • the present invention provides an equalization method for an energy storage battery management system, including:
  • each of the battery modules includes a plurality of battery cells connected in series, and one or more of the battery cells connected in series are managed as the energy storage battery System power supply;
  • the balancing strategy is that the total amount of equalized discharge of all of the battery modules is greater than the total amount of equalized charging of all of the battery modules.
  • the equalization strategy is that the total power of the equalization discharge of all the battery modules is greater than the total power of the balanced charging of all the battery modules, and the equalization discharge The difference between the total power and the total charge of the balanced charge is greater than or equal to the operating power of the energy storage battery management system.
  • the equalization strategy further includes: selecting, from all of the battery modules, the M cells having the highest power to perform equalization discharge, wherein M is greater than or equal to An integer of the calculation result of the number of discharged batteries, wherein the calculated result of the number of discharged batteries is the operating power of the energy storage battery management system divided by the equalized discharged power of the single battery.
  • the M cells having the highest power are selected from all the battery modules for equalization discharge, wherein M is greater than or equal to the number of the discharge batteries.
  • the calculation result of the number of discharged batteries is the working power of the energy storage battery management system divided by the equalized discharge power of the single battery, specifically including:
  • the calculated amount of the discharged battery obtained by dividing the operating power of the energy storage battery management system by the equalized discharge power of the single battery is an integer, selecting the M cells having the highest power from all of the battery modules for equalization Discharge, wherein M is a calculation result of the number of discharged batteries;
  • the number of single cells as the power supply of the energy storage battery management system is greater than or equal to the operating voltage of the energy storage battery management system divided by the single The operating voltage of the battery.
  • an equalization device for an energy storage battery management system include:
  • a battery parameter collection module configured to: collect battery parameters of each of the at least one battery module, each of the battery modules includes a plurality of battery cells connected in series, and wherein the plurality of battery cells connected in series The power supply of the energy storage battery management system;
  • the equalization strategy execution module is configured to: perform charge and discharge equalization according to the equalization strategy for all the battery modules according to the battery parameter, where the equalization strategy is that the total power of the equalization discharge of all the battery modules is greater than all the battery modules The total charge of the balanced charge.
  • the equalization strategy is that the total power of the equalization discharge of all the battery modules is greater than the total power of the balanced charging of all the battery modules, and the equalization discharge The difference between the total power and the total charge of the balanced charge is greater than or equal to the operating power of the energy storage battery management system.
  • the equalization strategy further includes: selecting, from all of the battery modules, M cells having the highest power amount for equalization discharge, wherein M is greater than or equal to An integer of the calculation result of the number of discharged batteries, wherein the calculated result of the number of discharged batteries is the operating power of the energy storage battery management system divided by the equalized discharged power of the single battery.
  • the M cells having the highest power are selected from all the battery modules for equalization discharge, wherein M is greater than or equal to the number of discharge batteries Calculating an integer of the result, the calculation result of the number of discharged batteries is the working power of the energy storage battery management system divided by the equalized discharge power of the single battery, specifically including:
  • the calculated amount of the discharged battery obtained by dividing the operating power of the energy storage battery management system by the equalized discharge power of the single battery is an integer, selecting the M cells having the highest power from all of the battery modules for equalization Discharge, wherein M is a calculation result of the number of discharged batteries;
  • the number of single cells as the power supply source of the energy storage battery management system is greater than or equal to the operating voltage of the energy storage battery management system divided by the single cell The operating voltage of the battery.
  • the present invention provides an energy storage battery management system, comprising: at least one slave, one master module, and a power terminal, each of the slave pairs being connected in series by at least one single battery.
  • the battery modules are equalized, and each of the slaves is in communication with the main control module, the power terminals are respectively connected to the main control module and the slaves, and the group includes one or more of the singles connected in series.
  • the output of the battery pack of the body battery is electrically connected to the power terminal.
  • the equalization method, device and energy storage battery management system of the energy storage battery management system of the present invention have the following effects:
  • the N-series battery is used as a system power supply to supply power to the battery management system and other boards, and the equalization strategy is adjusted to reduce the additional UPS cost.
  • the cell capacity of the single cell is much larger than the cell capacity of the UPS, the system power supply is more stable.
  • 1 is a flow chart showing the operation of an equalization method for an energy storage battery management system according to the present invention.
  • FIG. 2 is a block diagram of an apparatus for an equalization device of an energy storage battery management system according to the present invention.
  • FIG. 3 is a system block diagram of an energy storage battery management system of the present invention.
  • a working flow chart of an equalization method for an energy storage battery management system includes:
  • Step S101 Collect battery parameters of each of the at least one battery module, each of the battery modules includes a plurality of battery cells connected in series, and one or more of the battery cells connected in series serve as the storage Power supply for battery management system;
  • Step S102 Perform charge and discharge equalization according to the equalization strategy for all the battery modules according to the battery parameter, where the equalization strategy is that the total power of the equalized discharge of all the battery modules is greater than the total of the balanced charges of all the battery modules. Electricity.
  • one or more battery cells connected in series in the battery module monitored by the energy storage battery management system are used as power supply resources of the energy storage battery management system, and then, in step S101, battery parameters are collected, specifically, energy storage is performed.
  • BMU battery management unit
  • CSC Cell Supervising Control
  • step S102 charging and discharging equalization is performed according to the equalization strategy.
  • the policy can be determined by the BMU, and the corresponding CSC is notified to perform charging and discharging equalization, and the equalization strategy can ensure the total amount of equalized discharge of all the battery modules.
  • the total amount of equalized charging of all of the battery modules is greater, so that the energy storage battery management system provides power.
  • the equalization strategy is that the total power of the equalization discharge of all the battery modules is greater than the total power of the balanced charging of all the battery modules, and the equalization The difference between the total amount of discharged electricity and the total amount of balanced charging is greater than or equal to the operating capacity of the energy storage battery management system.
  • the equalization strategy of this embodiment ensures that there is sufficient equalization discharge power to ensure sufficient working power for the energy storage battery management system.
  • the equalization strategy further includes: selecting, from all of the battery modules, M cells having the highest power amount for equalization discharge, wherein M is greater than or An integer equal to the calculation result of the number of discharged batteries, and the number of discharged batteries is calculated The result is the amount of operating power of the energy storage battery management system divided by the equalized discharge power of the individual cells.
  • the number of batteries for equalizing discharge is calculated and controlled to perform equalization discharge, thereby ensuring sufficient working power for the energy storage battery management system.
  • the M cells having the highest power are selected from all the battery modules for equalization discharge, wherein M is greater than or equal to the discharge battery.
  • An integer of the quantity calculation result, wherein the calculation result of the number of discharged batteries is the working power of the energy storage battery management system divided by the equalized discharge power of the single battery, specifically including:
  • the calculated amount of the discharged battery obtained by dividing the operating power of the energy storage battery management system by the equalized discharge power of the single battery is an integer, selecting the M cells having the highest power from all of the battery modules for equalization Discharge, wherein M is a calculation result of the number of discharged batteries;
  • the energy storage battery management system consumes 12W and the equalized discharge power of the single battery is 3W, the calculated number of discharged batteries is 4, and M is the calculation result of the number of discharged batteries, that is, M is equal to 4;
  • the energy storage battery management system consumes 12.3W and the equalized discharge power of the single battery is 3W, the calculated number of discharged batteries is 4.1, and M is the integral part of the calculation result of the number of discharged batteries plus one, that is, M is equal to 5.
  • a single battery that is just enough for the energy storage battery management system is selected for equalization discharge, thereby ensuring the overall balance of the system, and also ensuring the normal use of the energy storage battery management system.
  • the number of single cells as the power supply of the energy storage battery management system is greater than or equal to the operating voltage of the energy storage battery management system divided by a single The operating voltage of the body battery.
  • This embodiment can ensure that the total power supply after the series connection of the single cells as the power supply meets the working voltage of the energy storage battery management system.
  • a device module diagram of an equalization device of an energy storage battery management system includes:
  • the battery parameter collection module 201 is configured to: collect battery parameters of each of the at least one battery module, each of the battery modules includes a plurality of battery cells connected in series, and wherein the plurality of battery cells connected in series As a power supply for the energy storage battery management system;
  • the equalization policy execution module 202 is configured to: perform charge and discharge equalization according to the equalization policy for all the battery modules according to the battery parameter, where the equalization strategy is that the total power of the equalization discharge of all the battery modules is greater than all the battery modes. The total amount of power that is balanced for the group.
  • the equalization strategy is that the total power of the equalization discharge of all the battery modules is greater than the total power of the balanced charging of all the battery modules, and the equalization The difference between the total amount of discharged electricity and the total amount of balanced charging is greater than or equal to the operating capacity of the energy storage battery management system.
  • the equalization strategy further includes: selecting, from all of the battery modules, the M cells having the highest power to perform equalization discharge, wherein M is greater than or An integer equal to the calculation result of the number of discharged batteries, and the calculation result of the number of discharged batteries is the operating power of the energy storage battery management system divided by the equalized discharged power of the single battery.
  • the M cells having the highest power are selected from all of the battery modules for equalization discharge, wherein M is greater than or equal to the discharge battery
  • the calculated amount of the discharged battery obtained by dividing the operating power of the energy storage battery management system by the equalized discharge power of the single battery is an integer, selecting the M cells having the highest power from all of the battery modules for equalization Discharge, wherein M is a calculation result of the number of discharged batteries;
  • the operating capacity of the energy storage battery management system is divided by the equalized discharge power of the single battery
  • the calculation result of the number of discharged batteries is not an integer, and the M cells having the highest electric quantity are selected from all the battery modules for equalizing discharge, wherein M is an integral part of the calculation result of the number of discharged batteries.
  • the number of single cells as the power supply of the energy storage battery management system is greater than or equal to the operating voltage of the energy storage battery management system divided by a single The operating voltage of the body battery.
  • a system block diagram of an energy storage battery management system of the present invention includes: at least one slave 1, a master module 2, and a power terminal (not shown), each of the slaves 1
  • the battery modules 3 connected in series by at least one of the single cells 31 are equalized, and each of the slaves 1 is communicably connected to the main control module 2, and the power terminals are respectively associated with the main control module 2.
  • the slave 1 is electrically connected, and a set of outputs of the battery pack 32 including one or more of the unit cells 31 connected in series are electrically connected to the power terminal.
  • an energy storage battery management system BMS includes a plurality of battery management modules and a main control module BMU 2.
  • Each of the battery management modules 4 includes a battery module 3 and a slave CSC 1 which are connected in series by a plurality of unit cells Cell 31. Both ends of the unit cell 31 can be equalized by the equalization DC/DC circuit of the slave 1.
  • the slaves 1 of all the battery management modules are connected to the main control module 2 via communication lines.
  • the slave 1 obtains the voltage information of each single battery or battery unit in the battery management module through the wire harness, and uploads the main control module 2 through the communication line, and the main control module 2 collects each monomer by communicating with the slave machine 1.
  • N series of cells 31 connected in series are selected to form the battery pack 32 as the system power supply, and the N value is determined according to the BMS supply voltage requirement. For example, if the system supply voltage is 24V and the single cell voltage is 3.2V, then N selects 8 cells in series.
  • the balancing strategy of the battery management system during operation ensures that the total number of balanced cells in the balanced discharge is M more than the number of charged cells, and the M value determines the amount of power consumed by the system board.
  • the equilibrium discharge capacity of a single cell is determined. For example, if the system consumes 12W and the equalized discharge power of a single cell is 3W, then M is selected to ensure that all the cells are balanced, and the highest M cells connected in series are selected for equalization discharge.
  • the equalization method, device and energy storage battery management system of the energy storage battery management system of the present invention have the following effects:
  • the N-series battery is used as a system power supply to supply power to the battery management system and other boards, and the equalization strategy is adjusted to reduce the additional UPS cost.
  • the cell capacity of the single cell is much larger than the cell capacity of the UPS, the system power supply is more stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种储能电池管理系统的均衡方法、装置和储能电池管理系统,该均衡方法包括:采集至少一个电池模组中每个单体电池的电池参数,每个电池模组包括多个串联的单体电池,且其中一个或多个串联的单体电池作为储能电池管理系统的供电电源;根据电池参数对所有电池模组根据均衡策略进行充放电均衡,均衡策略为所有电池模组的均衡放电的总电量大于所有电池模组的均衡充电的总电量。该储能电池管理系统的均衡方法是在电池储能系统的电池中选取N个串联的单体电池作为系统电源,来给电池管理系统等电路板供电,同时通过调整均衡策略,从而减少额外的UPS成本。另外,由于单体电池的电芯容量远大于UPS的电芯的容量,因此系统电源更加稳定。

Description

储能电池管理系统的均衡方法、装置、储能电池管理系统 技术领域
本发明属于电池技术领域,更具体地说,本发明涉及一种储能电池管理系统的均衡方法、装置、储能电池管理系统。
背景技术
大型电池储能系统通常包括多串电池模组相互串联而成的,每一串电池模组又是由一个或多个电池单体Cell并联而成。在电池管理系统中,电池模组通常安装于一个或多个电池箱中。
大型电池储能系统广泛的应用于风光发电站,公司储能系统等领域。
在已公开的电池储能系统中存在如下缺陷:
现有的大型电池储能系统中,电池管理系统等电路板需要供电,且是单独使用的不间断电源(Uninterruptible Power System/Uninterruptible Power Supply,UPS)做系统电源,给电池管理系统等电路板供电。这样就多一个额外的UPS成本,同时占用额外空间。
发明内容
本发明的目的在于:提供一种能减少额外的供电电源的储能电池管理系统的均衡方法、装置、储能电池管理系统。
为了实现上述发明目的,本发明提供了一种储能电池管理系统的均衡方法,包括:
采集至少一个电池模组中每个单体电池的电池参数,每个所述电池模组包括多个串联的单体电池,且其中一个或多个串联的单体电池作为所述储能电池管理系统的供电电源;
根据所述电池参数对所有电池模组根据均衡策略进行充放电均衡,所述均 衡策略为所有所述电池模组的均衡放电的总电量大于所有所述电池模组的均衡充电的总电量。
作为本发明储能电池管理系统的均衡方法的一种改进,所述均衡策略为所有所述电池模组的均衡放电的总电量大于所有所述电池模组的均衡充电的总电量,且均衡放电的总电量与均衡充电的总电量的差值大于或等于所述储能电池管理系统的工作电量。
作为本发明储能电池管理系统的均衡方法的一种改进,所述均衡策略还包括:从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为大于或等于所述放电电池数量计算结果的整数,所述放电电池数量计算结果为所述储能电池管理系统的工作电量除以单体电池的均衡放电电量。
作为本发明储能电池管理系统的均衡方法的一种改进,所述从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为大于或等于所述放电电池数量计算结果的整数,所述放电电池数量计算结果为所述储能电池管理系统的工作电量除以单体电池的均衡放电电量,具体包括:
如果所述储能电池管理系统的工作电量除以单体电池的均衡放电电量得到的放电电池数量计算结果为整数,则从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为所述放电电池数量计算结果;
如果所述储能电池管理系统的工作电量除以单体电池的均衡放电电量得到的放电电池数量计算结果不为整数,则从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为所述放电电池数量计算结果的整数部分加一。
作为本发明储能电池管理系统的均衡方法的一种改进,作为所述储能电池管理系统的供电电源的单体电池的数量大于或等于所述储能电池管理系统的工作电压除以单体电池的工作电压。
为了实现上述发明目的,本发明提供了一种储能电池管理系统的均衡装置, 包括:
电池参数采集模块,用于:采集至少一个电池模组中每个单体电池的电池参数,每个所述电池模组包括多个串联的单体电池,且其中多个串联的单体电池作为所述储能电池管理系统的供电电源;
均衡策略执行模块,用于:根据所述电池参数对所有电池模组根据均衡策略进行充放电均衡,所述均衡策略为所有所述电池模组的均衡放电的总电量大于所有所述电池模组的均衡充电的总电量。
作为本发明储能电池管理系统的均衡装置的一种改进,所述均衡策略为所有所述电池模组的均衡放电的总电量大于所有所述电池模组的均衡充电的总电量,且均衡放电的总电量与均衡充电的总电量的差值大于或等于所述储能电池管理系统的工作电量。
作为本发明储能电池管理系统的均衡装置的一种改进,所述均衡策略还包括:从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为大于或等于所述放电电池数量计算结果的整数,所述放电电池数量计算结果为所述储能电池管理系统的工作电量除以单体电池的均衡放电电量。
作为本发明储能电池管理系统的均衡装置的一种改进,所述从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为大于或等于所述放电电池数量计算结果的整数,所述放电电池数量计算结果为所述储能电池管理系统的工作电量除以单体电池的均衡放电电量,具体包括:
如果所述储能电池管理系统的工作电量除以单体电池的均衡放电电量得到的放电电池数量计算结果为整数,则从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为所述放电电池数量计算结果;
如果所述储能电池管理系统的工作电量除以单体电池的均衡放电电量得到的放电电池数量计算结果不为整数,则从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为所述放电电池数量计算结果的整数部分 加一。
作为本发明储能电池管理系统的均衡装置的一种改进,作为所述储能电池管理系统的供电电源的单体电池的数量大于或等于所述储能电池管理系统的工作电压除以单体电池的工作电压。
为了实现上述发明目的,本发明提供了一种储能电池管理系统,包括:至少一个从机、一个主控模块、电源端,每个所述从机对由至少一个单体电池串联而成的电池模组进行均衡,每个所述从机均与所述主控模块通信连接,所述电源端分别与所述主控模块、从机电连接,一组包括一个或多个串联的所述单体电池的电池组的输出端与所述电源端电连接。
与现有技术相比,本发明储能电池管理系统的均衡方法、装置、储能电池管理系统具有以下效果:
由于使用电池储能上原有的电池中选取N串单体电池做一个系统电源,来给电池管理系统等电路板供电,同时通过调整均衡策略,从而减少额外的UPS成本。另外,由于单体电池的电芯容量远大于UPS的电芯的容量,因此系统电源更加稳定。
附图说明
下面结合附图和具体实施方式,对本发明储能电池管理系统的均衡方法、装置、储能电池管理系统及其有益效果进行详细说明。
图1为本发明一种储能电池管理系统的均衡方法的工作流程图。
图2为本发明一种储能电池管理系统的均衡装置的装置模块图。
图3为本发明一种储能电池管理系统的系统模块图。
具体实施方式
为了使本发明的发明目的、技术方案及其有益技术效果更加清晰,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说 明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。
请参阅图1,本发明一种储能电池管理系统的均衡方法的工作流程图,包括:
步骤S101,采集至少一个电池模组中每个单体电池的电池参数,每个所述电池模组包括多个串联的单体电池,且其中一个或多个串联的单体电池作为所述储能电池管理系统的供电电源;
步骤S102,根据所述电池参数对所有电池模组根据均衡策略进行充放电均衡,所述均衡策略为所有所述电池模组的均衡放电的总电量大于所有所述电池模组的均衡充电的总电量。
具体来说,储能电池管理系统所监测电池模组中的一个或多个串联的单体电池作为所述储能电池管理系统的供电电源,然后,步骤S101采集电池参数,具体可以通过储能电池管理系统的主控模块(Battery Management Unit,BMU)、从机(Cell Supervising Control,CSC)进行监控。
然后步骤S102,根据均衡策略进行充放电均衡,具体来说,可以由BMU确定策略,并通知相应的CSC执行充放电均衡,该均衡策略,能保证所有所述电池模组的均衡放电的总电量大于所有所述电池模组的均衡充电的总电量,从而储能电池管理系统提供电量。
在本发明储能电池管理系统的均衡方法的一个实施例中,所述均衡策略为所有所述电池模组的均衡放电的总电量大于所有所述电池模组的均衡充电的总电量,且均衡放电的总电量与均衡充电的总电量的差值大于或等于所述储能电池管理系统的工作电量。
本实施例的均衡策略,保证有足够的均衡放电的电量,从而保证为储能电池管理系统提供足够的工作电量。
在本发明储能电池管理系统的均衡方法的一个实施例中,所述均衡策略还包括:从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为大于或等于所述放电电池数量计算结果的整数,所述放电电池数量计算 结果为所述储能电池管理系统的工作电量除以单体电池的均衡放电电量。
本实施例计算出进行均衡放电的电池数量,并控制其进行均衡放电,从而保证为储能电池管理系统提供足够的工作电量。
在本发明储能电池管理系统的均衡方法的一个实施例中,所述从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为大于或等于所述放电电池数量计算结果的整数,所述放电电池数量计算结果为所述储能电池管理系统的工作电量除以单体电池的均衡放电电量,具体包括:
如果所述储能电池管理系统的工作电量除以单体电池的均衡放电电量得到的放电电池数量计算结果为整数,则从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为所述放电电池数量计算结果;
如果所述储能电池管理系统的工作电量除以单体电池的均衡放电电量得到的放电电池数量计算结果不为整数,则从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为所述放电电池数量计算结果的整数部分加一。
例如:
如果储能电池管理系统消耗12W,单体电池的均衡放电电量为3W,则放电电池数量计算结果为4,M为放电电池数量计算结果,即M等于4;
如果储能电池管理系统消耗12.3W,单体电池的均衡放电电量为3W,则放电电池数量计算结果为4.1,M为放电电池数量计算结果的整数部分加一,即M等于5。
本实施例选择刚好足够储能电池管理系统使用的单体电池进行均衡放电,从而即保证系统整体均衡,同时也保证能储能电池管理系统正常使用。
在本发明储能电池管理系统的均衡方法的一个实施例中,作为所述储能电池管理系统的供电电源的单体电池的数量大于或等于所述储能电池管理系统的工作电压除以单体电池的工作电压。
本实施例能保证作为供电电源的单体电池串联后的总电源满足储能电池管理系统的工作电压的需要。
请参阅图2,本发明一种储能电池管理系统的均衡装置的装置模块图,包括:
电池参数采集模块201,用于:采集至少一个电池模组中每个单体电池的电池参数,每个所述电池模组包括多个串联的单体电池,且其中多个串联的单体电池作为所述储能电池管理系统的供电电源;
均衡策略执行模块202,用于:根据所述电池参数对所有电池模组根据均衡策略进行充放电均衡,所述均衡策略为所有所述电池模组的均衡放电的总电量大于所有所述电池模组的均衡充电的总电量。
在本发明储能电池管理系统的均衡装置的一个实施例中,所述均衡策略为所有所述电池模组的均衡放电的总电量大于所有所述电池模组的均衡充电的总电量,且均衡放电的总电量与均衡充电的总电量的差值大于或等于所述储能电池管理系统的工作电量。
在本发明储能电池管理系统的均衡装置的一个实施例中,所述均衡策略还包括:从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为大于或等于所述放电电池数量计算结果的整数,所述放电电池数量计算结果为所述储能电池管理系统的工作电量除以单体电池的均衡放电电量。
在本发明储能电池管理系统的均衡装置的一个实施例中,所述从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为大于或等于所述放电电池数量计算结果的整数,所述放电电池数量计算结果为所述储能电池管理系统的工作电量除以单体电池的均衡放电电量,具体包括:
如果所述储能电池管理系统的工作电量除以单体电池的均衡放电电量得到的放电电池数量计算结果为整数,则从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为所述放电电池数量计算结果;
如果所述储能电池管理系统的工作电量除以单体电池的均衡放电电量得到 的放电电池数量计算结果不为整数,则从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为所述放电电池数量计算结果的整数部分加一。
在本发明储能电池管理系统的均衡装置的一个实施例中,作为所述储能电池管理系统的供电电源的单体电池的数量大于或等于所述储能电池管理系统的工作电压除以单体电池的工作电压。
请参阅图3,本发明一种储能电池管理系统的系统模块图,包括:至少一个从机1、一个主控模块2、电源端(图中未示出),每个所述从机1对由至少一个单体电池31串联而成的电池模组3进行均衡,每个所述从机1均与所述主控模块2通信连接,所述电源端分别与所述主控模块2、从机1电连接,一组包括一个或多个串联的所述单体电池31的电池组32的输出端与所述电源端电连接。
请参阅图3,作为本发明的最佳实施例,一种储能电池管理系统BMS,其包括若干电池管理模块和一个主控模块BMU 2。每个电池管理模块4均包括一个由若干单体电池Cell 31串联而成的电池模组3和一个从机CSC 1。单体电池31的两端都能通过从机1的均衡DC/DC电路进行均衡。所有电池管理模块的从机1均通过通讯线连接至主控模块2。从机1通过线束获得该电池管理模块内的各单体电池或电池单元的电压信息,通过通信线上传主控模块2,主控模块2通过与众从机1进行通信,来收集各个单体电池的整体电量与电压等信息,分析判断来哪个单体电池需要充电或放电均衡,并通过通讯线发出指令,让从机1执行指令,即由从机1进行充放电均衡。
同时,在储能电池系统中选取其中的N个串联的单体电池31组成电池组32作为系统电源,N数值确定是按BMS供电电压需求而选取。例如,系统供电电压24V,单个电芯电压3.2V,则N选择8个串联的单体电池。
电池管理系统运行时的均衡策略,确保总的均衡放电的单体电池的数量比充电的单体电池的数量多M个,M数值确定按系统电路板需要消耗的电量与 单个单体电池的均衡放电电量所决定的。例如,系统消耗12W,单个单体电池的均衡放电电量3W,则M选择4个,从而确保所有的单体电池都电量均衡的同时,选出最高的M个串联的单体电池进行均衡放电。
与现有技术相比,本发明储能电池管理系统的均衡方法、装置、储能电池管理系统具有以下效果:
由于使用电池储能上原有的电池中选取N串单体电池做一个系统电源,来给电池管理系统等电路板供电,同时通过调整均衡策略,从而减少额外的UPS成本。另外,由于单体电池的电芯容量远大于UPS的电芯的容量,因此系统电源更加稳定。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (11)

  1. 一种储能电池管理系统的均衡方法,其特征在于,包括:
    采集至少一个电池模组中每个单体电池的电池参数,每个所述电池模组包括多个串联的单体电池,且其中一个或多个串联的单体电池作为所述储能电池管理系统的供电电源;
    根据所述电池参数对所有电池模组根据均衡策略进行充放电均衡,所述均衡策略为所有所述电池模组的均衡放电的总电量大于所有所述电池模组的均衡充电的总电量。
  2. 根据权利要求1所述的储能电池管理系统的均衡方法,其特征在于,所述均衡策略为所有所述电池模组的均衡放电的总电量大于所有所述电池模组的均衡充电的总电量,且均衡放电的总电量与均衡充电的总电量的差值大于或等于所述储能电池管理系统的工作电量。
  3. 根据权利要求2所述的储能电池管理系统的均衡方法,其特征在于,所述均衡策略还包括:从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为大于或等于所述放电电池数量计算结果的整数,所述放电电池数量计算结果为所述储能电池管理系统的工作电量除以单体电池的均衡放电电量。
  4. 根据权利要求3所述的储能电池管理系统的均衡方法,其特征在于,所述从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为大于或等于所述放电电池数量计算结果的整数,所述放电电池数量计算结果为所述储能电池管理系统的工作电量除以单体电池的均衡放电电量,具体包括:
    如果所述储能电池管理系统的工作电量除以单体电池的均衡放电电量得到的放电电池数量计算结果为整数,则从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为所述放电电池数量计算结果;
    如果所述储能电池管理系统的工作电量除以单体电池的均衡放电电量得到的放电电池数量计算结果不为整数,则从所有所述电池模组中选择电量最高的 M个单体电池进行均衡放电,其中M为所述放电电池数量计算结果的整数部分加一。
  5. 根据权利要求1所述的储能电池管理系统的均衡方法,其特征在于,作为所述储能电池管理系统的供电电源的单体电池的数量大于或等于所述储能电池管理系统的工作电压除以单体电池的工作电压。
  6. 一种储能电池管理系统的均衡装置,其特征在于,包括:
    电池参数采集模块,用于:采集至少一个电池模组中每个单体电池的电池参数,每个所述电池模组包括多个串联的单体电池,且其中多个串联的单体电池作为所述储能电池管理系统的供电电源;
    均衡策略执行模块,用于:根据所述电池参数对所有电池模组根据均衡策略进行充放电均衡,所述均衡策略为所有所述电池模组的均衡放电的总电量大于所有所述电池模组的均衡充电的总电量。
  7. 根据权利要求6所述的储能电池管理系统的均衡装置,其特征在于,所述均衡策略为所有所述电池模组的均衡放电的总电量大于所有所述电池模组的均衡充电的总电量,且均衡放电的总电量与均衡充电的总电量的差值大于或等于所述储能电池管理系统的工作电量。
  8. 根据权利要求6所述的储能电池管理系统的均衡装置,其特征在于,所述均衡策略还包括:从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为大于或等于所述放电电池数量计算结果的整数,所述放电电池数量计算结果为所述储能电池管理系统的工作电量除以单体电池的均衡放电电量。
  9. 根据权利要求8所述的储能电池管理系统的均衡装置,其特征在于,所述从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为大于或等于所述放电电池数量计算结果的整数,所述放电电池数量计算结果为所述储能电池管理系统的工作电量除以单体电池的均衡放电电量,具体包括:
    如果所述储能电池管理系统的工作电量除以单体电池的均衡放电电量得到的放电电池数量计算结果为整数,则从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为所述放电电池数量计算结果;
    如果所述储能电池管理系统的工作电量除以单体电池的均衡放电电量得到的放电电池数量计算结果不为整数,则从所有所述电池模组中选择电量最高的M个单体电池进行均衡放电,其中M为所述放电电池数量计算结果的整数部分加一。
  10. 根据权利要求6所述的储能电池管理系统的均衡装置,其特征在于,作为所述储能电池管理系统的供电电源的单体电池的数量大于或等于所述储能电池管理系统的工作电压除以单体电池的工作电压。
  11. 一种储能电池管理系统,包括:至少一个从机、一个主控模块、电源端,每个所述从机对由至少一个单体电池串联而成的电池模组进行均衡,每个所述从机均与所述主控模块通信连接,所述电源端分别与所述主控模块、从机电连接,其特征在于,一组包括一个或多个串联的所述单体电池的电池组的输出端与所述电源端电连接。
PCT/CN2017/092325 2017-02-28 2017-07-09 储能电池管理系统的均衡方法、装置、储能电池管理系统 WO2018157534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710110969.8 2017-02-28
CN201710110969.8A CN108512262B (zh) 2017-02-28 2017-02-28 储能电池管理系统的均衡方法、装置、储能电池管理系统

Publications (1)

Publication Number Publication Date
WO2018157534A1 true WO2018157534A1 (zh) 2018-09-07

Family

ID=63371118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092325 WO2018157534A1 (zh) 2017-02-28 2017-07-09 储能电池管理系统的均衡方法、装置、储能电池管理系统

Country Status (2)

Country Link
CN (1) CN108512262B (zh)
WO (1) WO2018157534A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110661042A (zh) * 2018-06-29 2020-01-07 宁德时代新能源科技股份有限公司 电池管理系统及储能电站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105086A (ja) * 2009-11-16 2011-06-02 Toyota Motor Corp 車両用電源装置
CN102496979A (zh) * 2011-11-28 2012-06-13 上海交通大学 一种极性自动切换的锂离子电池组均衡电路
CN102751757A (zh) * 2012-06-29 2012-10-24 国家电网公司 一种锂离子电池组电量均衡方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136715B2 (en) * 2011-04-19 2015-09-15 Yuebin WU Rechargeable battery pack and method of charge/discharge equalizing
CN102856942A (zh) * 2011-07-01 2013-01-02 河南锂昂新能源科技有限公司 锂离子电池组充放电全方位均衡管理装置
CN102437609B (zh) * 2011-12-14 2014-07-09 上海交通大学 串联电池组的能量同步转移复合型自动均衡电路及均衡方法
CN105375539B (zh) * 2014-08-21 2021-02-09 上海稳得新能源科技有限公司 动力电池自动均衡充电器
CN105939034B (zh) * 2016-03-29 2019-03-26 武汉理工大学 基于超级电容储能转移的锂电池组主动均衡系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105086A (ja) * 2009-11-16 2011-06-02 Toyota Motor Corp 車両用電源装置
CN102496979A (zh) * 2011-11-28 2012-06-13 上海交通大学 一种极性自动切换的锂离子电池组均衡电路
CN102751757A (zh) * 2012-06-29 2012-10-24 国家电网公司 一种锂离子电池组电量均衡方法及系统

Also Published As

Publication number Publication date
CN108512262B (zh) 2020-06-26
CN108512262A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
US11855250B2 (en) Systems and methods for series battery charging
EP3054554B1 (en) Battery pack and method of controlling the same
KR101300109B1 (ko) 모듈화된 bms 연결 구조를 포함하는 전력 저장 시스템 및 그 제어 방법
EP2717423B1 (en) Power storage system having modularized bms connection structure and method for controlling the system
CN101882699B (zh) 动力电池组充放电均衡控制方法
CN109713740B (zh) 一种电池管理系统的主动均衡架构及主动均衡方法
JP6384482B2 (ja) 蓄電池システム
CN105162215B (zh) 一种用于铅酸蓄电池组均衡的分布式电池管理系统及方法
JP2014108052A (ja) バッテリ管理装置及びエネルギー保存システム
KR20150080169A (ko) 에너지 저장 시스템에서 전력 분배 방법 및 장치
JP2014124063A (ja) 蓄電池の残量管理装置
CN107078514A (zh) 蓄电池系统
CN112104024A (zh) 储能变换器自适应下垂控制方法及其控制系统
JP2015061510A (ja) 電池セル平衡システムを有する充電スタンド
CN113783245A (zh) 一种电池管理方法以及系统
JPWO2015040722A1 (ja) 蓄電池システム
CN206195347U (zh) 一种电网储能系统
WO2018157534A1 (zh) 储能电池管理系统的均衡方法、装置、储能电池管理系统
CN116388324A (zh) 电压均衡模块、方法和储能装置、可读存储介质
CN217159298U (zh) 一种电池组充放电主动均衡装置
WO2023000869A1 (zh) 一种电池均流方法、电子设备及计算机可读存储介质
CN205028979U (zh) 一种用于铅酸蓄电池组的均衡装置
CN116566014A (zh) 电池控制系统和电池控制系统的控制方法
KR20220159094A (ko) 배터리 충방전 시스템
CN113484756A (zh) 一种蓄电池组的均衡放电管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17898526

Country of ref document: EP

Kind code of ref document: A1