WO2019039608A1 - 電動駆動式作業車両 - Google Patents
電動駆動式作業車両 Download PDFInfo
- Publication number
- WO2019039608A1 WO2019039608A1 PCT/JP2018/031451 JP2018031451W WO2019039608A1 WO 2019039608 A1 WO2019039608 A1 WO 2019039608A1 JP 2018031451 W JP2018031451 W JP 2018031451W WO 2019039608 A1 WO2019039608 A1 WO 2019039608A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- traveling
- inverter
- voltage
- power generation
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/46—Series type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/15—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/13—Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
- B60W20/14—Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/04—Control effected upon non-electric prime mover and dependent upon electric output value of the generator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to an electrically driven work vehicle.
- a work vehicle including a wheel loader, an engine, a hydraulic pump mechanically connected to an output shaft of the engine, a hydraulic actuator operated by hydraulic oil supplied from the hydraulic pump, and a mechanical on an output shaft of the engine
- a torque converter vehicle provided with a connected torque converter (hereinafter referred to as torque converter) type automatic transmission and a forward and reverse switch for switching the traveling direction of the vehicle.
- the torque converter has a modulation function that decelerates the vehicle in the current direction of travel by switching the forward / backward switch to the opposite direction to the current direction of travel while traveling.
- modulating the torque converter input axis and output The gears of the automatic transmission are switched so that the rotation direction of the shaft is in the opposite direction, and the braking force is generated by the slip of the torque converter.
- the torque converter vehicle can decelerate the vehicle without using the hydraulic brake and accelerate the vehicle in the direction indicated by the forward / backward switch as it is.
- the load for causing slippage of the torque converter at the time of modulation continues to be applied to the engine.
- acceleration after modulation is more responsive than acceleration from rest.
- an engine in the working vehicle, an engine, a generator motor mechanically connected to the engine, a generator inverter for controlling the amount of power generation of the generator motor, a traveling motor for driving the vehicle, a generator inverter and a traveling motor are electrically used.
- a motor-driven working vehicle including a power storage device connected to and a forward and reverse switch.
- the electrically driven working vehicle also has a modulation function as with a torque converter vehicle, but the traveling motor at the time of modulation generates a braking force by converting the kinetic energy of the vehicle into regenerative power, and the generator motor and storage device There is no need to receive power from the Therefore, unlike the torque converter car, the engine at the time of modulation will be idle without load.
- An electrically driven work vehicle includes a controller that outputs a command to increase the amount of power generation of a generator motor to a power generation inverter when the voltage is below the maximum voltage value and the speed signal of the traveling motor is below a preset speed. ing.
- the generator motor is driven by the engine to charge the storage device with the generated power. That is, by applying a load to the engine also at the time of modulation, the engine responsiveness at acceleration after modulation is improved.
- the above-described technology relates to an electrically driven work vehicle including a storage device such as a secondary battery or a capacitor.
- a storage device such as a secondary battery or a capacitor.
- the amount of regenerated power is controlled using the storage device, but there are various operation patterns of the work vehicle, so the storage amount is not constant and the storage amount is fully charged
- the acceleration performance after modulation varies depending on the storage amount of the power storage device, and the acceleration may be improved or deteriorated.
- the present invention has been made based on the above-mentioned matters, and an object thereof is to provide an electrically driven work vehicle which can obtain acceleration equal to or higher than that of a torque converter in acceleration after modulation.
- the present application includes a plurality of means for solving the above problems, and an example thereof is an engine, a generator motor mechanically connected to the engine, and a generator inverter controlling the amount of power generation of the generator motor.
- a traveling motor electrically connected to the generator motor, a traveling inverter for controlling the torque of the traveling motor, a forward / backward switching device operated to switch forward or reverse of the vehicle body, and a generated voltage command
- a motor-driven working vehicle including a control device outputting to a power generation inverter and outputting a motor torque command to the traveling inverter, a brake resistor electrically connected to the generator motor and the traveling motor, and the power generation It is electrically connected to the inverter and the traveling inverter, and when the input voltage exceeds the set voltage, the generator inverter and The driving inverter is electrically connected to the brake resistor, and the chopper motor is configured to consume the electric power generated by the generator motor and the traveling motor, and the control device is configured to switch the vehicle body by the forward
- an acceleration equal to or higher than that of the torque converter can be obtained with the electrically driven work vehicle.
- FIG. 1 is a side view of a motor-driven wheel loader 30 according to an embodiment of the present invention.
- FIG. 2 is a functional block diagram of the main controller 100 according to the embodiment of this invention.
- FIG. 7 is a diagram showing an example of modulation determination processing by a modulation determination unit 110.
- FIG. 7 is a diagram showing an example of a generation voltage command calculation process by a generation voltage command calculation unit 140.
- FIG. 6 is a diagram showing an example of motor torque command calculation processing by a torque command calculation unit 120.
- FIG. 1 is a side view of a motor-driven wheel loader 30 according to an embodiment of the present invention.
- FIG. 2 is a functional block diagram of the main controller 100 according to the embodiment of this invention.
- FIG. 7 is a diagram showing an example of modulation determination processing by a modulation determination unit 110.
- FIG. 7 is a diagram showing an example of a generation voltage command calculation process by a generation voltage command calculation unit 140.
- FIG. 6 is a diagram showing an
- FIG. 7 is a diagram showing an example of engine rotation command instruction computation processing by the engine rotation command computation unit 130.
- a wheel loader is taken as an example of a motor-driven working vehicle, and an embodiment of the present invention will be described with reference to the drawings.
- the present invention is not limited to the application of the electrically driven wheel loader, and is also applicable to, for example, an electrically driven forklift.
- it is an electrically driven work vehicle capable of performing a modulation operation that decelerates the vehicle in the current traveling direction by switching the forward and reverse switch to the opposite side to the current traveling direction while traveling, and as a power source of a traveling motor
- the present invention is applicable to any electrically driven work vehicle that does not have a storage device such as a secondary battery or a capacitor.
- the present invention can be applied by providing a brake resistor.
- FIG. 1 is a side view of a motor-driven wheel loader according to an embodiment of the present invention.
- the wheel loader 30 of FIG. 1 includes a vehicle body 31 and an articulated hydraulic working device 50 attached to the front of the vehicle body 31.
- the vehicle body 31 adopts an articulated steering type (body refractive type), and a front vehicle body (front frame) 31a and a rear vehicle body (rear frame) mounted with wheels 10 (front wheel 10a, rear wheel 10b) on the left and right respectively 31 b are connected by a center joint 64.
- steering cylinders 53 are disposed on the left and right sides of the center joint 64 so as to connect the front vehicle body 31a and the rear vehicle body 31b.
- an operation lever 56 for operating the hydraulic work device 50 and a device for switching between forward (F) and reverse (R) with respect to the traveling direction of the vehicle body 31 (forward / backward switching device)
- the forward and reverse switch 103 an accelerator pedal 101 for instructing the vehicle body 31 to accelerate, a brake pedal 102 for instructing the vehicle body 31 to decelerate, and a steering wheel for steering the left and right traveling directions of the vehicle body 31 Not shown).
- the steering wheel (not shown) installed in the driver's cab (cab) 36 is operated, the rear vehicle body 31b and the front vehicle body 31a are refracted (turned around the center joint 64 with expansion and contraction of the steering cylinder 53) ).
- a driver's cab 36 is mounted on the front of the rear vehicle body 31b, and an engine compartment 37 is mounted on the rear.
- the engine room 37 includes a diesel engine (ENG) 1, a hydraulic pump (main pump) 9, a control valve (C / V) 55, a generator motor (GEN) 5 and a traveling motor (traveling motor, MOT shown in FIG. 7) is stored.
- ENG diesel engine
- main pump main pump
- C / V control valve
- GEN generator motor
- traveling motor traveling motor
- the hydraulic work device 50 includes a lift arm 41 and a bucket 42, and a lift cylinder 52 and a bucket cylinder 51 which are telescopically driven to drive the lift arm 41 and the bucket 42.
- the lift arm 41 and the lift cylinder 52 are provided one by one on the left and right of the front vehicle body 31a, but the lift arm 41 and the lift cylinder 52 on the right side of the vehicle hidden in FIG.
- the lift arm 41 pivots (up and down) in the up and down direction along with the extension and contraction drive of the lift cylinder 52.
- the bucket 42 rotates in the vertical direction (dumping operation or cloud operation) in accordance with the expansion and contraction driving of the bucket cylinder 51.
- the illustrated wheel loader 30 employs a Z link (bell crank) type as a link mechanism for operating the bucket 42.
- the link mechanism includes a bucket cylinder 51.
- FIG. 2 is a system configuration diagram of an electric / hydraulic machine constituting the first embodiment of the electrically driven working vehicle of the present invention.
- the wheel loader 30 includes a diesel engine 1, an engine controller (ECU) 2 that is a computer that controls the output of the engine 1, and a main controller (M / C) 100 that is a computer that controls the entire vehicle.
- ECU engine controller
- M / C main controller
- a generator motor (5) mechanically connected to the engine (1), a generator inverter (inverter for generator motor) 6 for controlling the amount of power generation of the generator motor 5 based on a generator voltage command input from the main controller 100, And a traveling inverter for controlling the torque of the traveling motor 7 on the basis of the motor torque command input from the main controller 100 and driving motor 7 electrically connected to the vehicle and driving the vehicle body 31 by the power supplied from the generator motor 5
- Motor inverter 8 generator inverter 6 and driving in
- the chopper circuit 4 electrically connected to the motor 8 and the brake resistor 3 electrically connected to the generator inverter 6 (generator motor 5) and the traveling inverter 8 (traveling motor 7) by the switching operation of the chopper circuit 4
- the accelerator pedal 101 outputs an accelerator signal corresponding to the depression amount (operation amount) to the main controller 100
- the brake pedal 102 outputs the brake signal corresponding to the depression amount (operation amount) to the main controller 100
- F) There are three switching positions of neutral (N)
- the chopper circuit 4, the power generation inverter 6 and the traveling inverter 8 are connected to the same power line, and in the present embodiment, the voltage of the power line is referred to as a terminal voltage 20.
- the main pump 9 is mechanically connected to the engine 1 and the generator motor 5, and is driven by the engine 1 and the generator motor 5 to discharge hydraulic oil.
- the flow rate and flow direction of the hydraulic oil discharged from the main pump 9 are controlled by the control valve 55 controlled based on the operation direction and the operation amount of the operation lever 56.
- the hydraulic cylinders 51, 52, 53 The hydraulic working device 50 is driven appropriately.
- the main controller (control device) 100 is connected to respective signal lines of an accelerator pedal 101, a brake pedal 102, a forward / backward switch 103 (forward / backward switching device), an ECU 2, a power generation inverter 6, and a traveling inverter 8. It is possible to input and output signals to Among them, an accelerator signal from the accelerator pedal 101, a brake signal from the brake pedal 102, and a vehicle travel direction currently selected from the forward / backward switch 103 (forward (F), reverse (R), neutral (N)) And the speed signal of the traveling motor 7 is sent from the traveling inverter 8 to the main controller 100 (input). Further, from the main controller 100, a generated voltage command is sent to the power generation inverter 6, a motor torque command is sent to the traveling inverter 8, and an engine rotational speed command is sent (output) to the ECU 2.
- the wheel loader 30 of the present embodiment if it is determined that the vehicle is modulating based on the forward / backward switch signal from the forward / backward switch 103 and the rotation speed of the traveling motor 7, traveling immediately after the modulation operation is finished. In preparation for acceleration, the generator torque load of the generator motor 5 is applied to the engine 1 during the modulation operation, and the power generated by the generator motor 5 is consumed by the brake resistor 3.
- the configuration of the main controller 100 for performing such an operation will be described using the drawings.
- FIG. 3 is a functional block diagram of the main controller 100. As shown in FIG.
- the main controller 100 includes a modulation determination unit 110, a torque command calculation unit 120, an engine rotation command calculation unit 130, and a generated voltage command calculation unit 140.
- the modulation determination unit 110 is a part that performs processing to determine whether the wheel loader 30 is modulating based on the forward / reverse switch signal and the motor speed signal.
- the traveling direction selected by the forward / backward switch 103 is different from the rotation direction of the traveling motor 7 and the magnitude (rotational speed) of the speed of the traveling motor 7 is greater than the modulation determination threshold.
- the traveling direction selected by the forward / backward switch 103 matches the rotation direction of the traveling motor 7 or the speed of the traveling motor 7 is modulated.
- it is equal to or higher than the rate determination threshold value it is determined that the wheel loader 30 is in the modulation non-operation state.
- FIG. 4 is a diagram showing an example of modulation determination processing by the modulation determination unit 110.
- the main controller 100 starts the process of FIG. 4 at a predetermined control cycle.
- the modulation determination unit 110 determines whether the position of the forward / backward switch 103 is F or R based on the forward / backward switch signal (S401). If it is determined that the position of the switch 103 is F or R, the process proceeds to S402. On the other hand, if it is determined not to be F and R, that is, if it is determined to be N, it is determined that modulation is not in progress (modulation is not in operation) (S405).
- step S402 the modulation determination unit 110 determines whether the magnitude (absolute value) of the speed of the traveling motor 7 is equal to or less than the modulation determination threshold value based on the motor speed signal.
- the modulation determination threshold value is set to zero, and when the magnitude of the speed of the traveling motor 7 is larger than zero, the process proceeds to S403. On the other hand, if the magnitude of the speed of the traveling motor 7 is zero, the process proceeds to S405 and it is determined that modulation is not in progress.
- the modulation determination unit 110 determines whether the rotation direction of the traveling motor 7 is different from the traveling direction indicated by the forward / backward switch 103 based on the forward / reverse switch signal and the motor speed signal. If the directions are different from each other, the process proceeds to S404 to determine that modulation is in progress (during modulation operation). If the directions are the same, the process proceeds to S405 to determine that modulation is not in progress.
- Modulate determination unit 110 outputs a modulation determination signal based on the determination result of S404 or S405 to torque command calculation unit 120 and generated voltage command calculation unit 140.
- the generated voltage command calculation unit 140 is a part that performs a process of calculating a generated voltage command to be output to the generator motor 5.
- the generated voltage command calculated here is output to the power generation inverter 6, and is used for power generation control of the generator motor 5 by the power generation inverter 6.
- FIG. 5 is a diagram showing an example of a generated voltage command calculation process by the generated voltage command calculation unit 140.
- the generated voltage command calculation unit 140 of the present embodiment calculates the generated voltage command based on the modulation determination signal and the motor speed signal.
- the main controller 100 starts the process of FIG. 5 at a predetermined control cycle.
- the generated voltage command computation unit 140 determines whether the magnitude of the speed of the traveling motor 7 is equal to or greater than the second speed threshold and equal to or less than the first speed threshold based on the motor speed signal.
- the first velocity threshold is set to a value larger than the second velocity threshold, and in the present embodiment, the second velocity threshold is zero, which is the same as the modulation determination threshold, and the first velocity threshold is 1 km / h. That is, in S502, it is determined whether or not the modulation operation in which the vehicle body 31 decelerates is to be ended soon, in other words, whether the acceleration associated with the termination of the modulation operation is to be performed soon.
- the generated voltage command computation unit 140 calculates a generated voltage command in which the generated voltage command value Vn is V2.
- V2 is a value larger than V1 and larger than a brake setting voltage (Vb) of the chopper circuit 4 described later, and in this embodiment, V2 is set to 700V.
- the generated voltage command calculation unit 140 executes the processing of S504
- the generated voltage command Vn that generates the voltage V2 exceeding the brake setting voltage Vb is output, and the chopper circuit 4 operates as described later. Since the electric power generated by the generator motor 5 is consumed by the brake resistor 3 in this way, the process of S504 is referred to as "resistance discharge control" in FIG.
- S503 which generates a voltage V1 smaller than the brake setting voltage Vb, the chopper circuit 4 does not operate with only the generated power of the generator motor 5, and normal power generation control is performed unlike S504. Is called "generation control".
- the generated voltage command computation unit 140 outputs the generated voltage command calculated in S503 or S504 to the power generation inverter 6.
- the torque command calculation unit 120 is a part that performs processing for calculating a torque command (motor torque command) of the motor 7.
- the motor torque command calculated here is output to the traveling inverter 8 and is used for torque control of the traveling motor 7 by the traveling inverter 8.
- FIG. 6 is a diagram showing an example of motor torque command calculation processing by the torque command calculation unit 120.
- the torque command calculation unit 120 of the present embodiment calculates the motor torque command based on the forward / backward traveling switch signal, the accelerator signal, and the motor speed signal.
- (+) indicates the torque in the forward direction
- (-) indicates the torque in the reverse direction.
- (+) indicates the rotational speed in the forward direction
- (+) indicates the rotational speed in the reverse direction
- (-) indicates the rotational speed in the reverse direction.
- the graph in the upper part of the figure shows the characteristics when the forward / backward switch 103 is in forward (F)
- the graph in the middle shows the characteristics when neutral (N)
- the graph in the lower part is when reverse (R) Show the characteristics of
- the forward / reverse switch 103 when the forward / reverse switch 103 is forward (F), the upper graph is selected, and the torque command calculation unit 120 outputs the torque command mapped according to the motor rotation speed and the magnitude of the accelerator signal to the traveling inverter 8 Do.
- the accelerator signal When the accelerator signal is maximum, the characteristic is a solid line, and when the accelerator signal is minimum, the characteristic is a dotted line.
- the torque command indicates a predetermined value even under the condition that the motor rotation speed is low and the accelerator signal is minimum, in order to output a so-called creep torque command.
- the forward / reverse switch 103 When the forward / reverse switch 103 is in reverse (R), the lower graph is selected, and a torque command whose sign is opposite to that in forward (F) is output.
- the forward / reverse switch 103 When the forward / reverse switch 103 is in neutral (N), the torque command is zero regardless of the accelerator signal.
- the engine rotation command calculation unit 130 is a part that performs processing for calculating a rotation speed command (engine rotation speed command) of the engine 1.
- the engine rotation speed command calculated here is output to the ECU 2 and used for the rotation speed control of the engine 1 by the ECU 2.
- FIG. 7 is a diagram showing an example of engine rotation command instruction computation processing by the engine rotation command computation unit 130.
- the engine rotation command calculation unit 130 calculates the engine rotation number command based on the forward / reverse switch signal and the duration of the neutral (N).
- the forward / reverse switch signal is forward (F) or reverse (R)
- the engine rotation command calculation unit 130 calculates an engine rotation number command (second rotation number command) having the engine rotation number command value Rn as R2.
- an engine rotation number command (first rotation number command) is calculated with the engine rotation number command value Rn as R1.
- R1 1400 rpm
- R2 1800 rpm.
- the engine rotation number command for forward (F) or reverse (R) selected immediately before is selected until the predetermined time continues after the forward / reverse switch 103 is selected to neutral. 2 revolutions command is calculated.
- the reason for providing the condition "continue for a predetermined time" in changing the rotational speed command when selecting neutral is to maintain the engine 1 in a state where load operation is possible in consideration of reacceleration after modulation. .
- the process of calculating the engine rotational speed command of FIG. 7 is merely an example, and for example, the second rotational speed command may be calculated regardless of the content of the forward / reverse switch signal.
- the power generation inverter 6 controls the generator motor 5 so that the terminal voltage 20 is maintained at a power generation voltage command value Vn (that is, V1 or V2) defined by a power generation voltage command from the main controller 100. For example, when the terminal voltage 20 falls below the power generation voltage command value Vn, the power generation inverter 6 causes the engine 1 to perform load operation and causes the generator motor 5 to generate power.
- Vn power generation voltage command value
- Traveling motor 7 The traveling inverter 8 controls the traveling motor 7 to output a torque defined by the motor torque command from the main controller 100.
- the traveling inverter 8 powers the traveling motor 7, powering torque generated by the traveling motor 7 is transmitted to the tire 10, and accelerates the vehicle body 31.
- the traveling inverter 8 drives the traveling motor 7 as a generator, and the regenerative torque (braking torque) generated by the traveling motor 7 is transmitted to the tire 10 similarly to the powering torque.
- the vehicle body 31 is decelerated.
- the regenerative electric power generated by the traveling motor 7 is consumed by the brake resistor 3 via the chopper circuit 4 which operates during generation of the regenerative power as described later.
- the chopper circuit 4 monitors the input voltage (terminal voltage 20) to the chopper circuit 4 and when the input voltage exceeds the brake setting voltage Vb, a switching device (for example, MOSFET, IGBT, etc.) built in the chopper circuit 4 By switching ON and OFF of the switching device) so as to hold the terminal voltage 20 at the brake setting voltage Vb.
- a switching device for example, MOSFET, IGBT, etc.
- the generated power of the generator motor 5 and the regenerated power of the traveling motor 7 at the time of resistance discharge control are consumed by the brake resistor 3.
- the chopper circuit 4 does not operate. Therefore, the electrical connection between the power generation inverter 6 and the brake resistor 3 of the travel inverter 8 is cut off.
- the brake setting voltage Vb of the chopper circuit is larger than the power generation voltage command value V1 during power generation control of the generator motor 5 (see S503 in FIG. 5) and from the power generation voltage command value V2 during resistance discharge control (see S504 in FIG. 5).
- FIG. 8 is a diagram showing an example of operations of power generation control and resistance discharge control of the present embodiment. This is an operation example in the case where the accelerator signal is maximum and the forward / reverse switch 103 is operated from the state of forward (F) to reverse (R) via the neutral (N).
- the engine 1 is controlled by the second rotational speed command based on FIG. 7 and performs a considerable load operation to turn the generator motor 5.
- the power generation control of the generator motor 5 continues the previous state of forward movement (F) (generated voltage command value V1).
- F generated voltage command value
- the engine 1 Since the time for which the neutral (N) continues is less than the predetermined time, the engine 1 is controlled with the second rotation speed command, but the power for the traction motor 7 becomes unnecessary by the zero torque command. As a result, the load on the engine 1 is almost eliminated and the engine 1 becomes in a non-load operation state, and the responsiveness of the engine output becomes a dull state.
- the engine 1 is switched by the generator motor 5 to a considerable load operation to generate V2.
- the output response is low for a short time (usually within 0.5 to 1 second) immediately after switching indicated as “delay time” in FIG. 8, the output response at time t4 when the modulation operation ends.
- the first speed threshold and the second speed threshold need to be set so that the "delay time" is included in the time required for the traveling motor speed to reach the second speed threshold from the first speed threshold, and this embodiment Then, the first velocity threshold is 1 km / h, and the second velocity threshold is 0 km / h.
- the speed of the traveling motor 7 reaches zero (second speed threshold) at time t4 and rotation in the reverse direction (powering operation) is started, the direction of the forward / backward switch 103 and the rotation direction of the traveling motor 7 coincide with each other.
- the modulation determination unit 110 determines that modulation is not in progress.
- V1 600 V
- the traveling motor 7 needs electric power for powering operation at time t4, but since the engine 1 performs load operation from time t3, load operation can be immediately performed at time t4. As a result, the power generation of the generator motor 5 is started responsively, whereby the traveling motor 7 can be switched to the power running operation with good responsiveness.
- FIG. 9 is a diagram showing an example of the operation of the power generation control and the resistance discharge control of the comparative example, and as in the case of FIG. 8, the accelerator signal is maximum and the forward / backward switch is in the neutral (N) It is an operation example in the case of operating in reverse (R) via via.
- the main controller 100 sends a positive (+) torque command to the traveling inverter 8, the speed of the traveling motor 7 becomes positive (+), and the wheel loader It is moving forward with power running.
- the electric power of the traveling motor 7 is obtained from the generator motor 5 by the power of the engine 1.
- the main controller 100 outputs a power generation voltage command value V1 (600 V as in the present embodiment) to the power generation inverter 6, and the generator motor 5 performs normal power generation control.
- the engine 1 rotates the generator motor 5 in a load operation state, and the terminal voltage 20 is controlled to a voltage value V1 according to the command value.
- the engine 1 is controlled by the second rotational speed command based on FIG. 7 and performs a considerable load operation to turn the generator motor 5.
- the main controller 100 sends a zero torque command to the traveling inverter 8, the traveling motor 7 has zero torque, and the traveling motor speed is coasting.
- the main controller 100 sends a negative (-) torque command to the traveling inverter 8, and the traveling motor 7 performs a regenerative operation and starts to decelerate.
- the traction motor 7 When the speed of the traction motor 7 is gradually reduced by the regeneration operation and switched from forward to reverse at time t4, the traction motor 7 is switched from the regeneration operation to the power running operation. However, since the engine 1 continues the no-load operation until immediately before time t4, the load operation can not be quickly performed at time t4. Therefore, only after the occurrence of the delay time (usually about 0.5 to 1 second), the engine 1 becomes ready for load operation, and then the generator motor 5 generates the necessary power, and Power running operation of the traveling motor 7 becomes possible. That is, in the working vehicle of the comparative example, it is understood that the acceleration after modulation is poor and the drivability is inferior to that of the torque converter.
- the electrically driven working vehicle of the present embodiment exhibits the following effects as compared with the above-described comparative example.
- the generator motor 5 is driven by the engine 1 to generate the voltage V2 exceeding the brake setting voltage Vb of the chopper circuit 4, thereby causing the engine 1 to perform load operation.
- the power generation inverter 6 and the traveling inverter 8 is connected to the brake resistor 3 to the chopper circuit 4 operating at that time, the power generated by the generator motor 5 and the traveling motor 7 is consumed by the brake resistor 3
- acceleration in the direction indicated by the forward / backward switch 103 can be promptly started immediately after the end of the modulation operation. It can exhibit acceleration performance.
- the storage device In an electrically driven work vehicle of the type in which the generator motor generates electricity for the purpose of loading the engine during modulation and the generated electric power is stored in a storage device such as a secondary battery or capacitor, the storage device is fully charged.
- the engine can not be loaded at the time of modulation. Therefore, the acceleration performance after modulation varies depending on the storage amount of the power storage device, and the acceleration may be improved or deteriorated.
- the present embodiment configured to consume the generated power at the time of modulation by the brake resistor 3, it is possible to always load the engine at the time of modulation, so the acceleration performance after modulation is equalized. it can.
- the present embodiment has an advantage that the initial cost of the electrically driven working vehicle can be suppressed since the storage device is not provided.
- the time for which the generator motor 5 generates the voltage V2 exceeding the brake setting voltage Vb during the modulation operation (that is, the time for resistance-discharge control of the generator motor 5) is as much as possible from the viewpoint of fuel consumption reduction. Short is preferred. Therefore, in the present embodiment, the voltage V2 is generated by the generator motor 5 only while the traveling motor speed is equal to or less than the first speed threshold during the modulation operation. In this way, it is possible to reduce the fuel consumption of the engine 1 compared to the case of continuously generating power during the modulation operation.
- the voltage V2 is generated by the generator motor 5 only while the traveling motor speed is lower than the first speed threshold and higher than the second speed threshold during the modulation operation, and the second speed threshold is It was decided to match the modulation determination threshold (that is, the modulation determination threshold is set to the same value as the second velocity threshold).
- the generated voltage of the generator motor 5 can be changed from V2 to V1 at the timing when the modulation operation ends (that is, the timing when the non-modulation operation starts), and wasteful fuel consumption by the engine 1 can be reduced.
- the chopper circuit 4 is made to monitor the input voltage to itself so that the time difference between the change of the terminal voltage 20 and the operation start of the chopper circuit 4 does not occur as much as possible.
- the main controller 100 causes the main controller 100 to monitor the terminal voltage 20 based on the input signals from the inverters 6 and 8, and when the terminal voltage 20 exceeds the brake setting voltage Vb
- the chopper circuit 4 may be configured to output an operation command.
- the present invention is not limited to the above-described embodiment, and includes various modifications within the scope of the present invention.
- the present invention is not limited to the one provided with all the configurations described in the above embodiment, but also includes one in which a part of the configuration is deleted.
- control line and the information line showed what was understood to be required for description of the said embodiment in the description of said embodiment, all the control lines and information lines which concern on a product are not necessarily shown. It is not necessarily shown. In practice, it can be considered that almost all configurations are mutually connected.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Automation & Control Theory (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Operation Control Of Excavators (AREA)
- Hybrid Electric Vehicles (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
エンジン(1)と機械的に接続された発電電動機(5)と、発電電動機(5)の発電量を制御する発電インバータ(6)と、発電電動機と電気的に接続された走行電動機(7)と、走行電動機(7)のトルクを制御する走行インバータ(8)と、車体の前進または後進を切り替えために操作される前後進スイッチ(103)とを備える電動駆動式ホイールローダ(30)において、ブレーキ抵抗器(3)と、入力電圧がブレーキ設定電圧(Vb)を超えるとき発電インバータ(6)及び走行インバータ(8)をブレーキ抵抗器(3)に電気的に接続するチョッパ回路(4)と、ホイールローダ(30)がモジュレート動作する間、ブレーキ設定電圧(Vb)を超える電圧(V2)を発生する発電電圧指令を発電インバータ(6)に出力するメインコントローラ(100)とを備える。
Description
本発明は、電動駆動式作業車両に関する。
ホイールローダを含む作業車両には、エンジンと、エンジンの出力軸に機械的に連結された油圧ポンプと、油圧ポンプから供給される作動油によって動作する油圧アクチュエータと、エンジンの出力軸に機械的に連結されたトルクコンバータ(以下、トルコンと称する)式の自動変速機と、車両の進行方向を切り替える前後進スイッチとを備えた作業車両(以下、トルコン車と称する)がある。
トルコン車は、走行中に現在の進行方向と逆側に前後進スイッチを切り替えることで現在の進行方向で車両を減速させるモジュレート機能を有しており、モジュレート時には、トルコンの入力軸と出力軸の回転方向が逆方向になるように自動変速機のギアを切り替え、トルコンの滑りにより制動力を発生させている。このことにより、トルコン車は、油圧ブレーキを使用することなく車両を減速させ、そのまま前後進スイッチの指示する方向へ車両を加速させることができる。また、トルコン車では、モジュレート時にトルコンの滑りを発生させるための負荷がエンジンにかかり続ける。すなわち、モジュレート時においてもエンジンはパワーを出し続けるので、モジュレート後の前後進スイッチの指示する方向での加速に必要なパワーをエンジンから入力軸に速やかに供給できる。その結果、モジュレート後の加速は停止状態からの加速よりも応答性が良好となる。
ところで、作業車両には、エンジンと、エンジンと機械的に接続した発電電動機と、発電電動機の発電量を制御する発電インバータと、車両を駆動する走行電動機と、発電インバータと走行電動機とに電気的に接続した蓄電装置と、前後進スイッチとを備える電動駆動式作業車両がある。電動駆動式作業車両もトルコン車同様にモジュレート機能を有するが、モジュレート時の走行電動機は、車両の運動エネルギを回生電力に変換することで制動力を発生しており、発電電動機及び蓄電装置から電力供給を受ける必要がない。そのため、トルコン車と異なり、モジュレート時のエンジンは負荷がかからないアイドル状態となる。これにより、モジュレート後の進行方向(前後進切り替えスイッチの指示する方向)における加速時には、直前まで無負荷だったエンジンに突然負荷が作用する状況となり、エンジンの応答遅れが発生してトルコン車のように速やかに加速できないおそれがある。
このようなモジュレート後のエンジンの応答遅れの改善を試みた技術として、特開2013-169824号公報には、現在の進行方向と逆側に前後進スイッチを切り替えた後、蓄電装置の電圧が最高電圧値以下であり、走行電動機の速度信号が予め設定した設定速度以下であるときに、発電電動機の発電量を増加する指令を発電インバータに出力するコントローラを備える電動駆動式作業車両が開示されている。この技術では、モジュレート時に走行電動機が設定速度以下になったとき、エンジンで発電電動機を駆動してその発電電力を蓄電装置に充電している。すなわち、モジュレート時にもエンジンに負荷をかけることでモジュレート後の加速時のエンジン応答性の向上を図っている。
上記の技術は、二次電池やキャパシタ等の蓄電装置を備える電動駆動式作業車両に関するものである。蓄電装置を備える電動駆動式作業車両では、蓄電装置を利用して回生電力量を制御するが、作業車両の運転パターンは様々なものがあるため蓄電量が一定ではなく、蓄電量が満充電状態の時は、前述のようなモジュレート時に発電量を増やしてエンジンに負荷をかけることはできない。したがって、蓄電装置の蓄電量に応じてモジュレート後の加速性能にばらつきが生じ、加速性が良くなったり悪くなったりするおそれがある。
本発明は、上述の事柄に基づいてなされたもので、その目的は、モジュレート後の加速においてトルコン車と同等以上の加速が得られる電動駆動式作業車両を提供することにある。
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、エンジンと、前記エンジンと機械的に接続された発電電動機と、前記発電電動機の発電量を制御する発電インバータと、前記発電電動機と電気的に接続された走行電動機と、前記走行電動機のトルクを制御する走行インバータと、車体の前進または後進を切り替えるために操作される前後進切替え装置と、発電電圧指令を前記発電インバータに出力し、電動機トルク指令を前記走行インバータに出力する制御装置とを備える電動駆動式作業車両において、前記発電電動機及び前記走行電動機に対し電気的に接続されたブレーキ抵抗器と、前記発電インバータ及び前記走行インバータに電気的に接続され、入力電圧が設定電圧を超えるとき前記発電インバータ及び前記走行インバータを前記ブレーキ抵抗器に電気的に接続することで前記発電電動機及び前記走行電動機で発生した電力を消費するチョッパ回路とを備え、前記制御装置は、前記前後進切替え装置により前記車体の進行方向と逆方向が選択されたことで前記電動駆動式作業車両がモジュレート動作する間、前記エンジンにより前記発電電動機を駆動して前記設定電圧を超える電圧を発生する発電電圧指令を前記発電インバータに出力することとする。
本発明によればモジュレート後の加速においてトルコン車と同等以上の加速が電動駆動式作業車両で得られる。
以下、電動駆動式作業車両としてホイールローダを例にとって、本発明の実施の形態について図面を用いて説明する。なお、本発明は、電動駆動式ホイールローダに適用が限定されるものではなく、例えば電動駆動式フォークリフトにも適用可能である。また、走行中に現在の進行方向と逆側に前後進スイッチを切り替えることで現在の進行方向で車両を減速させるモジュレート動作が可能な電動駆動式作業車両であって、走行電動機の電力源として二次電池やキャパシタ等の蓄電装置を備えない電動駆動式作業車両であれば、本発明は適用可能である。さらに、走行電動機の電力源として二次電池やキャパシタ等の蓄電装置を備えた電動駆動式作業車両であってもブレーキ抵抗器を備えることで本発明は適用可能となる。
<ホイールローダ30のハードウェア構成>
図1は本発明の実施の形態に係る電動駆動式ホイールローダの側面図である。なお、各図において同じ部分には同じ符号を付しており、同じ部分の説明は省略することがある。図1のホイールローダ30は、車体31と、この車体31の前方に取り付けた多関節型の油圧作業装置50とを備えている。車体31は、アーティキュレート操舵式(車体屈折式)を採用しており、それぞれ左右に車輪10(前輪10a、後輪10b)を装着した前部車体(フロントフレーム)31aと後部車体(リアフレーム)31bを、センタージョイント64で連結している。図1には示されていないが、センタージョイント64の左右両側には前部車体31aと後部車体31bを連結するようにステアリングシリンダ53(図2参照)が配置されている。
図1は本発明の実施の形態に係る電動駆動式ホイールローダの側面図である。なお、各図において同じ部分には同じ符号を付しており、同じ部分の説明は省略することがある。図1のホイールローダ30は、車体31と、この車体31の前方に取り付けた多関節型の油圧作業装置50とを備えている。車体31は、アーティキュレート操舵式(車体屈折式)を採用しており、それぞれ左右に車輪10(前輪10a、後輪10b)を装着した前部車体(フロントフレーム)31aと後部車体(リアフレーム)31bを、センタージョイント64で連結している。図1には示されていないが、センタージョイント64の左右両側には前部車体31aと後部車体31bを連結するようにステアリングシリンダ53(図2参照)が配置されている。
運転室36内には、油圧作業装置50を操作するための操作レバー56(図2参照)と、車体31の進行方向に関して前進(F)または後進(R)に切り替える装置(前後進切替え装置)である前後進スイッチ103と、車体31に加速を指示するためのアクセルペダル101と、車体31に減速を指示するためのブレーキペダル102と、車体31の左右の進行方向を操るためのステアリングホイール(図示せず)とが設置されている。運転室(キャブ)36内に設置されたステアリングホイール(図示せず)を操作すると、ステアリングシリンダ53の伸縮駆動に伴って後部車体31bと前部車体31aはセンタージョイント64を中心にして屈折(旋回)する。
後部車体31b上には、前方に運転室36、後方にエンジン室37が搭載されている。エンジン室37には、図2に示したディーゼルエンジン(ENG)1、油圧ポンプ(メインポンプ)9、コントロールバルブ(C/V)55、発電電動機(GEN)5及び走行電動機(走行用モータ,MOT)7等が収納されている。
油圧作業装置50は、リフトアーム41及びバケット42と、リフトアーム41及びバケット42を駆動するために伸縮駆動されるリフトシリンダ52及びバケットシリンダ51を備えている。なお、リフトアーム41とリフトシリンダ52は前部車体31aの左右に1つずつ装備されているが、図1で隠れている車体右側のリフトアーム41とリフトシリンダ52は省略して説明する。
リフトアーム41は、リフトシリンダ52の伸縮駆動に伴って上下方向に回動(俯仰動)する。バケット42は、バケットシリンダ51の伸縮駆動に伴って上下方向に回動(ダンプ動作又はクラウド動作)する。なお、図示したホイールローダ30は、バケット42を作動させるためのリンク機構として、Zリンク式(ベルクランク式)のものを採用している。当該リンク機構にはバケットシリンダ51が含まれている。
<システム構成>
図2は本発明の電動駆動式作業車両の第1の実施の形態を構成する電動・油圧機器のシステム構成図である。図2において、ホイールローダ30は、ディーゼルエンジン1と、エンジン1の出力を制御するコンピュータであるエンジンコントローラ(ECU)2と、車両全体を制御するコンピュータであるメインコントローラ(M/C)100と、エンジン1と機械的に接続された発電電動機5と、メインコントローラ100から入力される発電電圧指令に基づいて発電電動機5の発電量を制御する発電インバータ(発電電動機用インバータ)6と、発電電動機5と電気的に接続され発電電動機5から供給される電力によって車体31を駆動する走行電動機7と、メインコントローラ100から入力される電動機トルク指令に基づいて走行電動機7のトルクを制御する走行インバータ(走行電動機用インバータ)8と、発電インバータ6及び走行インバータ8と電気的に接続されたチョッパ回路4と、チョッパ回路4のスイッチング動作により発電インバータ6(発電電動機5)及び走行インバータ8(走行電動機7)と電気的に接続されるブレーキ抵抗器3と、踏み込み量(操作量)に相当するアクセル信号をメインコントローラ100に出力するアクセルペダル101と、踏み込み量(操作量)に相当するブレーキ信号をメインコントローラ100に出力するブレーキペダル102と、前進(F)、ニュートラル(N)、後進(R)の3つの切り替え位置が存在し、各位置に応じた前後進スイッチ信号をメインコントローラ100に出力するために操作される前後進スイッチ103と、を備えている。
図2は本発明の電動駆動式作業車両の第1の実施の形態を構成する電動・油圧機器のシステム構成図である。図2において、ホイールローダ30は、ディーゼルエンジン1と、エンジン1の出力を制御するコンピュータであるエンジンコントローラ(ECU)2と、車両全体を制御するコンピュータであるメインコントローラ(M/C)100と、エンジン1と機械的に接続された発電電動機5と、メインコントローラ100から入力される発電電圧指令に基づいて発電電動機5の発電量を制御する発電インバータ(発電電動機用インバータ)6と、発電電動機5と電気的に接続され発電電動機5から供給される電力によって車体31を駆動する走行電動機7と、メインコントローラ100から入力される電動機トルク指令に基づいて走行電動機7のトルクを制御する走行インバータ(走行電動機用インバータ)8と、発電インバータ6及び走行インバータ8と電気的に接続されたチョッパ回路4と、チョッパ回路4のスイッチング動作により発電インバータ6(発電電動機5)及び走行インバータ8(走行電動機7)と電気的に接続されるブレーキ抵抗器3と、踏み込み量(操作量)に相当するアクセル信号をメインコントローラ100に出力するアクセルペダル101と、踏み込み量(操作量)に相当するブレーキ信号をメインコントローラ100に出力するブレーキペダル102と、前進(F)、ニュートラル(N)、後進(R)の3つの切り替え位置が存在し、各位置に応じた前後進スイッチ信号をメインコントローラ100に出力するために操作される前後進スイッチ103と、を備えている。
チョッパ回路4と発電インバータ6と走行インバータ8とは同一の電力線に接続されており、本稿ではその電力線の電圧を端子電圧20とする。
メインポンプ9は、エンジン1および発電電動機5と機械的に接続されており、エンジン1および発電電動機5によって駆動されて作動油を吐出する。メインポンプ9から吐出される作動油は、操作レバー56の操作方向と操作量を基に制御されるコントロールバルブ55によって流量及び流通方向が制御され、その結果、油圧シリンダ51,52,53がそれぞれ適宜駆動され油圧作業装置50が駆動するようになっている。
メインコントローラ(制御装置)100には、アクセルペダル101、ブレーキペダル102、前後進スイッチ103(前後進切替え装置)、ECU2、発電インバータ6、走行インバータ8の各信号線が接続されており、これら各部に対する信号の入出力が可能になっている。このうち、アクセルペダル101からはアクセル信号が、ブレーキペダル102からはブレーキ信号が、前後進スイッチ103からは現在選択されている車両進行方向(前進(F)、後進(R)、ニュートラル(N))を示す前後進スイッチ信号が、走行インバータ8からは走行電動機7の速度信号がメインコントローラ100へ送られている(入力されている)。また、メインコントローラ100からは、発電インバータ6に対して発電電圧指令が、走行インバータ8に対して電動機トルク指令が、ECU2に対してエンジン回転数指令が送られている(出力されている)。
<モジュレートの定義>
本稿では、作業車両の走行中に進行方向と逆側に前後進スイッチ103を切り替えることで、スイッチ103の切り替え時の進行方向における車速を低減させる作業車両の動作をモジュレート動作又は単にモジュレートと称する。例えば、前進中にスイッチ103をF(前進)からR(後進)に切り替えると、ブレーキペダル102を操作せずとも前進方向における車速が低減し、その減速中もアクセルペダル101を踏み込んでおくと、モジュレート動作の終了後(前進方向における減速の終了後)に後ろ方向への加速が開始されることになる。
本稿では、作業車両の走行中に進行方向と逆側に前後進スイッチ103を切り替えることで、スイッチ103の切り替え時の進行方向における車速を低減させる作業車両の動作をモジュレート動作又は単にモジュレートと称する。例えば、前進中にスイッチ103をF(前進)からR(後進)に切り替えると、ブレーキペダル102を操作せずとも前進方向における車速が低減し、その減速中もアクセルペダル101を踏み込んでおくと、モジュレート動作の終了後(前進方向における減速の終了後)に後ろ方向への加速が開始されることになる。
本実施形態のホイールローダ30では、前後進スイッチ103からの前後進スイッチ信号と走行電動機7の回転数とに基づいて車両がモジュレート動作中であることを判定したら、モジュレート動作終了直後の走行加速に備えてモジュレート動作中に発電電動機5の発電トルク負荷をエンジン1にかけ、発電電動機5で発生した電力をブレーキ抵抗器3で消費するようにした。以下、そのような動作を行うためのメインコントローラ100の構成について図面を用いて説明する。
<メインコントローラ(制御装置)100>
図3はメインコントローラ100の機能ブロック図である。メインコントローラ100は、モジュレート判定部110と、トルク指令演算部120と、エンジン回転指令演算部130と、発電電圧指令演算部140とを備えている。
図3はメインコントローラ100の機能ブロック図である。メインコントローラ100は、モジュレート判定部110と、トルク指令演算部120と、エンジン回転指令演算部130と、発電電圧指令演算部140とを備えている。
<モジュレート判定部110>
モジュレート判定部110は、前後進スイッチ信号と電動機速度信号に基づいてホイールローダ30がモジュレート中か否かを判定する処理を行う部分である。本実施形態のモジュレート判定部110は、前後進スイッチ103で選択されている進行方向が走行電動機7の回転方向と異なりかつ走行電動機7の速度の大きさ(回転速度)がモジュレート判定閾値より大きいとき、ホイールローダ30がモジュレート動作中であると判定し、前後進スイッチ103で選択されている進行方向が走行電動機7の回転方向と一致するときまたは走行電動機7の速度の大きさがモジュレート判定閾値以上のとき、ホイールローダ30がモジュレート非動作中であると判定する。
モジュレート判定部110は、前後進スイッチ信号と電動機速度信号に基づいてホイールローダ30がモジュレート中か否かを判定する処理を行う部分である。本実施形態のモジュレート判定部110は、前後進スイッチ103で選択されている進行方向が走行電動機7の回転方向と異なりかつ走行電動機7の速度の大きさ(回転速度)がモジュレート判定閾値より大きいとき、ホイールローダ30がモジュレート動作中であると判定し、前後進スイッチ103で選択されている進行方向が走行電動機7の回転方向と一致するときまたは走行電動機7の速度の大きさがモジュレート判定閾値以上のとき、ホイールローダ30がモジュレート非動作中であると判定する。
図4はモジュレート判定部110によるモジュレート判定処理の一例を示す図である。メインコントローラ100は所定の制御周期で図4の処理を開始する。処理が開始されると、モジュレート判定部110は、前後進スイッチ信号に基づいて前後進スイッチ103の位置がFまたはRか否かを判定する(S401)。ここでスイッチ103の位置がFまたはRと判定された場合にはS402に進む。一方、F及びRではないと判定された場合、すなわちNであると判定された場合にはモジュレート中ではない(モジュレート非動作中)と判定する(S405)。
S402において、モジュレート判定部110は、電動機速度信号に基づいて走行電動機7の速度の大きさ(絶対値)がモジュレート判定閾値以下であるか否かを判定する。本実施形態ではモジュレート判定閾値をゼロとし、走行電動機7の速度の大きさがゼロより大きい場合にはS403に進む。一方、走行電動機7の速度の大きさがゼロの場合にはS405に進みモジュレート中ではないと判定する。
S403において、モジュレート判定部110は、前後進スイッチ信号及び電動機速度信号に基づいて、走行電動機7の回転方向と前後進スイッチ103の示す進行方向が異なるか否かを判定する。両者の方向が異なる場合にはS404に進みモジュレート中である(モジュレート動作中)と判定し、両者の方向が同じ場合にはS405に進みモジュレート中ではないと判定する。
モジュレート判定部110は、S404またはS405の判定結果に即したモジュレート判定信号をトルク指令演算部120及び発電電圧指令演算部140に出力する。
なお、図4のフローチャートを含め本実施形態では、走行電動機速度に基づいてモジュレート中か否かを判定したが、走行電動機速度に代えて車両速度(車体31の速度)を検出しそれを基に図4の速度に関する各処理を実行しても良い。
<発電電圧指令演算部140>
発電電圧指令演算部140は、発電電動機5に出力する発電電圧指令を演算する処理を行う部分である。ここで演算された発電電圧指令は発電インバータ6に出力され、発電インバータ6による発電電動機5の発電量制御に利用される。
発電電圧指令演算部140は、発電電動機5に出力する発電電圧指令を演算する処理を行う部分である。ここで演算された発電電圧指令は発電インバータ6に出力され、発電インバータ6による発電電動機5の発電量制御に利用される。
図5は発電電圧指令演算部140による発電電圧指令演算処理の一例を示す図である。本実施形態の発電電圧指令演算部140は、モジュレート判定信号および電動機速度信号に基づいて発電電圧指令を演算している。メインコントローラ100は所定の制御周期で図5の処理を開始する。処理が開始されると、発電電圧指令演算部140は、モジュレート判定部110から入力されるモジュレート判定信号に基づいてホイールローダ30がモジュレート中か否かを判定するする(S501)。ここでモジュレート中であると判定された場合にはS502に進む。一方、モジュレート中ではないと判定された場合には、発電電圧指令値VnをV1とする発電電圧指令を算出する(S503)。なお、本実施形態では、V1=600Vと設定している。
S502において、発電電圧指令演算部140は、電動機速度信号に基づいて、走行電動機7の速度の大きさが第2速度閾値以上かつ第1速度閾値以下か否かを判定する。第1速度閾値は第2速度閾値より大きい値とし、本実施形態では第2速度閾値をモジュレート判定閾値と同じゼロ、第1速度閾値を1km/hとする。つまり、S502では、車体31が減速するモジュレート動作が間もなく終了するか否か、さらに換言するとモジュレート動作終了に伴う加速が間もなく行われるか否かを判定している。S502で走行電動機の速度の大きさが第2速度閾値以上かつ第1速度閾値以下の場合(S502の判定がYESの場合)には、モジュレート動作が間もなく終了するとみなしてS504に進む。一方、それ以外の場合(S502の判定がNOの場合)には、モジュレートが継続する又はそもそもモジュレート中ではないと判定してS503に進む。
S504において、発電電圧指令演算部140は、発電電圧指令値VnをV2とする発電電圧指令を算出する。V2は、V1より大きい値、かつ、後述するチョッパ回路4のブレーキ設定電圧(Vb)より大きい値とし、本実施形態では、V2=700Vと設定している。発電電圧指令演算部140がS504の処理を実行する場合、ブレーキ設定電圧Vbを越える電圧V2を発生する発電電圧指令Vnが出力され、後述のようにチョッパ回路4が動作する。これにより発電電動機5で発電された電力はブレーキ抵抗器3で消費されるため、図5中ではS504の処理を「抵抗放電制御」と称している。一方、ブレーキ設定電圧Vbより小さい電圧V1を発生するS503では、発電電動機5の発電電力だけではチョッパ回路4は動作せず、S504と異なり通常の発電制御が行われるため、図5ではS503の処理を「発電制御」と称している。
発電電圧指令演算部140は、S503またはS504で算出した発電電圧指令を発電インバータ6に出力する。
<トルク指令演算部120>
トルク指令演算部120は、電動機7のトルク指令(電動機トルク指令)を演算する処理を行う部分である。ここで演算された電動機トルク指令は走行インバータ8に出力され、走行インバータ8による走行電動機7のトルク制御に利用される。
トルク指令演算部120は、電動機7のトルク指令(電動機トルク指令)を演算する処理を行う部分である。ここで演算された電動機トルク指令は走行インバータ8に出力され、走行インバータ8による走行電動機7のトルク制御に利用される。
図6はトルク指令演算部120による電動機トルク指令演算処理の一例を示す図である。本実施形態のトルク指令演算部120は、前後進スイッチ信号、アクセル信号および電動機速度信号に基づいて電動機トルク指令を演算している。図中のトルク指令の符号の意味は、(+)が前進方向のトルクを、(-)が後進方向のトルクを示している。また電動機回転数(電動機速度)の符号の意味は、(+)が前進方向の回転数を、(-)が後進方向の回転数を示している。図中の上段に示したグラフは前後進スイッチ103が前進(F)の時の特性、中段に示したグラフはニュートラル(N)の時の特性、下段に示したグラフは後進(R)の時の特性を示す。
例えば前後進スイッチ103が前進(F)の時、上段のグラフが選択され、トルク指令演算部120は、電動機回転数とアクセル信号の大きさに応じてマッピングされたトルク指令を走行インバータ8に出力する。アクセル信号が最大時は実線の特性となり、最小時は点線の特性となる。なお、電動機回転数が低速でかつアクセル信号が最小の条件でもトルク指令が所定の値を示すのは、いわゆるクリープトルク指令を出力するためである。前後進スイッチ103が後進(R)時は、下段のグラフが選択され、前進(F)の場合と符号が逆転したトルク指令が出力される。前後進スイッチ103がニュートラル(N)時は、アクセル信号に関係なく、トルク指令はゼロである。
<エンジン回転指令演算部130>
エンジン回転指令演算部130は、エンジン1の回転数指令(エンジン回転数指令)を演算する処理を行う部分である。ここで演算されたエンジン回転数指令はECU2に出力され、ECU2によるエンジン1の回転数制御に利用される。
エンジン回転指令演算部130は、エンジン1の回転数指令(エンジン回転数指令)を演算する処理を行う部分である。ここで演算されたエンジン回転数指令はECU2に出力され、ECU2によるエンジン1の回転数制御に利用される。
図7はエンジン回転指令演算部130によるエンジン回転指令令演算処理の一例を示す図である。本実施形態では、エンジン回転指令演算部130は、前後進スイッチ信号と、ニュートラル(N)の継続時間とに基づいて、エンジン回転数指令を演算している。エンジン回転指令演算部130は、前後進スイッチ信号が前進(F)または後進(R)のとき、エンジン回転数指令値RnをR2とするエンジン回転数指令(第2回転数指令)を算出する。また、前後進スイッチ信号がニュートラル(N)の状態で所定時間(例えば1秒)継続したとき、エンジン回転数指令値RnをR1とするエンジン回転数指令(第1回転数指令)を算出する。R1はR2より小さく設定されており、例えば、R1=1400rpm、R2=1800rpmと設定することができる。エンジン回転数をR2からR1まで低減することでニュートラル選択時の燃焼消費量が抑制される。ところで、図示していないが、前後進スイッチ103をニュートラルに選択してから所定時間が継続する前までは、直前に選択されている前進(F)または後進(R)のエンジン回転数指令(第2回転数指令)が算出される。ニュートラル選択時の回転数指令の変更に“所定時間継続”の条件を設けている理由は、モジュレート後の再加速を考慮してエンジン1を負荷運転可能な状態に維持しておくためである。
なお、図7のエンジン回転数指令算出のプロセスは一例に過ぎず、例えば、前後進スイッチ信号の内容に関係無く第2回転数指令を算出するようにしてもよい。
<発電インバータ6・発電電動機5>
発電インバータ6は、メインコントローラ100からの発電電圧指令で規定される発電電圧指令値Vn(すなわちV1又はV2)に端子電圧20が維持されるように発電電動機5を制御する。例えば、端子電圧20が発電電圧指令値Vnを下回る場合には、発電インバータ6は、エンジン1を負荷運転させて発電電動機5により電力を発生させる。
発電インバータ6は、メインコントローラ100からの発電電圧指令で規定される発電電圧指令値Vn(すなわちV1又はV2)に端子電圧20が維持されるように発電電動機5を制御する。例えば、端子電圧20が発電電圧指令値Vnを下回る場合には、発電インバータ6は、エンジン1を負荷運転させて発電電動機5により電力を発生させる。
<走行インバータ8・走行電動機7>
走行インバータ8は、メインコントローラ100からの電動機トルク指令で規定されるトルクを出力するように走行電動機7を制御する。
走行インバータ8は、メインコントローラ100からの電動機トルク指令で規定されるトルクを出力するように走行電動機7を制御する。
例えば、ホイールローダ30の走行加速時において、走行インバータ8は走行電動機7を力行駆動し、走行電動機7が発生した力行トルクは、タイヤ10へと伝えられ車体31を加速させる。一方、ホイールローダ30の走行制動時において、走行インバータ8は走行電動機7を発電機として駆動し、走行電動機7が発生した回生トルク(制動トルク)は、力行トルクと同様にタイヤ10へと伝えられ車体31を減速させる。走行電動機7で発生した回生電力は、後述のように、回生動力の発生中に動作するチョッパ回路4を経由し、ブレーキ抵抗器3で消費される。
<チョッパ回路4・ブレーキ抵抗器3>
チョッパ回路4は、チョッパ回路4への入力電圧(端子電圧20)を監視しており、その入力電圧がブレーキ設定電圧Vbを越えるとき、チョッパ回路4に内蔵するスイッチングデバイス(例えば、MOSFET、IGBT等)をスイッチングする(スイッチングデバイスのON/OFFを繰り返す)ことで端子電圧20をブレーキ設定電圧Vbに保持するように動作する。チョッパ回路4の動作中、発電インバータ6及び走行インバータ8はブレーキ抵抗器3に電気的に接続され、チョッパ回路4の出力電圧はブレーキ抵抗器3に印加される。これにより抵抗放電制御時の発電電動機5の発電電力と走行電動機7の回生電力はブレーキ抵抗器3で消費される。一方、チョッパ回路4への入力電圧(端子電圧20)がブレーキ設定電圧Vb以下のときは、チョッパ回路4は動作しない。そのため発電インバータ6及び走行インバータ8のブレーキ抵抗器3との電気的に接続は遮断される。
チョッパ回路4は、チョッパ回路4への入力電圧(端子電圧20)を監視しており、その入力電圧がブレーキ設定電圧Vbを越えるとき、チョッパ回路4に内蔵するスイッチングデバイス(例えば、MOSFET、IGBT等)をスイッチングする(スイッチングデバイスのON/OFFを繰り返す)ことで端子電圧20をブレーキ設定電圧Vbに保持するように動作する。チョッパ回路4の動作中、発電インバータ6及び走行インバータ8はブレーキ抵抗器3に電気的に接続され、チョッパ回路4の出力電圧はブレーキ抵抗器3に印加される。これにより抵抗放電制御時の発電電動機5の発電電力と走行電動機7の回生電力はブレーキ抵抗器3で消費される。一方、チョッパ回路4への入力電圧(端子電圧20)がブレーキ設定電圧Vb以下のときは、チョッパ回路4は動作しない。そのため発電インバータ6及び走行インバータ8のブレーキ抵抗器3との電気的に接続は遮断される。
チョッパ回路のブレーキ設定電圧Vbは、発電電動機5の発電制御時(図5のS503参照)の発電電圧指令値V1より大きくかつ抵抗放電制御時(図5のS504参照)の発電電圧指令値V2より小さく設定されており、本実施形態ではV1=600V,V2=700Vに対して、Vb=650Vと設定されている。これにより、端子電圧20がブレーキ設定電圧Vbを越えるときには、発電電動機5が抵抗放電制御(図5のS504参照)により発電しているときと、走行電動機7が回生電力を発生しているときが含まれる。
<動作>
次に本実施形態の電動駆動式作業車両の動作について図8を用いて説明する。図8は本実施形態の発電制御と抵抗放電制御の動作の一例を示す図である。アクセル信号が最大で前後進スイッチ103を前進(F)の状態からニュートラル(N)を経由して後進(R)に操作する場合の動作例である。
次に本実施形態の電動駆動式作業車両の動作について図8を用いて説明する。図8は本実施形態の発電制御と抵抗放電制御の動作の一例を示す図である。アクセル信号が最大で前後進スイッチ103を前進(F)の状態からニュートラル(N)を経由して後進(R)に操作する場合の動作例である。
(1)前後進スイッチ103が前進(F)のとき
まず、前後進スイッチ103が前進(F)の状態について説明する。この場合、メインコントローラ100のトルク指令演算部120は図7に基づいて走行インバータ8に正(+)のトルク指令を送り、走行電動機7の速度は正(+)となってホイールローダ30は力行運転で前進している。走行電動機7の電力はエンジン1の動力によって駆動される発電電動機5から得られる。
まず、前後進スイッチ103が前進(F)の状態について説明する。この場合、メインコントローラ100のトルク指令演算部120は図7に基づいて走行インバータ8に正(+)のトルク指令を送り、走行電動機7の速度は正(+)となってホイールローダ30は力行運転で前進している。走行電動機7の電力はエンジン1の動力によって駆動される発電電動機5から得られる。
このとき、メインコントローラ100のモジュレート判定部110では図4に基づいてモジュレート中ではないと判定されるため、メインコントローラ100の発電電圧指令演算部140は図5に基づいて発電電圧指令値V1(=600V)を発電インバータ6に出力する。これにより発電電動機5では通常の発電制御が行われる。発電電動機5は負荷状態となったエンジン1によって駆動され、端子電圧20は指令通りの電圧値V1に制御される。
チョッパ回路4は、端子電圧20がブレーキ設定電圧Vb(=650V)を超えると動作し、ブレーキ抵抗器3が電力を消費するように設定されている。車両が前進で力行している状態では、端子電圧20がV1(=600V)に制御されているので、チョッパ回路4は停止している。
エンジン1は、図7に基づいて第2回転数指令で制御され、発電電動機5を回すために相当の負荷運転をしている。
(2)前後進スイッチ103がニュートラル(N)のとき
次に、前後進スイッチ103を後進(R)に切り替える際に一時的に通過するニュートラル(N)の状態(t1からt2までの時間)について説明する。この場合、メインコントローラ100のトルク指令演算部120は図7に基づいて走行インバータ8にゼロトルク指令を送り、走行電動機7はトルクゼロとなり、走行電動機速度は惰行状態となる。
次に、前後進スイッチ103を後進(R)に切り替える際に一時的に通過するニュートラル(N)の状態(t1からt2までの時間)について説明する。この場合、メインコントローラ100のトルク指令演算部120は図7に基づいて走行インバータ8にゼロトルク指令を送り、走行電動機7はトルクゼロとなり、走行電動機速度は惰行状態となる。
メインコントローラ100のモジュレート判定部110では引き続きモジュレート中ではないと判定されるため、発電電動機5の発電制御は直前の前進(F)の状態(発電電圧指令値V1)を継続する。これにより端子電圧20は依然としてV1(=600V)に制御されるので、チョッパ回路4は停止を継続する。
ニュートラル(N)が継続する時間は所定時間未満のためエンジン1は第2回転数指令のまま制御されるが、ゼロトルク指令により走行電動機7用の電力は不要となる。そのため、エンジン1の負荷はほとんどなくなり無負荷運転の状態となって、エンジン出力の応答性は鈍い状態となる。
(3)前後進スイッチ103が後進(R)のとき
時間t2で前後進スイッチ103が後進(R)になると、メインコントローラ100のトルク指令演算部120は図7に基づいて走行インバータ8に負(-)のトルク指令を送り、走行電動機7は回生動作となり減速を始める。
時間t2で前後進スイッチ103が後進(R)になると、メインコントローラ100のトルク指令演算部120は図7に基づいて走行インバータ8に負(-)のトルク指令を送り、走行電動機7は回生動作となり減速を始める。
モジュレート判定部110は図4に基づいてモジュレート中であると判定するが、走行電動機速度の大きさが第1速度閾値(=1km/h)を超えるため、発電電圧指令演算部140は図5に基づいて引き続き発電電圧指令値V1(=600V)を発電インバータ6に出力し、発電電動機5は引き続き端子電圧20をV1(=600V)に制御しようとする。しかし、走行電動機7が発生する回生電力が端子電圧20をV1から上げるように作用するので、端子電圧20がブレーキ設定電圧Vb(=650V)まで上昇した時点からチョッパ回路4の動作が開始する。これにより走行電動機7とブレーキ抵抗器3が通電して走行電動機7の回生電力がブレーキ抵抗3で消費され、端子電圧20はブレーキ設定電圧Vb(=650V)に維持される。
その後、時間t3で走行電動機7の速度が回生動作で徐々に低下し第1速度閾値を下回ると、発電電圧指令演算部140は図5に基づいて発電電圧指令値をブレーキ設定電圧Vb(=650V)より高いV2(=700V)に設定する。つまり、発電電動機5は発電電力をブレーキ抵抗器3で消費するための抵抗放電制御を開始する。端子電圧20がV2に制御される間、チョッパ回路4は継続して動作して走行電動機7及び発電電動機5をブレーキ抵抗器3と通電させる。このときのブレーキ抵抗器3は走行電動機7の回生電力と発電電動機5の発電電力の両方を消費している。
時間t3でエンジン1は発電電動機5でV2を発生するための相当の負荷運転に切り替わる。図8中に「遅れ時間」と示した切り替わり直後の若干の時間(通常は0.5秒から1秒以内)は出力応答性が低いものの、モジュレート動作が終了する時間t4では出力の応答性が高い状態になる。第1速度閾値と第2速度閾値は、走行電動機速度が第1速度閾値から第2速度閾値に達するまでの所要時間に「遅れ時間」が包含されるように設定する必要があり、本実施形態では第1速度閾値を1km/h、第2速度閾値を0km/hとした。
時間t4で走行電動機7の速度がゼロ(第2速度閾値)に到達して後進方向の回転(力行動作)を開始すると、前後進スイッチ103の方向と走行電動機7の回転方向が一致するので、モジュレート判定部110はモジュレート中ではないと判定する。これにより発電電圧指令演算部140は図5に基づいて発電電圧指令値を通常の値V1(=600V)に戻す。このように走行電動機7の回生動作が終了し、かつ発電電動機5の発電電圧が通常の電圧V1に戻ると、端子電圧20もブレーキ設定値Vbより小さいV1まで下がるためチョッパ回路4は停止する。時間t4で走行電動機7は力行動作のための電力を必要とするが、エンジン1は時間t3から負荷運転を行っているので、時間t4で即座に負荷運転が可能な状態になる。これにより発電電動機5の発電が応答性良く開始され、これにより走行電動機7を応答性良く力行動作に切り替えることができる。
<比較例の動作>
次に、モジュレート中に発電電動機5の抵抗放電制御を実施しない電動駆動式作業車両を本実施形態の比較例とし、この場合の動作について図9を用いて説明する。図9は比較例の発電制御と抵抗放電制御の動作の一例を示す図であり、図8の場合と同様、アクセル信号が最大で前後進スイッチを前進(F)の状態からニュートラル(N)を経由して後進(R)に操作する場合の動作例である。
次に、モジュレート中に発電電動機5の抵抗放電制御を実施しない電動駆動式作業車両を本実施形態の比較例とし、この場合の動作について図9を用いて説明する。図9は比較例の発電制御と抵抗放電制御の動作の一例を示す図であり、図8の場合と同様、アクセル信号が最大で前後進スイッチを前進(F)の状態からニュートラル(N)を経由して後進(R)に操作する場合の動作例である。
まず、前後進スイッチ103が前進(F)の状態の場合、メインコントローラ100は走行インバータ8に正(+)のトルク指令を送り、走行電動機7の速度は正(+)となってホイールローダは力行運転で前進している。走行電動機7の電力はエンジン1による動力によって発電電動機5から得られる。
メインコントローラ100は発電インバータ6に発電電圧指令値V1(本実施形態と同じ600Vとする)を出力し、発電電動機5では通常の発電制御が行われる。エンジン1は負荷運転状態で発電電動機5を回しており、端子電圧20は指令値通りの電圧値V1に制御される。
比較例でもチョッパ回路4は、端子電圧20がブレーキ設定電圧Vb(本実施形態と同じ650Vとする)を超えると動作し、ブレーキ抵抗器3が電力を消費するように設定されている。車両が前進で力行している状態では、端子電圧20がV1(=600V)に制御されているので、チョッパ回路4は停止している。
エンジン1は、図7に基づいて第2回転数指令で制御され、発電電動機5を回すために相当の負荷運転をしている。
次に、前後進スイッチ103を後進(R)に切り替える際に一時的に通過するニュートラル(N)の状態について説明する。この場合、メインコントローラ100は走行インバータ8にゼロトルク指令を送り、走行電動機7はトルクゼロとなり、走行電動機速度は惰行状態となる。
引き続きモジュレート中ではないため、発電電動機5の発電制御は直前の前進(F)の状態(発電電圧指令値V1)を継続するが、ゼロトルク指令により走行電動機7用の電力は不要となる。そのため、エンジン1の負荷はほとんどなくなり無負荷運転の状態となって、エンジン出力の応答性は鈍い状態となる。
次に、前後進スイッチ103が後進(R)になると、メインコントローラ100は走行インバータ8に負(-)のトルク指令を送り、走行電動機7は回生動作となり減速を始める。発電電動機5は引き続き端子電圧20をV1(=600V)に制御しようとするが、走行電動機7が発生する回生電力が端子電圧20を上げるよう働くので、端子電圧20がブレーキ設定値Vb(=650V)に到達した時点から、チョッパ回路4が動作してブレーキ抵抗器3が電力を消費することによって、端子電圧20はブレーキ設定値Vb(=650V)を維持する。
回生動作で走行電動機7の速度が徐々に低下して時間t4で前進から後進へ切り替わる状態になると、走行電動機7は回生動作から力行動作へ切り替わることになる。しかし、エンジン1は時間t4の直前まで無負荷運転を継続していたため、時間t4では速やかに負荷運転が可能な状態になっていない。そのため、遅れ時間(通常、0.5秒から1秒程度)の発生を経てからはじめてエンジン1が負荷運転に対応可能な状態となり、その後、発電電動機5が必要な電力を発電し、その電力によって走行電動機7の力行運転が可能となる。すなわち、比較例の作業車両では、モジュレート後の加速性が悪く、トルコン車に比較して運転性が劣ることが分かる。
<効果>
上記のような比較例に対して本実施形態の電動駆動式作業車両は次のような効果を奏する。
上記のような比較例に対して本実施形態の電動駆動式作業車両は次のような効果を奏する。
(1)本実施形態では、ホイールローダ30のモジュレート動作中、エンジン1で発電電動機5を駆動してチョッパ回路4のブレーキ設定電圧Vbを越える電圧V2を発生させることでエンジン1を負荷運転させ、そのときに動作するチョッパ回路4に発電インバータ6と走行インバータ8をブレーキ抵抗器3に電気的に接続させることで発電電動機5と走行電動機7で発生した電力をブレーキ抵抗器3で消費することとした。このようにモジュレート中からエンジン1を負荷運転させてスタンバイ状態にしておくと、前後進スイッチ103の指示方向の加速をモジュレート動作の終了直後から速やかに開始できるので、トルコン車と同等以上の加速性能を発揮できる。
モジュレート中にエンジンに負荷をかける目的で発電電動機に発電させ、その発電電力を二次電池やキャパシタ等の蓄電装置に蓄える方式の電動駆動式作業車両では、蓄電装置が満充電状態の場合はモジュレート時にエンジンに負荷をかけることはできない。そのため、蓄電装置の蓄電量に応じてモジュレート後の加速性能にばらつきが生じ、加速性が良くなったり悪くなったりするおそれがあった。これに対して、モジュレート時の発電電力をブレーキ抵抗器3で消費するように構成した本実施形態では、モジュレート時に常にエンジンに負荷をかけることできるため、モジュレート後の加速性能を均一化できる。
一般的に、走行電動機の電力源として二次電池やキャパシタ等の蓄電装置を搭載する場合、作業車両での利用に適した大容量の蓄電装置は高額なため電動駆動式作業車両の製造コストも高額になりやすいが、本実施形態は蓄電装置を備えないため電動駆動式作業車両のイニシャルコストを抑制できるというメリットがある。
(2)また、モジュレート動作中にブレーキ設定電圧Vbを越える電圧V2を発電電動機5で発生させる時間(すなわち、発電電動機5を抵抗放電制御する時間)は、燃料消費量削減の観点からはできるだけ短いことが好ましい。そこで本実施形態では、モジュレート動作中に走行電動機速度が第1速度閾値以下の間だけ発電電動機5で電圧V2を発生させることとした。このようにするとモジュレート動作中に継続して発電する場合よりもエンジン1の燃料消費量を削減できる。
(3)さらに、本実施形態では、モジュレート動作中に走行電動機速度が第1速度閾値以下かつ第2速度閾値以上の間だけ発電電動機5で電圧V2を発生させることとし、第2速度閾値はモジュレート判定閾値と一致させることとした(すなわちモジュレート判定閾値は第2速度閾値と同一の値に設定されている)。このように構成するとモジュレート動作が終了するタイミング(つまり、非モジュレート動作が開始するタイミング)で発電電動機5の発電電圧をV2からV1に変更でき、エンジン1による無駄な燃料消費を削減できる。
<その他>
上記では、前後進スイッチ103を前進(F)の状態からニュートラル(N)を経由して後進(R)に操作する場合の動作例について説明したが、前後進スイッチ103を後進(R)の状態からニュートラル(N)を経由して前進(F)に操作する場合も同様の効果が得られることは言うまでも無い。
上記では、前後進スイッチ103を前進(F)の状態からニュートラル(N)を経由して後進(R)に操作する場合の動作例について説明したが、前後進スイッチ103を後進(R)の状態からニュートラル(N)を経由して前進(F)に操作する場合も同様の効果が得られることは言うまでも無い。
上記では、端子電圧20の変化とチョッパ回路4の動作開始にできるだけ時間差が生じないように、チョッパ回路4に自身への入力電圧を監視させ、その入力電圧がブレーキ設定電圧Vbを越える場合にチョッパ回路4を動作するように構成したが、インバータ6,8からの入力信号等を基にメインコントローラ100に端子電圧20を監視させ、端子電圧20がブレーキ設定電圧Vbを越える場合にメインコントローラ100からチョッパ回路4に動作指令を出力するように構成しても良い。
なお、本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。
また、上記の実施の形態の説明では、制御線や情報線は、当該実施の形態の説明に必要であると解されるものを示したが、必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。
1…エンジン、3…ブレーキ抵抗器、4…チョッパ回路、5…発電電動機、6…発電インバータ、7…走行電動機、8…走行インバータ、20…端子電圧、30…電動駆動式ホイールローダ、100…メインコントローラ(制御装置)、101…アクセル、103…前後進スイッチ、110…モジュレート判定部、120…トルク指令演算部、130…エンジン回転指令演算部、140…発電電圧指令演算部
Claims (4)
- エンジンと、前記エンジンと機械的に接続された発電電動機と、前記発電電動機の発電量を制御する発電インバータと、前記発電電動機と電気的に接続された走行電動機と、前記走行電動機のトルクを制御する走行インバータと、車体の前進または後進を切り替えるために操作される前後進切替え装置と、発電電圧指令を前記発電インバータに出力し、電動機トルク指令を前記走行インバータに出力する制御装置とを備える電動駆動式作業車両において、
前記発電電動機及び前記走行電動機に対し電気的に接続されたブレーキ抵抗器と、
前記発電インバータ及び前記走行インバータに電気的に接続され、入力電圧が設定電圧を超えるとき前記発電インバータ及び前記走行インバータを前記ブレーキ抵抗器に電気的に接続することで前記発電電動機及び前記走行電動機で発生した電力を消費するチョッパ回路とを備え、
前記制御装置は、
前記前後進切替え装置により前記車体の進行方向と逆方向が選択されたことで前記電動駆動式作業車両がモジュレート動作する間、前記エンジンにより前記発電電動機を駆動して前記設定電圧を超える電圧を発生する発電電圧指令を前記発電インバータに出力することを特徴とする電動駆動式作業車両。 - 請求項1の電動駆動式作業車両において、
前記制御装置は、
前記前後進切替え装置で選択された進行方向が前記走行電動機の回転方向と異なりかつ前記走行電動機の速度の大きさがモジュレート判定閾値を越えるとき、前記電動駆動式作業車両がモジュレート動作中であると判定し、前記前後進切替え装置で選択された進行方向が前記走行電動機の回転方向と一致するときまたは前記走行電動機の速度の大きさがモジュレート判定閾値以下のとき、前記電動駆動式作業車両がモジュレート非動作中であると判定し、
前記電動駆動式作業車両がモジュレート動作中であると判定されかつ前記走行電動機の速度の大きさが第1速度閾値より小さいとき、前記設定電圧を超える電圧を発生する前記発電電圧指令を算出することを特徴とする電動駆動式作業車両。 - 請求項2の電動駆動式作業車両において、
前記モジュレート判定閾値は、前記第1速度閾値より小さい第2速度閾値と同一の値に設定され、
前記制御装置は、前記電動駆動式作業車両がモジュレート動作中であると判定されかつ前記走行電動機の速度の大きさが前記第1速度閾値より小さくかつ前記第2速度閾値より大きいとき、前記設定電圧を超える電圧を発生する前記発電電圧指令を算出することを特徴とする電動駆動式作業車両。 - 請求項3の電動駆動式作業車両において、
前記モジュレート判定閾値と前記第2速度閾値はゼロであることを特徴とする電動駆動式作業車両。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017161635A JP2019038365A (ja) | 2017-08-24 | 2017-08-24 | 電動駆動式作業車両 |
JP2017-161635 | 2017-08-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019039608A1 true WO2019039608A1 (ja) | 2019-02-28 |
Family
ID=65440043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/031451 WO2019039608A1 (ja) | 2017-08-24 | 2018-08-24 | 電動駆動式作業車両 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019038365A (ja) |
WO (1) | WO2019039608A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021233530A1 (en) | 2020-05-19 | 2021-11-25 | Flammatec, Spol. S R.O. | Method and burner of hydrogen combustion in industrial furnace, especially in a glass furnace or a furnace for metal melting, by means of a multi nozzle burner |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7085510B2 (ja) * | 2019-03-20 | 2022-06-16 | 日立建機株式会社 | ホイールローダ |
JP7481275B2 (ja) * | 2021-01-05 | 2024-05-10 | 日立建機株式会社 | 作業車両 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013122101A1 (ja) * | 2012-02-17 | 2013-08-22 | 日立建機株式会社 | 電動駆動式作業車両 |
WO2013172062A1 (ja) * | 2012-05-15 | 2013-11-21 | 日立建機株式会社 | 電気駆動車両の走行制御方法 |
-
2017
- 2017-08-24 JP JP2017161635A patent/JP2019038365A/ja active Pending
-
2018
- 2018-08-24 WO PCT/JP2018/031451 patent/WO2019039608A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013122101A1 (ja) * | 2012-02-17 | 2013-08-22 | 日立建機株式会社 | 電動駆動式作業車両 |
WO2013172062A1 (ja) * | 2012-05-15 | 2013-11-21 | 日立建機株式会社 | 電気駆動車両の走行制御方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021233530A1 (en) | 2020-05-19 | 2021-11-25 | Flammatec, Spol. S R.O. | Method and burner of hydrogen combustion in industrial furnace, especially in a glass furnace or a furnace for metal melting, by means of a multi nozzle burner |
Also Published As
Publication number | Publication date |
---|---|
JP2019038365A (ja) | 2019-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5855487B2 (ja) | 電動駆動式作業車両 | |
JP5085734B2 (ja) | ハイブリッド式建設機械 | |
JP5688418B2 (ja) | 作業車両の制御装置および作業車両 | |
JP5725037B2 (ja) | 車両および車両用制御方法 | |
US9923490B2 (en) | Vehicle | |
JP6247516B2 (ja) | ハイブリッド式作業車両 | |
JPH08163707A (ja) | 電気自動車の制動制御装置 | |
JP4173489B2 (ja) | ハイブリッド駆動式のホイール系作業車両 | |
KR20120015346A (ko) | 적어도 하나의 전기 모터가 제공된 차량의 휘일들에 적용되는 토크를 제어하는 시스템 | |
JP5560797B2 (ja) | 作業用車両の走行装置 | |
JP2010173599A (ja) | ハイブリッド式作業機械の制御方法、及びサーボ制御システムの制御方法 | |
JP6025968B2 (ja) | エンジン回転制御システム | |
WO2019039608A1 (ja) | 電動駆動式作業車両 | |
US6186253B1 (en) | Brake activated torque disable in hybrid electric vehicles | |
JP2019009955A (ja) | 貨物自動車 | |
JP6167387B2 (ja) | ハイブリッド式作業車両 | |
JP6626519B2 (ja) | 車両用制御装置 | |
KR20080089543A (ko) | 하이브리드 자동차의 크루즈 제어방법 | |
JP2010047196A (ja) | ハイブリッド型産業車両のインチングペダルシステム | |
JP4155962B2 (ja) | ハイブリッド車両 | |
JP7481275B2 (ja) | 作業車両 | |
WO2020032225A1 (ja) | 作業車両 | |
JP2005269793A (ja) | ハイブリッド車両 | |
JP2023060751A (ja) | 車両の制御装置 | |
JP2024110084A (ja) | 作業車両 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18848360 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18848360 Country of ref document: EP Kind code of ref document: A1 |