WO2023000869A1 - 一种电池均流方法、电子设备及计算机可读存储介质 - Google Patents

一种电池均流方法、电子设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2023000869A1
WO2023000869A1 PCT/CN2022/098774 CN2022098774W WO2023000869A1 WO 2023000869 A1 WO2023000869 A1 WO 2023000869A1 CN 2022098774 W CN2022098774 W CN 2022098774W WO 2023000869 A1 WO2023000869 A1 WO 2023000869A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
current sharing
battery pack
current
slave
Prior art date
Application number
PCT/CN2022/098774
Other languages
English (en)
French (fr)
Inventor
胡甜甜
涂大锐
杨鹏
黄发龙
代新建
李文杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22845036.7A priority Critical patent/EP4376255A1/en
Publication of WO2023000869A1 publication Critical patent/WO2023000869A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the technical field of energy storage, and in particular to a battery current sharing method, electronic equipment, and a computer-readable storage medium.
  • each battery pack When multiple battery packs are running in parallel, the electric energy released by each battery pack is the same during the discharge process. However, the ability of each battery pack to store electric energy is usually different. For example, the ability of new and old battery packs to store electric energy is different. If the difference is large, the new battery pack will store more electric energy, and the old battery pack will store less energy. If the new and old battery packs release the same electric energy, the new battery pack will not be fully discharged, while the old battery pack has been over-discharged. Discharged, the battery pack is in a state of insufficient discharge or excessive discharge for a long time, which will continuously aggravate the deterioration of the battery pack, thereby shortening the life of each battery pack. The battery pack has been deteriorated or even damaged, so the entire device with multiple battery packs running in parallel can only be replaced as a whole, resulting in a lot of waste and high maintenance costs.
  • An embodiment of the present application provides a battery current sharing method, including: obtaining the state parameters of each battery pack connected in parallel; comparing the state parameters of each battery pack to obtain a comparison result; if the state parameters of each battery pack match, The current sharing control of each battery pack is performed based on the master-slave current sharing method; if the state parameters of the battery packs do not match, the current sharing control of each battery pack is performed based on the proportional current sharing method.
  • the embodiment of the present application also provides an electronic device, including: at least one processor; and a memory connected to the at least one processor in communication; wherein, the memory stores instructions that can be executed by at least one processor, and the instructions are processed by at least one processor.
  • the processor is executed, so that at least one processor can execute the above battery current sharing method.
  • the embodiment of the present application also provides a computer-readable storage medium, which stores a computer program, and implements the above battery current sharing method when the computer program is executed by a processor.
  • Fig. 1 is a schematic block diagram of each battery pack and busbars according to an embodiment of the present application
  • FIG. 2 is a flow chart 1 of a battery current sharing method according to an embodiment of the present application.
  • FIG. 3 is a second flow chart of a battery current sharing method according to an embodiment of the present application.
  • FIG. 4 is a flowchart three of a battery current sharing method according to an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of an electronic device according to an embodiment of the present application.
  • the main purpose of the embodiments of the present application is to propose a battery current sharing method, electronic equipment, and computer-readable storage medium.
  • dynamically adjusting the current balance between the battery packs it solves the problems caused by excessive discharge or insufficient discharge of the battery packs.
  • the deterioration of the battery pack prolongs the life of the battery pack, saves resources and reduces maintenance costs.
  • the electronic device will obtain the state parameters of each battery pack connected in parallel, compare the state parameters of each battery pack, and when the state parameters of each battery pack match, perform a master-slave current sharing method for each battery pack.
  • Current sharing control when the state parameters of each battery pack do not match, the current sharing control is performed on each battery pack based on the proportional current sharing method.
  • this application will dynamically select the master-slave current sharing mode or the proportional current sharing mode to control the current sharing of each battery pack, which solves the battery pack deterioration caused by excessive discharge or insufficient discharge. The situation prolongs the life of the battery pack, saves resources and reduces maintenance costs.
  • An embodiment of the present application relates to a battery current sharing method, which is used to dynamically adjust the current balance between battery packs.
  • the implementation details of the battery current sharing method in this embodiment are described in detail below, and the following content is only implementation details provided for easy understanding, and is not necessary for implementing this solution.
  • each battery pack 1 includes a battery 11 and a DC/DC conversion unit 12 connected to the battery, and the battery 11 may be various types of batteries , such as a lithium battery or a lead-acid battery, etc.
  • the DC/DC conversion unit 12 integrates functions such as data acquisition, control, and communication, and can adjust the voltage/current output by the battery.
  • the battery packs 1 are connected in parallel through the bus bar 2 . Specifically, the positive poles of each battery pack 1 are connected to the positive pole of the bus bar 2 , and the negative poles of each battery pack 1 are connected to the negative pole of the bus bar 2 .
  • Step 201 acquiring state parameters of each battery pack connected in parallel.
  • the battery packs will be connected by communication lines for the battery packs to transmit the state parameters of each battery pack to each other.
  • the communication cables can be CAN/485/SCI, etc.
  • the state parameters can include at least one of the following parameters: One: remaining capacity, output voltage.
  • the battery current sharing method is performed by a DC/DC conversion unit in one of the battery packs, and the battery pack where the DC/DC conversion unit performing the battery current sharing method is located is referred to as the main module.
  • the battery packs in the group other than the master module are recorded as slave modules.
  • the master modules are generated through competition among the battery packs. For example, a battery pack can be randomly selected as the master module, or a preset One of the battery packs can be used as the main module, or the battery pack with the largest remaining battery capacity can be selected as the main module, or the battery pack that is powered on first can be selected as the main module, and the implementation method is not limited thereto.
  • the DC/DC conversion unit in the master module will collect the battery parameters of the battery in the master module, and receive the state parameters of the batteries in each slave module from the DC/DC conversion unit in each slave module; wherein , the state parameters of the battery in each slave module are collected by the DC/DC conversion unit in each slave module.
  • Step 202 comparing the state parameters of each battery pack to obtain a comparison result.
  • Step 203 determine whether the state parameters of each battery pack match, if they match, go to step 204; if not, go to step 205.
  • the state parameters of each battery pack are the same, for example, whether the remaining capacity and output voltage of each battery pack are correspondingly equal within the allowable error range, and if they are equal, it can be considered that the state parameters of each battery pack
  • Step 204 performing current sharing control on each battery pack based on the master-slave current sharing mode.
  • a specific implementation manner in which the master module performs current sharing control on each battery pack based on a master-slave current sharing manner.
  • the DC/DC conversion unit in the master module sends a reference current to all slave modules, and the output current of each slave module is compared with the reference current to obtain a current difference.
  • the DC in each slave module The /DC conversion unit is equipped with a control unit for current-type inner loop control, which will perform current-sharing control according to the current difference, and finally make each slave module and the main module flow equally.
  • the reference current can be set by technicians according to requirements.
  • the reference current can be set to 56A.
  • the DC/DC conversion unit in the master module sends a reference current of 56A to all slave modules, the slave modules The output current is compared with the reference current 56A, and the DC/DC conversion unit in the slave module is adjusted until the output current of the slave module becomes 56A.
  • the state parameters of each slave module may include the output current of each slave module, and the master module can obtain the output current of each slave module by obtaining the state parameters of each slave module.
  • the output current of each slave module is collected by the DC/DC conversion unit in each slave module, and the DC/DC conversion unit in the master module will directly receive the The DC/DC conversion unit obtains the output current of each slave module.
  • Step 205 after performing current sharing control on each battery pack based on the proportional current sharing method, return to step 201 .
  • step 205 further includes sub-steps 2051 and 2052, please refer to FIG. 3 for details.
  • Sub-step 2051 according to the state parameters of each battery group, calculate the proportional coefficient corresponding to each battery group.
  • sub-step 2052 the proportional coefficients corresponding to each battery pack are sent to the DC/DC conversion units in each battery pack, so that after the DC/DC conversion units in each battery pack adjust the driving duty cycle according to the proportional coefficients, return to step 201.
  • the DC/DC conversion unit in the main module will calculate the corresponding proportional coefficient of each battery pack according to the state parameters of each battery pack, that is, the DC/DC in the battery pack Convert the driving duty cycle of the unit, and send the calculated proportional coefficients corresponding to each battery pack to the DC/DC conversion units in each battery pack, so that the DC/DC conversion units in each battery pack can be used according to the calculated
  • the proportional coefficient adjusts the driving duty cycle to ensure that the battery with more remaining capacity or higher output voltage has a larger load capacity and discharges more, while the battery with less remaining capacity or low output voltage has a smaller load capacity and less discharge, so as to achieve various
  • the current is shared between the battery packs in proportion, and the remaining battery capacity of each battery pack is basically kept the same until the state parameters of each battery pack match.
  • the main module performs current sharing control on each battery pack based on the master-slave current sharing method.
  • the state parameter and the proportional coefficient have a positive relationship, that is, the state parameter and the proportional coefficient are directly proportional.
  • bi is equal to 0; if only the output voltage is different in the state parameters of each battery group, then a i is equal to 0, if the remaining capacity and output voltage are different, then there is at least one weight not equal to 0 in a i , and at least one weight not equal to 0 in b i .
  • step 201 , step 202 , step 204 and step 205 are substantially the same as step 301 , step 302 , step 304 and step 305 , and will not be repeated here. The difference is that step 303 is different.
  • the main module will make a judgment after collecting the remaining capacity and output voltage sent by all the slave modules, and determine the relationship between the remaining capacity and output voltage of all battery packs: g(a 1 *C 1j +a 2 *C 2j +a 3 *C 3j ...a i *C ij +b 1 *V 1j +b 2 *V 2j +b 3 *V 3j ...b i *V ij ) are consistent, that is, the main module of this embodiment It will not only judge whether the remaining capacity and output voltage of all battery packs are consistent at a certain moment, but also judge whether the remaining capacity and output voltage of all battery packs are consistent within a certain period of time, so as to improve the accuracy of judgment, and then improve the battery uniformity. reliability of streaming methods.
  • the electronic device will obtain the state parameters of each battery pack connected in parallel, compare the state parameters of each battery pack, and perform equalization on each battery pack based on the master-slave current sharing method when the state parameters of each battery pack match.
  • Current control when the state parameters of each battery pack do not match, the current sharing control of each battery pack is performed based on the proportional current sharing method.
  • this application will dynamically select the master-slave current sharing mode or the proportional current sharing mode to control the current sharing of each battery pack, which solves the battery pack deterioration caused by excessive discharge or insufficient discharge. The situation prolongs the life of the battery pack, saves resources and reduces maintenance costs.
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problem proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • FIG. 5 Another embodiment of the present application relates to an electronic device, as shown in FIG. 5 , including: at least one processor 501; and a memory 502 communicatively connected to at least one processor 501; Instructions executed by the processor 501, the instructions are executed by at least one processor 501, so that the at least one processor 501 can execute the battery current sharing method in the foregoing embodiments.
  • the memory and the processor are connected by a bus
  • the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, and further, the antenna receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory can be used to store data that the processor uses when performing operations.
  • Another embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • a storage medium includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

涉及储能技术领域,公开了一种电池(11)均流方法、电子设备及计算机可读存储介质。该方法包括:获取并联连接的各电池组(1)的状态参数;对各电池组(1)的状态参数进行比较,得到比较结果;若各电池组(1)的状态参数相匹配,则基于主从均流方式对各电池组进行均流控制;若各电池组的状态参数不匹配,则基于比例均流方式对各电池组进行均流控制。

Description

一种电池均流方法、电子设备及计算机可读存储介质
交叉引用
本申请基于申请号为“202110832887.0”、申请日为2021年7月22日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及储能技术领域,特别涉及一种电池均流方法、电子设备及计算机可读存储介质。
背景技术
随着用户对用电量日益增加的需求,市场对高续航能力、大容量储能电池的需求也日益增加,采用多电池组并联运行的方法增大储能电池的总储电量,逐渐成为储能电池研发的一个主力方向。
多电池组并联运行时,各电池组在放电的过程中释放的电能是相同的,然而,各电池组储存电能的能力通常是存在差异的,例如新、旧电池组储存电能的能力就存在较大差异,新电池组储存的电能会多一些,旧电池组储存的能量少一些,若让新、旧电池组释放相同的电能,则会导致新电池组不能充分放电,而旧电池组已经过度放电了,电池组长期处于不能充分放电或过度放电的状态,会不断加重电池组的劣化,进而缩短了各电池组的寿命,并且,在多电池组并联运行的装置中,由于通常难以排除哪些电池组已经发生劣化,甚至损坏,故只能整体替换整个多电池组并联运行的装置,因而造成了大量浪费,维护成本高。
发明内容
本申请实施例提供了一种电池均流方法,包括:获取并联连接的各电池组 的状态参数;对各电池组的状态参数进行比较,得到比较结果;若各电池组的状态参数相匹配,则基于主从均流方式对各电池组进行均流控制;若各电池组的状态参数不匹配,则基于比例均流方式对各电池组进行均流控制。
本申请实施例还提供一种电子设备,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述电池均流方法。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述的电池均流方法。
附图说明
图1是根据本申请一个实施例各电池组和母排的方框示意图;
图2是根据本申请一个实施例的电池均流方法的流程图一;
图3是根据本申请一个实施例的电池均流方法的流程图二;
图4是根据本申请一个实施例的电池均流方法的流程图三;
图5是根据本申请一个实施例的电子设备的方框示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请实施例的主要目的在于提出一种电池均流方法、电子设备及计算机可读存储介质,通过动态调节电池组之间的电流均衡,解决了电池组过度放电或不能充分放电,而导致的电池组劣化的情况,延长了电池组的寿命,节约了资源,降低了维护成本。
本申请的实施例,电子设备会获取并联连接的各电池组的状态参数,比较各电池组的状态参数,在各电池组的状态参数相匹配时,基于主从均流方式对各电池组进行均流控制,在各电池组的状态参数不匹配时,基于比例均流方式对各电池组进行均流控制。本申请会根据各电池组的状态参数,动态选择采用主从均流方式还是比例均流方式对各电池组进行均流控制,解决了电池组过度放电或不能充分放电,而导致的电池组劣化的情况,延长了电池组的寿命,节约了资源,降低了维护成本。
本申请的一个实施例涉及一种电池均流方法,用于动态调节电池组之间的电流均衡。下面对本实施例的电池均流方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
本申请的实施例的应用场景可以包括但不限于以下描述,请参考图1,各电池组1包括电池11和与该电池连接的DC/DC变换单元12,电池11可以是各种类型的电池,如锂电池或铅酸电池等,DC/DC变换单元12集成了数据采集、控制、通讯等功能,可以调节电池输出的电压/电流的大小。各电池组1通过母排2并联在一起,具体地,各电池组1的正极均连接于母排2的正极,各电池组1的负极均连接于母排2的负极。
本实施例的电池均流方法的具体流程可以如图2所示,包括:
步骤201,获取并联连接的各电池组的状态参数。
具体地,各电池组之间会通过通讯线连接起来,以供各电池组相互传输各电池组的状态参数,通讯线缆可以为CAN/485/SCI等,状态参数可以包括以下参数的至少其中之一:剩余容量、输出电压。
在一个实施例中,电池均流方法由各电池组中的一个电池组中的DC/DC变换单元执行,执行电池均流方法的DC/DC变换单元所在的电池组记作主模块,各电池组中除主模块之外的其他各电池组记作各从模块,具体地,各电池组之间是通过互相竞争产生了主模块,例如可以随机选择一个电池组作为主模块,或者选择预设的一个电池组作为主模块,也可以选择电池的剩余容量最多的一个电池组作为主模块,或者选择最先上电的电池组作为主模块,实现方式不限于此。
在一个实施例中,主模块中的DC/DC变换单元会采集主模块中的电池的电 池参数,并从各从模块中的DC/DC变换单元接收各从模块中的电池的状态参数;其中,各从模块中的电池的状态参数由各从模块中的DC/DC变换单元采集得到。
步骤202,对各电池组的状态参数进行比较,得到比较结果。
步骤203,根据比较结果,确定各电池组的状态参数是否匹配,若相匹配,则进入步骤204;若不匹配,则进入步骤205。
具体地,是根据比较结果,确定各电池组的状态参数是否相同,例如确定各电池组的剩余容量和输出电压是否在可容许的误差范围内对应相等,若相等,则可以认为各电池组的状态参数相匹配,若不相等,则可以认为各电池组的状态参数不匹配。
步骤204,基于主从均流方式对各电池组进行均流控制。
在一个实施例中,提供了主模块基于主从均流方式对各电池组进行均流控制的一种具体实现方式。当各电池组的状态参数相匹配时,主模块中的DC/DC变换单元给所有从模块下发基准电流,各从模块的输出电流与基准电流进行比较得到电流差,各从模块中的DC/DC变换单元内部均设置有进行电流型内环控制的控制单元,会根据电流差进行均流控制,最终使各从模块与主模块均流,其中,基准电流可以由技术人员根据需求进行设定。
举例来说,电池若需要各电池组输出电流均为56A,则可以设置基准电流为56A,此时若主模块中的DC/DC变换单元给所有从模块下发一个基准电流56A,从模块的输出电流与基准电流56A进行比较,调整该从模块中的DC/DC变换单元,直至该从模块的输出电流变为56A。
在一个实施例中,各从模块的状态参数中可以包含有各从模块的输出电流,主模块通过获取各从模块的状态参数,就能够获取到各从模块的输出电流。在另一个实施例中,各从模块的输出电流均由各从模块中的DC/DC变换单元采集得到,主模块中的DC/DC变换单元会直接通过通讯线缆,从各从模块中的DC/DC变换单元获取各从模块的输出电流。
步骤205,基于比例均流方式对各电池组进行均流控制后,回到步骤201。
在一个实施例中,步骤205还包括子步骤2051和2052,具体请参考图3。
子步骤2051,根据各电池组的状态参数,计算各电池组对应的比例系数。
子步骤2052,将各电池组对应的比例系数分别发送至各电池组中的DC/DC 变换单元,供各电池组中的DC/DC变换单元根据比例系数调整驱动占空比后,回到步骤201。
具体地,当各电池组的状态参数不匹配时,主模块中的DC/DC变换单元,会根据各电池组的状态参数计算各电池组对应的比例系数,即,电池组中的DC/DC变换单元的驱动占空比,并将计算得到的各电池组对应的比例系数分别发送至各电池组中的DC/DC变换单元,以供各电池组中的DC/DC变换单元根据计算得到的比例系数调整驱动占空比,保证剩余容量多或输出电压大的电池带载量大一些,放电多一些,剩余容量少或输出电压小的电池带载量小一些,放电少一些,以实现各电池组之间按比例均流,最终维持各电池组的电池剩余容量基本保持一致,直至各电池组的状态参数相匹配,主模块就基于主从均流方式对各电池组进行均流控制。
在一个实施例中,状态参数与比例系数为正向关系,即,状态参数与比例系数是成正比的,具体地,比例系数的计算方式可以为:K j=f(a 1*M 1j+a 2*M 2j+a 3*M 3j……a i*M ij),其中,K j为第j个电池组的比例系数,M ij为第j个电池组的第i个状态参数,a i为第i个状态参数的权重;j为大于或等于2的整数,i为大于或等于1的整数。
在一个实施例中,比例系数的计算方式可以为:K j=f(a 1*C 1j+a 2*C 2j+a 3*C 3j……a i*C ij+b 1*V 1j+b 2*V 2j+b 3*V 3j……b i*V ij),其中,K j为第j个电池组的比例系数,C ij为第j个电池组的第i个剩余容量,a i为第i个剩余容量的权重,V ij为第j个电池组的第i个输出电压,b i为第i个输出电压的权重;j为大于或等于2的整数,i为大于或等于1的整数。若各电池组的状态参数中仅剩余容量不同,则b i均等于0;若各电池组的状态参数中仅输出电压不同,则a i均等于0,若各电池组的状态参数中的剩余容量和输出电压均不同,则a i中至少存在一个权重不等于0,并且b i中至少存在一个权重不等于0。
在一个实施例中,请参考图4,步骤201、步骤202、步骤204和步骤205与步骤301、步骤302、步骤304和步骤305大致相同,在此不再赘述,区别在于,步骤303不同。
步骤303,根据比较结果,确定各电池组的剩余容量和输出电压的关系式:g(a 1*C 1j+a 2*C 2j+a 3*C 3j……a i*C ij+b 1*V 1j+b 2*V 2j+b 3*V 3j……b i*V ij)是否一致。
具体地,主模块在收集到所有从模块发送的剩余容量和输出电压后会进行判断,确定所有电池组的剩余容量和输出电压的关系式:g(a 1*C 1j+a 2*C 2j+a 3*C 3j……a i*C ij+b 1*V 1j+b 2*V 2j+b 3*V 3j……b i*V ij)是否一致,即,本实施例的主模块不仅会判断所有电池组的剩余容量和输出电压在某一时刻是否一致,还会判断所有电池组在某一段时间内的剩余容量和输出电压是否一致,以提高判断的准确性,进而提升电池均流方法的可靠性。
本实施例中,电子设备会获取并联连接的各电池组的状态参数,比较各电池组的状态参数,在各电池组的状态参数相匹配时,基于主从均流方式对各电池组进行均流控制,在各电池组的状态参数不匹配时,基于比例均流方式对各电池组进行均流控制。本申请会根据各电池组的状态参数,动态选择采用主从均流方式还是比例均流方式对各电池组进行均流控制,解决了电池组过度放电或不能充分放电,而导致的电池组劣化的情况,延长了电池组的寿命,节约了资源,降低了维护成本。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请另一个实施例涉及一种电子设备,如图5所示,包括:至少一个处理器501;以及,与至少一个处理器501通信连接的存储器502;其中,存储器502存储有可被至少一个处理器501执行的指令,指令被至少一个处理器501执行,以使至少一个处理器501能够执行上述各实施例中的电池均流方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还 接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请另一个实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种电池均流方法,包括:
    获取并联连接的各电池组的状态参数;
    对所述各电池组的状态参数进行比较,得到比较结果;
    若所述各电池组的状态参数相匹配,则基于主从均流方式对所述各电池组进行均流控制;
    若所述各电池组的状态参数不匹配,则基于比例均流方式对所述各电池组进行均流控制。
  2. 根据权利要求1所述的电池均流方法,其中,所述基于比例均流方式对所述各电池组进行均流控制,包括:
    根据所述各电池组的状态参数,计算所述各电池组对应的比例系数;所述比例系数是指电池组中的DC/DC变换单元的驱动占空比;
    将所述各电池组对应的比例系数分别发送至所述各电池组中的DC/DC变换单元,供所述各电池组中的DC/DC变换单元根据所述比例系数调整所述驱动占空比。
  3. 根据权利要求2所述的电池均流方法,其中,所述状态参数与所述比例系数为正向关系;所述比例系数的计算方式为:
    K j=f(a 1*M 1j+a 2*M 2j+a 3*M 3j……a i*M ij);其中,K j为第j个电池组的比例系数,M ij为第j个电池组的第i个状态参数,a i为第i个状态参数的权重;j为大于或等于2的整数,i为大于或等于1的整数。
  4. 根据权利要求1至3中任意一项所述的电池均流方法,其中,所述各电池组分别包括相连接的电池和DC/DC变换单元,所述电池均流方法由所述各电池组中的一个电池组中的DC/DC变换单元执行。
  5. 根据权利要求4所述的电池均流方法,其中,执行所述电池均流方法的DC/DC变换单元所在的电池组记作主模块,所述各电池组中除所述主模块之外的其他各电池组记作各从模块;
    所述获取并联连接的各电池组的状态参数,包括:
    所述主模块中的DC/DC变换单元采集所述主模块中的电池的电池参数,并从所述各从模块中的DC/DC变换单元接收所述各从模块中的电池的状态参数; 其中,所述各从模块中的电池的状态参数由所述各从模块中的DC/DC变换单元采集得到。
  6. 根据权利要求5所述的电池均流方法,其中,所述基于主从均流方式对所述各电池组进行均流控制,包括:
    所述主模块中的DC/DC变换单元计算所述各从模块对应的电流差;所述各从模块对应的电流差是指所述各从模块的输出电流与所述主模块的下发给各从模块基准电流的差值;
    将所述各从模块对应的电流差分别发送至所述各从模块中的DC/DC变换单元,供所述各从模块中的DC/DC变换单元根据所述电流差进行均流控制。
  7. 根据权利要求6所述的电池均流方法,其中,所述各从模块的状态参数中包含所述各从模块的输出电流;或者,
    在所述各电池组的状态参数相匹配时,且在所述基于主从均流方式对所述各电池组进行均流控制之前,还包括:
    所述主模块中的DC/DC变换单元从所述各从模块中的DC/DC变换单元获取所述各从模块的输出电流;其中,所述各从模块的输出电流由所述各从模块中的DC/DC变换单元采集得到。
  8. 根据权利要求1至7中任一项所述的电池均流方法,其中,所述状态参数包括以下参数的至少其中之一:剩余容量、输出电压。
  9. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至8中任一项所述的电池均流方法。
  10. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至8中任一项所述的电池均流方法。
PCT/CN2022/098774 2021-07-22 2022-06-14 一种电池均流方法、电子设备及计算机可读存储介质 WO2023000869A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22845036.7A EP4376255A1 (en) 2021-07-22 2022-06-14 Battery current sharing method, electronic device, and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110832887.0A CN115693884A (zh) 2021-07-22 2021-07-22 一种电池均流方法、电子设备及计算机可读存储介质
CN202110832887.0 2021-07-22

Publications (1)

Publication Number Publication Date
WO2023000869A1 true WO2023000869A1 (zh) 2023-01-26

Family

ID=84979809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098774 WO2023000869A1 (zh) 2021-07-22 2022-06-14 一种电池均流方法、电子设备及计算机可读存储介质

Country Status (3)

Country Link
EP (1) EP4376255A1 (zh)
CN (1) CN115693884A (zh)
WO (1) WO2023000869A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185354A (zh) * 2011-05-12 2011-09-14 无锡东南车辆科技有限公司 一种用于电动自行车的锂电池组智能充放电管理控制系统
CN102340040A (zh) * 2011-10-27 2012-02-01 山东圣阳电源股份有限公司 大功率模块化铅酸蓄电池化成充放电系统
CN107359662A (zh) * 2017-08-01 2017-11-17 华南理工大学 一种具有并行均衡功能的电池管理系统及均衡方法
JP2020046335A (ja) * 2018-09-20 2020-03-26 株式会社ケーヒン バッテリ監視装置
CN112636417A (zh) * 2020-12-09 2021-04-09 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) 一种蓄电池组并联充电均流电路结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185354A (zh) * 2011-05-12 2011-09-14 无锡东南车辆科技有限公司 一种用于电动自行车的锂电池组智能充放电管理控制系统
CN102340040A (zh) * 2011-10-27 2012-02-01 山东圣阳电源股份有限公司 大功率模块化铅酸蓄电池化成充放电系统
CN107359662A (zh) * 2017-08-01 2017-11-17 华南理工大学 一种具有并行均衡功能的电池管理系统及均衡方法
JP2020046335A (ja) * 2018-09-20 2020-03-26 株式会社ケーヒン バッテリ監視装置
CN112636417A (zh) * 2020-12-09 2021-04-09 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) 一种蓄电池组并联充电均流电路结构

Also Published As

Publication number Publication date
CN115693884A (zh) 2023-02-03
EP4376255A1 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
AU2021202731B2 (en) Method for managing charging and discharging of parallel-connected battery pack, electronic device, and electrical system
EP2717423B1 (en) Power storage system having modularized bms connection structure and method for controlling the system
KR101398583B1 (ko) 모듈화된 bms 연결 구조를 포함하는 전력 저장 시스템 및 그 제어 방법
CN112531828B (zh) 一种电化学储能电站bms协同控制系统及方法
KR101553451B1 (ko) 에너지 저장 시스템에서 전력 분배 방법 및 장치
US20230070522A1 (en) Charging method and power conversion equipment
WO2022198564A1 (zh) 一种储能系统的控制方法和储能系统
US11949273B2 (en) Method for managing charging and discharging of parallel-connected battery pack, electronic device, and electrical system
JP5495600B2 (ja) 充電制御装置および車両
US20220239135A1 (en) Power supply control method of power conversion apparatus and power conversion apparatus
WO2022000473A1 (zh) 充放电均衡控制方法、电池组件及用电系统
CN115885447B (zh) 充放电装置、电池充电和放电的方法、以及充放电系统
US12095301B2 (en) Pulse charging method, battery management system of traction battery and charging pile
CN111953034A (zh) 一种电池均衡方法以及电池均衡设备
CN103413980A (zh) 智能混合电池管理系统
WO2024066911A1 (zh) 智能电池管理系统、方法、电子设备及可读存储介质
WO2023000869A1 (zh) 一种电池均流方法、电子设备及计算机可读存储介质
CN117175642A (zh) 储能系统充放电控制方法、装置、电子设备及系统
US20230029492A1 (en) Charging and discharging apparatus and battery charging method
CN115765070A (zh) 电池系统的均衡控制方法、电池管理系统和电池系统
JP2023552788A (ja) 動力電池の充電方法、充電装置と充電システム
WO2018157534A1 (zh) 储能电池管理系统的均衡方法、装置、储能电池管理系统
CN116325420A (zh) 电池充电的方法和充放电装置
WO2024193196A1 (zh) 电压均衡模块、方法和储能装置、可读存储介质
WO2019042430A1 (zh) 电池信息采集器、电池均衡系统、车辆、方法及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845036

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022845036

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022845036

Country of ref document: EP

Effective date: 20240222