WO2019039134A1 - 金属板のせん断加工面での変形限界の評価方法、割れ予測方法およびプレス金型の設計方法 - Google Patents

金属板のせん断加工面での変形限界の評価方法、割れ予測方法およびプレス金型の設計方法 Download PDF

Info

Publication number
WO2019039134A1
WO2019039134A1 PCT/JP2018/026587 JP2018026587W WO2019039134A1 WO 2019039134 A1 WO2019039134 A1 WO 2019039134A1 JP 2018026587 W JP2018026587 W JP 2018026587W WO 2019039134 A1 WO2019039134 A1 WO 2019039134A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending
sheared
deformation
crack
strain
Prior art date
Application number
PCT/JP2018/026587
Other languages
English (en)
French (fr)
Inventor
祐輔 藤井
健斗 藤井
雄司 山▲崎▼
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201880054714.7A priority Critical patent/CN110997172B/zh
Priority to JP2019509571A priority patent/JP6558515B2/ja
Priority to EP18849137.7A priority patent/EP3674009A4/en
Priority to KR1020207004923A priority patent/KR102334109B1/ko
Priority to US16/640,224 priority patent/US11609166B2/en
Priority to MX2020001988A priority patent/MX2020001988A/es
Publication of WO2019039134A1 publication Critical patent/WO2019039134A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/28Investigating ductility, e.g. suitability of sheet metal for deep-drawing or spinning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/004Bending sheet metal along straight lines, e.g. to form simple curves with program control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/24Sheet material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability

Definitions

  • the present invention evaluates and predicts a crack generated on a sheared surface (end surface) when forming and processing a metal plate (material) after shear processing by press forming including bending, and its technology It is a technology relating to a design method (determination method) of a mold shape capable of suppressing cracking of a metal plate based on the technology.
  • Press forming is one of the representative metal processing techniques.
  • a metal plate is sandwiched between a pair of molds and pressed, and the metal sheet is shaped so as to conform to the mold shape of the mold. It is a technology to process the plate into the desired product shape. And this press molding is used in a wide manufacturing field, such as a car part, a machine part, a construction member, a household appliance, etc.
  • the cracks mainly include a crack due to tensile deformation of the material, a crack due to bending deformation, and a crack due to their combined deformation. Cracking due to tensile deformation is largely attributable to the ductility of the material, and is generally evaluated by a prediction method of cracking using a forming limit diagram.
  • the above-mentioned cracks are all cases in which a crack is generated from the surface of a metal plate and the crack penetrates in the thickness direction.
  • a crack is generated from the end surface and the crack is caused by the deformation of the end surface of the sheared material.
  • the end face of the material is poor in ductility because it has already undergone strong deformation by shear processing, and is characterized in that a crack is easily generated by concentration of stress on irregularities such as a fracture surface and burrs. For this reason, the evaluation method and the prediction method for cracking are different from the above.
  • the present invention has been made focusing on the above points, and evaluation of cracks caused by combined deformation of bending deformation, tensile deformation and bending deformation on the end face of a sheared base plate (metal plate)
  • the purpose is to provide prediction techniques and to provide technologies that should be reflected in the press die design method.
  • one aspect of the present invention is a deformation limit for evaluating the deformation limit of a sheared surface of the metal plate in forming the sheared metal plate by press forming including bending.
  • the evaluation method of the distribution of strain generated in the vicinity of the boundary between the bending outer surface and the sheared surface of a metal plate subjected to bending, the surface strain distribution in the thickness direction at the sheared surface at the evaluation position. From the relationship between the index value obtained from the two gradients of the surface strain distribution and the tension generated on the sheared surface, the deformation limit on the sheared surface from the gradient and the gradient of the surface strain distribution in the bending ridge direction by the above bending Evaluate
  • the deformation limit of the end face when deforming a target metal plate (material) after shearing.
  • a mold shape that can accurately predict the presence or absence of a crack from an end face or suppress the occurrence of a crack.
  • FIG. It is a schematic diagram which illustrates compound bending, and (a) is a side view and (b) is a top view showing the relation between test piece 1 and punch 32.
  • FIG. It is a figure which shows the relationship between tension and the index value which consists of a root mean square of two distortion gradients. It is a figure which shows the relationship between tension and the index value which consists of two distortion gradients. It is a figure which shows the product shape by bend forming in an Example. It is a figure which shows the product shape shape shape
  • FIG. 1 shows an example of press forming into a bowl shape.
  • reference numeral 1 ⁇ / b> B is a bending ridge direction which is a bending line position when bending the metal plate 1.
  • the reference numeral 10A is an end surface (sheared surface).
  • a symbol Z is an example of a portion in the vicinity of the boundary between the bent outer surface and the sheared surface where a crack is likely to occur.
  • the sheared surface 10A (shearing, whether it is a simple bending deformation at the sheared surface 10A of the metal plate 1 or a combination of a tensile deformation and a bending deformation in press working)
  • the present invention provides a technique for making it possible to uniformly and accurately evaluate the evaluation of deformation limit and the prediction of cracking at the end face 10A) formed by the above.
  • the inventors of the present invention have two surface strain distributions: the gradient of the surface strain distribution in the thickness direction X in the vicinity Z of the crack generation part and the gradient of the surface strain distribution in the bending ridge direction Y. Evaluation method for evaluating the deformation limit of the sheared surface 10A of the metal sheet 1 with two parameters, the index value obtained from the slope of the surface and the tension generated on the sheared surface, and the prediction method of end face crack based thereon Devised.
  • transformation limit in 10 A of shear processing surfaces of the metal plate 1 used by this embodiment, and the index value used by prediction of the end surface crack based on it are demonstrated.
  • the index value in the present embodiment is the surface strain distribution in the thickness direction X in the sheared surface 10A among the distribution of strain generated near the boundary between the bending outer surface of the metal plate 1 subjected to bending and the sheared surface 10A.
  • the bending outer surface is a surface on the side that is deformed to be convex by bending.
  • the index value is, for example, an average value of the gradients of the two surface strain distributions as represented by the following equation (1).
  • ⁇ combine is the index value.
  • the distortion gradient generally represents the steepness of distortion.
  • the surface strain in the bending ridge direction Y is a surface strain from the end face 10A on the bending outer surface of the metal plate 1 subjected to bending toward the bending ridge direction Y, and the gradient thereof is the end face starting from the end face 10A. It becomes a gradient in the direction away from 10A.
  • the gradient of the surface strain distribution in the thickness direction X is a gradient from the bending outer surface toward the inner surface.
  • ⁇ combine ( ⁇ thickness + ⁇ ridgeline) / 2 ... (1) here, ⁇ thickness: slope of surface strain distribution in thickness direction X ⁇ ridgeline: slope of surface strain distribution in bending ridge direction Y
  • the crack generated from the end face 10A is found to be correlated with the gradient in two directions between the gradient of the surface strain distribution in the thickness direction X near the crack generation part and the gradient of the surface strain distribution in the bending ridge direction Y
  • the index value ⁇ combine which is the root mean square of the gradients in these two directions, has a high correlation with the crack at the end face 10A. Therefore, by using the evaluation value calculated by the equation (2), it becomes possible to evaluate the deformation limit on the sheared surface 10A and predict the end face crack with higher accuracy.
  • ⁇ combine 0.5 ⁇ (( ⁇ thickness) 2 + ( ⁇ Ridgeline) 2 ) 0.5 ... (2) here, ⁇ thickness: slope of surface strain distribution in thickness direction X ⁇ ridgeline: slope of surface strain distribution in bending ridge direction Y
  • the evaluation of deformation limit at end face 10A and prediction of end face crack using the index value of the present embodiment can be performed with one index value for a plurality of bending deformations, and the maximum strain gradient
  • the value of the maximum strain gradient can be obtained by a simple method without specifying the direction.
  • the index value of this embodiment is applicable also to the crack of simple tensile deformation.
  • the above-mentioned equation (1) is an example of averaging the gradients of the two surface strain distributions by simple averaging when obtaining the index value from the gradients of the two surface strain distributions.
  • the weighting on the gradient side of the surface strain distribution in the thickness direction X is increased as shown in equation (5) to make a weighted average.
  • the weighting on the gradient side of the surface strain distribution in the thickness direction X may be set large.
  • the weighting on the gradient side of the surface strain distribution in the thickness direction X is made large as in equation (6)
  • ⁇ ⁇ combine a ⁇ ⁇ ⁇ thickness + B ⁇ ⁇ ridgeline ...
  • the index value ⁇ combine may be normalized by the reciprocal of the local elongation of the metal plate 1. For example, using the local elongation L-El of the material 1 and multiplying the index value by the reciprocal of the local elongation L-El of the metal plate 1 as in the following equation (7), the index value is normalized. . ⁇ combine ⁇ ⁇ combine / L-El ... (7)
  • the local elongation L-El is obtained by tensile test of the material 1 with a predetermined shape (for example, a rectangular flat plate). Specifically, the local elongation L-El is obtained from the difference between the elongation until the material 1 breaks (total elongation) and the elongation (uniform elongation) at which the tensile strength is maximized. In many materials 1, the uniform elongation and the local elongation L-El are often the same, so the uniform elongation or a half value of the total elongation may be employed instead of the local elongation L-El. Besides, there is a method of obtaining the local elongation L-El of the material 1 but there is no particular limitation.
  • the tension generated on the sheared surface is a force per unit area (hereinafter simply referred to as tension) directed in a direction parallel to the material surface along the sheared surface (end surface). Because the bending portion generates tensile stress and compressive stress on the outside and inside of the thickness center due to bending deformation, it is difficult to separate stress due to bending and tension generated parallel to the end face It is. Therefore, it is preferable to use the stress at the center of the plate thickness of the bent portion or the average stress of the entire plate thickness of the bent portion.
  • stress of bending deformation is not included if it is the tension of the sheared end face which is not subjected to bending deformation adjacent to the bending part, and therefore the average value of stress in the center of thickness and whole is adopted. It is good. It is convenient to calculate the tension by obtaining a tensile stress generated in the finite element of the relevant part by molding simulation, and using the value of the tensile stress as a tension for evaluation.
  • an evaluation position for obtaining the index value ⁇ combine be a position at which it is estimated that a crack will occur when the end face 10A is deformed by bending by the target press forming.
  • the position at which it is estimated that a crack will occur when the end face is deformed may be a position which is obtained in advance by experiment or molding simulation and in which the strain is largest. For example, a position where the curvature change is largest or its vicinity in the end face portion to be bent by bending is set as an evaluation position.
  • Shearing is a method of separating the material 1 into two or more pieces by applying shear deformation to the material 1 using a pair of punches and a die to cause cracking.
  • the material 1 having the sheared surface 10A is manufactured by being sheared into a predetermined contour shape by general shear processing.
  • the property of the end face 10A of the material 1 subjected to shear processing changes depending on the clearance which is the distance between the punch and the die, but the present embodiment is not limited to the property of the end face 10A.
  • the clearance should be in the range of 5 to 20% of the thickness of the material 1 from the viewpoint of low processing load and less damage to the punch and die, especially for steel plates with a tensile strength of 590 MPa or more It is preferable to be 15%.
  • the method of giving bending deformation to the end face 10A of the sheared test piece may be any method as long as it can check the bending radius R of a die or jig for bending the test piece 1 and the presence or absence of cracks in the end face 10A. Such a method may be used. In a simple manner, it is preferable to bend the end face 10A of the test piece 1 while changing the tip radius R of the V-shaped bending process or the U-shaped bending process to confirm the presence or absence of a crack. There are other bending methods such as roll forming.
  • the method of giving compound deformation of tensile deformation and bending deformation to the end face 10A of the test piece can be changed by the mechanism that pinches the bead or the material 1, and the die or jig etc. which bends the material 1 Any method may be used as long as it can check the bending radius R and the presence or absence of cracks on the end face 10A.
  • Any method may be used as long as it can check the bending radius R and the presence or absence of cracks on the end face 10A.
  • the combined deformation of tensile deformation and bending deformation occurs, for example, in press working by draw forming.
  • the tension immediately before the occurrence of a crack and the strain gradient on the surface of the material 1 at the position where the crack is generated are determined. Specifically, it is preferable to obtain at the boundary between the outer surface of the material 1 which is subjected to bending deformation and the end surface 10A which is sheared. This is because the occurrence of a crack is likely to occur at the above boundary.
  • the tension and strain gradient may be determined by a known method. As a method of determining tension and strain gradient, for example, an experimental method of making a minute mark on the surface of the material 1 to obtain strain from deformation of the mark, a method of predicting strain by forming simulation by finite element method, etc. However, the method is not limited to this, and a known method may be applied. Thus, the distribution of surface strain is determined, and the strain gradient is calculated from the determined distribution of surface strain.
  • the shape of the mark may be a circle pattern, a dot pattern, a grid pattern, a concentric circle pattern, or any other shape that can measure strain after molding.
  • the mark method includes electrolytic etching, photo etching, transfer by ink (stamp printing), etc., any method may be used. However, scribing is not preferable because it induces cracking. In the case of forming simulation, there is no need to reproduce shear processing, and a model in which the shape of the end of the sheared material 1 is reproduced or a model in which the shape of the end is simply flat may be used.
  • the tension can be accurately calculated by using a forming simulation by a finite element method using a three-dimensional solid element.
  • the strain gradient is preferably calculated in the vicinity of a portion where a crack is estimated to occur.
  • the tension to be used may be immediately after the occurrence of a crack, but it may be in the initial state of the crack as much as possible. However, since it is preferable to use the tension in a state where the occurrence of a crack is as small as possible, the tension in the state immediately before the occurrence of the crack is adopted. Further, in order to give a margin for evaluation, the above-described acquired value may be acquired in a state before immediately before the occurrence of a crack. Then, as shown in FIG. 3, a curve passing through the plurality of acquired values is used as a deformation limit line. FIG. 3 exemplifies a case where five acquired values are used. A larger number of acquired values is preferable, but if there are three or more points, the deformation limit line can be set.
  • the transformation limit line may be converted into a functional expression.
  • the deformation limit line approximates, for example, a quadratic curve or the like.
  • a region below the deformation limit line is defined as a region where no crack occurs at the end surface. That is, the press-formed product may be determined such that the bending shape of the end face 10A of the bending deformation portion when forming into a product shape by press molding falls below the deformation limit line.
  • the shape of the press die is determined or the process selection of the press working is performed so as to be smaller than the deformation limit line. You may.
  • the present invention is more effective as the material 1 has higher strength.
  • the material 1 having a tensile strength of 590 MPa or more is preferably used, and the material 1 having a tensile bending strength of 980 MPa or more is more preferable.
  • the type of the material 1 cost is excellent when targeting the material 1 that is mass-produced like press molding, and it is preferable to target the metal plate 1 and particularly steel plate.
  • the present invention was tested on three types of materials A, B and C shown in Table 1. Each material 1 was subjected to shear processing to produce a rectangular test piece. The shearing process used a 10 ⁇ 20 mm rectangular punch and a 10.3 ⁇ 20.3 mm rectangular die (not shown). The clearance of the mold was changed according to the thickness of the material 1, and the material A was 15% of the thickness, the material 1B was 10.7% of the thickness, and the material 1C was 8.3% of the thickness.
  • the bending radius R of the tip of the punch 21 was changed at a pitch of 0.5 mm to execute a deformation test, and the minimum bending radius at which a crack was not generated at the end face 10A of the test piece was determined.
  • Reference numeral 20 indicates a die.
  • tension and strain gradients at the end face 10A when bent at the minimum bending radius were calculated by molding simulation.
  • the calculation range of the strain gradient in the plate thickness direction X was 50% of the plate thickness of each material 1
  • the calculation range of the strain gradient in the bending ridge direction Y was 5 mm.
  • the combined deformation of tensile deformation and bending deformation was applied to the end face 10A of the material 1 by a hat-shaped drawing mold shown in FIG.
  • the test piece 1 was placed such that the sag side of the sheared portion of the test piece 1 was in contact with the bending R portion of the punch 32.
  • Reference numeral 30 denotes a die
  • reference numeral 31 denotes a crease presser.
  • the bending radius R of the shoulder of the punch 32 was tested using two types of 5 mm and 10 mm, and the wrinkle holding force was changed at 2.5 ton pitch, and no crack was generated at the end face 10A of the test piece at each bending radius The minimum wrinkling force was determined.
  • a tensile test was performed on the test piece to determine the minimum tensile force at which no crack occurs on the end face 10A of the test piece.
  • tension and strain gradients of the end face 10A when tensile deformation was given under the same conditions were calculated by molding simulation.
  • the strain at the end face 10A and various strain gradients were calculated using the strain gradient in the direction perpendicular to the tensile direction and the plate thickness direction from the end face 10A as the strain gradient in the bending ridge direction Y.
  • a plurality of data consisting of a set of tension determined as described above and index values determined from various strain gradients were acquired.
  • Example 1 In Example 1, based on the present embodiment, ⁇ combine as an index value is calculated as a root mean square value based on equation (2), and the relationship between tension and evaluation value is organized. The arranged result is shown in FIG. The calculation of tension was calculated from the tensile stress generated in the finite element located at the center of the plate thickness of the bending deformation part by forming simulation.
  • Example 2 In Example 2, based on the present embodiment, ⁇ combine as an index value is calculated as the sum of two strain gradients based on the equation (4), and the relationship between the tension and the evaluation value is organized. The arranged result is shown in FIG. The calculation of tension was calculated from the average value of the stress generated in the finite element distributed in the plate thickness direction of the bending deformation portion by forming simulation.
  • the strain limit along the end face is used as an index value, and the deformation limit line is determined, evaluated and verified in the same manner as in the above verification 1 and verification 2. Evaluation in the case where a crack occurs Part of the data was located below the deformation limit line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

せん断加工された素板の端面での曲げ加工による割れの評価方法と予測手法を提供し、プレス金型の設計方法に反映すべき技術を提供する。せん断加工された金属板(1)をプレス成形する際における、金属板(1)のせん断加工面(10A)での変形限界を評価する変形限界の評価方法である。曲げ加工を受ける金属板(1)の曲げ外側表面とせん断加工面(10A)の境界近傍に発生するひずみの分布のうち、評価位置のせん断加工面(10A)での板厚方向Xの表面ひずみ分布の勾配と、上記せん断加工面(10A)から離れる方向に向かう曲げ加工による曲げ稜線方向Yの表面ひずみ分布の勾配との2つの表面ひずみ分布の勾配から求めた指標値とせん断加工面に発生する張力との関係に基づき、せん断加工面(10A)での変形限界を評価したり割れを予測したりする。

Description

金属板のせん断加工面での変形限界の評価方法、割れ予測方法およびプレス金型の設計方法
 本発明は、せん断加工した後の金属板(素材)を、曲げ加工を含むプレス成形で成形して加工する際における、せん断加工面(端面)に発生する割れを評価、予測する技術、及びその技術に基づき金属板の割れを抑制可能な金型形状の設計方法(決定方法)に関する技術である。
 プレス成形は、代表的な金属加工技術の一つであり、一対の金型の間に金属板を挟んで挟圧し、その金属板を金型の型形状に倣うように成形することで、金属板を所望の製品形状に加工する技術である。そして、このプレス成形は、自動車部品、機械部品、建築部材、家電製品等、幅広い製造分野で用いられている。
 このプレス成形における成形性の主な課題の一つとして割れがある。この割れには、主に、素材の引張り変形による割れと、曲げ変形による割れと、それらの複合変形による割れとがある。引張り変形による割れは素材の延性に大きく起因し、成形限界線図を用いた割れの予測手法で評価することが一般的である。一方、曲げ変形による割れは、金型の曲げ半径Rと素材の板厚tとの比である曲げ性R/tに大きく起因し、素材の表面に亀裂が発生しない最小の曲げ半径と板厚tの比を実験的に求めることで、割れの予測をする方法が一般的である。引張り変形と曲げ変形の複合変形による割れの予測手法としては、例えば、金型の曲げ半径Rと金属板に発生する張力を用いた予測手法(特許文献1)がある。
 上記の割れは、いずれも金属板の表面から亀裂が発生し、亀裂が板厚方向に貫通する場合の事例である。
 しかし、その他に、割れ発生の事例として、せん断加工された素材の端面が変形を受けることで、端面から亀裂が発生して割れに至る事例がある。素材の端面は、せん断加工により強い変形をすでに受けているため延性に乏しく、また、破断面やバリといった凹凸へ応力が集中することで、亀裂が発生しやすいという特徴がある。このため、割れに対する評価方法や予測方法が上記とは異なる。
 従来では、この素材の端面の割れに関しては、引張り変形によって引き起こされる伸びフランジ割れに対する評価方法について多くの検討がなされており、例えば、端面に沿った方向のひずみ勾配や端面と直交する面内方向のひずみ分布の勾配とを用いた予測手法(特許文献2)などが提案されている。ここでいうひずみ分布の勾配(本明細書では「ひずみ勾配」とも記載する)とは、ある長さに分布するひずみの単位長さ当たりのひずみの変化である。しかし、曲げ変形や、引張り変形と曲げ変形の複合変形により引き起こされる素材の端面の割れに関しては、有効な予測方法や評価方法が少ない。しかしながら、このような素材の端面での割れに関し、特に引張り強度590MPa級以上の高強度鋼板で課題として顕在しはじめている。
特許第5630312号公報 特許第5146395号公報
風間 宏一、永井 康友著「板の曲げ加工時に生ずる端部反り変形の解析」、塑性と加工、第45巻、第516号、2004年、p.40-44
 本発明は、上記のような点に着目してなされたものであり、せん断加工された素板(金属板)の端面に曲げ変形や引張り変形と曲げ変形の複合変形により引き起こされる割れの評価や予測の手法を提供し、プレス金型の設計方法に反映すべき技術を提供することを目的とする。
 課題を解決するために、本発明の一態様は、せん断加工された金属板を曲げ加工を含むプレス成形で成形する際における、上記金属板のせん断加工面での変形限界を評価する変形限界の評価方法であって、曲げ加工を受ける金属板の曲げ外側表面とせん断加工面との境界近傍に発生するひずみの分布のうち、評価位置における、せん断加工面での板厚方向の表面ひずみ分布の勾配と上記曲げ加工による曲げ稜線方向の表面ひずみ分布の勾配との2つの表面ひずみ分布の勾配から求めた指標値と、せん断加工面に発生する張力との関係から、せん断加工面での変形限界を評価する。
 本発明の一態様によれば、対象となる金属板(素材)をせん断加工後に変形させる際における、端面の変形限界が評価出来る。この結果、本発明の一態様によれば、端面からの割れの発生有無を精度よく予測したり、割れの発生を抑えたりすることができる金型形状の設計が可能となる。
 また、本発明の一態様によれば、単純曲げ、曲げと引張りとの複合変形、引張り変形の複数の形態を一つの指標で評価することが出来る。
曲げ加工を含むプレス成形で成形した成形品の一例を示す図である。 曲げ加工時に型からの浮きが発生した状態の一例を示す図である。 張力と指標値との関係から分かる、変形限界線や端面での割れの発生しない領域の例を示す図である。 単純曲げ成形を行う例示する模式図で、(a)は側面図、(b)は試験片1とパンチ21との関係を示す平面図である。 複合曲げ成形を行う例示する模式図で、(a)は側面図、(b)は試験片1とパンチ32との関係を示す平面図である。 張力と、2つのひずみ勾配の自乗平均からなる指標値との関係を示す図である。 張力と、2つのひずみ勾配の和からなる指標値との関係を示す図である。 実施例における曲げ成形による製品形状を示す図である。 実施例における引っ張り変形と曲げ成形が複合した変形によって成形された製品形状を示す図である。
 次に、本発明に基づく実施形態について図面を参照しつつ説明する。
 金属板を曲げ加工を含むプレス成形で成形した成形品の例を、図1に示す。図1は鞍状形状にプレス成形した場合の例である。この図1において、符号1Bは、金属板1を曲げる際の曲げ線位置となる曲げ稜線方向となる。符号10Aは、端面(せん断加工面)となる。また符号Zが、曲げ外側表面とせん断加工面との境界近傍のうちの、亀裂が発生しやすい箇所の例である。
 そして、発明者らが種々の検討をした結果、素材1(金属板1)をプレス成形した際に、図2に示すように、素材1の端面は曲げ加工時に反りが発生(例えば、非特許文献1)して、素材1の端面側が金型の曲げ部から浮く。このため、素材1の中央部側(図1の符号1Ba参照)では、金型の曲げ半径Rに近い曲げ半径で曲げ変形を受けるが、素材1の端面側(図1の1Bb参照)では、金型の曲げ半径Rとは異なる曲げ半径で曲げ変形を受ける。
 このとき、曲げ変形と引張り変形との複合変形の場合、引張り変形を強めていくと、金型に対する素材端面の浮きは減少する傾向があるが、素材1の強度が590MPa以上または板厚が1.0mm以上となると、素材1の端面10Aでの浮きが無くなる前に割れが発生してしまうことが分かった。したがって、従来のように、金型の曲げ半径Rを用いた割れの予測手法では、端面10Aからの割れを精度よく予測できないことが分かった。
 また、曲げ変形時には素材1の板厚方向Xに非常に大きなひずみ勾配が発生するため、素材1の端面10Aに沿った方向のひずみ勾配や端面10Aと直交する面内方向のひずみ勾配は相対的に影響が小さくなる。そのため、それらを用いた従来の予測手法では、曲げ変形が含まれるプレス成形の場合、端面10Aの割れを予測することが困難であることが分かった。
 更に、発明者らは、せん断加工された素材1の端面10Aに様々な変形を加えて割れの有無を検討した結果、下記の知見を得た。
 端面10Aからの亀裂は、その発生部に与えられる最大主ひずみの方向と直交する方向に進展する。その際、最大主ひずみの方向と直交する方向のひずみ勾配が大きいほど、亀裂の発生と進展を抑制する傾向がある。そして、最大主ひずみの方向と直交する様々な方向のうち、ひずみ勾配が最大となる方向の値が最も抑制効果を発揮する。しかし、ひずみ勾配が最大となる方向は素材1の端面10Aに加わる変形によって一定とはならず、また、前述のように素材1の端面10Aは曲げ変形時に反りが発生するため、最大となる方向を特定することは難しい。
 そして、本実施形態の方法は、プレス加工における、金属板1のせん断加工面10Aでの単純曲げ変形、及び引張り変形と曲げ変形が複合した変形のいずれでもあっても、せん断加工面10A(せん断によって形成された端面10A)での変形限界の評価や割れの予測を、一つの指標値で統一的に且つ精度良く評価可能とするための技術を提供するものである。
 発明者らは、上記のような知見に基づいて、亀裂発生部の近傍Zにおける板厚方向Xの表面ひずみ分布の勾配と、曲げ稜線方向Yの表面ひずみ分布の勾配との2つの表面ひずみ分布の勾配から求めた指標値と、せん断加工面に発生する張力との2つをパラメータとして、金属板1のせん断加工面10Aでの変形限界を評価する評価方法、それに基づいた端面割れの予測方法を考案した。
 (指標値について)
 本実施形態で使用する金属板1のせん断加工面10Aでの変形限界を評価する評価、それに基づいた端面割れの予測で用いる指標値について説明する。
 本実施形態の指標値は、曲げ加工を受ける金属板1の曲げ外側表面とせん断加工面10Aの境界近傍に発生するひずみの分布のうち、せん断加工面10Aでの板厚方向Xの表面ひずみ分布の勾配と、せん断加工面10Aから離れる方向に向かう曲げ加工による曲げ稜線方向Yの表面ひずみ分布の勾配との、2つの表面ひずみ分布の勾配を変数とした値である。ここで、曲げ外側表面とは、曲げ加工によって凸に変形する側の表面である。
 指標値は、例えば、下記(1)式のような、上記2つの表面ひずみ分布の勾配の平均値とする。この例では、△εcombineが指標値となる。なお、ひずみ勾配は、一般にひずみの急峻さを表す。
 ここで、曲げ稜線方向Yの表面ひずみは、曲げ加工を受ける金属板1の曲げ外側表面での端面10Aから曲げ稜線方向Yに向かう表面ひずみであり、その勾配は、端面10Aを起点として当該端面10Aから離れる方向の勾配となる。また板厚方向Xの表面ひずみ分布の勾配は、曲げ外側表面から内面側に向かう勾配とする。
 △εcombine= (△εthickness
            +△εridgeline)/2 
                         ・・・(1)
 ここで、
 △εthickness:板厚方向Xの表面ひずみ分布の勾配
 △εridgeline:曲げ稜線方向Yの表面ひずみ分布の勾配
 である。
 端面10Aから発生する亀裂は、亀裂発生部の近傍Zの板厚方向Xの表面ひずみ分布の勾配と曲げ稜線方向Yの表面ひずみ分布の勾配との2方向の勾配と相関があると知見を得ているが、(2)式のように、それら2方向の勾配の自乗平均からなる指標値△εcombineは、さらに端面10Aでの亀裂と相関が高い。このため、(2)式で算出した評価値を用いることで、せん断加工面10Aでの変形限界の評価や端面割れの予測を、より高い精度で行うことが可能となる。
 △εcombine= 0.5×((△εthickness)
              +(△εridgeline)0.5
                           ・・・(2)
 ここで、
 △εthickness:板厚方向Xの表面ひずみ分布の勾配
 △εridgeline:曲げ稜線方向Yの表面ひずみ分布の勾配
 である。
 また、本実施形態の指標値を用いた端面10Aでの変形限界の評価や端面割れの予測は、複数の曲げ変形に対し一つの指標値で行うことが出来ることに併せ、ひずみ勾配の最大となる方向を特定しなくとも、最大ひずみ勾配の値を簡便な方法で求められるという利点もある。また、本実施形態の指標値は、単純引張り変形の割れについても適用可能である。
 なお、簡易的な評価手法として、(3)式のように、板厚方向Xの表面ひずみ分布の勾配△εthicknessだけから指標値を算出して、端面10Aからの割れの発生有無を評価しても良い。
すなわち、
 △εcombine= △εthickness ・・・(3)
 としても良い。
 これは、割れの評価指標として、曲げ加工においては、板厚方向Xの表面ひずみ分布の勾配の値の方が、曲げ稜線方向Yの表面ひずみ分布の勾配の値よりも寄与度が高いためである。このため、精度は下がるがものの、(3)式はより簡便であるという利点がある。
 また別の簡便な方法として、(4)式のように、板厚方向Xと曲げ稜線方向Yの2つの表面ひずみ分布の勾配の和を指標値としても良い。
 △εcombine
   = △εthickness +△εridgeline
                         ・・・(4)
 ここで、上述の(1)式は、2つの表面ひずみ分布の勾配から指標値を求める際に、2つの表面ひずみ分布の勾配を単純平均で平均化した場合の例であるが、曲げ加工では板厚方向Xの表面ひずみ分布の勾配の方が、寄与度が高いという観点から、(5)式のように、板厚方向Xの表面ひずみ分布の勾配側の重み付けを大きくして、加重平均で指標値を求めても良い。
 △εcombine= (a×△εthickness
             +b×△εridgeline)
                         ・・・(5)
 ここで、a,bは重み係数であり、a>bの関係に設定する。例えば、a=0.7、b=0.3のように設定する。
 同様に、(2)式や(4)式においても、板厚方向Xの表面ひずみ分布の勾配側の重み付けを大きく設定しても良い。
 例えば、(4)式のように、2つの表面ひずみ分布の勾配の和を指標値とする際に、(6)式のように、板厚方向Xの表面ひずみ分布の勾配側の重み付けを大きく設定しても良い。
 
 △εcombine= a・△εthickness
            +b・△εridgeline 
                         ・・・(6)
 ここで、a,bは重み係数であり、a>bの関係に設定する。例えば、a=1.3、b=0.7のように設定する。
 (評価値の正規化)
 更に、上記指標値である△εcombineを、金属板1の局部伸びの逆数で正規化するようにしても良い。
 例えば、素材1の局部伸びL-Elを使用し、下記(7)式のように、指標値に対し、金属板1の局部伸びL-Elの逆数を乗算して、指標値を正規化する。
 
 △εcombine ← △εcombine/L-El
                         ・・・(7)
 ここで、局部伸びL-Elは、素材1を所定の形状(例えば長方形形状の平板)で引張り試験することで求められる。具体的には、局部伸びL-Elは、素材1が破断するまでの伸び(全伸び)から引張り強さが最大となる伸び(均一伸び)の差分から求める。多くの素材1では均一伸びと局部伸びL-Elは同等となることが多いため、均一伸びや、全伸びの半分の値を、局部伸びL-Elの代わりに採用しても良い。その他にも、素材1の局部伸びL-Elを求める方法はあるが特に限定されない。
 (せん断加工面に発生する張力)
 せん断加工面に発生する張力は、せん断加工面(端面)に沿って素材表面と平行な方向に向かう単位面積あたりの力(以下、単に張力という)とする。
 曲げ加工部は曲げ変形により、板厚中心よりも曲げ外側と曲げ内側のそれぞれに引張応力と圧縮応力が発生するため、曲げ変形による応力と端面に沿って平行に発生する張力との分離が困難である。そこで、曲げ加工部の板厚中心の応力、または曲げ加工部の板厚全体の平均応力を用いることが好ましい。また、簡易的には、曲げ加工部に隣接して曲げ変形を受けてないせん断端面の張力であれば曲げ変形の応力は含まれないため、板厚中心や全体の応力の平均値を採用しても良い。
 張力の算出は成形シミュレーションによって該当部の有限要素に発生する引張応力を求め、その引張応力の値を評価用の張力として使用することが簡便である。
 (指標値及び張力を求める評価位置について)
 ここで、指標値△εcombineを求める評価位置は、対象とするプレス成形による曲げ加工で端面10Aの変形時に亀裂が発生すると推定される位置とすることが好ましい。例えば図1における符号Z位置である。せん断加工面において、曲げ変形された符号Z位置で、張力の値およびひずみ勾配が大きくなり、その位置で亀裂が最初に発生しやすい。
 端面変形時に亀裂が発生すると推定される位置は、予め実験や成形シミュレーションで求めた、ひずみが一番大きくなる位置とすればよい。例えば、曲げ加工によって、曲げられる端面部分における、曲率変化が一番大きな位置若しくはその近傍を評価位置とする。
 (せん断加工による端面(せん断加工面10A)について)
 せん断加工後による端面10Aについて説明する。
 せん断加工は、一対のパンチとダイを用いて素材1にせん断変形を与え、割れを生じさせることで、素材1を2個以上に分離する方法である。
 本実施形態では、一般的なせん断加工により所定輪郭形状にせん断されることで、せん断加工面10Aを有する素材1が作製される。
 ここで、せん断加工された素材1の端面10Aの性状は、パンチとダイスの間隔であるクリアランスにより変化するが、本実施形態は端面10Aの性状に限定されない。ただし、クリアランスは加工荷重が低く、パンチとダイの損傷が少なくなる観点から、素材1の板厚の5~20%の範囲にすると良く、特に、引張り強度590MPa以上の鋼板に対しては8~15%とすることが好ましい。なお、クリアランスを5%以下にしてせん断加工をすることでせん断加工面10Aを広く作成する方法もあるが、本実施形態は、どのような方法でせん断加工をして評価する試験片(素材1)を作製しても適用することが出来る。
 そして、所定輪郭形状にせん断加工された素材1を試験片として、種々の変形を与え、上記の張力や、指標値のためのひずみの勾配を求める。
 (単純曲げ変形の付与について)
 せん断加工された試験片の端面10Aに対して曲げ変形を与える方法は、試験片1を曲げる金型や治具等の曲げ半径Rと、端面10Aの亀裂有無とを確認できる方法であればどのような方法でもよい。
 簡易的には、V曲げ加工やU曲げ加工のパンチの先端半径Rを変えながら試験片1の端面10Aを曲げて、亀裂の有無を確認する方法が良い。その他にもロールフォーミングなどの曲げ方法がある。
(引張り変形と曲げ変形の複合変形の付与について)
 試験片の端面10Aに引張り変形と曲げ変形の複合変形を与える方法は、ビードや素材1を挟圧する機構により試験片1に与える引張り応力が変更でき、かつ素材1を曲げる金型や治具等の曲げ半径Rと端面10Aの亀裂有無とを確認できる方法であればどのような方法でもよい。簡易的には、ハット形状の絞り成形金型を用いることで、パンチの曲げ半径Rとクッション圧、およびビードの有無を変えて種々の複合変形を与えるのが良い。
 引張り変形と曲げ変形の複合変形は、例えばドロー成形によるプレス加工で発生する。
(曲げ加工による割れの評価方法について)
 上記の方法により亀裂が発生した位置での、亀裂が発生する直前の張力と、素材1表面のひずみ勾配を求める。
 具体的には、曲げ変形を受ける素材1の外側表面とせん断加工された端面10Aの境界で求めるのが好ましい。これは、亀裂の発生が上記の境界で発生しやすいためである。
 張力とひずみ勾配の求め方は、公知の手法を採用すれば良い。張力とひずみ勾配の求め方としては、例えば、素材1の表面に微小なマークをつけてマークの変形からひずみを求める実験的な方法や、有限要素法による成形シミュレーションによりひずみを予測する方法などがあるが、これに限定されず、公知の方法を適用すれば良い。このようにして、表面ひずみの分布を求め、求めた表面ひずみの分布からひずみ勾配を算出する。
 マークの形状は、サークルパターン、ドットパターン、グリッドパターン、同心円パターン等、成形後にひずみを計測できる形状であればよい。また、マーク方法は、電解エッチング、フォトエッチング、インクによる転写(スタンプ印刷)等があるが、いずれの方法を用いてもよい。ただし、けがきは亀裂発生を誘発するため好ましくない。成形シミュレーションの場合は、せん断加工を再現する必要は無く、せん断加工された素材1の端部の形状を再現したモデルや、端部の形状を単に平坦としたモデルを用いればよい。
 3次元のソリッド要素を用いた有限要素法による成形シミュレーションを用いると精度良く張力が算出できる。
 ひずみ勾配は、亀裂が発生すると推定される部分の近傍で算出することが好ましい。板厚方向Xのひずみ勾配の算出範囲は狭いほど良く、素材1の板厚の90%以下が好ましく、50%以下とすることがより好ましい。これは、初期に発生する亀裂は微小であるため、それを評価する範囲も同じく微小な範囲で算出すると精度が良いためである。曲げ稜線方向Yのひずみ勾配の算出範囲は10mm以下が好ましく、5mm以下がより好ましい。これは、曲げ変形時に素材1の端面10Aに発生するそりが上記の範囲にあり、このそりの変形を考慮するためである。
 (変形限界の評価について)
 次に、上述の指標値を用いた、金属板1のせん断加工面10Aでの変形限界の評価方法の一例について説明する。
 上述のように、同一の鋼種において、上記の単純曲げ変形や上記の引張り変形と曲げ変形の複合変形の変形条件を変えて、せん断加工面10Aでの亀裂が発生する直前の張力と、その亀裂が発生する直前の曲げを含む変形における同一箇所での指標値との組からなる取得値(張力、指標値)との組のデータを3組以上取得する。使用する張力は、亀裂が発生する直後としても良いが、出来るだけ亀裂初期の状態のときが良い。ただし、張力の算出は、出来るだけ亀裂発生が小さいときの状態での張力を使用することが好ましいため、亀裂が発生した直前の状態の張力を採用している。また、評価に余裕代を持たせるために、亀裂発生直前よりも前の状態で上記の取得値を取得するようにしても良い。
 そして、図3のように、取得した複数の取得値を通る曲線を変形限界線とする。図3では、5点の取得値を使用した場合を例示している。取得値は多い方が好ましいが、3点以上あれば、変形限界線を設定可能である。
 求めた変形限界線によって、曲げ変形時におけるせん断加工面10Aでの変形の限界を評価する。変形限界線は、関数式に変換しておけばよい。変形限界線は、例えば2次曲線などに近似する。
 そして、例えば、この変形限界線よりも下側の領域を、端面で割れの発生しない領域とする。
 すなわち、プレス成形によって製品形状に成形する際における曲げ変形部分の端面10Aの曲げ形状が、この変形限界線以下に収まるように、プレス成形品を決定するようにしても良い。又は、プレス成形によって製品形状に成形する際における曲げ変形部分の端面10Aにおいて、この変形限界線未満に収まるように、プレス金型の形状を決定したり、プレス加工の工程選定を行うようにしたりしても良い。
 (割れの予測)
 上記のようにして、予め、曲げ加工部の端面に発生する張力と指標値の関係を求めておき、その関係に基づき、図3の[割れの発生しない領域]内に位置するか否かで割れが発生するか否かを予測する。
 そして、割れが発生すると予測(評価)された位置に対し、その金属板端面10Aでの割れ発生が抑制されるように、プレス成形で使用するプレス金型の設計変形を行う。
 (効果)
 以上のように、本実施形態によれば、対象となる素材1をせん断加工後に変形させる際の、端面10Aからの割れの発生有無を精度よく評価することが可能となる。
 この評価方法は、割れの発生を予測する方法としても活用できる。例えば、自動車のパネル部品、構造・骨格部品等の各種部品をプレス成形する際に用いる金型の形状が適切であるか精度良く予測できるようになる。また、プレス成形を安定して行うことができるのでプレス成形品の不良率が低減でき、プレス金型の製造期間の短縮にも貢献できる。
 強度が高い素材1は一般的に延性が低いため、素材1のせん断加工面10Aを変形させることで割れが容易に起きやすい。そのため、本発明は強度が高い素材1ほど有効である。具体的には、引張り強度590MPa以上の素材1を対象とすることが好ましく、引張り曲げ強度980MPa以上の素材1はさらに好ましい。また、素材1の種類としては、プレス成形のように大量生産をする素材1を対象とするとコスト面で秀でており、金属板1や特に鋼板を対象とすることが好ましい。
 次に、本発明に基づく実施例について説明する。
 表1に示す3種類の素材A、BおよびCを対象に本発明の検証を行った。各素材1に対してせん断加工を行って、矩形形状の試験片を作製した。
 そのせん断加工は、10×20mmの矩形のパンチと、10.3×20.3mmの矩形のダイスを用いた(不図示)。金型のクリアランスは、素材1の板厚によって変更し、素材Aが板厚の15%、素材1Bが板厚の10.7%、素材1Cが板厚の8.3%とした。
Figure JPOXMLDOC01-appb-T000001
 試験片に対し、単純曲げ変形、及び引張り変形と曲げ変形の複合変形の2形態の曲げ加工を実施して、各形態での曲げ加工における、張力とひずみ勾配との関係を求めてみた。併せて、単純引張り変形についての、張力とひずみ勾配との関係を求めてみた。
 単純曲げ変形は、図4に示す頂角90°のV曲げ金型により試験片1の端面10Aに曲げを与えた。パンチ21の頂点の曲げR部にせん断加工部のダレ側が接するように試験片を設置した。そして、パンチ21の先端の曲げ半径Rを0.5mmピッチで変えて変形試験を実行し、試験片の端面10Aに亀裂が発生しない最小の曲げ半径を求めた。符号20はダイを示す。
 その後、成形シミュレーションにより最小曲げ半径で曲げられたときの端面10Aでの張力とひずみ勾配を算出した。
 なお、板厚方向Xのひずみ勾配の算出範囲は各素材1の板厚の50%とし、曲げ稜線方向Yのひずみ勾配の算出範囲は5mmとした。
 引張り変形と曲げ変形の複合変形は、図5に示すハット形状の絞り成形金型により素材1の端面10Aに与えた。パンチ32の曲げR部に対し、試験片1のせん断加工部のダレ側が接するように試験片1を設置した。符号30はダイを、符号31はしわ押さえ板を示す。
 パンチ32の肩部の曲げ半径Rは5mmと10mmの2種類を用いて、しわ押さえ力を2.5トンピッチで変えて試験をし、それぞれの曲げ半径で試験片の端面10Aに亀裂が発生しない最小のしわ押さえ力を求めた。その後、成形シミュレーションにより同じ条件で複合変形を与えられた時の端面10Aでの張力とひずみ勾配を算出した。板厚方向Xのひずみ勾配と曲げ稜線方向Yのひずみ勾配の算出範囲は上記の曲げ変形の場合と同じである。
 併せて、試験片に対し引張り試験を実施して、試験片の端面10Aに亀裂が発生しない最小の引張り力を求めた。その後、成形シミュレーションにより同じ条件で引張り変形を与えられた時の端面10Aの張力とひずみ勾配を算出した。この場合には、曲げ稜線方向Yのひずみ勾配として端面10Aから引張り方向と板厚方向に直交する方向のひずみ勾配を使用して、端面10Aでの張力及び各種のひずみ勾配を算出した。
 そして、上記のようにして求めた張力と各種のひずみ勾配から求めた指標値との組からなるデータを複数取得した。
<実施例1>
 実施例1は、本実施形態に基づき、指標値としての△εcombineを(2)式に基づき二乗平均値として算出して、張力と評価値との関係を整理した結果である。その整理した結果を図6に示す。張力の算出は成形シミュレーションによって曲げ変形部の板厚中心に位置する有限要素に発生する引張応力から算出した。
<実施例2>
 実施例2は、本実施形態に基づき、指標値としての△εcombineを(4)式に基づき2つのひずみ勾配の和として算出して、張力と評価値との関係を整理した結果である。その整理した結果を図7に示す。張力の算出は成形シミュレーションによって曲げ変形部の板厚方向に分布する有限要素に発生する応力の平均値から算出した。
 (検証)
 <検証1>
 上記表1に示す3種類のうちの素材Aからなる鋼板を、上型及び下型からなる金型でプレスすることで曲げ加工からなる変形を加えて、図8に示す製品形状に変形した。これを金型の曲げRの条件を変えて種々実行した。
 そして、図8の符号Zで示す位置をそれぞれ評価位置として、各評価位置Zで割れが発生した場合と、割れが発生しない場合の曲げ加工条件を取得した。
 そして、上記プレス成形とは別に、上記各加工条件で成形する場合について、有限要素法を用いて3次元プレス成形シミュレーションを行い、それぞれの条件でプレス成形した場合における、評価位置(Z位置)でのせん断加工面に沿った張力と、上記(2)式で求めた指標値との組からなる評価データを取得した。
 その複数の評価データについて、実施例1で求めた変形限界線(図6参照)のどちらに位置するか確認したところ、割れが発生した場合の評価データは、すべて変形限界線よりも上側に位置し、割れが発生しなかった場合の評価データは、すべて変形限界線よりも下側に位置していることを確認した。
 <検証2>
 同様にして、変形後の製品形状を図9に示す形状に設定して、上記検証1と同様な検証を行った。ここで、図9に示す形状への加工は、ドロー成形によって行った、ドロー成形によるプレス成形は、曲げ変形位置に曲げ変形と引っ張り変形とが複合した変形が発生する。
 この場合においても、割れが発生した場合の評価データは、すべて変形限界線よりも上側に位置し、割れが発生しなかった場合の評価データは、すべて変形限界線よりも下側に位置していることを確認した。
 <検証3>
 また、上記2つの検証1及び検証2について、指標値を上記(4)式によって求め、実施例2(図7)によって求めた変形限界線を使用した場合についても検証した。この場合においても、割れが発生した場合の評価データは、すべて変形限界線よりも上側に位置し、割れが発生しなかった場合の評価データは、すべて変形限界線よりも下側に位置していることを確認した。
 <検証4>
 更に、鋼板の素材をB及びCに変更して、上記と同様な検証も実施した。この場合においても、実施例1及び実施例2のどちらを使用した場合も、割れが発生した場合の評価データは、すべて変形限界線よりも上側に位置し、割れが発生しなかった場合の評価データは、すべて変形限界線よりも下側に位置していることを確認した。
 このように、本発明に基づいて曲げを含むプレス加工を行う際におけるせん断加工面での変形限界を精度よく評価できることがわかった。
 そして、本発明に基づく方法では、一つの評価基準で、単純曲げ変形の変形限界と、曲げ変形と引っ張り変形とが複合した変形の変形限界を評価できることがわかる。
 ここで比較のために、端面に沿ったひずみ勾配を指標値として使用して、上記検証1及び検証2と同様にして変形限界線を求めて評価、検証した場合、割れが発生した場合の評価データの一部が、変形限界線よりも下側に位置していた。
 以上、本願が優先権を主張する、日本国特許出願2017-160055(2017年8月23日出願)の全内容は、参照により本開示の一部をなす。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
1 素材(金属板)
10A せん断加工面(端面)
X 板厚方向
Y 稜線方向

Claims (9)

  1.  せん断加工された金属板を曲げ加工を含むプレス成形で成形する際における、上記金属板のせん断加工面での変形限界を評価する変形限界の評価方法であって、
     曲げ加工を受ける金属板の曲げ外側表面とせん断加工面との境界近傍に発生するひずみの分布のうち、評価位置における、せん断加工面での板厚方向の表面ひずみ分布の勾配と上記曲げ加工による曲げ稜線方向の表面ひずみ分布の勾配との2つの表面ひずみ分布の勾配から求めた指標値と、せん断加工面に発生する張力との関係から、せん断加工面での変形限界を評価することを特徴とする変形限界の評価方法。
  2.  上記指標値は、2つの表面ひずみ分布の勾配の自乗平均であることを特徴とする請求項1に記載した変形限界の評価方法。
  3.  上記指標値は、2つの表面ひずみ分布の勾配の和であることを特徴とする請求項1に記載した変形限界の評価方法。
  4.  上記張力を、曲げ加工の成形シミュレーションによって算出し、その張力を、曲げ加工部における板厚中心に沿った有限要素に発生する引張応力とすることを特徴とした請求項1~請求項3のいずれか1項に記載した変形限界の評価方法。
  5.  上記張力を、曲げ加工の成形シミュレーションによって算出し、その張力を、曲げ加工部における板厚方向に分布する有限要素の応力の平均値とすることを特徴とした請求項1~請求項3のいずれか1項に記載した変形限界の評価方法。
  6.  上記2つの表面ひずみ分布を求めるための、板厚方向と曲げ稜線方向の各表面ひずみを、曲げ加工の成形シミュレーションによって算出することを特徴とした請求項1~請求項5のいずれか1項に記載した変形限界の評価方法。
  7.  上記評価位置を、対象とする曲げ加工で端面を変形するときに亀裂が発生すると推定される位置とすることを特徴とした請求項1~請求項6のいずれか1項に記載した変形限界の評価方法。
  8.  せん断加工された金属板を曲げ加工を含むプレス成形で成形した場合の割れの有無を予測する割れ予測方法であって、
     曲げ加工を受ける上記金属板の曲げ外側表面とせん断加工面との境界近傍に発生するひずみの分布のうち、せん断加工面での板厚方向の表面ひずみ分布の勾配と上記曲げ加工による曲げ稜線方向の表面ひずみ分布の勾配との2つの表面ひずみ分布の勾配を変数とした指標値と、せん断加工面に発生する張力との関係を、予め求めておき、
     上記関係と、評価位置での上記2つの表面ひずみ分布の勾配から求めた指標値とから、せん断加工面での割れを予測することを特徴とする割れ予測方法。
  9.  請求項1~請求項7のいずれか1項に記載した変形限界の評価方法、若しくは請求項8に記載した割れ予測方法を用いて、金属板端面での割れ発生を抑制したプレス金型の形状を設計することを特徴とするプレス金型の設計方法。
PCT/JP2018/026587 2017-08-23 2018-07-13 金属板のせん断加工面での変形限界の評価方法、割れ予測方法およびプレス金型の設計方法 WO2019039134A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880054714.7A CN110997172B (zh) 2017-08-23 2018-07-13 金属板的剪切加工面上的变形极限的评价方法、裂纹预测方法以及压制模具的设计方法
JP2019509571A JP6558515B2 (ja) 2017-08-23 2018-07-13 金属板のせん断加工面での変形限界の評価方法、割れ予測方法およびプレス金型の設計方法
EP18849137.7A EP3674009A4 (en) 2017-08-23 2018-07-13 DEFORMATION LIMIT EVALUATION METHOD FOR SHEARED SURFACE OF METAL SHEET, CRACK PREDICTION PROCESS AND PRESS DIE DESIGN PROCESS
KR1020207004923A KR102334109B1 (ko) 2017-08-23 2018-07-13 금속판의 전단 가공면에서의 변형 한계의 평가 방법, 균열 예측 방법 및 프레스 금형의 설계 방법
US16/640,224 US11609166B2 (en) 2017-08-23 2018-07-13 Deformation limit evaluation method for sheared surface of metal sheet, crack prediction method, and press die designing method
MX2020001988A MX2020001988A (es) 2017-08-23 2018-07-13 Metodo de evaluacion de limite de deformacion para superficie cizallada de lamina de metal, metodo de prediccion de grietas, y metodo de dise?o de matriz de prensa.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017160055 2017-08-23
JP2017-160055 2017-08-23

Publications (1)

Publication Number Publication Date
WO2019039134A1 true WO2019039134A1 (ja) 2019-02-28

Family

ID=65438823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026587 WO2019039134A1 (ja) 2017-08-23 2018-07-13 金属板のせん断加工面での変形限界の評価方法、割れ予測方法およびプレス金型の設計方法

Country Status (7)

Country Link
US (1) US11609166B2 (ja)
EP (1) EP3674009A4 (ja)
JP (1) JP6558515B2 (ja)
KR (1) KR102334109B1 (ja)
CN (1) CN110997172B (ja)
MX (1) MX2020001988A (ja)
WO (1) WO2019039134A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112380756A (zh) * 2020-12-11 2021-02-19 福耀玻璃工业集团股份有限公司 检测调光玻璃的调光膜褶皱的方法及系统
JP2022011080A (ja) * 2020-06-29 2022-01-17 日本製鉄株式会社 板材の曲げ端割れの評価方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102197351B1 (ko) * 2017-06-29 2020-12-31 주식회사 엘지화학 굴곡 지그를 포함하는 지그 조립체, 이를 포함하는 굴곡 인장강도 측정 장치 및 이를 이용한 굴곡 인장강도 측정 방법
US11416045B2 (en) * 2020-04-13 2022-08-16 International Business Machines Corporation Thermal interface material structures for directing heat in a three-dimensional space
EP3982013A1 (en) * 2020-10-08 2022-04-13 A.G. Porta S.p.A. A method of manufacturing metal components from a single piece of sheet metal
CN112191963A (zh) * 2020-10-12 2021-01-08 贵州航天电子科技有限公司 一种薄板零件加工方法
CN113790977B (zh) * 2021-08-10 2023-07-07 武汉钢铁有限公司 金属板材极限弯曲断裂应变测量方法
CN118036127B (zh) * 2024-01-23 2024-09-06 中山大学·深圳 装配式地铁站纵向弯曲模式识别方法、系统、设备和介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146395B2 (ja) 1971-08-26 1976-12-08
JPS5630312B2 (ja) 1976-04-30 1981-07-14
JP2011043452A (ja) * 2009-08-24 2011-03-03 Nippon Steel Corp 曲げ限界ひずみ測定法、曲げ割れ判定方法、及び曲げ割れ判定プログラム
JP2014016807A (ja) * 2012-07-09 2014-01-30 Nippon Steel & Sumitomo Metal 統合破断評価装置、制御方法、及び制御プログラム
JP2014115269A (ja) * 2012-11-19 2014-06-26 Jfe Steel Corp 伸びフランジの限界ひずみ特定方法およびプレス成形可否判定方法
JP2017160055A (ja) 2016-03-04 2017-09-14 株式会社ナガオカ製作所 ワークを分離するシステムおよびその方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2008009816A (es) 2006-02-01 2008-09-11 Nippon Steel Corp Metodo de prediccion de fractura.
JP4935713B2 (ja) 2008-02-27 2012-05-23 Jfeスチール株式会社 プレス品のせん断縁における成形可否判別方法
JP5146395B2 (ja) * 2008-08-20 2013-02-20 新日鐵住金株式会社 歪勾配を考慮した伸びフランジ割れの推定方法およびプレス成形シミュレーションの伸びフランジ割れ判定システム
JP6018745B2 (ja) * 2011-01-14 2016-11-02 株式会社アマダホールディングス 板材の折曲げ加工方法及び残留応力増減装置
JP5630312B2 (ja) 2011-02-16 2014-11-26 Jfeスチール株式会社 プレス成形における成形限界線図の作成方法、割れ予測方法およびプレス部品の製造方法
JP5375941B2 (ja) * 2011-12-21 2013-12-25 Jfeスチール株式会社 プレス成形用金型設計方法、プレス成形用金型
CN105283874B (zh) 2013-06-26 2019-03-08 新日铁住金株式会社 金属板的弯曲断裂判定方法
JP5910803B2 (ja) 2014-05-08 2016-04-27 新日鐵住金株式会社 可塑性材料の評価方法及び可塑性材料の塑性加工の評価方法
KR101886556B1 (ko) 2014-07-02 2018-08-07 신닛테츠스미킨 카부시키카이샤 신장 플랜지 균열 예측 방법, 신장 플랜지 균열 예측 장치, 컴퓨터 프로그램, 및 기록 매체
CN106018129B (zh) 2016-05-16 2019-09-17 湖南大学 一种汽车零部件热冲压破裂性能的评价方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146395B2 (ja) 1971-08-26 1976-12-08
JPS5630312B2 (ja) 1976-04-30 1981-07-14
JP2011043452A (ja) * 2009-08-24 2011-03-03 Nippon Steel Corp 曲げ限界ひずみ測定法、曲げ割れ判定方法、及び曲げ割れ判定プログラム
JP2014016807A (ja) * 2012-07-09 2014-01-30 Nippon Steel & Sumitomo Metal 統合破断評価装置、制御方法、及び制御プログラム
JP2014115269A (ja) * 2012-11-19 2014-06-26 Jfe Steel Corp 伸びフランジの限界ひずみ特定方法およびプレス成形可否判定方法
JP2017160055A (ja) 2016-03-04 2017-09-14 株式会社ナガオカ製作所 ワークを分離するシステムおよびその方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOICHI KAZAMA AND YASUTOMO NAGAI, ANALYSIS OF CAMBER DEFORMATION OCCURRING AT THE EDGE OF SHEET-METAL BENDING, vol. 45, no. 516, 2004, pages 40 - 44
See also references of EP3674009A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022011080A (ja) * 2020-06-29 2022-01-17 日本製鉄株式会社 板材の曲げ端割れの評価方法
JP7436841B2 (ja) 2020-06-29 2024-02-22 日本製鉄株式会社 板材の曲げ端割れの評価方法
CN112380756A (zh) * 2020-12-11 2021-02-19 福耀玻璃工业集团股份有限公司 检测调光玻璃的调光膜褶皱的方法及系统
CN112380756B (zh) * 2020-12-11 2022-05-03 福耀玻璃工业集团股份有限公司 检测调光玻璃的调光膜褶皱的方法及系统

Also Published As

Publication number Publication date
US11609166B2 (en) 2023-03-21
CN110997172A (zh) 2020-04-10
MX2020001988A (es) 2020-03-24
JPWO2019039134A1 (ja) 2019-11-07
JP6558515B2 (ja) 2019-08-14
US20200292429A1 (en) 2020-09-17
KR102334109B1 (ko) 2021-12-01
EP3674009A1 (en) 2020-07-01
CN110997172B (zh) 2021-09-07
EP3674009A4 (en) 2020-08-26
KR20200033910A (ko) 2020-03-30

Similar Documents

Publication Publication Date Title
JP6558515B2 (ja) 金属板のせん断加工面での変形限界の評価方法、割れ予測方法およびプレス金型の設計方法
JP6547920B2 (ja) 金属板のせん断加工面での変形限界の評価方法、割れ予測方法およびプレス金型の設計方法
JP6769561B2 (ja) 変形限界の評価方法、割れ予測方法及びプレス金型の設計方法
JP5630311B2 (ja) プレス成形における割れ予測方法およびプレス部品の製造方法
CN104010745B (zh) 冲压成形用模具设计方法、冲压成形用模具
KR20140131387A (ko) 프레스 성형에 있어서의 성형 한계선도의 작성 방법, 균열 예측 방법 및 프레스 부품의 제조 방법
JP6149843B2 (ja) プレス成形品の形状矯正解析方法及び装置、プレス成形品の形状矯正方法
JP5098901B2 (ja) 材料特性パラメータの算定方法
JP6350498B2 (ja) プレスしわ発生判定方法
JP6107411B2 (ja) 薄板の割れ評価方法
JP5900751B2 (ja) 曲げ内側割れの評価方法および予測方法
CN104226766A (zh) 一种板材冲压不平衡流动回弹特性的评价方法及装置
CN113453818B (zh) 弯曲裂纹评估方法、其系统以及冲压成形部件的制造方法
JP6060814B2 (ja) 薄板の割れ評価方法
TWI540004B (zh) 壓製成形用金屬板
JP2020069534A (ja) プレス部品の製造方法及び下金型の設計方法
JP2012011458A (ja) プレス成形シミュレーションにおける割れ判定方法およびそれを用いたプレス成形部品の製造方法
JP6119716B2 (ja) プレス成形方法及びプレス成形用金型
Nandanwar et al. Analysis of spring back defect in right angle bending process in sheet metal forming

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019509571

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207004923

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018849137

Country of ref document: EP

Effective date: 20200323