WO2022198564A1 - 一种储能系统的控制方法和储能系统 - Google Patents

一种储能系统的控制方法和储能系统 Download PDF

Info

Publication number
WO2022198564A1
WO2022198564A1 PCT/CN2021/082991 CN2021082991W WO2022198564A1 WO 2022198564 A1 WO2022198564 A1 WO 2022198564A1 CN 2021082991 W CN2021082991 W CN 2021082991W WO 2022198564 A1 WO2022198564 A1 WO 2022198564A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage unit
cluster
storage system
unit cluster
Prior art date
Application number
PCT/CN2021/082991
Other languages
English (en)
French (fr)
Inventor
吴志鹏
胡杨
周贺
余士江
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202180081920.9A priority Critical patent/CN116601509A/zh
Priority to EP21932191.6A priority patent/EP4303601A4/en
Priority to PCT/CN2021/082991 priority patent/WO2022198564A1/zh
Publication of WO2022198564A1 publication Critical patent/WO2022198564A1/zh
Priority to US18/471,789 priority patent/US20240014677A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of energy storage, and more particularly, to a control method and an energy storage system of an energy storage system.
  • the battery management system uses the ampere-hour accumulation method to estimate the state of charge (SOC) of the battery, that is, the battery charging or discharging current A is measured, and then accumulated by hour h, and the statistics The accumulated charge and discharge capacity Ah is added to the initial capacity to obtain the current remaining battery capacity.
  • the energy storage system In general energy storage scenarios, the energy storage system is regularly fully charged and discharged once, and the SOC is corrected by the voltage at the end of charging or discharging.
  • the energy storage system follows the automatic generation control (AGC) dispatching command to perform charging or discharging actions.
  • AGC automatic generation control
  • AGC dispatching command is usually within 5 minutes, and the probability of charging and discharging is quite similar. It is in the condition of one-way charging or discharging for a long time, so this method will make the energy storage system work in the battery voltage plateau region for a long time, and there are few fully charged/fully discharged to meet the SOC calibration conditions, and the SOC will not be calibrated for a long time. , the SOC accuracy is getting worse and worse, and when the SOC accuracy is poor, the SOC-based control becomes infeasible, and the SOC value also loses its reference value.
  • the present application provides a control method and an energy storage system for an energy storage system, which can realize on-line SOC correction of the energy storage system without affecting the normal operation of the energy storage system.
  • a method for controlling an energy storage system includes a plurality of energy storage unit clusters, a plurality of DC converters, and a controller, the plurality of energy storage unit clusters and the plurality of DC converters.
  • the first energy storage unit cluster needs to be calibrated; according to the state of charge SOC of the first energy storage unit cluster and the current state of charge or discharge of the energy storage system, the first energy storage unit cluster is controlled to charge or discharge or stand by, so that the The first energy storage unit cluster reaches the SOC correction condition.
  • the controller determines that the first energy storage unit cluster in the plurality of energy storage unit clusters needs to be corrected, and then according to the state of charge SOC of the first energy storage unit cluster and whether the energy storage system is currently in a charging state or discharging state, control the first energy storage unit cluster to charge or discharge or stand by, so that the first energy storage unit cluster reaches the SOC correction condition, and can only charge a certain energy storage unit cluster in the energy storage system that needs to be corrected or Discharge or standby control realizes the independent decoupling management of the energy storage unit cluster, the energy storage system does not need to be out of operation, and does not affect the normal operation of the energy storage system, so that the energy storage unit cluster quickly reaches the SOC correction condition and realizes the energy storage system.
  • SOC online correction can be performed in turn for each energy storage unit cluster of the energy storage system that needs to be corrected, so that the SOC accuracy of the entire energy storage system can be improved.
  • the cluster of energy storage cells may be a cluster of batteries or other cells capable of storing energy.
  • the controller may be an energy management system (EMS) or a smart array control unit (SACU).
  • EMS energy management system
  • SACU smart array control unit
  • the SOC correction condition may be a fully charged/fully discharged state.
  • the first energy storage unit cluster is controlled to be charged according to the state of charge SOC of the first energy storage unit cluster and the current state of charge or discharge of the energy storage system Or discharging or standby, including: if the SOC of the first energy storage unit cluster is greater than or equal to a first threshold, when the energy storage system is in a charging state, controlling the first energy storage unit cluster to charge, and in the energy storage system When in the discharging state, control the first energy storage unit cluster to stand by until the energy storage system is in the charging state; or, if the SOC of the first energy storage unit cluster is less than the first threshold, when the energy storage system is in the discharging state, The first energy storage unit cluster is controlled to discharge, and when the energy storage system is in a charging state, the first energy storage unit cluster is controlled to stand by until the energy storage system is in a discharging state.
  • the first threshold may be 50%.
  • the state of charge SOC of the first energy storage unit cluster is greater than or equal to the first threshold, it can be determined how to control the first energy storage unit cluster so that the energy storage unit cluster can quickly reach the SOC correction condition. If the SOC of the first energy storage unit cluster is greater than or equal to the first threshold, when the energy storage system is in a charging state, control the first energy storage unit cluster to charge, and when the energy storage system is in a discharging state, control the The first energy storage unit cluster is on standby until the energy storage system is in a charging state.
  • the first energy storage unit cluster is controlled to perform Discharging, when the energy storage system is in the charging state, the first energy storage unit cluster is controlled to stand by until the energy storage system is in the discharging state, so that the first energy storage unit cluster can quickly reach the SOC correction condition.
  • the controlling the first energy storage unit cluster to charge includes: controlling the first energy storage unit cluster to be greater than a normal operating mode of the energy storage system
  • the charging power is used for charging, and the charging power in the normal working mode refers to the charging power when the energy storage system allocates power according to the SOC of the plurality of energy storage unit clusters; or, the controlling the first energy storage unit cluster to discharge, including : Control the first energy storage unit cluster to discharge at a discharge power greater than that in the normal working mode of the energy storage system.
  • the discharge power in the normal working mode refers to the distribution of the energy storage system according to the SOC of the plurality of energy storage unit clusters. Discharge power at power.
  • the first energy storage unit cluster By controlling the first energy storage unit cluster to be charged with a charging power greater than that in the normal working mode of the energy storage system, or controlling the first energy storage unit cluster to be greater than the discharging power under the normal working mode of the energy storage system By discharging, the first energy storage unit cluster can be charged or discharged with a power greater than that in the normal working mode, thereby quickly reaching the SOC correction condition.
  • controlling the first energy storage unit cluster to charge includes: controlling the first energy storage unit cluster to charge at the maximum charging power of the energy storage system, the The maximum charging power is greater than the charging power in the normal working mode, and is the maximum power calculated by the battery management system BMS of the energy storage system; or, controlling the first energy storage unit cluster to discharge includes: controlling the first energy storage unit The unit cluster is discharged with the maximum discharge power of the energy storage system, and the maximum discharge power is greater than the discharge power in the normal working mode, which is the maximum power calculated by the battery management system BMS of the energy storage system.
  • the first energy storage unit cluster By controlling the first energy storage unit cluster to charge with the maximum charging power calculated by the battery management system BMS of the energy storage system, or by controlling the first energy storage unit cluster to discharge at the maximum charging power calculated by the BMS of the energy storage system The power is discharged, so that the first energy storage unit cluster can be charged or discharged with the maximum power calculated by the BMS, thereby quickly reaching the SOC correction condition.
  • the determining that the first energy storage unit cluster in the plurality of energy storage unit clusters needs to be corrected includes: receiving the first energy storage unit cluster sent by the BMS of the energy storage system The cumulative running time Tr of the energy storage unit cluster from the last SOC correction time point and the cumulative non-operating time Td of the first energy storage unit cluster from the last SOC correction time point; the first energy storage unit is determined according to the Tr and the Td Cell clusters need to be corrected.
  • the controller can determine that the first energy storage unit cluster needs to be corrected according to the Tr and the Td, so as to control the charging and discharging power of the first energy storage unit cluster, so that the first energy storage unit cluster quickly reaches the SOC correction condition .
  • the determining that the first energy storage unit cluster needs to be corrected according to the Tr and the Td includes: if the Tr is greater than or equal to the time Ts that needs to be corrected for the cumulative operation, Then it is determined that the first energy storage unit cluster is the energy storage unit cluster that needs to be corrected; or, if the Td is greater than or equal to the accumulated non-operation time Tp that needs to be corrected, then the energy storage unit cluster is determined to be the energy storage unit cluster that needs to be corrected. .
  • Tr is greater than or equal to Ts, or whether Td is greater than or equal to Tp
  • the first energy storage unit cluster when multiple energy storage unit clusters are energy storage unit clusters that need to be corrected, it is determined that the first energy storage unit cluster needs to be corrected according to the priority order.
  • the controller can preferentially control the charging or discharging or standby working mode of the first energy storage unit cluster.
  • the BMS of the energy storage system is notified to perform SOC correction on the first energy storage unit cluster.
  • the SOC correction on the first energy storage unit cluster is realized.
  • the controller can end the individual control of the first energy storage unit cluster, so that the controller can control the charging or discharging or standby of other energy storage unit clusters that need to be corrected, so that other energy storage unit clusters that need to be corrected achieve SOC correction. condition.
  • an energy storage system in a second aspect, includes a plurality of energy storage unit clusters, a plurality of DC converters, a controller and a battery management system BMS, the plurality of energy storage unit clusters and the plurality of energy storage unit clusters
  • the DC converters are in one-to-one correspondence so that the controller individually controls each energy storage unit cluster in the plurality of energy storage unit clusters, and the BMS is used to obtain the state of charge SOC of the plurality of energy storage unit clusters, and to The SOC of the plurality of energy storage unit clusters is sent to the controller; the controller is used for determining that the first energy storage unit cluster in the plurality of energy storage unit clusters needs to be corrected; the controller is also used for determining according to the first energy storage unit cluster The state of charge SOC of the cluster and the current state of charge or discharge of the energy storage system, control the first energy storage unit cluster to charge or discharge or stand by, so that the first energy storage unit cluster reaches the SOC correction condition.
  • the controller determines that the first energy storage unit cluster in the plurality of energy storage unit clusters needs to be corrected, and then according to the state of charge SOC of the first energy storage unit cluster and whether the energy storage system is currently in a charging or discharging state , control the first energy storage unit cluster to charge or discharge or stand by, so that the first energy storage unit cluster reaches the SOC correction condition, and can only charge or discharge a certain energy storage unit cluster in the energy storage system that needs to be corrected Or standby control, to achieve independent decoupling management of the energy storage unit cluster, the energy storage system does not need to exit operation, and does not affect the normal operation of the energy storage system, so that the energy storage unit cluster quickly reaches the SOC correction condition, and realizes the SOC of the energy storage system. Online correction.
  • the SOC online correction can be performed in turn for each energy storage unit cluster of the energy storage system that needs to be corrected, so that the SOC accuracy of the entire energy storage system can be improved.
  • the cluster of energy storage cells may be a cluster of batteries or other cells capable of storing energy.
  • the controller may be an EMS or a SACU.
  • the SOC correction condition may be a fully charged/fully discharged state.
  • the first energy storage unit cluster is controlled to be charged according to the state of charge SOC of the first energy storage unit cluster and the current state of charge or discharge of the energy storage system Or discharging or standby, including: if the SOC of the first energy storage unit cluster is greater than or equal to a first threshold, when the energy storage system is in a charging state, controlling the first energy storage unit cluster to charge, and in the energy storage system When in the discharging state, control the first energy storage unit cluster to stand by until the energy storage system is in the charging state; or, if the SOC of the first energy storage unit cluster is less than the first threshold, when the energy storage system is in the discharging state, The first energy storage unit cluster is controlled to discharge, and when the energy storage system is in a charging state, the first energy storage unit cluster is controlled to stand by until the energy storage system is in a discharging state.
  • the first threshold may be 50%.
  • the state of charge SOC of the first energy storage unit cluster is greater than or equal to the first threshold, it can be determined how to control the first energy storage unit cluster so that the energy storage unit cluster can quickly reach the SOC correction condition. If the SOC of the first energy storage unit cluster is greater than or equal to the first threshold, when the energy storage system is in a charging state, control the first energy storage unit cluster to charge, and when the energy storage system is in a discharging state, control the The first energy storage unit cluster is on standby until the energy storage system is in a charging state.
  • the first energy storage unit cluster is controlled to perform Discharging, when the energy storage system is in the charging state, the first energy storage unit cluster is controlled to stand by until the energy storage system is in the discharging state, so that the first energy storage unit cluster can quickly reach the SOC correction condition.
  • the controlling the first energy storage unit cluster to charge includes: controlling the first energy storage unit cluster to be greater than a normal operating mode of the energy storage system
  • the charging power is used for charging, and the charging power in the normal working mode refers to the charging power when the energy storage system allocates power according to the SOC of the plurality of energy storage unit clusters; or, the control of the first energy storage unit cluster to discharge includes: The first energy storage unit cluster is controlled to discharge at a discharge power greater than that in the normal operation mode of the energy storage system, and the discharge power in the normal operation mode refers to the time when the energy storage system allocates power according to the SOC of the plurality of energy storage unit clusters discharge power.
  • the first energy storage unit cluster By controlling the first energy storage unit cluster to be charged with a charging power greater than that in the normal working mode of the energy storage system, or controlling the first energy storage unit cluster to be greater than the discharging power under the normal working mode of the energy storage system By discharging, the first energy storage unit cluster can be charged or discharged with a power greater than that in the normal working mode, thereby quickly reaching the SOC correction condition.
  • controlling the first energy storage unit cluster to charge includes: controlling the first energy storage unit cluster to charge at the maximum charging power of the energy storage system, and the maximum The charging power is greater than the charging power in the normal working mode, and is the maximum power calculated by the BMS; or, controlling the first energy storage unit cluster to discharge includes: controlling the first energy storage unit cluster to use the energy storage system The maximum discharge power is used to discharge, and the maximum discharge power is greater than the discharge power in the normal working mode, which is the maximum power calculated by the BMS.
  • the first energy storage unit cluster By controlling the first energy storage unit cluster to charge with the maximum charging power calculated by the battery management system BMS of the energy storage system, or by controlling the first energy storage unit cluster to discharge at the maximum charging power calculated by the BMS of the energy storage system The power is discharged, so that the first energy storage unit cluster can be charged or discharged with the maximum power calculated by the BMS, thereby quickly reaching the SOC correction condition.
  • the determining that the first energy storage unit cluster in the plurality of energy storage unit clusters needs to be corrected includes: the BMS is further configured to send the controller to the controller.
  • the controller is further configured to receive the stored energy The Tr and the Td sent by the BMS of the system;
  • the controller is further configured to determine that the first energy storage unit cluster needs to be corrected according to the Tr and the Td.
  • the cumulative running time Tr of the first energy storage unit cluster from the last SOC correction time point and the cumulative non-operation time Td of the first energy storage unit cluster from the last SOC correction time point sent by receiving the BMS of the energy storage system the controller can determine that the first energy storage unit cluster needs to be corrected according to the Tr and the Td, so as to control the charging and discharging power of the first energy storage unit cluster, so that the first energy storage unit cluster can quickly reach SOC correction.
  • the determining that the first energy storage unit cluster needs to be corrected according to the Tr and the Td includes: if the Tr is greater than or equal to the time Ts that needs to be corrected for the cumulative operation, Then it is determined that the first energy storage unit cluster is the energy storage unit cluster that needs to be corrected; or, if the Td is greater than or equal to the accumulated non-operation time Tp that needs to be corrected, then the energy storage unit cluster is determined to be the energy storage unit cluster that needs to be corrected. .
  • Tr is greater than or equal to Ts, or whether Td is greater than or equal to Tp
  • the controller determines, according to a priority order, that the first energy storage unit cluster needs Correction.
  • the controller can preferentially control the charging or discharging or standby working mode of the first energy storage unit cluster.
  • the controller is further configured to, when the first energy storage unit cluster reaches the SOC correction condition, notify the BMS of the energy storage system about the first energy storage unit cluster.
  • SOC correction can be performed on a cluster of cells.
  • the SOC correction on the first energy storage unit cluster is realized.
  • the controller is further configured to receive a notification sent by the BMS that the SOC correction of the first energy storage unit cluster is completed; the controller is further configured to control the The first energy storage unit cluster is charged or discharged or on standby in the normal operation mode of the energy storage system, and the normal operation mode refers to a mode in which the energy storage system distributes power according to the SOCs of the plurality of energy storage unit clusters.
  • the controller can end the individual control of the first energy storage unit cluster, so that the controller can control other energy storage unit clusters that need to be calibrated to charge or discharge or stand by, so that other energy storage unit clusters that need to be calibrated reach the SOC. calibration conditions.
  • FIG. 1 is a schematic diagram of an energy storage system provided by the present application.
  • FIG. 2 is an architectural diagram of an energy storage system provided by the present application.
  • FIG. 3 is another structural diagram of an energy storage system provided by the present application.
  • FIG. 4 is another structural diagram of an energy storage system provided by the present application.
  • FIG. 5 is an architectural diagram of an energy storage system provided by the present application.
  • FIG. 6 is a schematic diagram of a control method of an energy storage system provided by the present application.
  • FIG. 7 is a schematic flowchart of a control method of an energy storage system provided by the present application.
  • FIG. 1 is a schematic diagram of an energy storage system provided by the present application.
  • the energy storage system includes at least one energy storage unit cluster, such as battery cluster 1 to battery cluster m shown in Figure 1, where m can be a natural number greater than 0, that is, it can be flexibly adjusted according to the energy storage capacity in practical applications
  • the number of battery clusters if the energy storage capacity is large, the number of battery clusters can be appropriately set, and if the energy storage capacity is small, the number of battery clusters can also be appropriately reduced.
  • the energy storage unit cluster may be presented in the form of a battery cluster, or may be presented in the form of other units capable of storing energy, which is not limited in this application.
  • the present application describes the technical solutions of the present application in the form of energy storage unit clusters as battery clusters.
  • Each battery cluster is composed of at least two battery energy storage systems (ESS) connected in series, such as battery module 1 to battery module j in Figure 1, where j can be a natural number greater than or equal to 2.
  • Each energy storage module ESS consists of several energy storage elements connected in series or in parallel to form the smallest energy storage and management unit.
  • a battery management system BMS is designed in each energy storage module and battery cluster to monitor battery information such as SOC, temperature, and current, and conduct real-time information exchange with the upper-layer EMS or SACU. Realize the effective management and control of the entire battery energy storage system.
  • each battery cluster is decoupled and managed, that is, each battery cluster can be controlled independently.
  • the battery cluster that requires SOC correction is individually controlled without affecting the normal operation of the energy storage system.
  • FIG. 2 is an architecture diagram of an energy storage system provided by the present application.
  • the battery modules are connected in series to form a battery cluster as shown in Figure 1, and then the battery cluster is connected to one port of a bidirectional DC converter, and the other port of the bidirectional DC converter The port is connected to the direct current bus (DC BUS).
  • DC BUS direct current bus
  • each battery cluster is connected to a bidirectional DC converter and a DC bus DC BUS, and the battery cluster is realized by the bidirectional DC converter and the DC BUS. energy interaction.
  • each group of battery clusters can be connected to a bidirectional DC converter, so that the single-cluster operation of the battery cluster can be achieved independently.
  • Decoupling management can also effectively avoid the short board effect between battery clusters and realize the normal operation of the energy storage system.
  • n is a natural number greater than 0.
  • the AC side of the n PCSs will be connected to the low voltage side of the transformer, and the high voltage side of the transformer will be connected to the power grid.
  • the combiner cabinet can complete the collection and distribution of the current on the DC BUS, and can realize the overall matching of the AC and DC side power by configuring the corresponding number when the power of the DC converter and the PCS single machine do not match the same.
  • the combiner cabinet shown in Figure 2 is not required.
  • the present application can also implement the function of the combiner cabinet by means of parallel connection of DC bus bars, etc., which is not limited in the present application.
  • n PCSs shown in Figure 2 can not only be connected in parallel to the low-voltage side of the two-winding transformer, but also can be divided into two or more groups and connected in parallel to the three-winding double-split transformer or other multi-winding transformers. Type transformers on multiple low-voltage buses.
  • the transformer is not a strongly constrained component of the present application, and in a low-voltage grid-connected scenario, a transformer may not be required.
  • the present application further elaborates the technical solution of the present application by taking the voltage of the battery module as 57.6V and the number of battery modules in series as 20 as an example but not a limitation.
  • a matching DC converter should be selected according to the size of the port voltage.
  • the matching DC converter is a bidirectional DC/DC converter, matching the voltage of 1000Vdc to 1500Vdc, matching the battery cluster port voltage and the AC voltage of 380Vac to 800Vac.
  • the circuit topology adopted by the DC converter in the embodiment of the present application is generally a non-isolated circuit.
  • a flying capacitor multi-level circuit, a three-level BOOST circuit, a four-tube buck-boost circuit, etc. can be selected for the non-isolated circuit, which is not limited in this application.
  • the PCS described in this application is a bidirectional DC/AC converter, and a neutral point clamped T-type three-level circuit, a neutral point clamped (NPC) circuit, and a Source neutral point clamped (active neutral point clamped, ANPC) circuit, flying capacitor multilevel circuit, etc.
  • the DC converter or PCS is usually designed to have a wide range input and output capabilities.
  • the power switching device of the DC converter and the PCS used in the embodiment of the present application may be a MOSFET or an IGBT.
  • FIG. 3 is a schematic diagram of the architecture of another energy storage system provided by the present application.
  • the other ends of the m DC converters shown in Figure 3 are respectively connected to the DC sides of m PCSs, the AC sides of m PCSs are collected to the low voltage side of the transformer, and the The high voltage side is connected to the grid.
  • the DC converter and the PCS are in one-to-one correspondence, and the stand-alone power of the DC converter and the PCS is matched.
  • the output power of the PCS can be directly controlled, and the DC converter works in the voltage source mode.
  • FIG. 4 is a schematic diagram of the architecture of yet another energy storage system provided by the present application.
  • FIG. 4 it includes m battery clusters in total, where m is a natural number greater than 0.
  • Each battery cluster is connected to a PCS, the AC side of m PCSs is collected to the low-voltage side of the transformer, and the high-voltage side of the transformer is connected to the power grid.
  • the architecture shown in Figure 4 can realize the independent control of battery clusters, so as to realize the independent decoupling management of single-cluster operation of battery clusters, and also effectively avoid the short board effect between battery clusters.
  • the charging/discharging of the battery cluster can be controlled by controlling the output power of the PCS.
  • FIG. 5 is a schematic diagram of the architecture of yet another energy storage system provided by the present application.
  • each battery cluster is connected to a DC converter, and the other ends of the DC converters of each cluster are connected to the DC side of a centralized PCS, and the centralized PCS
  • the AC side of the transformer is connected to one side of the transformer, and the other side of the transformer is connected to the grid.
  • the DC converters connected in series with the battery clusters can realize the decoupling between the battery clusters, so that independent charging or discharging can also be realized. or standby control.
  • a transformer is not necessary.
  • the grid voltage level is the same as the PCS output voltage level, and a transformer may not be required.
  • the energy storage system may include the following components: multiple energy storage unit clusters, multiple DC converters, a controller and a battery management system BMS, multiple energy storage unit clusters and multiple energy storage unit clusters.
  • the DC converters are in one-to-one correspondence, so that the controller individually controls each energy storage unit cluster in the plurality of energy storage unit clusters.
  • the battery management system BMS is used to acquire the state of charge SOCs of multiple energy storage unit clusters, and send the SOCs of the multiple energy storage unit clusters to a controller.
  • the controller may be an EMS or a SACU, and the controller is used to determine that the first energy storage unit cluster in the plurality of energy storage unit clusters needs to be corrected, and according to the SOC of the first energy storage unit cluster and the current state of charging or In the discharge state, the first energy storage unit cluster is controlled to charge or discharge or stand by, so that the first energy storage unit cluster reaches the SOC correction condition.
  • the SOC correction condition may be a full charge/discharge state.
  • FIG. 6 shows a schematic diagram of a control method of an energy storage system provided by the present application.
  • the execution body of the method is a controller in the energy storage system.
  • the controller may be an EMS or a SACU. Not limited.
  • S620 according to the state of charge SOC of the first energy storage unit cluster and the current state of charge or discharge of the energy storage system, control the first energy storage unit cluster to charge or discharge or stand by, so that the first energy storage unit cluster The SOC correction condition is reached.
  • the controller obtains the state of charge of the first energy storage unit cluster and the state of charge of the first energy storage unit cluster and the state of charge of the energy storage system by determining the first energy storage unit cluster that needs to be corrected among the plurality of energy storage units. or the discharge state, to realize the independent control of charging or discharging or standby of the first energy storage unit cluster, so that the first energy storage unit cluster reaches the SOC correction condition.
  • #a If the SOC of the first energy storage unit cluster is greater than or equal to the first threshold, and when the energy storage system is in the charging state, the controller controls the first energy storage unit cluster to charge; When the system is in a discharging state, the controller controls the first energy storage unit cluster to stand by until the energy storage system is in a charging state.
  • the first threshold may be 50%.
  • the first energy storage unit cluster can quickly reach the SOC correction condition.
  • the controller controls the first energy storage unit cluster to be charged with a charging power greater than that in the normal working mode of the energy storage system; or, if necessary When controlling the first energy storage unit cluster to discharge, the controller controls the first energy storage unit cluster to discharge at a discharge power greater than that in the normal working mode of the energy storage system.
  • the first energy storage unit cluster can be charged or discharged with a power greater than that in the normal working mode, thereby quickly reaching the SOC correction condition.
  • the discharging or charging power in the normal working mode refers to the discharging or charging power when the energy storage system allocates power according to the SOCs of the plurality of energy storage unit clusters.
  • the controller controls the first energy storage unit cluster to charge, the first energy storage unit cluster is charged with the maximum charging power of the energy storage system, and the maximum charging power is greater than the charging power in the normal working mode, which is the energy storage system.
  • the discharge power below is the maximum power calculated by the battery management system BMS of the energy storage system.
  • the controller can receive the cumulative operating time Tr of the first energy storage unit cluster from the last SOC correction time point and the first energy storage unit cluster from the last SOC correction time sent by the BMS from the energy storage system.
  • the accumulated non-operation time Td of the point is determined, and whether the first energy storage unit cluster needs to be corrected is determined according to the Tr and the Td.
  • the Tr is greater than or equal to the cumulative running time Ts that needs to be corrected, it is determined that the first energy storage unit cluster is the energy storage unit cluster that needs to be corrected; or, if the Td is greater than or equal to the cumulative non-operating time that needs to be corrected Tp, it is determined that the energy storage unit cluster is the energy storage unit cluster that needs to be corrected.
  • the controller will determine that the first energy storage unit cluster needs to be corrected according to the priority order.
  • the priority order is determined according to the detection order. For example, the earlier a battery cluster that needs SC correction is detected, the higher the corresponding priority.
  • the controller will notify the BMS of the energy storage system to perform SOC correction on the first energy storage unit cluster.
  • the controller will receive the notification sent by the BMS that the SOC correction of the first energy storage unit cluster is completed, or will control the first energy storage unit cluster to charge or discharge in the normal working mode of the energy storage system. or standby.
  • the present application can control the charging, discharging or standby of the first energy storage unit cluster independently, so that the first energy storage unit cluster reaches the SOC correction condition, and only one of the energy storage systems needs to be corrected
  • the energy storage unit cluster is charged or discharged or standby control is performed to realize the independent decoupling management of the energy storage unit cluster.
  • Correction conditions to achieve online SOC correction of the energy storage system can be performed in turn for each energy storage unit cluster of the energy storage system that needs to be corrected, so that the SOC accuracy of the energy storage system as a whole can be improved.
  • FIG. 7 is a schematic flowchart of a control method of an energy storage system according to an embodiment of the present application, and is also a further detailed description of the control method shown in FIG. 6 .
  • the method may include steps S701-S714.
  • the architecture shown in FIG. 2 is used as an example for description.
  • the BMS monitors the running state of each battery cluster, and records the time Ti of the last SOC correction of each battery cluster, the accumulated running time Tr and the accumulated non-running time Td.
  • the cumulative operating time refers to the cumulative operating time of the battery cluster from the last SOC correction
  • the cumulative non-operating time refers to the cumulative non-operating time of the battery cluster from the previous SOC correction.
  • not running means that the battery cluster is in a power-off state.
  • the BMS determines whether Tr is greater than or equal to the preset time Ts that needs to be corrected for the cumulative operation.
  • step S703 If no, go to step S703; if yes, go to step S704.
  • Tr is greater than or equal to the time Ts for which the accumulative operation needs to be corrected, it means that the battery cluster has reached the preset condition of the accumulative operation that needs to be corrected, and the battery cluster needs to be corrected.
  • the condition that the preset accumulated operation needs to be corrected is that the accumulated operation time of the battery cluster is greater than the preset Ts.
  • the BMS determines whether Td is greater than or equal to the preset cumulative non-operation time Tp that needs to be corrected.
  • step S701 If no, go to step S701; if yes, go to step S704.
  • Td is greater than or equal to the time Tp that the accumulative non-operation needs to be corrected, it means that the battery cluster has reached the preset condition of the accumulative operation that needs to be corrected, and the battery cluster needs to be corrected.
  • the condition that the preset cumulative operation needs to be corrected is that the cumulative non-operation time of the battery cluster is greater than the preset Td.
  • the EMS prioritizes each cluster.
  • the criterion for the BMS to judge that the battery cluster needs to be corrected is Tr ⁇ Ts, or Td ⁇ Tp.
  • the EMS prioritizes these battery clusters that need to be calibrated according to the time sequence in which the calibration needs to be detected. Among them, the earlier the battery cluster that needs to be corrected is detected, the higher the priority.
  • the execution subject in step S704 may also be the SACU.
  • the BMS determines whether the SOC of the battery cluster to be corrected is greater than a first threshold.
  • step S706 If no, go to step S706; if yes, go to step S711.
  • the next operation is to make the battery The cluster reaches the fully charged state as soon as possible to achieve the SOC correction condition; when the BMS determines that the SOC of the battery cluster that needs to be corrected is not greater than the first threshold, it means that the current state of the battery cluster is easier to achieve than to reach the full charge. Therefore, the next operation is to make the battery cluster reach the fully discharged state as soon as possible to reach the SOC correction condition.
  • the judging criterion adopted is whether the SOC of the battery cluster is in a fully charged/fully discharged state.
  • the first threshold may be 50%.
  • the SOC correction condition may also be determined based on whether the battery cluster voltage is in a fully charged/fully discharged state.
  • the EMS controller monitors that the energy storage system is currently in a charging or discharging state.
  • the EMS controller monitors whether the energy storage system is currently in a charging or discharging state, and can make the EMS determine whether the energy storage system is in a discharging state in step S707, so as to adjust the state of the battery cluster according to whether the energy storage system is in a discharging state.
  • the state of the battery cluster includes participation in discharge and standby.
  • the EMS may determine whether the energy storage system is currently in a charging or discharging state by judging whether the received power command P* obtained from upper-layer scheduling or local control is a positive value.
  • P* when P* is a positive value, it means that the system is in a discharging state, and when P* is a negative value, it means that the system is in a charging state.
  • step S706 may also be the SACU.
  • the EMS determines whether the energy storage system is in a discharge state.
  • step S708 If no, go to step S708; if yes, go to step S709.
  • the EMS controller monitors whether the energy storage system is currently in the discharge state, and determines the next operation of the battery cluster that needs to be corrected, that is, the battery cluster can reach the fully discharged state as soon as possible through different operations, so as to achieve the SOC correction of the battery cluster. condition.
  • step S707 may also be the SACU.
  • the EMS controls the standby of the battery cluster that needs to be corrected, and does not participate in the energy storage scheduling control.
  • the BMS determines that the SOC of the battery cluster that needs to be corrected is not greater than the first threshold
  • the current state of the battery cluster to be corrected is easier to achieve than fully charged and fully discharged, so it needs to be corrected.
  • the battery cluster needs to be discharged to reach a fully discharged state. Therefore, when the EMS judges that the energy storage system is not in the discharge state, the battery cluster that needs to be corrected should be put on standby and not participate in the energy storage scheduling control, so as to avoid the SOC of the battery cluster that needs to be corrected from increasing, which is not conducive to reaching the fully discharged state.
  • the battery cluster to be calibrated can be put on standby by making the DC converter connected to the battery cluster to be calibrated stand by.
  • the battery cluster to be corrected can still be charged/discharged according to the same power distribution mode of other battery clusters until the SOC correction condition is reached.
  • step S708 may also be the SACU.
  • the EMS controls the battery cluster to be corrected to participate in the discharge within the constraint range of the BMS until the SOC correction condition is reached.
  • the BMS determines that the SOC of the battery cluster that needs to be corrected is not greater than the first threshold
  • the current state of the battery cluster to be corrected is easier to achieve than fully charged and fully discharged, so it needs to be corrected.
  • the battery cluster needs to be discharged to reach a fully discharged state. Therefore, when the EMS judges that the energy storage system is in the discharge state, the battery cluster that needs to be corrected should participate in the discharge, and by controlling the battery cluster that needs to be corrected to participate in the discharge within the constraints of the BMS, that is, the maximum allowed by the BMS. Discharging at the discharge rate (correction mode) is beneficial to make the battery cluster that needs to be corrected reach a fully discharged state as soon as possible, so as to achieve the SOC correction condition of the battery cluster.
  • the battery cluster to be corrected can still be charged/discharged according to the same power distribution mode (normal mode) of other battery clusters until the SOC correction condition is reached.
  • the power distribution mechanism of charging or discharging is specifically: the remaining power P*-P1max after power is allocated to the battery cluster to be corrected is performed by the other m-1 DC converters in the normal charging or discharging mode. distribute.
  • the battery cluster with a large SOC will be allocated less power, and the battery cluster with a small SOC will be allocated a large power, in order to achieve the balanced control effect of charging at the same time.
  • P* the total power
  • the battery cluster is the first cluster, its charging power is P1max, and in other battery clusters (ie, the second to the mth cluster), the charging power of the i-th battery cluster is Among them, SOCi is the SOC of the ith battery cluster, 2 ⁇ i ⁇ m, for example, when there are three battery clusters, assuming that battery cluster 1 is the battery cluster that needs to be corrected, the ratio of the SOC of battery cluster 2 to battery cluster 3 is 4:6, then when the power is allocated for charging, the power allocated by battery cluster 2 is (P*-P1max) ⁇ 0.6, and the power allocated by battery cluster 3 is (P*-P1max) ⁇ 0.4; when discharging, the SOC is large
  • the battery cluster with the highest SOC will be allocated a
  • the discharge power of the first battery cluster is P1max.
  • the discharge power of the i-th battery cluster in other battery clusters is:
  • SOCi is the SOC of the ith battery cluster, 2 ⁇ i ⁇ m, for example, when there are three battery clusters, assuming that battery cluster 1 is the battery cluster that needs to be corrected, the ratio of the SOC of battery cluster 2 to battery cluster 3 If it is 4:6, when the power is distributed during discharge, the power allocated by battery cluster 2 is (P*-P1max) ⁇ 0.4, and the power allocated by battery cluster 3 is (P*-P1max) ⁇ 0.6.
  • the powers may be evenly allocated to each PCS according to P* power, that is, the power allocated to each PCS is P*/n.
  • step S709 may also be the SACU.
  • step S710 after the BMS completes the SOC calibration, it may also notify the SACU to enable the battery cluster that has completed the calibration to participate in normal charging or discharging or standby operation.
  • the EMS controller monitors that the energy storage system is currently in a charging or discharging state.
  • the EMS controller monitors whether the energy storage system is currently in a charging or discharging state, and can enable the EMS to determine whether the energy storage system is in a charging state in step S712, so as to adjust the state of the battery cluster according to whether the energy storage system is in a charging state.
  • the state of the battery cluster includes participation in charging and standby.
  • the EMS can obtain the result by judging the received upper-layer scheduling, such as a remote terminal unit (RTU), or a local control, such as a supervisory control and data acquisition (SCADA) system.
  • Whether the power command P* is a negative value determines whether the energy storage system is currently in a charging or discharging state. Among them, when P* is a positive value, it means that the system is in a discharging state, and when P* is a negative value, it means that the system is in a charging state.
  • step S711 may also be the SACU.
  • the EMS determines whether the energy storage system is in a charging state.
  • step S713 If no, go to step S713; if yes, go to step S714.
  • the EMS controller monitors whether the energy storage system is currently in the charging state, and determines the next operation of the battery cluster that needs to be corrected, that is, the battery cluster can reach a fully charged state as soon as possible through different operations, so as to achieve the SOC correction of the battery cluster. condition.
  • step S712 may also be the SACU.
  • the EMS controls the standby of the battery cluster that needs to be corrected, and does not participate in the energy storage scheduling control.
  • the BMS determines that the SOC of the battery cluster to be corrected is greater than the first threshold
  • the current state of the battery cluster to be corrected is easier to achieve than to fully discharge, so the battery to be corrected is easier to achieve.
  • Clusters need to be charged to reach a fully charged state. Therefore, when the EMS judges that the energy storage system is not in the charging state, the battery cluster that needs to be corrected should be put on standby and not participate in the energy storage scheduling control, so as to avoid the reduction of the SOC of the battery cluster that needs to be corrected, which is not conducive to reaching the fully charged state.
  • the battery cluster to be calibrated can be put on standby by making the DC converter connected to the battery cluster to be calibrated stand by.
  • the battery cluster to be corrected can still be charged/discharged according to the same power distribution mode of other battery clusters until the SOC correction condition is reached.
  • step S713 may also be the SACU.
  • the EMS controls the battery cluster that needs to be corrected to participate in charging within the constraint range of the BMS until the SOC correction condition is reached.
  • the BMS determines that the SOC of the battery cluster to be corrected is greater than the first threshold, the current state of the battery cluster to be corrected is easier to achieve than to fully discharge, so the battery to be corrected is easier to achieve.
  • Clusters need to be charged to reach a fully charged state. Therefore, when the EMS judges that the energy storage system is in the charging state, the battery cluster that needs to be corrected should participate in the charging, and the battery cluster that needs to be corrected should be controlled to participate in the charging within the constraints of the BMS, that is, the maximum allowed by the BMS.
  • Charging at the charging rate (correction mode) is beneficial to make the battery cluster to be corrected reach a fully charged state as soon as possible, so as to achieve the SOC correction condition of the battery cluster.
  • the battery cluster to be corrected can still be charged/discharged according to the same power distribution mode (normal mode) of other battery clusters until the SOC correction condition is reached.
  • the normal mode is as described in S709, and details are not repeated here.
  • the powers may be evenly allocated to each PCS according to P* power, that is, the power allocated to each PCS is P*/n.
  • step S709 may also be the SACU.
  • the independent decoupling management of each battery cluster can be realized, and the influence of the SOC correction of the energy storage system can be minimized; The overall SOC accuracy of the energy storage system is improved; finally, through the above strategy, an independent battery cluster correction operation mode can be provided, which can realize the rapid correction of the battery cluster SOC.
  • the SOC online calibration control strategy of the present application is similar to the SOC online calibration control strategy shown in FIG. 2 , and the difference from the SOC online calibration control strategy shown in FIG.
  • the power distribution in steps S708-S709 and steps S713-S714 is aimed at the power distribution of the PCS, and the DC converter only needs to work in the voltage source mode.
  • the SOC online correction control strategy of the present application is similar to the SOC online correction control strategy shown in FIG. 2 , and the difference from the SOC online correction control strategy shown in FIG.
  • the power distribution in steps S708-S709 and steps S713-S714 is aimed at the power distribution of the PCS, and the charge/discharge power of each battery cluster can be controlled by controlling the power of each PCS.
  • the SOC online correction control strategy of the present application is similar to the SOC online correction control strategy shown in FIG. 2 , and the difference from the SOC online correction control strategy shown in FIG.
  • the PCS in step S709 and step S714 can directly accept P* control.
  • the above content describes in detail a method for controlling an energy storage system provided by the present application, and the execution body of the method is a controller in the energy storage system.
  • the controller may be an EMS or a SACU, this application does not limit this.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请提供了一种储能系统的控制方法和系统,该储能系统的控制方法,包括:确定该多个储能单元簇中的第一储能单元簇需要校正;根据该第一储能单元簇的荷电状态SOC以及该储能系统当前处于充电或者放电状态,控制该第一储能单元簇充电或者放电或者待机,以使该第一储能单元簇达到SOC校正条件。本申请提供的储能系统的控制方法和系统,能够仅对储能系统中的某一个需要校正的储能单元簇进行充电或者放电或者待机控制,实现对储能单元簇的独立解耦管理,不影响储能系统的正常运行,并且,能够使储能单元簇快速达到SOC校正条件,最终能够实现储能系统整体SOC精度的提高。

Description

一种储能系统的控制方法和储能系统 技术领域
本申请涉及储能技术领域,并且更具体地涉及到一种储能系统的控制方法和储能系统。
背景技术
目前,电池管理系统(battery management system,BMS)估算电池荷电状态(state of charge,SOC)采用的都是安时累计法,即测量电池充电或者放电电流A,然后按小时h累计起来,统计累计充放容量Ah,并与初始容量相加便得到当前电池剩余容量。
然而,由于电流传感器、调理电路等器件的精度问题、电流采样本身存在的误差、电池运行电流的时变性,以及可能存在高低频的谐波等因素,如果电流采样频率不够高,会导致采样偏差,并且BMS估算储能系统的SOC精度会随着系统运行时间的延长而逐步下降。
一般的储能场景会采取定期让储能系统满充满放一次,并用充电或者放电末端的电压来校正SOC。但是在调频场景中,储能系统跟随自动发电控制(automatic generation control,AGC)调度指令来进行充电或者放电动作,单个AGC调度指令通常在5min以内,而且充电和放电发生的概率相当,很少有长时间处于单向充电或放电的情况,因此该方式会使得储能系统长期工作在电池电压平台区,很少有满充/满放的满足SOC校准的条件,并导致SOC长期得不到校准,SOC精度越来越差,在SOC精度差时,还会使得基于SOC的控制变得不可行,SOC的数值也失去了参考价值。
因此,如何实现储能系统的SOC校正,成为业界亟需解决的问题。
发明内容
本申请提供一种储能系统的控制方法和储能系统,能够在不影响储能系统正常运行的情况下,实现储能系统的SOC在线校正。
第一方面,提供了一种储能系统的控制方法,该储能系统包括多个储能单元簇、多个直流变流器和控制器,该多个储能单元簇与该多个直流变流器一一对应以使该控制器单独控制该多个储能单元簇中的每个储能单元簇,该方法由该控制器执行,该方法包括:确定该多个储能单元簇中的第一储能单元簇需要校正;根据该第一储能单元簇的荷电状态SOC以及该储能系统当前处于充电或者放电状态,控制该第一储能单元簇充电或者放电或者待机,以使该第一储能单元簇达到SOC校正条件。
本申请通过控制器确定该多个储能单元簇中的第一储能单元簇需要校正,再根据该第一储能单元簇的荷电状态SOC以及该储能系统当前是处于充电状态还是放电状态,控制该第一储能单元簇充电或者放电或者待机,以使该第一储能单元簇达到SOC校正条件,能够仅对储能系统中的某一个需要校正的储能单元簇进行充电或者放电或者待机控制,实现对储能单元簇的独立解耦管理,储能系统不用退出运行,也不影响储能系统的正常运行, 使储能单元簇快速达到SOC校正条件,实现储能系统的SOC在线校正。另外,本申请的技术方案,可以对储能系统的各个需要校正的储能单元簇轮流进行SOC在线校正,从而能够提高储能系统整体的SOC精度。
可选地,储能单元簇可以是电池簇或其他能够存储能量的单元。
可选地,控制器可以是能量管理系统(energy management system,EMS)或者智能阵列控制器(smart array control unit,SACU)。
可选地,SOC校正条件可以为满充/满放状态。
结合第一方面,在第一方面的某些实现方式中,根据该第一储能单元簇的荷电状态SOC以及该储能系统当前处于充电或者放电状态,控制该第一储能单元簇充电或者放电或者待机,包括:若该第一储能单元簇的SOC大于或等于第一阈值,在该储能系统处于充电状态时,控制该第一储能单元簇进行充电,在该储能系统处于放电状态时,控制该第一储能单元簇待机直至该储能系统处于充电状态;或者,若该第一储能单元簇的SOC小于第一阈值,在该储能系统处于放电状态时,控制该第一储能单元簇进行放电,在该储能系统处于充电状态时,控制该第一储能单元簇待机直至该储能系统处于放电状态。
可选地,该第一阈值可以为50%。
通过判断第一储能单元簇的荷电状态SOC是否大于或等于第一阈值,能够确定对该第一储能单元簇进行怎样的控制才能使该储能单元簇快速达到SOC校正条件。若该第一储能单元簇的SOC大于或等于第一阈值,在该储能系统处于充电状态时,控制该第一储能单元簇进行充电,在该储能系统处于放电状态时,控制该第一储能单元簇待机直至该储能系统处于充电状态,若该第一储能单元簇的SOC小于第一阈值,在该储能系统处于放电状态时,控制该第一储能单元簇进行放电,在该储能系统处于充电状态时,控制该第一储能单元簇待机直至该储能系统处于放电状态,能够使该第一储能单元簇快速达到SOC校正条件。
结合第一方面,在第一方面的某些实现方式中,该控制该第一储能单元簇进行充电,包括:控制该第一储能单元簇以大于该储能系统的正常工作模式下的充电功率进行充电,正常工作模式下的充电功率是指该储能系统根据该多个储能单元簇的SOC分配功率时的充电功率;或者,该控制该第一储能单元簇进行放电,包括:控制该第一储能单元簇以大于该储能系统的正常工作模式下的放电功率进行放电,正常工作模式下的放电功率是指该储能系统根据该多个储能单元簇的SOC分配功率时的放电功率。
通过控制该第一储能单元簇以大于该储能系统的正常工作模式下的充电功率进行充电,或者,控制该第一储能单元簇以大于该储能系统的正常工作模式下的放电功率进行放电,能够使得该第一储能单元簇以大于正常工作模式下的功率进行充电或放电,从而快速达到SOC校正条件。
结合第一方面,在第一方面的某些实现方式中,该控制该第一储能单元簇进行充电,包括:控制该第一储能单元簇以该储能系统最大充电功率进行充电,该最大充电功率大于该正常工作模式下的充电功率,为该储能系统的电池管理系统BMS计算得到的最大功率;或者,控制该第一储能单元簇进行放电,包括:控制该第一储能单元簇以该储能系统最大放电功率进行放电,最大放电功率大于该正常工作模式下的放电功率,为储能系统的电池管理系统BMS计算得到的最大功率。
通过控制该第一储能单元簇以该储能系统的电池管理系统BMS计算得到的最大充电功率进行充电,或者,控制该第一储能单元簇以该储能系统的BMS计算得到的最大放电功率进行放电,能够使得该第一储能单元簇以BMS计算得到的最大功率进行充电或放电,从而快速达到SOC校正条件。
结合第一方面,在第一方面的某些实现方式中,该确定该多个储能单元簇中的第一储能单元簇需要校正,包括:接收该储能系统的BMS发送的该第一储能单元簇距上次SOC校正时间点的累计运行时间Tr和该第一储能单元簇距上次SOC校正时间点的累计不运行时间Td;根据该Tr和该Td确定该第一储能单元簇需要校正。
通过接收该储能系统的BMS发送的该第一储能单元簇距上次SOC校正时间点的累计运行时间Tr和该第一储能单元簇距上次SOC校正时间点的累计不运行时间Td,控制器能够根据该Tr和该Td确定该第一储能单元簇需要校正,从而能够控制该第一储能单元簇的充电和放电功率,使该第一储能单元簇快速达到SOC校正条件。
结合第一方面,在第一方面的某些实现方式中,该根据该Tr和该Td确定该第一储能单元簇需要校正,包括:若该Tr大于或等于累计运行需要校正的时间Ts,则确定该第一储能单元簇为需要校正的储能单元簇;或者,若该Td大于或等于累计不运行需要校正的时间Tp,则确定该储能单元簇为需要校正的储能单元簇。
通过判断Tr是否大于或等于Ts,或者Td是否大于或等于Tp,能够确定该储能单元簇是否为需要校正的储能单元簇,以便确定是否单独控制该储能单元簇的充电或者放电或者待机的工作模式。
结合第一方面,在第一方面的某些实现方式中,当多个储能单元簇为需要校正的储能单元簇时,根据优先级顺序,确定该第一储能单元簇需要校正。
通过为多个需要校正的储能单元簇根据优先级顺序确定第一储能单元簇,能够使得控制器优先控制该第一储能单元簇的充电或者放电或者待机的工作模式。
结合第一方面,在第一方面的某些实现方式中,当该第一储能单元簇达到该SOC校正条件时,通知该储能系统的BMS对该第一储能单元簇进行SOC校正。
通过在该第一储能单元簇达到该SOC校正条件时,通知该储能系统的BMS对该第一储能单元簇进行SOC校正,实现对该第一储能单元簇的SOC校正。
结合第一方面,在第一方面的某些实现方式中,接收该BMS发送的对该第一储能单元簇的SOC校正完成的通知;控制该第一储能单元簇在该储能系统的正常工作模式下充电或者放电或者待机,正常工作模式是指该储能系统根据该多个储能单元簇的SOC分配功率的模式。
通过在控制器接收到该BMS发送的对该第一储能单元簇的SOC校正完成的通知后,控制该第一储能单元簇在该储能系统的正常工作模式下充电或者放电或者待机,能够结束控制器对该第一储能单元簇的单独控制,从而使得控制器可以控制其他需要校正的储能单元簇的充电或者放电或者待机,以使得其他需要校正的储能单元簇达到SOC校正条件。
第二方面,提供了一种储能系统,该储能系统包括多个储能单元簇、多个直流变流器、控制器和电池管理系统BMS,该多个储能单元簇与该多个直流变流器一一对应以使该控制器单独控制该多个储能单元簇中的每个储能单元簇,该BMS用于获取该多个储能单元簇的荷电状态SOC,并将该多个储能单元簇的SOC发送给控制器;该控制器用于确定该 多个储能单元簇中的第一储能单元簇需要校正;该控制器还用于根据该第一储能单元簇的荷电状态SOC以及该储能系统当前处于充电或者放电状态,控制该第一储能单元簇充电或者放电或者待机,以使该第一储能单元簇达到SOC校正条件。
本申请通过控制器确定该多个储能单元簇中的第一储能单元簇需要校正,再根据该第一储能单元簇的荷电状态SOC以及该储能系统当前是处于充电还是放电状态,控制该第一储能单元簇充电或者放电或者待机,以使该第一储能单元簇达到SOC校正条件,能够仅对储能系统中的某一个需要校正的储能单元簇进行充电或者放电或者待机控制,实现对储能单元簇的独立解耦管理,储能系统不用退出运行,也不影响储能系统的正常运行,使储能单元簇快速达到SOC校正条件,实现储能系统的SOC在线校正。另外,本申请的技术方案,可以对储能系统的各个需要校正的储能单元簇轮流进行SOC在线校正,从而能够提高储能系统整体的SOC精度。
可选地,储能单元簇可以是电池簇或其他能够存储能量的单元。
可选地,控制器可以是EMS或者SACU。
可选地,SOC校正条件可以为满充/满放状态。
结合第二方面,在第二方面的某些实现方式中,根据该第一储能单元簇的荷电状态SOC以及该储能系统当前处于充电或者放电状态,控制该第一储能单元簇充电或者放电或者待机,包括:若该第一储能单元簇的SOC大于或等于第一阈值,在该储能系统处于充电状态时,控制该第一储能单元簇进行充电,在该储能系统处于放电状态时,控制该第一储能单元簇待机直至该储能系统处于充电状态;或者,若该第一储能单元簇的SOC小于第一阈值,在该储能系统处于放电状态时,控制该第一储能单元簇进行放电,在该储能系统处于充电状态时,控制该第一储能单元簇待机直至该储能系统处于放电状态。
可选地,该第一阈值可以为50%。
通过判断第一储能单元簇的荷电状态SOC是否大于或等于第一阈值,能够确定对该第一储能单元簇进行怎样的控制才能使该储能单元簇快速达到SOC校正条件。若该第一储能单元簇的SOC大于或等于第一阈值,在该储能系统处于充电状态时,控制该第一储能单元簇进行充电,在该储能系统处于放电状态时,控制该第一储能单元簇待机直至该储能系统处于充电状态,若该第一储能单元簇的SOC小于第一阈值,在该储能系统处于放电状态时,控制该第一储能单元簇进行放电,在该储能系统处于充电状态时,控制该第一储能单元簇待机直至该储能系统处于放电状态,能够使该第一储能单元簇快速达到SOC校正条件。
结合第二方面,在第二方面的某些实现方式中,该控制该第一储能单元簇进行充电,包括:控制该第一储能单元簇以大于该储能系统的正常工作模式下的充电功率进行充电,正常工作模式下的充电功率是指该储能系统根据多个储能单元簇的SOC分配功率时的充电功率;或者,该控制该第一储能单元簇进行放电,包括:控制该第一储能单元簇以大于该储能系统的正常工作模式下的放电功率进行放电,正常工作模式下的放电功率是指该储能系统根据多个储能单元簇的SOC分配功率时的放电功率。
通过控制该第一储能单元簇以大于该储能系统的正常工作模式下的充电功率进行充电,或者,控制该第一储能单元簇以大于该储能系统的正常工作模式下的放电功率进行放电,能够使得该第一储能单元簇以大于正常工作模式下的功率进行充电或放电,从而快速 达到SOC校正条件。
结合第二方面,在第二方面的某些实现方式中,该控制该第一储能单元簇进行充电,包括:控制该第一储能单元簇以该储能系统最大充电功率进行充电,最大充电功率大于该正常工作模式下的充电功率,为该BMS计算得到的最大功率;或者,该控制该第一储能单元簇进行放电,包括:控制该第一储能单元簇以该储能系统最大放电功率进行放电,最大放电功率大于该正常工作模式下的放电功率,为该BMS计算得到的最大功率。
通过控制该第一储能单元簇以该储能系统的电池管理系统BMS计算得到的最大充电功率进行充电,或者,控制该第一储能单元簇以该储能系统的BMS计算得到的最大放电功率进行放电,能够使得该第一储能单元簇以BMS计算得到的最大功率进行充电或放电,从而快速达到SOC校正条件。
结合第二方面,在第二方面的某些实现方式中,该确定该多个储能单元簇中的第一储能单元簇需要校正,包括:该BMS还用于,向该控制器发送该第一储能单元簇距上次SOC校正时间点的累计运行时间Tr和该第一储能单元簇距上次SOC校正时间点的累计不运行时间Td;该控制器还用于接收该储能系统的BMS发送的该Tr和该Td;该控制器还用于根据该Tr和该Td确定该第一储能单元簇需要校正。
通过接收该储能系统的BMS发送的该第一储能单元簇距上次SOC校正时间点的累计运行时间Tr和该第一储能单元簇距上次SOC校正时间点的累计不运行时间Td,控制器能够根据该Tr和该Td确定该第一储能单元簇需要校正,从而能够控制该第一储能单元簇的充电和放电功率,使该第一储能单元簇快速达到SOC校正。
结合第二方面,在第二方面的某些实现方式中,该根据该Tr和该Td确定该第一储能单元簇需要校正,包括:若该Tr大于或等于累计运行需要校正的时间Ts,则确定该第一储能单元簇为需要校正的储能单元簇;或者,若该Td大于或等于累计不运行需要校正的时间Tp,则确定该储能单元簇为需要校正的储能单元簇。
通过判断Tr是否大于或等于Ts,或者Td是否大于或等于Tp,能够确定该储能单元簇是否为需要校正的储能单元簇,以便确定是否单独控制该储能单元簇的充电或者放电或者待机的工作模式。
结合第二方面,在第二方面的某些实现方式中,当多个储能单元簇为需要校正的储能单元簇时,该控制器根据优先级顺序,确定该第一储能单元簇需要校正。
通过为多个需要校正的储能单元簇根据优先级顺序确定第一储能单元簇,能够使得控制器优先控制该第一储能单元簇的充电或者放电或者待机的工作模式。
结合第二方面,在第二方面的某些实现方式中,该控制器还用于,当该第一储能单元簇达到该SOC校正条件时,通知该储能系统的BMS对该第一储能单元簇进行SOC校正。
通过在该第一储能单元簇达到该SOC校正条件时,通知该储能系统的BMS对该第一储能单元簇进行SOC校正,实现对该第一储能单元簇的SOC校正。
结合第二方面,在第二方面的某些实现方式中,该控制器还用于接收该BMS发送的对该第一储能单元簇的SOC校正完成的通知;该控制器还用于控制该第一储能单元簇在该储能系统的正常工作模式下充电或者放电或者待机,正常工作模式是指该储能系统根据该多个储能单元簇的SOC分配功率的模式。
通过在控制器接收到该BMS发送的对该第一储能单元簇的SOC校正完成的通知后, 控制该第一储能单元簇在该储能系统的正常工作模式下进行充电或者放电或者待机,能够结束控制器对该第一储能单元簇的单独控制,从而使得控制器可以控制其他需要校正的储能单元簇进行充电或者放电或者待机,以使得其他需要校正的储能单元簇达到SOC校正条件。
附图说明
图1是本申请提供的一种储能系统的示意图。
图2是本申请提供的一种储能系统的一种架构图。
图3是本申请提供的一种储能系统的另一种架构图。
图4是本申请提供的一种储能系统的又一种架构图。
图5是本申请提供的一种储能系统的一种架构图。
图6是本申请提供的一种储能系统的控制方法的示意图。
图7是本申请提供的一种储能系统的控制方法的示意流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请提供的一种储能系统的示意图。
该储能系统中包含至少一个储能单元簇,如图1所示的电池簇1到电池簇m,其中,m可以为大于0的自然数,即,在实际应用中可根据储能容量灵活调整电池簇的数量,如果储能容量大,则可适当多设置电池簇的数量,如果储能容量少,则也可适当减少电池簇的数量。
应理解,在图1所示的储能系统中,所述储能单元簇可以是以电池簇的形式呈现,也可以是其他能够存储能量的单元的形式呈现,本申请对此不做限定。为便于描述,本申请采用储能单元簇为电池簇的形式来描述本申请的技术方案。
每个电池簇由至少两个电池储能模组(energy storage system,ESS)串联组成,如图1中的电池模组1~电池模组j,其中,j可以为大于或等于2的自然数。每个储能模组ESS由若干储能元件串联或并联组成,形成最小的能量存储和管理单元。为实现储能系统的检测和控制,每个储能模组和电池簇中会设计有电池管理系统BMS来监控SOC、温度、电流等电池信息,并跟上层EMS或者SACU进行实时的信息交互,实现整个电池储能系统的有效管理和控制。
在本申请实施例中,对各电池簇解耦管理,即每个电池簇可单独控制。当多个电池簇中存在至少一个需要进行SOC校正的电池簇时,对该需要进行SOC校正的电池簇进行单独控制而不影响该储能系统的正常运行。
下文将首先结合图2至图5对本申请提供的储能系统进行描述。
图2是本申请提供的一种储能系统的架构图。
具体如图2所示,电池模组按照图1所示的方式串联形成电池簇,再将电池簇连接到一台双向直流变流器的其中一个端口,并且,双向直流变流器的另一个端口则连接到直流母线(direct current bus,DC BUS)。
在图2所示的架构中,其总共包括m个电池簇,其中,每一个电池簇对应连接一台双 向直流变流器和直流母线DC BUS,电池簇通过双向直流变流器与DC BUS实现能量的交互。
应理解,在图2所示的架构中,通过设定每一组电池簇对应连接一台双向直流变流器的方式,可以实现电池簇间彼此独立控制,从而实现电池簇的单簇运行独立解耦管理,还可有效避免电池簇间的短板效应,实现该储能系统的正常运行。
m个电池簇与m个直流变流器进行一对一的方式对应串联后,会汇集到图2所示的直流汇流柜的一个端口,其中,汇流柜的另一个端口则会连接到n台功率变换系统(power conversion system,PCS)的直流侧,其中,n为大于0的自然数。n台PCS的交流侧会与变压器的低压侧相连接,且变压器的高压侧则会接入到电网中。
汇流柜能够完成DC BUS上电流的汇集和分配,可实现直流变流器和PCS单机功率不匹配一致时,通过配置相应的数量来实现交直流侧功率的整体匹配。
应理解,图2所示的汇流柜不是必须的。当没有汇流柜时,本申请也可以通过直流母线并联等方式来等效实现汇流柜的作用,本申请对此不做限定。
还应理解,图2所示的n台PCS不仅可以全部并联起来接入到双绕组变压器的低压侧,也可以分为两组或多组并联分别接入到三绕组双分裂变压器或其他多绕组类型变压器的多路低压母线上。另外,变压器不是本申请强约束的部件,在低压并网的场景,也可以不需要变压器。
为了帮助理解本申请的技术方案,本申请以电池模组的电压为57.6V、电池模组串联数量为20个作为示例而非限定,对本申请的技术方案作进一步阐述。当电池模组的电压为57.6V,电池模组串联数量为20个时,电池簇端口电压为57.6×20=1152Vdc。
应理解,计算出电池簇端口电压后,应根据端口电压的大小,选择匹配的直流变流器。作为示例,当计算得到电池簇端口电压为1152Vdc时,匹配的直流变流器为双向的DC/DC变换器,匹配1000Vdc到1500Vdc电压,匹配电池簇端口电压和380Vac~800Vac的交流电压。
还应理解,为实现高效率的功率变换,本申请实施例的直流变流器采用的电路拓扑通常为非隔离型的电路。作为示例而非限定,非隔离型的电路可选用飞跨电容多电平电路、三电平BOOST电路,四管BUCK-BOOST电路等,本申请对此不做限定。
还应理解,本申请所述PCS为一种双向的DC/AC变换器,可选用中性点箝位T型三电平电路、中性点箝位型(neutral point clamped,NPC)电路、有源中点箝位(active neutral point clamped,ANPC)电路、飞跨电容多电平电路等。另外,由于储能元件的端口电压随储能容量进行变换,电池簇端口电压为一个宽范围的输出电压,因此为了匹配电池簇端口电压变化范围,直流变流器或PCS通常被设计为宽范围的输入输出能力。
其中,作为示例而非限定,本申请实施例所采用的直流变流器和PCS的功率开关器件可以是MOSFET也可以是IGBT。
图3是本申请提供的另一种储能系统的架构的示意图。
与图2所示的架构不同的是,图3所示的m台直流变流器的另一端分别连接到m台PCS的直流侧,m台PCS的交流侧汇集到变压器的低压侧,变压器的高压侧接入到电网中。其中,直流变流器和PCS一一对应,并且直流变流器和PCS的单机功率匹配,在功率调度控制中,可以直接控制PCS的输出功率,直流变流器工作在电压源模式。
图4是本申请提供的又一种储能系统的架构的示意图。
在图4所示的架构中,其总共包括m个电池簇,其中,m为大于0的自然数。每一个电池簇都连接到一台PCS,m台PCS的交流侧汇集到变压器的低压侧,变压器的高压侧接入到电网中。
图4所示的架构可以实现电池簇间彼此独立控制,从而实现电池簇的单簇运行独立解耦管理,还可有效避免电池簇间的短板效应。在功率调度控制中,可以通过控制PCS的输出功率,从而控制电池簇的充/放电。
图5是本申请提供的再一种储能系统的架构的示意图。
应理解,在图5所示的架构中,每一个电池簇都连接到一台直流变流器,各簇直流变流器的另一端共同连接到一台集中式PCS的直流侧,集中式PCS的交流侧连接到变压器的一侧,变压器的另一侧连接到电网。图5所示的架构中,虽然多个电池簇都连接到了一台PCS,但与电池簇串联的直流变流器,可以实现电池簇之间的解耦,从而也可以实现独立的充电或者放电或者待机控制。
应理解,在上述所示的储能系统的架构中,变压器不是必须的,在低压配网接入等场景,电网电压等级与PCS输出电压等级一致,也可以不需要变压器。
上述图2至图5描述了本申请提供的四种储能系统的具体架构的示意图。应理解,在本申请实施例中,储能系统可以包括如下几个部件:多个储能单元簇,多个直流变流器,控制器和电池管理系统BMS,多个储能单元簇与多个直流变流器一一对应以使控制器单独控制多个储能单元簇中的每个储能单元簇。
该电池管理系统BMS用于获取多个储能单元簇的荷电状态SOC,并将多个储能单元簇的SOC发送给控制器。
该控制器可以是EMS或者SACU,且该控制器用于确定多个储能单元簇中的第一储能单元簇需要校正,并根据第一储能单元簇的SOC以及储能系统当前处于充电或者放电状态,控制第一储能单元簇充电或者放电或者待机,以使第一储能单元簇达到SOC校正条件。该SOC校正条件可以是满充/满放状态。
下文将结合图6和图7对本申请提供的储能系统的控制方法进行描述。
图6示出了本申请提供的一种储能系统的控制方法的示意图,该方法的执行主体是储能系统中的控制器,该控制器可以是EMS,也可以是SACU,本申请对此不做限定。
S610,确定该多个储能单元簇中的第一储能单元簇需要校正;
S620,根据该第一储能单元簇的荷电状态SOC以及该储能系统当前处于充电或者放电状态,控制该第一储能单元簇充电或者放电或者待机,以使该第一储能单元簇达到SOC校正条件。
应理解,在上述技术方案中,控制器通过确定该多个储能单元中需要校正的第一储能单元簇,并获取该第一储能单元簇的荷电状态以及该储能系统处于充电或者放电状态,来实现单独控制该第一储能单元簇充电或者放电或者待机,从而使得该第一储能单元簇达到SOC校正条件。
具体方案如下所示:
#a:若该第一储能单元簇的SOC大于或等于第一阈值,且在该储能系统处于充电状态时,则控制器控制该第一储能单元簇进行充电;且在该储能系统处于放电状态时,控制 器控制该第一储能单元簇待机直至该储能系统处于充电状态。
#b:若该第一储能单元簇的SOC小于第一阈值,在该储能系统处于放电状态时,控制该第一储能单元簇进行放电,在该储能系统处于充电状态时,控制该第一储能单元簇待机直至该储能系统处于放电状态。
可选地,该第一阈值可以为50%。
应理解,通过上述技术方案,能够使该第一储能单元簇快速达到SOC校正条件。
示例性地,如果需要控制该第一储能单元簇进行充电,则该控制器控制该第一储能单元簇以大于该储能系统的正常工作模式下的充电功率进行充电;或者,如果需要控制该第一储能单元簇进行放电,则控制器控制该第一储能单元簇以大于该储能系统的正常工作模式下的放电功率进行放电。
应理解,通过控制该第一储能单元簇以大于该储能系统的正常工作模式下的充电功率进行充电,或者,控制该第一储能单元簇以大于该储能系统的正常工作模式下的放电功率进行放电,能够使得该第一储能单元簇以大于正常工作模式下的功率进行充电或放电,从而快速达到SOC校正条件。
应理解,该正常工作模式下的放电或者充电功率是指该储能系统根据该多个储能单元簇的SOC分配功率时的放电或者充电功率。
如果控制器控制该第一储能单元簇进行充电,则第一储能单元簇以该储能系统最大充电功率进行充电,该最大充电功率大于正常工作模式下的充电功率,为该储能系统的电池管理系统BMS计算得到的最大功率;或者,控制该第一储能单元簇进行放电,则该第一储能单元簇以该储能系统最大放电功率进行放电,最大放电功率大于正常工作模式下的放电功率,为储能系统的电池管理系统BMS计算得到的最大功率。
应理解,控制器可以通过接收来自该储能系统的BMS发送的该第一储能单元簇距上次SOC校正时间点的累计运行时间Tr和该第一储能单元簇距上次SOC校正时间点的累计不运行时间Td,并根据该Tr和该Td确定该第一储能单元簇是否需要校正。
具体地,若该Tr大于或等于累计运行需要校正的时间Ts,则确定该第一储能单元簇为需要校正的储能单元簇;或者,若该Td大于或等于累计不运行需要校正的时间Tp,则确定该储能单元簇为需要校正的储能单元簇。
当存在多个储能单元簇需要校正时,则控制器会根据优先级顺序确定该第一储能单元簇需要校正。该优先级顺序的确定是根据检测顺序来确定的,例如,越先检测到需要SC校正的电池簇,其对应的优先级越高。
可选地,当该第一储能单元簇达到该SOC校正条件时,控制器会通知该储能系统的BMS对该第一储能单元簇进行SOC校正。
可选地,控制器会接收该BMS发送的对该第一储能单元簇的SOC校正完成的通知,或者会控制该第一储能单元簇在该储能系统的正常工作模式下充电或者放电或者待机。
通过上述技术方案,本申请能够实现单独控制该第一储能单元簇充电或者放电或者待机,以使该第一储能单元簇达到SOC校正条件,能够仅对储能系统中的某一个需要校正的储能单元簇进行充电或者放电或者待机控制,实现对储能单元簇的独立解耦管理,储能系统不用退出运行,也不影响储能系统的正常运行,使储能单元簇快速达到SOC校正条件,实现储能系统的SOC在线校正。另外,本申请的技术方案,可以对储能系统的各个 需要校正的储能单元簇轮流进行SOC在线校正,从而能够提高储能系统整体的SOC精度。
图7是本申请一个实施例的一种储能系统的控制方法的示意流程图,同时也是对图6所示的控制方法的进一步详细描述,该方法可以包括步骤S701-S714。在以下描述中,以图2所示架构为例进行说明。
S701,BMS监控各电池簇的运行状态,记录各电池簇上次SOC校正的时间Ti,以及累计运行时间Tr和累计不运行时间Td。
应理解,累计运行时间是指,电池簇距离上次SOC校正的累计的运行时间;累计不运行时间是指,电池簇距离上次SOC校正的累计的不运行时间。其中,不运行是指电池簇处于断电状态。
S702,BMS判断Tr是否大于或等于预设的累计运行需要校正的时间Ts。
若否,执行步骤S703;若是,执行步骤S704。
应理解,若Tr大于或等于累计运行需要校正的时间Ts,即说明电池簇已达到预设的累计运行需要校正的条件,电池簇需要进行校正。其中,预设的累计运行需要校正的条件是电池簇累计运行时间大于预设的Ts。
S703,BMS判断Td是否大于或等于预设的累计不运行需要校正的时间Tp。
若否,执行步骤S701;若是,执行步骤S704。
应理解,若Td大于或等于累计不运行需要校正的时间Tp,即说明电池簇已达到预设的累计运行需要校正的条件,电池簇需要进行校正。其中,预设的累计运行需要校正的条件是电池簇累计不运行时间大于预设的Td。
S704,若BMS判断多个电池簇都需要校正,则EMS对各簇进行优先级排序。
应理解,BMS判断电池簇需要校正的标准为Tr≥Ts,或Td≥Tp。
还应理解,若BMS判断有多个电池簇都需要校正,则EMS根据检测到需要校正的时间先后顺序对这些需要校正的电池簇进行优先级排序。其中,越先检测到需要校正的电池簇,其优先级越高。
可选地,步骤S704中的执行主体也可以为SACU。
S705,BMS判断需要校正的电池簇SOC是否大于第一阈值。
若否,执行步骤S706;若是,执行步骤S711。
应理解,当BMS判断出需要校正的电池簇SOC大于第一阈值时,说明电池簇目前的状态相比于达到满放,达到满充是更容易实现的,因此接下来的操作是为了使电池簇尽快达到满充状态,以达到SOC校正条件;当BMS判断出需要校正的电池簇SOC不大于第一阈值时,说明电池簇目前的状态相比于达到满充,达到满放是更容易实现的,因此接下来的操作是为了是电池簇尽快达到满放状态,以达到SOC校正条件。
应理解,本实施例所述的判断电池簇是否满足SOC校正条件,采用的判断标准是电池簇SOC是否为满充/满放状态。
可选地,该第一阈值可以为50%。
可选地,SOC校正条件也可以采用以电池簇电压是否为满充/满放状态为判断依据。
S706,EMS控制器监测储能系统当前处于充电或者放电状态。
应理解,EMS控制器监测储能系统当前处于充电或者放电状态,可以使EMS在S707步骤中判断储能系统是否在放电状态,从而根据储能系统是否在放电状态,调整电池簇的 状态。其中,电池簇的状态包括参与放电和待机。
可选地,EMS可以通过判断接收到的上层调度或本地控制得到的功率指令P*是否为正值,来确定储能系统当前处于充电或者放电状态。其中,P*为正值时,表示系统处于放电状态,P*为负值时,表示系统处于充电状态。
可选地,步骤S706的执行主体也可以为SACU。
S707,EMS判断储能系统是否在放电状态。
若否,执行步骤S708;若是,执行步骤S709。
应理解,EMS控制器监测储能系统当前是否在放电状态,决定了需要校正的电池簇接下来的操作,即通过不同的操作使得电池簇可以尽快达到满放状态,以达到电池簇的SOC校正条件。
可选地,步骤S707的执行主体也可以为SACU。
S708,EMS控制需要校正的电池簇待机,不参与储能调度控制。
应理解,当BMS判断出需要校正的电池簇SOC不大于第一阈值时,该需要校正的电池簇目前的状态相比于达到满充,达到满放是更容易实现的,所以该需要校正的电池簇需要通过放电来达到满放状态。因此,在EMS判断储能系统不在放电状态时,应该使该需要校正的电池簇待机,不参与储能调度控制,从而避免该需要校正的电池簇的SOC增大,不利于达到满放状态。
可选地,可以通过使与需校正的电池簇相连接的直流变流器待机,从而使需校正的电池簇待机。
可选地,若不追求校正速度,也可以让需校正的电池簇在充/放电时,依然按照其他电池簇同样的功率分配模式进行,直到达到SOC校正条件。
可选地,步骤S708的执行主体也可以为SACU。
S709,EMS控制需要校正的电池簇在BMS的约束范围内参与放电,直到达到SOC校正条件。
应理解,当BMS判断出需要校正的电池簇SOC不大于第一阈值时,该需要校正的电池簇目前的状态相比于达到满充,达到满放是更容易实现的,所以该需要校正的电池簇需要通过放电来达到满放状态。因此,在EMS判断储能系统在放电状态时,应该使该需要校正的电池簇参与放电,并且,通过控制该需要校正的电池簇在BMS的约束范围内参与放电,即,以BMS允许的最大放电速率(校正模式)进行放电,有利于使该需要校正的电池簇尽快达到满放状态,以达到电池簇的SOC校正条件。
还应理解,校正模式是指EMS控制与需校正的电池簇相连的直流变流器的充电功率P=P1max,其中P1max为BMS提供的需校正的电池簇限流表或限功率表约束下能运行的最大充电功率,直到需校正的电池簇满足SOC校正的条件。
可选地,若不追求校正速度,也可以让需校正的电池簇在充/放电时,依然按照其他电池簇同样的功率分配模式(正常模式)进行,直到达到SOC校正条件。
应理解,正常模式中,充电或者放电的功率分配机制具体为:给需校正的电池簇分配功率后的剩余功率P*-P1max由其他m-1个直流变流器按正常充电或者放电模式进行分配。
具体地,在充电时,SOC大的电池簇则分配得到的功率小,SOC小的电池簇则分配 得到的功率大,以期达到同时充满的均衡控制效果,如总功率为P*,需校正的电池簇是第1簇,则其充电功率为P1max,其他电池簇(即第2簇到第m簇)中,第i个电池簇的充电功率为
Figure PCTCN2021082991-appb-000001
其中,SOCi为第i个电池簇的SOC,2≤i≤m,例如,当存在三个电池簇时,假设电池簇1为需要校正的电池簇,电池簇2与电池簇3的SOC之比为4:6,则充电分配功率时,电池簇2分配到的功率为(P*-P1max)×0.6,电池簇3分配到的功率为(P*-P1max)×0.4;放电时,SOC大的电池簇则分配得到的功率大,SOC小的电池簇则分配得到的功率小,以期达到同时放完的均衡控制效果,如总功率为P*,需校正的电池簇是第1簇,则第1个电池簇的放电功率为P1max,除了需校正的电池簇外,其他电池簇(即第2簇到第m簇)中,第i个电池簇的放电功率为
Figure PCTCN2021082991-appb-000002
其中,SOCi为第i个电池簇的SOC,2≤i≤m,例如,当存在三个电池簇时,假设电池簇1为需要校正的电池簇,电池簇2与电池簇3的SOC之比为4:6,则放电分配功率时,电池簇2分配到的功率为(P*-P1max)×0.4,电池簇3分配到的功率为(P*-P1max)×0.6。
还应理解,对于n个PCS,则可按照P*功率平均分配到各个PCS,即,每个PCS分配得到的功率均为P*/n。
可选地,步骤S709的执行主体也可以为SACU。
S710,BMS完成SOC校正后,告知EMS,使完成校正的电池簇参与正常的充电或者放电或者待机运行。
应理解,在需要校正的电池簇完成校正之前,为了使该电池簇尽快达到SOC校正条件,需要控制该电池簇以校正模式进行来进行充电/放电,即,采用BMS约束条件下最大运行功率/电流的方式进行充电/放电,而不按正常模式(即以SOC为依据来分配功率的运行模式)运行;在该电池簇完成SOC校正后,则需恢复正常的充电或者放电或者待机运行,即,以SOC为依据的功率分配模式运行。
可选地,步骤S710中,BMS完成SOC校正后,也可以告知SACU,使完成校正的电池簇参与正常的充电或者放电或者待机运行。
S711,EMS控制器监测储能系统当前处于充电或者放电状态。
应理解,EMS控制器监测储能系统当前处于充电或者放电状态,可以使EMS在S712步骤中判断储能系统是否在充电状态,从而根据储能系统是否在充电状态,调整电池簇的状态。其中,电池簇的状态包括参与充电和待机。
可选地,EMS可以通过判断接收到的上层调度,如远程测控终端(remote terminal unit,RTU),或本地控制,如数据采集与监视控制系统(supervisory control and data acquisition,SCADA)系统,得到的功率指令P*是否为负值,来确定储能系统当前处于充电或者放电状态。其中,P*为正值时,表示系统处于放电状态,P*为负值时,表示系统处于充电状态。
可选地,步骤S711的执行主体也可以为SACU。
S712,EMS判断储能系统是否在充电状态。
若否,执行步骤S713;若是,执行步骤S714。
应理解,EMS控制器监测储能系统当前是否在充电状态,决定了需要校正的电池簇接下来的操作,即通过不同的操作使得电池簇可以尽快达到满充状态,以达到电池簇的SOC校正条件。
可选地,步骤S712的执行主体也可以为SACU。
S713,EMS控制需要校正的电池簇待机,不参与储能调度控制。
应理解,当BMS判断出需要校正的电池簇SOC大于第一阈值时,该需要校正的电池簇目前的状态相比于达到满放,达到满充是更容易实现的,所以该需要校正的电池簇需要通过充电来达到满充状态。因此,在EMS判断储能系统不在充电状态时,应该使该需要校正的电池簇待机,不参与储能调度控制,从而避免该需要校正的电池簇的SOC减小,不利于达到满充状态。
可选地,可以通过使与需校正的电池簇相连接的直流变流器待机,从而使需校正的电池簇待机。
可选地,若不追求校正速度,也可以让需校正的电池簇在充/放电时,依然按照其他电池簇同样的功率分配模式进行,直到达到SOC校正条件。
可选地,步骤S713的执行主体也可以为SACU。
S714,EMS控制需要校正的电池簇在BMS的约束范围内参与充电,直到达到SOC校正条件。
应理解,当BMS判断出需要校正的电池簇SOC大于第一阈值时,该需要校正的电池簇目前的状态相比于达到满放,达到满充是更容易实现的,所以该需要校正的电池簇需要通过充电来达到满充状态。因此,在EMS判断储能系统在充电状态时,应该使该需要校正的电池簇参与充电,并且,通过控制该需要校正的电池簇在BMS的约束范围内参与充电,即,以BMS允许的最大充电速率(校正模式)进行充电,有利于使该需要校正的电池簇尽快达到满充状态,以达到电池簇的SOC校正条件。
还应理解,校正模式是指EMS控制与需校正的电池簇相连的直流变流器的放电功率P=P1max,其中P1max为BMS提供的需校正的电池簇限流表或限功率表约束下能运行的最大放电功率,直到需校正的电池簇满足SOC校正的条件。
可选地,若不追求校正速度,也可以让需校正的电池簇在充/放电时,依然按照其他电池簇同样的功率分配模式(正常模式)进行,直到达到SOC校正条件。其中,正常模式如S709中所述,在此不再做赘述。
应理解,对于n个PCS,则可按照P*功率平均分配到各个PCS,即,每个PCS分配到的功率均为P*/n。
可选地,步骤S709的执行主体也可以为SACU。
应理解,将电池簇电压或者SOC是否达到满充/满放状态作为判断电池簇是否达到SOC校正条件的标准,或者采用其他本领域技术人员能够轻易想到的通用标准,都在本申请的保护范围内。
通过上述控制策略,可以实现每一个电池簇的独立解耦管理,将储能系统SOC校正的影响减到最小;并且,通过对各簇电池根据本发明的控制策略轮流进行SOC在线校正,最终实现储能系统整体SOC精度的提高;最后,通过上述策略,可以提供独立的电池簇校正运行模式,可实现电池簇SOC的快速校正。
对于图3所示的架构,本申请的SOC在线校正控制策略与对于图2所示的SOC在线校正控制策略类似,与图2所示的SOC在线校正控制策略不同的是,在针对图3所示的架构中,步骤S708-S709和步骤S713-S714中的功率分配针对的是PCS的功率分配,直流 变流器工作于电压源模式即可。
对于图4所示的架构,本申请的SOC在线校正控制策略与对于图2所示的SOC在线校正控制策略类似,与图2所示的SOC在线校正控制策略不同的是,在针对图4所示的架构中,步骤S708-S709和步骤S713-S714中的功率分配针对的是PCS的功率分配,通过对各个PCS的功率进行控制,即可控制各个电池簇的充/放电功率。
对于图5所示的架构,本申请的SOC在线校正控制策略与对于图2所示的SOC在线校正控制策略类似,与图2所示的SOC在线校正控制策略不同的是,在针对图5所示的一种架构中,步骤S709和步骤S714中的PCS直接接受P*控制即可。
应理解,上述内容详细介绍了本申请提供的一种储能系统的控制方法,该方法的执行主体是该储能系统中的控制器,示例性地,该控制器可以是EMS,也可以是SACU,本申请对此不做限定。
应理解,本申请实施例的储能系统中的部件可以用于执行图6和图7所示的储能系统的控制方法,其相应的有益效果与功能可参见前述对该储能系统的控制方法的详细描述,在此不再赘述。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
还应说明的是,本申请实施例中所使用的第一、第二和第三等词汇是为了便于表述,不应当被理解为构成对本申请实施例应用范围的限制。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种储能系统的控制方法,其特征在于,所述储能系统包括多个储能单元簇,多个直流变流器和控制器,所述多个储能单元簇与所述多个直流变流器一一对应以使所述控制器单独控制所述多个储能单元簇中的每个储能单元簇,所述方法由所述控制器执行,所述方法包括:
    确定所述多个储能单元簇中的第一储能单元簇需要校正;
    根据所述第一储能单元簇的荷电状态SOC以及所述储能系统当前处于充电或者放电状态,控制所述第一储能单元簇充电或者放电或者待机,以使所述第一储能单元簇达到SOC校正条件。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一储能单元簇的SOC以及所述储能系统当前处于充电或者放电状态,控制所述第一储能单元簇充电或者放电或者待机,包括:
    若所述第一储能单元簇的SOC大于或等于第一阈值,在所述储能系统处于充电状态时,控制所述第一储能单元簇进行充电,在所述储能系统处于放电状态时,控制所述第一储能单元簇待机直至所述储能系统处于充电状态;或者,
    若所述第一储能单元簇的SOC小于第一阈值,在所述储能系统处于放电状态时,控制所述第一储能单元簇进行放电,在所述储能系统处于充电状态时,控制所述第一储能单元簇待机直至所述储能系统处于放电状态。
  3. 根据权利要求2所述的方法,其特征在于,所述控制所述第一储能单元簇进行充电,包括:
    控制所述第一储能单元簇以大于所述储能系统的正常工作模式下的充电功率进行充电,所述正常工作模式下的充电功率是指所述储能系统根据所述多个储能单元簇的SOC分配功率时的充电功率;或者,
    所述控制所述第一储能单元簇进行放电,包括:
    控制所述第一储能单元簇以大于所述储能系统的正常工作模式下的放电功率进行放电,所述正常工作模式下的放电功率是指所述储能系统根据所述多个储能单元簇的SOC分配功率时的放电功率。
  4. 根据权利要求2或3所述的方法,其特征在于,所述控制所述第一储能单元簇进行充电,包括:
    控制所述第一储能单元簇以所述储能系统的最大充电功率进行充电,所述最大充电功率大于所述正常工作模式下的充电功率,为所述电池管理系统BMS计算得到的最大功率;或者,
    所述控制所述第一储能单元簇进行放电,包括:
    控制所述第一储能单元簇以所述储能系统的最大放电功率进行放电,所述最大放电功率大于所述正常工作模式下的放电功率,为所述电池管理系统BMS计算得到的最大功率。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述确定所述多个储能单元簇中的第一储能单元簇需要校正,包括:
    接收所述储能系统的BMS发送的所述第一储能单元簇距上次SOC校正时间点的累计运行时间Tr和所述第一储能单元簇距上次SOC校正时间点的累计不运行时间Td;
    根据所述Tr和所述Td确定所述第一储能单元簇需要校正。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述Tr和所述Td确定所述第一储能单元簇需要校正,包括:
    若所述Tr大于或等于累计运行需要校正的时间Ts,则确定所述第一储能单元簇为需要校正的储能单元簇;或者,
    若所述Td大于或等于累计不运行需要校正的时间Tp,则确定所述储能单元簇为需要校正的储能单元簇。
  7. 根据权利要求6所述的方法,其特征在于,当多个储能单元簇为需要校正的储能单元簇时,根据优先级顺序,确定所述第一储能单元簇需要校正。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    当所述第一储能单元簇达到所述SOC校正条件时,通知所述储能系统的BMS对所述第一储能单元簇进行SOC校正。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述BMS发送的对所述第一储能单元簇的SOC校正完成的通知;
    控制所述第一储能单元簇在所述储能系统的正常工作模式下充电或者放电或者待机,所述正常工作模式是指所述储能系统根据所述多个储能单元簇的SOC分配功率的模式。
  10. 一种储能系统,其特征在于,所述储能系统包括多个储能单元簇,多个直流变流器,控制器和电池管理系统BMS,所述多个储能单元簇与所述多个直流变流器一一对应以使所述控制器单独控制所述多个储能单元簇中的每个储能单元簇;
    所述BMS用于获取所述多个储能单元簇的荷电状态SOC,并将所述多个储能单元簇的SOC发送给所述控制器;
    所述控制器用于确定所述多个储能单元簇中的第一储能单元簇需要校正,根据所述第一储能单元簇的SOC以及所述储能系统当前处于充电或者放电状态,控制所述第一储能单元簇充电或者放电或者待机,以使所述第一储能单元簇达到SOC校正条件。
  11. 根据权利要求10所述的储能系统,其特征在于,所述控制器用于:
    若所述第一储能单元簇的SOC大于或等于第一阈值,在所述储能系统处于充电状态时,控制所述第一储能单元簇进行充电,在所述储能系统处于放电状态时,控制所述第一储能单元簇待机直至所述储能系统处于充电状态;或者,
    若所述第一储能单元簇的SOC小于第一阈值,在所述储能系统处于放电状态时,控制所述第一储能单元簇进行放电,在所述储能系统处于充电状态时,控制所述第一储能单元簇待机直至所述储能系统处于放电状态。
  12. 根据权利要求11所述的储能系统,其特征在于,所述控制器用于:
    控制所述第一储能单元簇以大于所述储能系统的正常工作模式下的充电功率进行充电,所述正常工作模式下的充电功率是指所述储能系统根据所述多个储能单元簇的SOC分配功率时的充电功率;或者,
    控制所述第一储能单元簇以大于所述储能系统的正常工作模式下的放电功率进行放电,所述正常工作模式下的放电功率是指所述储能系统根据所述多个储能单元簇的SOC 分配功率时的放电功率。
  13. 根据权利要求11或12所述的储能系统,其特征在于,所述控制器用于:
    控制所述第一储能单元簇以所述储能系统的最大充电功率进行充电,所述最大充电功率大于所述正常工作模式下的充电功率,为所述BMS计算得到的最大功率;或者,
    控制所述第一储能单元簇以所述储能系统的最大放电功率进行放电,所述最大放电功率大于所述正常工作模式下的放电功率,为所述BMS计算得到的最大功率。
  14. 根据权利要求10至13中任一项所述的储能系统,其特征在于,所述BMS还用于,向所述控制器发送所述第一储能单元簇距上次SOC校正时间点的累计运行时间Tr和所述第一储能单元簇距上次SOC校正时间点的累计不运行时间Td;
    所述控制器用于根据所述Tr和所述Td确定所述第一储能单元簇需要校正。
  15. 根据权利要求14所述的储能系统,其特征在于,所述控制器用于:
    若所述Tr大于或等于累计运行需要校正的时间Ts,则确定所述第一储能单元簇为需要校正的储能单元簇;或者,
    若所述Td大于或等于累计不运行需要校正的时间Tp,则确定所述储能单元簇为需要校正的储能单元簇。
  16. 根据权利要求15所述的储能系统,其特征在于,所述控制器用于,当多个储能单元簇为需要校正的储能单元簇时,根据优先级顺序,确定所述第一储能单元簇需要校正。
  17. 根据权利要求10至16中任一项所述的储能系统,其特征在于,所述控制器还用于,当所述第一储能单元簇达到所述SOC校正条件时,通知所述BMS对所述第一储能单元簇进行SOC校正。
  18. 根据权利要求10至17中任一项所述的储能系统,其特征在于,所述BMS还用于,向所述控制器发送对所述第一储能单元簇的SOC校正完成的通知;
    所述控制器还用于接收所述BMS发送的对所述第一储能单元簇的SOC校正完成的通知,控制所述第一储能单元簇在所述储能系统的正常工作模式下充电或者放电或者待机,所述正常工作模式是指所述储能系统根据所述多个储能单元簇的SOC分配功率的模式。
PCT/CN2021/082991 2021-03-25 2021-03-25 一种储能系统的控制方法和储能系统 WO2022198564A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180081920.9A CN116601509A (zh) 2021-03-25 2021-03-25 一种储能系统的控制方法和储能系统
EP21932191.6A EP4303601A4 (en) 2021-03-25 2021-03-25 ENERGY STORAGE SYSTEM CONTROL METHOD AND ENERGY STORAGE SYSTEM
PCT/CN2021/082991 WO2022198564A1 (zh) 2021-03-25 2021-03-25 一种储能系统的控制方法和储能系统
US18/471,789 US20240014677A1 (en) 2021-03-25 2023-09-21 Method for controlling energy storage system and energy storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082991 WO2022198564A1 (zh) 2021-03-25 2021-03-25 一种储能系统的控制方法和储能系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/471,789 Continuation US20240014677A1 (en) 2021-03-25 2023-09-21 Method for controlling energy storage system and energy storage system

Publications (1)

Publication Number Publication Date
WO2022198564A1 true WO2022198564A1 (zh) 2022-09-29

Family

ID=83395145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082991 WO2022198564A1 (zh) 2021-03-25 2021-03-25 一种储能系统的控制方法和储能系统

Country Status (4)

Country Link
US (1) US20240014677A1 (zh)
EP (1) EP4303601A4 (zh)
CN (1) CN116601509A (zh)
WO (1) WO2022198564A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116345501A (zh) * 2023-02-06 2023-06-27 北京东润环能科技股份有限公司 新能源电场的储能运行方法、装置、存储介质和电子设备
CN116470558A (zh) * 2023-05-18 2023-07-21 中国华能集团清洁能源技术研究院有限公司 储能系统
CN116526641A (zh) * 2023-07-05 2023-08-01 合肥华思系统有限公司 一种集中式储能系统的满充soc校准方法、介质和设备
CN116566010A (zh) * 2023-05-18 2023-08-08 中国华能集团清洁能源技术研究院有限公司 多电池簇的电压分配方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447970B (zh) * 2022-01-21 2022-10-25 上海交通大学 高压直挂电池储能系统及其控制方法
CN117791826B (zh) * 2024-02-26 2024-06-28 宁德时代新能源科技股份有限公司 电池的充放电方法和装置、能量管理系统和储能系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259055A (zh) * 2012-02-21 2013-08-21 上海卡耐新能源有限公司 一种方便操作的电动车用电池组ocv-soc曲线的修正电路及方法
CN106849212A (zh) * 2015-12-08 2017-06-13 普威能源公司 电池储能系统和其控制系统以及其应用
US20170212203A1 (en) * 2016-01-22 2017-07-27 Ovonic Battery Company, Inc. Method of calibrating state-of-charge in a rechargeable battery
CN109633459A (zh) * 2018-12-31 2019-04-16 浙江高泰昊能科技有限公司 基于动力电池应用的soc区间动态曲线修正方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7476987B2 (en) * 2006-04-25 2009-01-13 The University Of New Brunswick Stand-alone wind turbine system, apparatus, and method suitable for operating the same
KR102234703B1 (ko) * 2014-03-04 2021-04-01 삼성에스디아이 주식회사 에너지 저장 시스템 및 이의 제어 방법
US20170345101A1 (en) * 2016-05-24 2017-11-30 Powin Energy Corporation World-wide web of networked, smart, scalable, plug & play battery packs having a battery pack operating system, and applications thereof
US11336111B2 (en) * 2018-06-08 2022-05-17 Powin, Llc Microgrid power system
CN111585356A (zh) * 2020-07-02 2020-08-25 阳光电源股份有限公司 一种储能系统的扩容方法和储能系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259055A (zh) * 2012-02-21 2013-08-21 上海卡耐新能源有限公司 一种方便操作的电动车用电池组ocv-soc曲线的修正电路及方法
CN106849212A (zh) * 2015-12-08 2017-06-13 普威能源公司 电池储能系统和其控制系统以及其应用
US20170212203A1 (en) * 2016-01-22 2017-07-27 Ovonic Battery Company, Inc. Method of calibrating state-of-charge in a rechargeable battery
CN109633459A (zh) * 2018-12-31 2019-04-16 浙江高泰昊能科技有限公司 基于动力电池应用的soc区间动态曲线修正方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116345501A (zh) * 2023-02-06 2023-06-27 北京东润环能科技股份有限公司 新能源电场的储能运行方法、装置、存储介质和电子设备
CN116345501B (zh) * 2023-02-06 2023-11-17 北京东润环能科技股份有限公司 新能源电场的储能运行方法、装置、存储介质和电子设备
CN116470558A (zh) * 2023-05-18 2023-07-21 中国华能集团清洁能源技术研究院有限公司 储能系统
CN116566010A (zh) * 2023-05-18 2023-08-08 中国华能集团清洁能源技术研究院有限公司 多电池簇的电压分配方法及装置
CN116566010B (zh) * 2023-05-18 2024-01-30 中国华能集团清洁能源技术研究院有限公司 多电池簇的电压分配方法及装置
CN116470558B (zh) * 2023-05-18 2024-02-06 中国华能集团清洁能源技术研究院有限公司 储能系统
CN116526641A (zh) * 2023-07-05 2023-08-01 合肥华思系统有限公司 一种集中式储能系统的满充soc校准方法、介质和设备
CN116526641B (zh) * 2023-07-05 2023-09-19 合肥华思系统有限公司 一种集中式储能系统的满充soc校准方法、介质和设备

Also Published As

Publication number Publication date
CN116601509A (zh) 2023-08-15
US20240014677A1 (en) 2024-01-11
EP4303601A1 (en) 2024-01-10
EP4303601A4 (en) 2024-07-10

Similar Documents

Publication Publication Date Title
WO2022198564A1 (zh) 一种储能系统的控制方法和储能系统
EP3920364A1 (en) Battery equalization circuit and control method therefor, and uninterrupted power supply system
CN108649593B (zh) 一种直流微网中基于荷电状态的多储能单元协调控制方法
CN109212420B (zh) 基于agc调频储能系统的soc修正方法
US11949273B2 (en) Method for managing charging and discharging of parallel-connected battery pack, electronic device, and electrical system
US10355320B2 (en) Power storage device for a battery group and connection control of capacitor and switching device
CN111987713A (zh) 一种基于荷电状态均衡的直流微网改进下垂控制方法
CN110808599B (zh) 一种孤岛直流微电网并联多储能荷电状态均衡控制方法
CN115441487A (zh) 一种共直流母线储能系统的soc均衡方法及终端
CN114583735A (zh) 一种储能系统调度控制方法及系统
WO2022178839A1 (zh) 一种能源系统及充放电控制方法
WO2024066911A1 (zh) 智能电池管理系统、方法、电子设备及可读存储介质
WO2021232418A1 (zh) 充电控制方法、储能模块及用电设备
CN116526641B (zh) 一种集中式储能系统的满充soc校准方法、介质和设备
CN115800422A (zh) 储能系统和储能系统的调节方法
CN114977405A (zh) 一种串联储能系统荷电状态均衡控制方法及系统
CN115513980A (zh) 并联储能系统的功率分配方法和装置
CN114938016A (zh) 一体机系统、一体机系统的控制方法及储能控制器
CN114421601A (zh) 电源系统及其控制方法和控制装置
WO2018157534A1 (zh) 储能电池管理系统的均衡方法、装置、储能电池管理系统
CN115833210B (zh) 一种多机并联储能系统及其充放电控制方法
CN111064263B (zh) 电压控制方法及光伏供电装置、系统
WO2023000869A1 (zh) 一种电池均流方法、电子设备及计算机可读存储介质
CN110707679B (zh) 电压控制方法及光伏供电装置、系统
CN117081194A (zh) 电池系统的充电控制方法及电池系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932191

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180081920.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021932191

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021932191

Country of ref document: EP

Effective date: 20231002

NENP Non-entry into the national phase

Ref country code: DE