WO2019042188A1 - 一种有机发光显示屏及其制造方法 - Google Patents

一种有机发光显示屏及其制造方法 Download PDF

Info

Publication number
WO2019042188A1
WO2019042188A1 PCT/CN2018/101472 CN2018101472W WO2019042188A1 WO 2019042188 A1 WO2019042188 A1 WO 2019042188A1 CN 2018101472 W CN2018101472 W CN 2018101472W WO 2019042188 A1 WO2019042188 A1 WO 2019042188A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic light
anode
emitting display
unit
Prior art date
Application number
PCT/CN2018/101472
Other languages
English (en)
French (fr)
Inventor
杨小龙
乔贵洲
邢汝博
Original Assignee
维信诺科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维信诺科技股份有限公司 filed Critical 维信诺科技股份有限公司
Priority to US16/336,643 priority Critical patent/US11289665B2/en
Publication of WO2019042188A1 publication Critical patent/WO2019042188A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/127Active-matrix OLED [AMOLED] displays comprising two substrates, e.g. display comprising OLED array and TFT driving circuitry on different substrates
    • H10K59/1275Electrical connections of the two substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/321Inverted OLED, i.e. having cathode between substrate and anode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an organic light-emitting display and a method of fabricating the same.
  • OLED microdisplays will be more and more commonly applied to head-mounted display devices such as AR and VR.
  • an OLED microdisplay screen is generally prepared by first processing a backplane driving circuit on a Si-based wafer and a white organic light emitting diode (WOLED), and then processing a color filter on a separate glass substrate. (CF, Color Filter), the two achieve alignment by fitting, and then get a full-color OLED display.
  • WOLED white organic light emitting diode
  • CF Color Filter
  • An object of the present invention is to solve the above problems and to provide an organic light emitting display panel and a method of fabricating the same.
  • the present invention adopts the following technical solutions:
  • An organic light-emitting display screen comprising: a filter substrate, further comprising a color filter layer, a cathode layer, an organic light-emitting layer and an anode array sequentially formed on the filter substrate, the anode array comprising a plurality of intervals
  • the anode unit, the color filter layer comprises a plurality of filter units, each of the anode units corresponding to a filter unit.
  • the organic light emitting display panel further includes a driving backplane, the anode array further comprising a plurality of spaced apart first electrodes, the first electrodes being formed over the anode unit and bonded to the driving backboard, The anode unit is electrically connected to the driving back plate through the first electrode.
  • the anode array further includes a plurality of spaced apart protection units formed above the anode unit, a first through hole formed in the protection unit, and the first electrode filling the first through hole.
  • the organic light-emitting display panel further includes an insulating isolation layer covering the organic light-emitting layer between the anode unit and the adjacent anode unit, and the second insulating layer is formed in the insulating isolation layer, An electrode fills the second via.
  • the driving backplane includes a driving substrate and a plurality of spaced second electrodes formed on a surface of the driving substrate, and the second electrodes are bonded to the first electrodes by an anisotropic conductive paste.
  • the second electrode width is smaller than the distance between the adjacent two first electrodes, and the same second electrode does not simultaneously correspond to the adjacent two first electrodes.
  • the color filter layer further includes a black matrix formed between adjacent filter units.
  • the organic light emitting display panel further includes a planarization layer formed on an upper surface of the color filter layer.
  • the organic light emitting display panel further includes a water blocking layer formed between the color filter layer and the cathode layer.
  • the water blocking layer is a thin film encapsulation layer, and the material of the water blocking layer comprises at least one of silicon oxide, silicon nitride, and silicon oxynitride.
  • a method of manufacturing an organic light-emitting display comprising:
  • Step S3 includes:
  • step S34 the method further includes:
  • the method further includes S4: providing a driving backplane, and the step S4 includes:
  • the cathode layer group includes a water blocking layer and a cathode layer
  • the step S2 further includes sequentially depositing a water blocking layer and a cathode layer over the color filter layer.
  • the step S2 further includes forming a planarization layer on the upper surface of the color filter layer.
  • FIG. 1 is a schematic structural diagram of an organic light emitting display panel according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of manufacturing an organic light emitting display according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of manufacturing an anode array of an organic light emitting display according to an embodiment of the present invention.
  • FIG. 4 to FIG. 10 are schematic diagrams showing the structure of an organic light-emitting display panel according to an embodiment of the present invention.
  • the embodiment provides an organic light-emitting display panel, including: a filter substrate 100, a color filter layer 200, a planarization layer 300, a water blocking layer 400, and a cathode, which are sequentially formed on the filter substrate 100.
  • Layer 500, organic light emitting layer 600, anode array 700, and insulating isolation layer 800 also include a drive backplane 900 that is bonded to drive backplane 900.
  • the filter substrate 100 is a light-transmitting substrate, so that the organic light-emitting display can pass through the filter substrate 100 to emit light, and the glass substrate is generally selected.
  • the color filter layer 200 includes a plurality of filter units 210 of different colors and a black matrix 220 formed between adjacent filter units 210.
  • the filter unit 210 can precisely select a small range of light waves to be passed, and reflect other bands that are not desired to pass.
  • the filter unit 210 of the present embodiment includes a plurality of red filter units R, a green filter unit G, and a blue filter unit B that are disposed at intervals.
  • the light emitted from the organic light-emitting layer 600 passes through the red filter unit R, the green filter unit G, and the blue filter unit B, and can respectively emit red light, green light, and blue light, thereby realizing a color display screen.
  • the filter unit 210 may further include other color filter units, or the filter unit 210 includes only two color filter units, which are not limited thereto, as long as the adjacent two filter units 210 The colors are different.
  • the black matrix 220 is formed between the adjacent filter units 210, and the light beam emitted by the organic light-emitting layer 600 corresponding to the filter unit 210 of a certain color is blocked from being filtered by other colors adjacent to the filter unit 210 of the color.
  • Unit 210 prevents color mixing.
  • the planarization layer 300 is formed between the color filter layer 200 and the cathode layer 500, specifically on the upper surface of the color filter layer 200.
  • the cathode layer 500 above the color filter layer 200 is thin, and the surface of the color filter layer 200 is not flat. If the cathode layer 500 is directly formed on the upper surface of the color filter layer 200, the cathode layer 500 is easily broken, thereby causing the cathode layer 500. Open circuit or increased resistance affects display performance. Therefore, forming a planarization layer 300 on the upper surface of the color filter layer 200 increases the reliability of the display electrical performance.
  • the flattening layer of the embodiment is an optically transparent adhesive, which has a certain water blocking capability while preventing the water vapor from entering and eroding the cathode layer 500 and the organic light emitting layer 600, thereby further improving the reliability of the display electrical performance.
  • the planarization layer can also be other light transmissive materials.
  • the water blocking layer 400 is also formed between the color filter layer 200 and the cathode layer 500, which is a layer of light transmissive material.
  • the water blocking layer 400 of this embodiment is a thin film encapsulation layer which can be made of materials such as silicon oxide (SiOx), silicon nitride (SiNx) or silicon oxynitride (SiOxNy).
  • the water blocking layer 400 is formed over the planarization layer 300 to further prevent moisture from entering and eroding the cathode layer 500 and the organic light emitting layer 600, so that the electrical performance of the display screen is more reliable.
  • this embodiment is a preferred embodiment.
  • the water blocking layer 400 of other embodiments of the present invention may also be other light transmissive materials, or the positions of the water blocking layer 400 and the planarization layer 300 may be interchanged, or only one of the two. And not even both, there is no limit here.
  • Cathode layer 500 is a layer of transparent conductive material. In order to increase the light transmittance through the cathode layer 500, the thickness of the cathode layer 500 is generally thin. When the cathode layer 500 is invaded by moisture, its electrical properties are greatly affected by oxidation or the like, so this embodiment is preferably formed.
  • the planarization layer 300 and the water blocking layer 400 perform a double waterproof layer, so that the display screen has high reliability.
  • the white light-emitting material of the organic light-emitting layer 600 of this embodiment emits white light under voltage driving.
  • the white light emitted from the organic light-emitting layer 600 passes through the filter units 210 of the respective colors to form light of various colors, thereby realizing full-color display.
  • the anode array 700 includes a plurality of spaced apart anode units 710, a protection unit 720 formed over the anode unit 710, and a first electrode 730.
  • Each of the anode units 710 corresponds to a filter unit 210 and is electrically connected to the driving back plate 900.
  • the driving backplane 900 provides a driving voltage to each of the anode units 710, and each of the anode units 710 and the lower cathode layer 500 cooperate to supply a voltage to the organic light-emitting layer 600, so that the organic light-emitting layer 600 combines electron-hole pairs to generate photons to emit light.
  • Each protection unit 720 is located above each anode unit 710 for protecting the organic light-emitting layer 600 during the process of forming the anode unit 710 to improve the performance of the display screen.
  • the protection unit 720 may not be formed.
  • a first through hole 721 is formed in each of the protection units 720.
  • Each of the first electrodes 730 is formed over each of the anode units 710 and bonded to the driving back plate 900. Specifically, the first electrode 730 is located on the upper surface of the protection unit 720 and fills the first through hole 721 , so that the anode unit 710 under the protection unit 720 is electrically connected to the first electrode 730 .
  • the insulating isolation layer 800 is formed on the upper surface of the protection unit 720 and covers the sidewall of the anode unit 710 and the organic light-emitting layer between the adjacent anode units 710.
  • the insulating isolation layer 800 prevents short circuits from adjacent anode cells 710.
  • the specific structure of the insulating isolation layer 800 of the other embodiments of the present invention may also be different from the embodiment.
  • the insulating isolation layer 800 is formed only between the two anode units 710, as long as it covers the sidewalls of the anode unit 710, and the adjacent anodes are effectively prevented.
  • the unit 710 is short-circuited to improve the reliability of the display screen, or the insulating isolation layer 800 covers the upper surface and the sidewall of the anode unit 710 and the organic light-emitting layer between the adjacent anode units 710 when the non-protective unit 720 is formed.
  • a second via hole 801 is formed in the insulating isolation layer 800, and the first electrode 730 simultaneously fills the second via hole 801 and the first via hole 721.
  • the driving backplane 900 includes a driving substrate 910 and a plurality of spaced second electrodes 920 formed on the surface of the driving substrate 910.
  • the drive substrate 910 includes a substrate (e.g., a Si substrate, not shown), and a thin film transistor (not shown) or the like formed on the substrate for supplying a driving voltage.
  • a plurality of spaced-apart second electrodes 920 are formed on the surface of the driving substrate 910, and the second electrodes 920 are bonded to the first electrodes 730 by an anisotropic conductive adhesive (ACF).
  • ACF anisotropic conductive adhesive
  • the ACF can electrically connect the second electrode 920 and the first electrode 730 in the longitudinal direction such that the anode unit 710 is electrically connected to drive the back plate 910 through the first electrode 730; meanwhile, the adjacent second electrode 920 is adjacent to the lateral insulation and adjacent
  • the first electrode 730 realizes that the driving voltages of the anode units 710 do not affect each other, and each anode unit 710 does not short-circuit.
  • the adhesiveness of the ACF causes the second electrode 920 and the first electrode 730 to be reliably bonded and bonded together.
  • the width h1 of the second electrode 920 is preferably smaller than the distance h2 between the adjacent two first electrodes 710.
  • the second electrode 920 also does not simultaneously correspond to the adjacent two first electrodes 710, thereby preventing a short circuit between the adjacent two first electrodes 710 which may be caused by the alignment deviation.
  • the "width” herein refers to the "width" of the h1 and h2 directions in the cross-sectional views shown in FIGS. 1 and 2.
  • h1 may not be smaller than h2 as long as no short circuit occurs between adjacent two first electrodes 710.
  • the filter unit may also be implemented as a light conversion material, which converts light outside a certain wavelength interval into light in the wavelength interval, thereby functioning as a filter to stably output the RGB light source;
  • the filter unit may also be a combination of a filter unit that acts as a barrier filter and a filter unit that acts as a light conversion.
  • the embodiment further provides a method for manufacturing the above-mentioned organic light-emitting display, as shown in FIG. 2, including the following steps, but is not limited to the following sequence, and may be sequentially adjusted according to requirements, and details are not described herein.
  • the color filter layer 200 includes a plurality of filter units 210 of different colors, as shown in FIG.
  • a filter substrate 100 such as glass is provided, and a plurality of spaced black matrixes 220 are formed on the filter substrate 100 by a photolithographic patterning process, and then sequentially processed on the filter substrate 100 between the black matrix 220 and the black matrix 220 by a patterning process.
  • a plurality of red filter units R, green filter units G, and blue filter units B are formed.
  • the color filter layer 200 manufacturing process is a conventional technical means in the art, and will not be described in detail herein.
  • a cathode layer 500, an organic light-emitting layer 600, and an anode unit material 711 are sequentially deposited over the color filter layer 200, as shown in FIG.
  • a planarization layer 300 is first formed over the color filter layer 200 to increase the reliability of the display electrical performance.
  • the planarization layer 300 of the present embodiment is an optically transparent adhesive.
  • the filter substrate 100 on which the color filter layer 200 and the optically transparent glue on the color filter layer 200 are formed can also be directly obtained by purchase.
  • a water blocking layer 400 is further formed over the planarization layer 300 to further enhance the electrical reliability of the display. Then, a cathode layer 500, an organic light-emitting layer 600, and an anode unit material 711 are sequentially deposited on the upper surface of the water blocking layer 400.
  • the patterned anode unit material 711 is formed with a plurality of spaced anode units 710. Each anode unit 710 corresponds to a filter unit 210. The plurality of anode units 710 form a component of the anode array 700. The entire anode array 700 is manufactured. As shown in Figure 3.
  • a protective material 721 is deposited to cover the anode unit material 711, as shown in FIG.
  • the protective material 721 is a SiO2 material.
  • other embodiments of the protective material 721 may be other materials, or may not form a protective material. This embodiment is a preferred embodiment.
  • the protection unit 720 can be used as a mask for patterning the anode unit 710.
  • the photoresist mask is removed by a dry etching process such as plasma etching. Since the dry etching of the photoresist generally uses oxygen, the immersion of oxygen into the organic light-emitting layer 600 causes the organic light-emitting layer 600 to be oxidized to affect its performance. Therefore, in this embodiment, the anode unit 710 is not directly patterned by a photoresist mask, but the protective unit 720 is first patterned by a photoresist mask. At this time, the photoresist mask is removed and etched.
  • the anode unit material 711 protects the organic light-emitting layer 600, which can effectively prevent the oxygen from eroding the organic light-emitting layer 600 and improve the performance of the display.
  • the protective material of the embodiment of the present invention can also be a plurality of layers, such as SiO2 material.
  • a layer of Al material is formed thereon, and the patterned Al material is etched, and the photoresist mask is removed by plasma etching.
  • the etched Al material has SiO2 material and the anode unit material 711 is organic.
  • the luminescent layer 600 is protected, and the organic luminescent layer 600 can be better protected.
  • the patterned Al material can be removed after the SiO 2 material is patterned.
  • other embodiments may not form the protection unit 720.
  • the anode unit material 711 is etched by using a plurality of protection units 720 as a mask to form a plurality of spaced-apart anode units 710, as shown in FIG.
  • Depositing an insulating spacer 800 covers the organic light-emitting layer between the anode unit 710 and the adjacent anode unit 710, as shown in FIG.
  • the insulating isolation layer 800 covers the organic light-emitting layer 600 between the upper surface of the protection unit 720, the sidewalls of the anode unit 710, and the anode unit 710.
  • a plurality of spaced-apart first electrodes 730 are formed on the anode unit 710.
  • the first electrodes 730 are filled with the second through holes 801 and the first through holes 721 to be electrically connected to the anode unit 710, as shown in FIG.
  • a plurality of first electrodes 730, a protection unit 720, and an anode unit 710 constitute an anode array 700.
  • the anode array 700 is bonded to the driving backplane 900, and the anode unit 710 is electrically connected to the driving backplane 900, with reference to FIG.
  • a plurality of spaced apart second electrodes 920 are formed on the driving substrate 910, and the second electrode 920 and the driving substrate 910 constitute a driving backplane 900;
  • the anode array 700 is bonded to the second electrode 920 by an anisotropic conductive paste.
  • Each of the first electrodes 730 above the anode unit 710 is bonded to the second electrodes 920 by an anisotropic conductive adhesive, thereby electrically connecting the anode unit 710 and the driving back plate 900.
  • the organic light-emitting display panel and the manufacturing method thereof of the present embodiment form the anode array 700 directly on the color filter layer 200, thereby achieving alignment between the filter unit 210 and the anode unit 710, as opposed to the conventional sticker.
  • the contrast deviation of the organic light-emitting display formed by the embodiment is significantly reduced, thereby effectively improving the crosstalk problem of the organic light-emitting display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供一种有机发光显示屏及其制造方法,所述有机发光显示屏包括:滤光基板,还包括依次形成于所述滤光基板上的色彩滤光层、阴极层、有机发光层以及阳极阵列,所述阳极阵列包括若干间隔设置的阳极单元,所述色彩滤光层包括若干滤光单元,各阳极单元均与一滤光单元对应。本发明有效改善了有机发光显示屏出光串扰问题。

Description

一种有机发光显示屏及其制造方法 技术领域
本发明涉及显示屏技术领域,尤其涉及一种有机发光显示屏及其制造方法。
背景技术
有机发光二极管(OLED,Organic Light Emitting Diode)微显示屏将越来越普遍地被应用至AR、VR等头戴式显示设备。目前,一般通过如下方式来制备OLED微显示屏:先在Si基晶圆上制程背板驱动电路以及白光有机发光二极管(WOLED,White Organic Light Emitting Diode),然后在独立玻璃基底上制程色彩滤镜(CF,Color Filter),二者通过贴合实现对位,进而得到全彩化的OLED显示屏。
但是这种利用贴合工艺形成的有机发光显示屏,容易出现WOLED与CF对不齐,进而造成显示不正常。
发明内容
本发明的目的是为了解决上述问题,提供一种有机发光显示屏及其制造方法。
为实现上述目的,本发明采用以下技术方案:
一种有机发光显示屏,其中,包括:滤光基板,还包括依次形成于所述滤光基板上的色彩滤光层、阴极层、有机发光层以及阳极阵列,所述阳极阵列包括若干间隔设置的阳极单元,所述色彩滤光层包括若干滤光单元,各阳极单元均与一滤光单元对应。
所述有机发光显示屏还包括驱动背板,所述阳极阵列还包括若干间隔设置的第一电极,所述第一电极形成于所述阳极单元上方且粘结至所述驱动背板,所述阳极单元通过第一电极电性连接所述驱动背板。
所述阳极阵列还包括若干间隔设置的保护单元,所述保护单元形成于所述阳极单元上方,所述保护单元内形成有第一通孔,所述第一电极填充所述第一通孔。
所述有机发光显示屏还包括绝缘隔离层,所述绝缘隔离层覆盖所述阳极单元以及相邻阳极单元之间的有机发光层,所述绝缘隔离层内形成有第二通孔,所述第一电极填充所述第二通孔。
所述驱动背板包括驱动基板以及形成于所述驱动基板表面的若干间隔设置的第二电极,所述第二电极通过异方性导电胶与所述第一电极粘结。
所述第二电极宽度小于所述相邻两第一电极间的距离,同一第二电极不会与相邻两个第一电极同时对应。
所述色彩滤光层还包括形成在相邻滤光单元间的黑色矩阵。
所述有机发光显示屏进一步包括形成在所述色彩滤光层上表面的平坦化层。
所述有机发光显示屏进一步包括形成在所述色彩滤光层与阴极层之间的阻水层。
所述阻水层为一薄膜封装层,所述阻水层的材料包括氧化硅、氮化硅、氮氧化硅中的至少一种。
一种有机发光显示屏的制造方法,其中,包括:
S1、提供滤光基板,并在所述滤光基板上形成图形化的色彩滤光层,所述色彩滤光层包括若干不同颜色的滤光单元;
S2、在所述色彩滤光层上方依次沉积阴极层、有机发光层以及阳极单元材料;
S3、图形化所述阳极单元材料,形成若干间隔设置的阳极单元,各阳极单元均与一滤光单元对应,若干阳极单元形成阳极阵列的组成部分。
步骤S3包括:
S31、沉积阳极单元材料后,沉积保护材料以覆盖阳极单元材料;
S32、通过光刻构图工艺在所述保护材料上形成光刻胶掩膜版;
S33、以光刻胶掩膜版为掩膜刻蚀保护材料,形成若干间隔设置的保护单元,然后去除光刻胶掩膜版;
S34、以所述若干保护单元为掩膜刻蚀阳极单元材料,形成若干间隔设置的阳极单元。
步骤S34后还包括:
S35、沉积绝缘隔离层覆盖阳极单元以及相邻阳极单元之间的有机发光层;
S36、对应所述阳极单元刻蚀所述绝缘隔离层以及保护单元,分别形成贯穿绝缘隔离层以及保护单元的第二通孔以及第一通孔;
S37、在所述阳极单元上方形成若干间隔设置的第一电极,所述第一电极填充第二通孔以及第一通孔而与所述阳极单元电性连接。
所述方法还包括S4:提供驱动背板,所述步骤S4包括:
S41、在驱动基板上形成若干间隔设置的第二电极,第二电极与驱动基板组成驱动背板;
S42、将阳极阵列通过异方性导电胶粘结至所述第二电极。
所述阴极层组包括阻水层和阴极层,所述步骤S2还包括:在所述色彩滤光层上方依次沉积阻水层和阴极层。
所述步骤S2还包括:在所述色彩滤光层上表面形成平坦化层。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明实施例提供的有机发光显示屏的结构示意图;
图2为本发明实施例提供的有机发光显示屏的制造流程图;
图3为本发明实施例提供的有机发光显示屏的阳极阵列的制造流程图;
图4至图10为本发明实施例提供的有机发光显示屏制造过程中的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有 其他实施例,都属于本发明保护的范围。
以下结合附图,详细说明本发明较佳实施例提供的技术方案。
如图1所示,本实施例提供一种有机发光显示屏,包括:滤光基板100,依次形成于滤光基板100上的色彩滤光层200、平坦化层300、阻水层400、阴极层500、有机发光层600、阳极阵列700以及绝缘隔离层800,还包括驱动背板900,阳极阵列700粘结至驱动背板900。
滤光基板100为透光基板,使得有机发光显示屏可以透过滤光基板100而出光,具体选择一般为玻璃基板。
色彩滤光层200包括若干不同颜色的滤光单元210以及形成在相邻滤光单元210之间的黑色矩阵220。滤光单元210可以精确选择欲通过的小范围波段光波,而反射掉其他不希望通过的波段。本实施例滤光单元210包括多个间隔设置的红色滤光单元R、绿色滤光单元G以及蓝色滤光单元B。有机发光层600发出的光经过红色滤光单元R、绿色滤光单元G以及蓝色滤光单元B后可分别发射红光、绿光以及蓝光,进而实现彩色显示画面。当然本发明其他实施例中滤光单元210还可包括其他颜色滤光单元,或者滤光单元210只包括两种颜色滤光单元,这里不以此为限,只要相邻的两滤光单元210颜色不同即可。黑色矩阵220形成于相邻滤光单元210之间,阻挡某一颜色的滤光单元210对应的有机发光层600发出的光束射向与该颜色的滤光单元210相邻的其他颜色的滤光单元210,进而防止混色。
平坦化层300形成于色彩滤光层200与阴极层500之间,具体位于色彩滤光层200上表面。色彩滤光层200上方的阴极层500很薄,而色彩滤光层200表面不平整,若阴极层500直接形成于色彩滤光层200上表面很容易导致阴极层500断裂,进而导致阴极层500断路或者电阻增大,影响显示屏性能。因此,在色彩滤光层200上表面形成一层平坦化层300增加显示屏电学性能可靠性。本实施例平坦化层为光学透明胶,其在具有平坦化的作用的同时还具有一定的阻水能力,防止水汽进入并侵蚀阴极层500以及有机发光层600,进一步提高显示屏电学性能可靠性。当然其他实施例平坦化层也可为其他透光的材料。
阻水层400也形成于色彩滤光层200与阴极层500之间,其为一层透光材料。本实施例阻水层400为一层薄膜封装层,其可由氧化硅(SiOx)、氮化硅(SiNx)或氮氧化硅(SiOxNy)等材料制作而成。阻水层400形成于平坦化层300上方,进一步阻止水汽进入并侵蚀阴极层500以及有机发光层600,使得 显示屏电学性能可靠性更高。当然本实施例为一优选方案,本发明其他实施例阻水层400也可为其他透光材料,或者阻水层400与平坦化层300位置也可互换,或者二者之中只有其一,甚至两者都没有均可,这里不做限制。
阴极层500为一层透明导电材料。为了提高经过阴极层500的光线透过率,阴极层500厚度通常较薄,此时阴极层500一旦受水汽侵入,其电学性能会因氧化等原因而受较大影响,因此本实施例优选形成了平坦化层300以及阻水层400进行双重防水层,使得显示屏可靠性能高。
本实施例有机发光层600白色发光材料,在电压驱动下发白光。有机发光层600发出的白光经过各种颜色的滤光单元210后,形成各种颜色的光,进而实现全彩化显示。
阳极阵列700包括若干间隔设置的阳极单元710、形成于阳极单元710上方的保护单元720以及第一电极730。各阳极单元710均与一滤光单元210对应,且与驱动背板900电性连接。驱动背板900提供驱动电压至各阳极单元710,各阳极单元710与其下方阴极层500共同为有机发光层600提供电压,使得有机发光层600电子空穴对复合产生光子进而发光。各保护单元720位于各阳极单元710上方,用于在形成阳极单元710工艺过程中保护有机发光层600而提高显示屏性能,详细原因见下述有机发光显示屏的制造方法,当然其他实施例也可不形成保护单元720。各保护单元720内形成有第一通孔721。各第一电极730形成于各阳极单元710上方且粘结至驱动背板900。具体地,第一电极730位于保护单元720上表面且填充第一通孔721,进而使得保护单元720下的阳极单元710与第一电极730电性连接。
绝缘隔离层800形成于保护单元720上表面且覆盖阳极单元710侧壁以及相邻阳极单元710之间的有机发光层。绝缘隔离层800防止相邻阳极单元710发生短路。当然本发明其他实施例绝缘隔离层800具体形态也可与本实施例不同,例如绝缘隔离层800只形成于两阳极单元710之间,只要其覆盖阳极单元710侧壁也可有效防止相邻阳极单元710发生短路,提高显示屏可靠性,或者无保护单元720形成时,绝缘隔离层800覆盖阳极单元710上表面与侧壁、以及相邻阳极单元710之间的有机发光层。绝缘隔离层800内形成有第二通孔801,第一电极730同时填充第二通孔801以及第一通孔721。
驱动背板900包括驱动基板910以及形成于驱动基板910表面的若干间隔设置的第二电极920。驱动基板910包括基底(如Si基底,未图示)以及形成于 基底上的薄膜晶体管(未图示)等,用于提供驱动电压。驱动基板910表面形成若干间隔设置的第二电极920,第二电极920通过异方性导电胶(ACF,Anisotropic Conductive Film)与第一电极730粘结。异方性导电胶的Z轴电气导通性能与XY绝缘平面的电阻特性具有明显的差异性。因此,ACF可以在纵向电性连接第二电极920以及第一电极730,使得阳极单元710通过第一电极730电性连接驱动背板910;同时,在横向绝缘相邻第二电极920以及相邻第一电极730,实现各阳极单元710的驱动电压互不影响,且各阳极单元710不会发生短路。同时ACF的胶黏性使得第二电极920以及第一电极730可靠地粘结贴合在一起。由于贴合工艺不可避免地会出现对位偏差,因此本实施例优选第二电极920宽度h1小于相邻两第一电极710间的距离h2,所以在有一定的对位偏差的情况下,同一第二电极920也不会与相邻两个第一电极710同时对应,进而防止对位偏差可能导致的相邻两个第一电极710之间发生短路。这里的“宽度”是指如图1以及图2所示剖面图的h1以及h2方向的“宽度”。当然其他实施例h1也可以不小于h2,只要保证相邻两个第一电极710之间不发生短路即可。
一实施例中,滤光单元还可以实施为光转化材料,其是利用将某一波长区间以外的光转化为该波长区间的光,从而起到滤光作用,稳定输出RGB光源;在其他实施例里,滤光单元也可以是由起阻挡过滤作用的滤光单元和起光转化作用的滤光单元的结合。
本实施例还提供上述有机发光显示屏的制造方法,如图2所示,包括如下步骤,但不限于如下顺序,可以根据需求进行顺序调整,在此不作赘述。
S1、提供滤光基板100,并在滤光基板100上形成图形化的色彩滤光层200,色彩滤光层200包括若干不同颜色的滤光单元210,如图4所示。
提供玻璃等滤光基板100,通过光刻构图工艺,在滤光基板100上形成若干间隔分布的黑色矩阵220,再通过构图工艺在黑色矩阵220以及黑色矩阵220之间的滤光基板100上依次形成若干红色滤光单元R、绿色滤光单元G以及蓝色滤光单元B。色彩滤光层200制作过程为本领域常规技术手段,这里不再详细赘述。
S2、在色彩滤光层200上方依次沉积阴极层500、有机发光层600以及阳极单元材料711,如图5所示。
本实施例首先在色彩滤光层200上方形成一层平坦化层300增加显示屏电学性能可靠性。本实施例平坦化层300为光学透明胶,当然,实际工艺生产过 程中,形成有色彩滤光层200以及色彩滤光层200上的光学透明胶的滤光基板100也可通过购买直接获得。再在平坦化层300上方形成一层阻水层400,进一步增强显示屏电学可靠性。然后在阻水层400上表面依次沉积阴极层500、有机发光层600以及阳极单元材料711。本领域常规的制备方式为阻水层400是最后沉积在阴极层500上,但在本实施例中,发明人意外发现,可以将制备顺序倒置,以满足下述的对位要求,且仍能够达到较好的的封装效果。
S3、图形化阳极单元材料711,形成若干间隔设置的阳极单元710,各阳极单元710均与一滤光单元210对应,若干阳极单元710形成阳极阵列700的组成部分,整个阳极阵列700的制造流程如图3所示。
S31、沉积阳极单元材料711后,沉积保护材料721以覆盖阳极单元材料711,如图6所示。
本实施例保护材料721为SiO2材料,当然其它实施例保护材料721也可为其他材料,或者也可不形成保护材料,本实施例为优选方案。
S32、通过光刻构图工艺在保护材料721上形成光刻胶掩膜版(未图示);
S33、以光刻胶掩膜版为掩膜刻蚀保护材料721,形成若干间隔设置的保护单元720,然后去除光刻胶掩膜版,如图7所示。
保护单元720可作为图形化形成阳极单元710的掩膜版。形成保护单元720后通过等离子体刻蚀等干法刻蚀工艺去除光刻胶掩膜版。由于干法刻蚀光刻胶通常要用到氧气,而氧气浸入有机发光层600会使得有机发光层600被氧化而影响其性能。因此本实施例没有直接通过光刻胶掩膜版图形化形成阳极单元710,而是先通过光刻胶掩膜版图形化形成保护单元720,此时去除光刻胶掩膜版,被刻蚀掉的保护材料721的下方有阳极单元材料711对有机发光层600进行保护,能够有效防止氧气侵蚀有机发光层600,提高显示屏性能,本发明实施例保护材料还可以为多层,例如SiO2材料上再形成一层Al材料,刻蚀图形化Al材料后,等离子体刻蚀等方法去除光刻胶掩膜版,此时被刻蚀掉的Al材料下方有SiO2材料以及阳极单元材料711对有机发光层600进行保护,可以更好地对有机发光层600进行保护,图形化Al材料在图形化SiO2材料后可去除,当然其他实施例也可不形成保护单元720。
S34、以若干保护单元720为掩膜刻蚀阳极单元材料711,形成若干间隔设置的阳极单元710,参考图8。
S35、沉积绝缘隔离层800覆盖阳极单元710以及相邻阳极单元710之间的 有机发光层,如图8所示。
具体地,绝缘隔离层800覆盖保护单元720上表面、阳极单元710侧壁以及阳极单元710之间的有机发光层600。
S36、对应阳极单元710刻蚀绝缘隔离层800以及保护单元720,分别形成贯穿绝缘隔离层800以及保护单元720的第二通孔801以及第一通孔721,如图9所示。
S37、在阳极单元710上方形成若干间隔设置的第一电极730,第一电极730填充第二通孔801以及第一通孔721而与阳极单元710电性连接,如图10所示。
沉积第一电极材料覆盖绝缘隔离层800并填充第二通孔801以及第一通孔721,通过刻蚀构图工艺,图形化第一电极材料,形成位于阳极单元710上方的第一电极730。若干第一电极730、保护单元720以及阳极单元710组成阳极阵列700。
S4、将阳极阵列700粘结至驱动背板900,阳极单元710与驱动背板900电性连接,参考图1。
S41、在驱动基板910上形成若干间隔设置的第二电极920,第二电极920与驱动基板910组成驱动背板900;
S42、将阳极阵列700通过异方性导电胶粘结至第二电极920。
将阳极单元710上方的各第一电极730通过异方性导电胶粘结至个第二电极920,进而将阳极单元710与驱动背板900电性连接。
综上所述,本实施例有机发光显示屏及其制造方法,通过直接在色彩滤光层200上形成阳极阵列700,进而实现滤光单元210与阳极单元710的对位,相对于传统的贴合对位方式,本实施例形成的有机发光显示屏对比偏差显著减小,进而有效改善了有机发光显示屏出光串扰问题。
以上所述的具体实例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种有机发光显示屏,其中,包括:滤光基板,还包括依次形成于所述滤光基板上的色彩滤光层、阴极层、有机发光层以及阳极阵列,所述阳极阵列包括若干间隔设置的阳极单元,所述色彩滤光层包括若干滤光单元,各阳极单元均与一滤光单元对应。
  2. 根据权利要求1所述的有机发光显示屏,其中,所述有机发光显示屏还包括驱动背板,所述阳极阵列还包括若干间隔设置的第一电极,所述第一电极形成于所述阳极单元上方且粘结至所述驱动背板,所述阳极单元通过第一电极电性连接所述驱动背板。
  3. 根据权利要求2所述的有机发光显示屏,其中,所述阳极阵列还包括若干间隔设置的保护单元,所述保护单元形成于所述阳极单元上方,所述保护单元内形成有第一通孔,所述第一电极填充所述第一通孔。
  4. 根据权利要求2所述的有机发光显示屏,其中,所述有机发光显示屏还包括绝缘隔离层,所述绝缘隔离层覆盖所述阳极单元以及相邻阳极单元之间的有机发光层,所述绝缘隔离层内形成有第二通孔,所述第一电极填充所述第二通孔。
  5. 根据权利要求2所述的有机发光显示屏,其中,所述驱动背板包括驱动基板以及形成于所述驱动基板表面的若干间隔设置的第二电极,所述第二电极通过异方性导电胶与所述第一电极粘结。
  6. 根据权利要求5所述的有机发光显示屏,其中,所述第二电极宽度小于所述相邻两第一电极间的距离,同一第二电极不会与相邻两个第一电极同时对应。
  7. 根据权利要求1所述的有机发光显示屏,其中,所述色彩滤光层还包括形成在相邻滤光单元间的黑色矩阵。
  8. 根据权利要求1所述的有机发光显示屏,其中,所述有机发光显示屏进一步包括形成在所述色彩滤光层上表面的平坦化层。
  9. 根据权利要求1所述的有机发光显示屏,其中,所述有机发光显示屏进一步包括形成在所述色彩滤光层与阴极层之间的阻水层。
  10. 根据权利要求9所述的有机发光显示屏,其中,所述阻水层为一薄膜封装层,所述阻水层的材料包括氧化硅、氮化硅、氮氧化硅中的至少一种。
  11. 一种有机发光显示屏的制造方法,其中,包括:
    S1、提供滤光基板,并在所述滤光基板上形成图形化的色彩滤光层,所述色彩滤光层包括若干不同颜色的滤光单元;
    S2、在所述色彩滤光层上方依次沉积阴极层、有机发光层以及阳极单元材料;
    S3、图形化所述阳极单元材料,形成若干间隔设置的阳极单元,各阳极单元均与一滤光单元对应,若干阳极单元形成阳极阵列的组成部分。
  12. 根据权利要求11所述的有机发光显示屏的制造方法,其中,步骤S3包括:
    S31、沉积阳极单元材料后,沉积保护材料以覆盖阳极单元材料;
    S32、通过光刻构图工艺在所述保护材料上形成光刻胶掩膜版;
    S33、以光刻胶掩膜版为掩膜刻蚀保护材料,形成若干间隔设置的保护单元,然后去除光刻胶掩膜版;
    S34、以所述若干保护单元为掩膜刻蚀阳极单元材料,形成若干间隔设置的阳极单元。
  13. 根据权利要求12所述的有机发光显示屏的制造方法,其中,步骤S34后还包括:
    S35、沉积绝缘隔离层覆盖阳极单元以及相邻阳极单元之间的有机发光层;
    S36、对应所述阳极单元刻蚀所述绝缘隔离层以及保护单元,分别形成贯穿绝缘隔离层以及保护单元的第二通孔以及第一通孔;
    S37、在所述阳极单元上方形成若干间隔设置的第一电极,所述第一电极填充第二通孔以及第一通孔而与所述阳极单元电性连接。
  14. 根据权利要求11所述的有机发光显示屏的制造方法,其中,所述方法还包括S4:提供驱动背板,所述步骤S4包括:
    S41、在驱动基板上形成若干间隔设置的第二电极,第二电极与驱动基板组成驱动背板;
    S42、将阳极阵列通过异方性导电胶粘结至所述第二电极。
  15. 根据权利要求11所述的有机发光显示屏的制造方法,其中,所述阴极层组包括阻水层和阴极层,所述步骤S2还包括:在所述色彩滤光层上方依 次沉积阻水层和阴极层。
  16. 根据权利要求15所述的有机发光显示屏的制造方法,所述步骤S2还包括:在所述色彩滤光层上表面形成平坦化层。
PCT/CN2018/101472 2017-08-31 2018-08-21 一种有机发光显示屏及其制造方法 WO2019042188A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/336,643 US11289665B2 (en) 2017-08-31 2018-08-21 Organic light-emitting display screen and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710779094.0 2017-08-31
CN201710779094.0A CN107527941B (zh) 2017-08-31 2017-08-31 一种有机发光显示屏及其制造方法

Publications (1)

Publication Number Publication Date
WO2019042188A1 true WO2019042188A1 (zh) 2019-03-07

Family

ID=60683302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101472 WO2019042188A1 (zh) 2017-08-31 2018-08-21 一种有机发光显示屏及其制造方法

Country Status (4)

Country Link
US (1) US11289665B2 (zh)
CN (1) CN107527941B (zh)
TW (1) TWI682537B (zh)
WO (1) WO2019042188A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527941B (zh) * 2017-08-31 2019-09-17 维信诺科技股份有限公司 一种有机发光显示屏及其制造方法
CN112750886A (zh) * 2020-12-31 2021-05-04 安徽熙泰智能科技有限公司 基于bm技术的改善串扰的微显示器结构及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103268921A (zh) * 2012-12-31 2013-08-28 上海天马微电子有限公司 制造woled的方法、woled及显示设备
CN104112764A (zh) * 2014-07-02 2014-10-22 京东方科技集团股份有限公司 一种amoled显示面板及其制备方法和显示装置
US9236418B2 (en) * 2002-01-24 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
CN106098954A (zh) * 2016-06-30 2016-11-09 京东方科技集团股份有限公司 一种有机电致发光器件及其制作方法、显示装置
CN107527941A (zh) * 2017-08-31 2017-12-29 黑牛食品股份有限公司 一种有机发光显示屏及其制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5929474A (en) * 1997-03-10 1999-07-27 Motorola, Inc. Active matrix OED array
KR100637147B1 (ko) * 2004-02-17 2006-10-23 삼성에스디아이 주식회사 박막의 밀봉부를 갖는 유기 전계 발광 표시장치, 그제조방법 및 막 형성장치
TWI365005B (en) * 2008-01-04 2012-05-21 Chimei Innolux Corp Organic light emitting diode (oled) display devices, modules, and electronic devices
KR101552994B1 (ko) * 2012-08-31 2015-09-15 엘지디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
KR102045244B1 (ko) * 2012-11-14 2019-11-15 엘지디스플레이 주식회사 연성 표시소자
CN203085550U (zh) * 2012-12-31 2013-07-24 上海天马微电子有限公司 一种woled及显示设备
KR102131248B1 (ko) * 2013-07-04 2020-07-08 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN103715147B (zh) * 2013-12-27 2016-08-17 京东方科技集团股份有限公司 互补型薄膜晶体管驱动背板及其制作方法、显示面板
KR20160035680A (ko) * 2014-09-23 2016-04-01 삼성디스플레이 주식회사 회색 컬러필터를 포함하는 표시장치
TWI555000B (zh) * 2015-02-05 2016-10-21 友達光電股份有限公司 顯示面板
TW201631367A (zh) * 2015-02-25 2016-09-01 友達光電股份有限公司 顯示面板及其製作方法
TWI580090B (zh) * 2015-07-20 2017-04-21 瑞鼎科技股份有限公司 內嵌式觸控面板
KR102561178B1 (ko) * 2018-06-08 2023-07-28 삼성디스플레이 주식회사 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9236418B2 (en) * 2002-01-24 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
CN103268921A (zh) * 2012-12-31 2013-08-28 上海天马微电子有限公司 制造woled的方法、woled及显示设备
CN104112764A (zh) * 2014-07-02 2014-10-22 京东方科技集团股份有限公司 一种amoled显示面板及其制备方法和显示装置
CN106098954A (zh) * 2016-06-30 2016-11-09 京东方科技集团股份有限公司 一种有机电致发光器件及其制作方法、显示装置
CN107527941A (zh) * 2017-08-31 2017-12-29 黑牛食品股份有限公司 一种有机发光显示屏及其制造方法

Also Published As

Publication number Publication date
US11289665B2 (en) 2022-03-29
TW201841363A (zh) 2018-11-16
US20210288272A1 (en) 2021-09-16
CN107527941A (zh) 2017-12-29
TWI682537B (zh) 2020-01-11
CN107527941B (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
TWI396464B (zh) 有機電致發光顯示裝置及其製作方法
US9985241B2 (en) Electro-optical apparatus and electronic device
US11081680B2 (en) Pixel structure, method for forming the same, and display screen
US11289669B2 (en) Light-emitting device, pixel unit, manufacturing method for pixel unit and display device
US10347862B2 (en) EL display device and method for manufacturing EL display device
TW200524467A (en) Organic light emitting device, manufacturing method thereof, and display unit
WO2020237930A1 (zh) 显示面板及其制备方法
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
JP2007156504A (ja) 有機電界発光素子とその製造方法
WO2016095335A1 (zh) Oled显示装置及其制造方法
TWI699882B (zh) 光電裝置、電子機器
CN105321980A (zh) 有机发光装置及该装置的制造方法
JP2014002880A (ja) 有機el装置の製造方法
US11289665B2 (en) Organic light-emitting display screen and manufacturing method thereof
WO2016090747A1 (zh) Oled显示装置及其制造方法
US20230284513A1 (en) Display device, method of manufacturing display device, and electronic apparatus using display device
CN111029385A (zh) Oled显示面板及显示装置
CN114220821B (zh) 显示面板
US11930673B2 (en) Display panel and display device
KR20160047052A (ko) 대면적 고 휘도 유기발광 다이오드 표시장치
KR100875423B1 (ko) 유기 전계 발광 소자 및 그 제조방법
CN113745247A (zh) 显示面板
US11495775B2 (en) Light-emitting device including encapsulation layers having different refractive indexes, method of manufacturing the same and electronic apparatus
CN118076145A (zh) 显示面板及显示装置
JP2013020834A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851653

Country of ref document: EP

Kind code of ref document: A1