WO2019038870A1 - 赤外線加熱装置 - Google Patents

赤外線加熱装置 Download PDF

Info

Publication number
WO2019038870A1
WO2019038870A1 PCT/JP2017/030235 JP2017030235W WO2019038870A1 WO 2019038870 A1 WO2019038870 A1 WO 2019038870A1 JP 2017030235 W JP2017030235 W JP 2017030235W WO 2019038870 A1 WO2019038870 A1 WO 2019038870A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
laser
heating device
laser beam
point
Prior art date
Application number
PCT/JP2017/030235
Other languages
English (en)
French (fr)
Inventor
敏勝 野原
高 渋谷
堀江 茂斉
真登 田村
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2017/030235 priority Critical patent/WO2019038870A1/ja
Priority to US16/639,350 priority patent/US11778698B2/en
Priority to EP17922710.3A priority patent/EP3657903B1/en
Priority to JP2019537493A priority patent/JP6896866B2/ja
Publication of WO2019038870A1 publication Critical patent/WO2019038870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/14Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation involving heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • H05B1/0236Industrial applications for vehicles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the present invention relates to an infrared heating device which promotes drying and curing by heating by infrared radiation.
  • Patent Document 1 An infrared heating device which controls an infrared irradiation type heater by measuring the temperature of an object to be heated with a non-contact temperature sensor (radiation thermometer) (Patent Document 1).
  • a radiation thermometer for example, as shown in FIG. 10, two sets of reflectors 32 each having an infrared lamp 31 disposed inside, two sets of infrared lamps 31 and reflectors 32 And a radiation thermometer 33 provided therebetween.
  • the radiation thermometer 33 is disposed at a position where a region R1 in which the infrared rays IR from the two sets of infrared lamps 31 and the reflector 32 overlap is to be measured, in order to measure the highest reached temperature of the heating object T.
  • An infrared heating device for solving the above-mentioned problems, Infrared irradiation means for irradiating the object to be heated with infrared rays and heating;
  • a holding member for holding the infrared radiation unit;
  • Non-contact temperature measurement means attached to the holding member and measuring the temperature of the surface of the heating object;
  • At least one pair of laser beam irradiation means attached to the holding member for irradiating the surface of the object to be heated with laser light from different positions;
  • Have The pair of laser beam application means are arranged such that the laser beams at one point on the surface of the heating object coincide with each other when the distance between the surface of the heating object and the infrared irradiation means is a predetermined distance. It is characterized by being.
  • An infrared heating device for solving the above-mentioned problems is
  • the noncontact temperature measurement means is attached to the holding member such that the measurement direction of the noncontact temperature measurement means is parallel to the main irradiation direction of the infrared light;
  • the laser beam application means is arranged such that all the laser beams coincide at one point where the measurement direction intersects the surface of the object to be heated when the distance is the predetermined distance.
  • An infrared heating device for solving the above-mentioned problems,
  • a plurality of pairs of the laser beam irradiation means When the distance is the predetermined distance, a plurality of pairs of the laser beam irradiation means are arranged such that the laser beams of the corresponding pair coincide at one point on the surface of the object to be heated which is different for each pair. It is characterized by
  • FIG. 1 It is a perspective view showing an example (example 1) of an embodiment of an infrared heating device concerning the present invention. It is a top view of the infrared heating device shown in FIG.
  • FIG. 3 is a view on arrow AA of the infrared heating device shown in FIG. 2A. It is a side view of the infrared heating device shown to FIG. 2A. It is a figure which shows the laser beam from the laser pointer in the case of a suitable position. It is a figure which shows the laser beam from the laser pointer in the case of an unsuitable position. It is a top view which shows another example (Example 2) of embodiment of the infrared heating apparatus which concerns on this invention.
  • FIG. 4A It is a BB arrow directional view of the infrared heating device shown to FIG. 4A. It is a side view of the infrared heating device shown to FIG. 4A. It is a figure which shows the laser beam from the laser pointer in the case of a suitable position. It is a figure which shows the laser beam from the laser pointer in the case of an unsuitable position. It is a top view which shows another example (Example 3) of embodiment of the infrared heating apparatus which concerns on this invention.
  • FIG. 6C is a view on arrow CC of the infrared heating device shown in FIG. 6A. It is a side view of the infrared heating device shown to FIG. 6A.
  • the infrared lamp 11 emits infrared light to irradiate the heating target T with infrared light
  • the reflector 12 reflects infrared light from the infrared lamp 11 and irradiates the heating target T with infrared light.
  • the heating target T is heated by infrared rays.
  • the reflector 12 holds the infrared lamp 11 and the holding member 13 holds the infrared lamp indirectly. However, when the reflector 12 is not provided, the holding member 13 holds the infrared lamp 11 directly. You may.
  • the irradiation direction of the infrared light is not determined uniquely, but if it has a reflector or the like, the main irradiation direction, for example, the direction that becomes the center of the irradiation range The direction is hereinafter referred to as the main irradiation direction since it is determined.
  • the radiation thermometer 14 measures the highest reached temperature of the surface of the heating object T, and the infrared ray from the two sets of infrared lamps 11 and the reflector 12 makes the position of the highest temperature on the surface of the heating object T
  • the point P0 is located at a desired position.
  • the infrared light from the two sets of infrared lamps 11 and the reflector 12 is disposed at a position where the point P0 in the overlapping region is desired.
  • the direction in which the radiation thermometer 14 measures is a measurement direction 20
  • This measurement direction 20 is also a perpendicular from the radiation thermometer 14 to the surface of the heating object T. It is parallel to the above main irradiation direction.
  • the configuration up to this point is substantially the same as the conventional infrared heating device shown in FIG.
  • the infrared heating device of the present embodiment appropriately sets the relative positions of the infrared lamp 11 and the radiation thermometer 14 with respect to the heating target T, the pair of laser pointers 15a and 15b (laser light irradiation means) have.
  • the laser pointers 15a and 15b are attached to both ends of the holding member 13 in the longitudinal direction LD about the radiation thermometer 14 via the support plates 16a and 16b, respectively. It is arranged to become.
  • the support plates 16a and 16b support the support angles of the laser pointers 15a and 15b in an adjustable manner, respectively. With such a configuration, the laser pointers 15a and 15b irradiate the surface of the heating target T with the laser beams 21a and 21b from different positions.
  • the distance DI of the infrared lamp 11 with respect to the heating target T is an appropriate predetermined distance (a distance that results in an appropriate positional relationship)
  • the laser beam 21a from the laser pointer 15a and the laser beam 21b from the laser pointer 15b are heated
  • the support angles of the laser pointers 15a and 15b are adjusted so as to coincide (intersect) at one point on the surface of the object T, and are supported by the support plates 16a and 16b, respectively. If it is necessary to change the appropriate predetermined distance in accordance with the work content, the appropriate predetermined distance may be changed by adjusting the support angles of the laser pointers 15a and 15b.
  • the laser beam 21a and the laser beam 21b are made to coincide at one point on the surface of the heating target T, but here, they are made to coincide at one point of the point P0.
  • the radiation thermometer 14 is disposed immediately above. That is, the distance DI is set to be an appropriate predetermined distance at one point of the point P0 on the surface of the heating target T, which is directly below the radiation thermometer 14.
  • the heating target The laser beam 21a and the laser beam 21b coincide with each other at one point (point P0) on the surface of the object T.
  • the distance DI is not an appropriate predetermined distance (when the distance is close or far)
  • the laser light 21a and the laser light 21b do not match.
  • the distance DI is measured using a measuring device that measures the distance.
  • the distance DI can be easily adjusted to an appropriate predetermined distance without actually measuring.
  • the distance DI can be set to an appropriate predetermined distance, the output of the infrared lamp 11 at the time of heating can be suppressed to an appropriate output, the error of the radiation thermometer 14 can be reduced, and temperature control can be performed with high accuracy. be able to.
  • the infrared heating device of the present embodiment when used for paint repair and sealant application of an aircraft, the waiting time for paint drying and curing of the sealant can be reduced, and work efficiency can be improved.
  • FIG. 4A is a top view showing the infrared heating device of the present example
  • FIG. 4B is a BB view of the infrared heating device shown in FIG. 4A
  • FIG. 4C is shown in FIG. It is a side view of an infrared heating device.
  • FIG. 5A is a diagram showing laser light from the laser pointer in the case of an appropriate position
  • FIG. 5B is a diagram showing laser light from the laser pointer in the case of an inappropriate position.
  • the infrared heating device of this embodiment basically has the same configuration as the infrared heating device described in the first embodiment. Therefore, in the present embodiment, the same components as those of the infrared heating device described in the first embodiment are denoted by the same reference numerals, and redundant description will be omitted.
  • the infrared heating device of this embodiment has another pair of laser pointers 15a and 15b in order to appropriately set the relative positions of the infrared lamp 11 and the radiation thermometer 14 with respect to the heating object T.
  • the laser pointers 15c and 15d (laser light irradiation means) are provided.
  • the pair of laser pointers 15a and 15b are attached as in the first embodiment.
  • the other pair of laser pointers 15c and 15d are attached to both ends in the width direction WD of the two reflectors 12 with the radiation thermometer 14 at the center, respectively via the support plates 16c and 16d, and the measurement direction 20 described above Are arranged in line symmetry with respect to.
  • the support plates 16c and 16d support the support angles of the laser pointers 15c and 15d in an adjustable manner, respectively.
  • the laser pointers 15c and 15d also irradiate the surface of the heating target T with the laser beams 21c and 21d from different positions.
  • the laser pointers 15 c and 15 d may be attached to the holding member 13 by changing, for example, the size and the shape of the holding member 13 as long as the positions are equivalent.
  • the laser beams 21a, 21b, 21c, and 21d are made to coincide at one point on the surface of the heating object T, but here, they are made to coincide at one point on the point P0.
  • the radiation thermometer 14 is disposed immediately above P0. That is, the distance DI is set to be an appropriate predetermined distance at one point of the point P0 on the surface of the heating target T, which is directly below the radiation thermometer 14.
  • the distance DI can be easily adjusted to an appropriate predetermined distance.
  • the output of the infrared lamp 11 at the time of heating can be suppressed to an appropriate output, the error of the radiation thermometer 14 can be reduced, and temperature control can be performed with high accuracy. be able to.
  • the working efficiency of coating drying and sealant curing can be improved.
  • the infrared heating device of the present embodiment also has basically the same configuration as the infrared heating device described in the first and second embodiments. Therefore, in the present embodiment, the same components as those of the infrared heating device described in the first and second embodiments are denoted by the same reference numerals, and redundant description will be omitted.
  • two pairs of laser pointers 15e, 15f, 15g, 15h laser light irradiation in order to appropriately set the relative positions of the infrared lamp 11 and the radiation thermometer 14 with respect to the heating object T Means).
  • the infrared lamp 11 and the reflector are arranged such that the laser beam 21e and the laser beam 21f coincide at one point of the point P1, and the laser beam 21g and the laser beam 21h coincide at one point of the point P2. If the position 12 is adjusted, the distance DI can be easily adjusted to an appropriate predetermined distance without actually measuring the distance DI using a measuring instrument that measures the distance.
  • the distance DI can be set to an appropriate predetermined distance, and the predetermined axial directions of the infrared lamp 11 and the reflector 12 are arranged parallel to the surface of the heating target T, so that the infrared lamp 11 at the time of heating can be set.
  • the temperature of the radiation thermometer 14 can be reduced to an appropriate level, and the temperature of the radiation thermometer 14 can be controlled with high accuracy. As a result, as in the first and second embodiments, the working efficiency of coating drying and curing of the sealant can be improved.
  • the infrared heating device of the present embodiment also has basically the same configuration as the infrared heating device described in the above-described first to third embodiments. Therefore, in the present embodiment, the same components as those of the infrared heating device described in the first to third embodiments are denoted by the same reference numerals, and redundant description will be omitted.
  • the infrared heating device In addition to the two pairs of laser pointers 15e, 15f, 15g, and 15h, the infrared heating device according to the present embodiment appropriately sets the relative positions of the infrared lamp 11 and the radiation thermometer 14 with respect to the heating target T. It has another pair of laser pointers 15i and 15j (laser light irradiation means).
  • the two pairs of laser pointers 15e, 15f, 15g and 15h are attached as in the third embodiment.
  • the other pair of laser pointers 15i and 15j is attached to one end of the two reflectors 12 on the inside of the two reflectors 12 via the support plates 16i and 16j, respectively, are arranged so as to be plane-symmetrical with respect to the plane passing through. Further, the support plates 16i and 16j respectively support the support angles of the laser pointers 15i and 15j in an adjustable manner.
  • the laser pointers 15i and 15j also irradiate the surface of the heating target T with the laser beams 21i and 21j from different positions.
  • the laser pointers 15i and 15j may be attached to the holding member 13 by changing, for example, the size and the shape of the holding member 13 as long as the positions are equivalent.
  • the laser beam 21e and the laser beam 21f coincide at one point of the point P1 on the surface of the heating object T, and the laser beam 21g and the laser beam 21h are on the surface of the heating object T
  • the laser light 21i from the laser pointer 15i and the laser light 21j from the laser pointer 15j of the other pair of laser pointers 15i and 15j are also on the surface of the object T to be heated.
  • the support angles of the laser pointers 15i and 15j are adjusted so as to coincide (intersect) at one point of the point P3, and supported by the support plates 16i and 16j, respectively. If it is necessary to change the appropriate predetermined distance according to the work content, the appropriate predetermined distance can be changed by adjusting the support angles of the laser pointers 15e, 15f, 15g, 15h, 15i, 15j. good.
  • the laser beam 21e and the laser beam 21f are made to coincide at one point on the surface of the object T to be heated, and the laser beam 21g and the laser beam 21h are formed on the surface of the object T to be heated.
  • the laser light 21i and the laser light 21j are made to coincide at one point of the other point P2, and the laser light 21i and the laser beam 21j are made to coincide at another point P3 of the surface of the object T to be heated. That is, at each of three points P1, P2 and P3 which are different for each pair, the distance DI is set to be an appropriate predetermined distance.
  • the distance DI is an appropriate predetermined distance when the positions of the infrared lamp 11 and the reflector 12 are adjusted by the arm, link mechanism or the like supporting the holding member 13, as shown in FIG. 9A
  • the heating object Laser light 21e and laser light 21f coincide at one point of point P1 on the surface of T
  • laser light 21g and laser light 21h coincide at one point of point P2
  • laser light 21i and laser light 21j coincide at one point of point P3.
  • the distance DI is not an appropriate predetermined distance (when the distance is short or far)
  • the laser beam 21e and the laser beam 21f do not match on the surface of the heating target T
  • the laser beam 21g And the laser beam 21h do not match
  • the laser beam 21g and the laser beam 21h do not match.
  • the laser beam 21e and the laser beam 21f coincide at one point of the point P1
  • the laser beam 21g and the laser beam 21h coincide at one point of the point P2
  • the laser beam 21i and the laser beam 21j If the positions of the infrared lamp 11 and the reflector 12 are adjusted such that the points P3 coincide with each other at one point P3, the distance DI becomes an appropriate predetermined distance without actually measuring the distance DI using a measuring instrument that measures the distance. It can be easily adjusted.
  • the distance DI can be set to an appropriate predetermined distance, and the infrared lamp 11 and the reflector 12 are disposed parallel to the plane on the surface of the heating target T, so the output of the infrared lamp 11 at the time of heating while reducing the error of the radiation thermometer 14 and temperature control with high accuracy.
  • the working efficiency of coating drying and curing of the sealant can be improved.
  • the configurations of the first and second embodiments may be combined with the configurations of the third and fourth embodiments.
  • the invention is particularly suitable for paint drying and sealant curing of aircraft.

Abstract

加熱対象物に対する赤外線ランプ及び放射温度計の相対的な位置を適切に設定すると共に、位置合わせが容易な赤外線加熱装置を提供する。そのため、赤外線加熱装置は、加熱対象物(T)に赤外線を照射して加熱する赤外線照射手段(11、12)と、赤外線照射手段(11、12)を保持する保持部材(13)と、加熱対象物(T)の表面の温度を計測する放射温度計(14)と、各々異なる位置から加熱対象物(T)の表面へレーザ光(21a、21b)を照射する1対のレーザポインタ(15a、15b)とを有し、対となるレーザポインタ(15a、15b)は、加熱対象物(T)の表面と赤外線照射手段(11、12)との距離が所定距離のとき、加熱対象物(T)の表面の一点(P0)で互いのレーザ光(21a、21b)が一致するように配置されている。

Description

赤外線加熱装置
 本発明は、赤外線照射による加熱により乾燥や硬化を促進する赤外線加熱装置に関する。
 加熱対象物の温度を非接触型温度センサ(放射温度計)で計測して、赤外線照射式ヒ-タを制御する赤外線加熱装置が知られている(特許文献1)。
特開平6-178964号公報
 航空機の製造及び運用では、機体各所の部分的な補修塗装やアンテナ部品の交換等によるシーラント施工が必要となる。施工では、流動状態の塗料及びシーラントを適用後、固体化するために乾燥及び硬化が必要であり、自然乾燥では長時間を要す。塗装及びシーラントの硬化及び乾燥時間の短縮手法として、熱風や赤外線を用いた方法が知られている。乾燥時間は加熱温度が高いほど短縮するが、航空機では加熱対象物の性能を保証するために加熱温度の上限が決められている。従って、乾燥時間を最小にするためには、加熱上限温度を超えない範囲で可能な限り高温に保持する高精度な温度制御が必要となる。
 高精度な温度制御を行う手法として、加熱対象物を接触式温度計で直接計測することが一般的であるが、塗装面やシーラント硬化物には外観要求があり、接触痕が残る上記手法は適用不可である。そこで、非接触で温度計測する手法として、放射温度計の適用が考えられる。しかしながら、赤外線加熱では、赤外線ランプの波長と放射温度計の計測波長が近く、赤外線ランプの出力が高いほど誤差が大きくなる傾向がある等の問題がある。このような問題点を図10及び図11A~図11Cを参照して説明する。
 放射温度計を用いた従来の赤外線加熱装置は、例えば、図10に示すように、赤外線ランプ31が各々内側に配置された2組のリフレクタ32と、2組の赤外線ランプ31及びリフレクタ32同士の間に設けられた放射温度計33とを有している。この放射温度計33は、加熱対象物Tの最高到達温度を計測するため、2組の赤外線ランプ31及びリフレクタ32からの赤外線IRが重なる領域R1を望む位置に配置されている。
 図10に示す構成において、赤外線ランプ31と加熱対象物Tとの距離DIが遠いと、加熱対象物Tが温まり難く、赤外線ランプ31の出力が高くなるため、放射温度計33の誤差が大きくなり、また、定常偏差も発生する(図11A参照)。一方、距離DIが近すぎると、加熱対象物Tが温まり易く、温度制御が過敏に反応するハンチングが生じる(図11B参照)。
 従って、放射温度計を用いた赤外線加熱装置において、図11Cに示すように、高精度かつ安定した温度制御を行うためには、加熱対象物に対する赤外線ランプ及び放射温度計の相対的な位置を適切に設定する必要がある。
 特に、航空機の場合、機体上部の塗装補修やシーラント施工は高所作業となるため、赤外線加熱装置は、機体に直接設置でき、位置合わせが容易に実施できることが望ましい。
 本発明は上記課題に鑑みなされたもので、加熱対象物に対する赤外線ランプ及び放射温度計の相対的な位置を適切に設定すると共に、位置合わせが容易な赤外線加熱装置を提供することを目的とする。
 上記課題を解決する第1の発明に係る赤外線加熱装置は、
 加熱対象物に赤外線を照射して加熱する赤外線照射手段と、
 前記赤外線照射手段を保持する保持部材と、
 前記保持部材に取り付けられ、前記加熱対象物の表面の温度を計測する非接触温度計測手段と、
 前記保持部材に取り付けられ、各々異なる位置から前記加熱対象物の表面へレーザ光を照射する少なくとも1対のレーザ光照射手段と、
を有し、
 対となる前記レーザ光照射手段は、前記加熱対象物の表面と前記赤外線照射手段との距離が所定距離のとき、前記加熱対象物の表面の一点で互いの前記レーザ光が一致するように配置されている
ことを特徴とする。
 上記課題を解決する第2の発明に係る赤外線加熱装置は、
 上記第1の発明に記載の赤外線加熱装置において、
 各々の前記レーザ光照射手段は、当該レーザ光照射手段の支持角度を調整可能な支持板に支持されて、前記保持部材に取り付けられ、前記所定距離を変更する場合には前記支持角度が変更される
ことを特徴とする。
 上記課題を解決する第3の発明に係る赤外線加熱装置は、
 上記第1又は第2の発明に記載の赤外線加熱装置において、
 前記非接触温度計測手段は、当該非接触温度計測手段の計測方向が前記赤外線の主照射方向と平行になるように前記保持部材に取り付けられ、
 前記レーザ光照射手段は、前記距離が前記所定距離のとき、前記加熱対象物の表面と前記計測方向が交わる一点で全ての前記レーザ光が一致するように配置されている
ことを特徴とする。
 上記課題を解決する第4の発明に係る赤外線加熱装置は、
 上記第1又は第2の発明に記載の赤外線加熱装置において、
 複数対の前記レーザ光照射手段を有し、
 複数対の前記レーザ光照射手段は、前記距離が前記所定距離のとき、対毎に異なる前記加熱対象物の表面の一点で、該当する対の前記レーザ光が一致するように配置されている
ことを特徴とする。
 上記課題を解決する第5の発明に係る赤外線加熱装置は、
 上記第1~第4のいずれか1つの発明に記載の赤外線加熱装置において、
 前記赤外線照射手段は、赤外線を放出する赤外線ランプと、前記赤外線ランプからの前記赤外線を反射するリフレクタからなり、
 少なくとも1対の前記レーザ光照射手段を前記リフレクタに取り付ける
ことを特徴とする。
 本発明によれば、対となるレーザ光照射手段を用いて、加熱対象物に対する赤外線照射手段及び非接触温度計測手段の相対的な位置を適切に設定できると共に、位置合わせが容易となる。このため、高精度かつ安定した温度制御を行うことができ、その結果、赤外線加熱による乾燥や硬化の作業時間の低減が可能となり、作業効率の向上を図ることができる。
本発明に係る赤外線加熱装置の実施形態の一例(実施例1)を示す斜視図である。 図1に示した赤外線加熱装置の上面図である。 図2Aに示した赤外線加熱装置のA-A線矢視図である。 図2Aに示した赤外線加熱装置の側面図である。 適切な位置の場合のレーザポインタからのレーザ光を示す図である。 不適切な位置の場合のレーザポインタからのレーザ光を示す図である。 本発明に係る赤外線加熱装置の実施形態の他の一例(実施例2)を示す上面図である。 図4Aに示した赤外線加熱装置のB-B線矢視図である。 図4Aに示した赤外線加熱装置の側面図である。 適切な位置の場合のレーザポインタからのレーザ光を示す図である。 不適切な位置の場合のレーザポインタからのレーザ光を示す図である。 本発明に係る赤外線加熱装置の実施形態の他の一例(実施例3)を示す上面図である。 図6Aに示した赤外線加熱装置のC-C線矢視図である。 図6Aに示した赤外線加熱装置の側面図である。 適切な位置の場合のレーザポインタからのレーザ光を示す図である。 不適切な位置の場合のレーザポインタからのレーザ光を示す図である。 本発明に係る赤外線加熱装置の実施形態の他の一例(実施例4)を示す上面図である。 図8Aに示した赤外線加熱装置のD-D線矢視図である。 図8Aに示した赤外線加熱装置の側面図である。 適切な位置の場合のレーザポインタからのレーザ光を示す図である。 不適切な位置の場合のレーザポインタからのレーザ光を示す図である。 放射温度計を用いた従来の赤外線加熱装置を説明する概略図である。 赤外線ランプと加熱対象物との距離が遠い場合の温度制御特性を説明するグラフである。 赤外線ランプと加熱対象物との距離が近すぎる場合の温度制御特性を説明するグラフである。 赤外線ランプと加熱対象物との距離が適切な場合の温度制御特性を説明するグラフである。
 以下、図面を参照して、本発明に係る赤外線加熱装置の実施形態を説明する。なお、ここでは、赤外線加熱装置の赤外線ランプとして、平行に配置した2本の直管のランプを例示するが、本発明において、赤外線ランプの配置、数、形状は、これに限ることはなく、どのような配置、数、形状でも適用可能である。また、赤外線ランプの配置、数、形状に応じて、リフレクタも適宜変更可能である。
[実施例1]
 図1は、本実施例の赤外線加熱装置を示す斜視図であり、図2Aは、図1に示した赤外線加熱装置の上面図であり、図2Bは、図2Aに示した赤外線加熱装置のA-A線矢視図であり、図2Cは、図2Aに示した赤外線加熱装置の側面図である。また、図3Aは、適切な位置の場合のレーザポインタからのレーザ光を示す図であり、図3Bは、不適切な位置の場合のレーザポインタからのレーザ光を示す図である。
 本実施例の赤外線加熱装置は、図1及び図2A~図2Cに示すように、平行に配置した2本の直管形の赤外線ランプ11(赤外線照射手段)と、赤外線ランプ11が各々内側に配置された2つのリフレクタ12(赤外線照射手段)と、2つのリフレクタ12同士の間において、赤外線ランプ11及びリフレクタ12の長手方向LDの中央に設けられ、2つのリフレクタ12を保持する保持部材13と、保持部材13の中央に設けられた放射温度計14(非接触温度計測手段)とを有している。
 赤外線ランプ11は、赤外線を放出して、加熱対象物Tに赤外線を照射し、リフレクタ12は、赤外線ランプ11からの赤外線を反射して、加熱対象物Tに赤外線を照射しており、これらの赤外線により加熱対象物Tを加熱している。本実施例では、リフレクタ12が赤外線ランプ11を保持し、保持部材13は赤外線ランプを間接的に保持する構成であるが、リフレクタ12が無い場合には、保持部材13が赤外線ランプ11を直接保持しても良い。
 赤外線の照射方向は、光源が単独の点光源や線光源であれば、一意には定まらないが、リフレクタなどを有する場合には、主となる照射方向、例えば、照射範囲の中心となる方向が定まるので、以降、その方向を主照射方向と呼ぶ。
 放射温度計14は、加熱対象物Tの表面の最高到達温度を計測するため、2組の赤外線ランプ11及びリフレクタ12からの赤外線により、加熱対象物Tの表面上で最も温度が高くなる位置となる点P0を望む位置に配置されている。例えば、本実施例では、2組の赤外線ランプ11及びリフレクタ12からの赤外線が重なる領域の点P0を望む位置に配置されている。放射温度計14が計測する方向を計測方向20とすると、計測方向20上に点P0があり、この計測方向20は、放射温度計14から加熱対象物Tの表面への垂線でもあり、また、上記の主照射方向と平行になっている。
 なお、図示は省略しているが、保持部材13は、例えば、加熱対象物Tの表面に設置されたアームやリンク機構等に移動可能に支持されており、本実施例の赤外線加熱装置は、加熱対象物T上の任意の位置へ移動可能となっている。
 このように、ここまでの構成は、図10に示した従来の赤外線加熱装置と略同じである。しかしながら、本実施例の赤外線加熱装置は、加熱対象物Tに対する赤外線ランプ11及び放射温度計14の相対的な位置を適切に設定するため、1対のレーザポインタ15a、15b(レーザ光照射手段)を有している。
 レーザポインタ15a、15bは、放射温度計14を中心にして、保持部材13の長手方向LDの両端に、各々、支持板16a、16bを介して取り付けられ、上記の計測方向20に対して線対称となるように配置されている。また、支持板16a、16bは、各々、レーザポインタ15a、15bの支持角度を調整可能に支持している。このような構成により、レーザポインタ15a、15bは、各々異なる位置から加熱対象物Tの表面へレーザ光21a、21bを照射している。
 そして、加熱対象物Tに対する赤外線ランプ11の距離DIが適切な所定距離(適切な位置関係となる距離)のときに、レーザポインタ15aからのレーザ光21aとレーザポインタ15bからのレーザ光21bが加熱対象物Tの表面の一点で一致する(交わる)ように、レーザポインタ15a、15bの支持角度を調整して、各々、支持板16a、16bで支持している。作業内容に応じて、適切な所定距離を変更する必要がある場合には、レーザポインタ15a、15bの支持角度を調整することで、適切な所定距離を変更すれば良い。
 このように、本実施例においては、レーザ光21aとレーザ光21bを加熱対象物Tの表面の一点で一致させているが、ここでは、点P0の一点で一致させており、この点P0の直上には放射温度計14が配置されている。つまり、放射温度計14の直下である、加熱対象物Tの表面の点P0の一点において、距離DIが適切な所定距離となるようにしている。
 従って、保持部材13を支持するアームやリンク機構等により、赤外線ランプ11及びリフレクタ12の高さ位置を調整したとき、距離DIが適切な所定距離のときは、図3Aに示すように、加熱対象物Tの表面でレーザ光21aとレーザ光21bが一点(点P0)で一致する。一方、距離DIが適切な所定距離でないとき(距離が近い又は遠いとき)は、図3Bに示すように、レーザ光21aとレーザ光21bは一致しない。
 つまり、加熱対象物Tの表面でレーザ光21aとレーザ光21bが一点で一致するように、赤外線ランプ11及びリフレクタ12の高さ位置を調整すれば、距離を計測する計測器を用いて距離DIを実測しなくても、距離DIを適切な所定距離に簡単に調整することができる。このようにして、距離DIを適切な所定距離に設定できるので、加熱時の赤外線ランプ11の出力を適正な出力に抑えて、放射温度計14の誤差を少なくすると共に、高精度に温度制御することができる。
 その結果、本実施例の赤外線加熱装置を航空機の塗装補修やシーラント施工に用いる場合には、塗装乾燥やシーラント硬化の待ち時間を低減することができ、作業効率の向上を図ることができる。
[実施例2]
 図4Aは、本実施例の赤外線加熱装置を示す上面図であり、図4Bは、図4Aに示した赤外線加熱装置のB-B線矢視図であり、図4Cは、図4Aに示した赤外線加熱装置の側面図である。また、図5Aは、適切な位置の場合のレーザポインタからのレーザ光を示す図であり、図5Bは、不適切な位置の場合のレーザポインタからのレーザ光を示す図である。
 本実施例の赤外線加熱装置は、基本的には、上記の実施例1で説明した赤外線加熱装置と同等の構成を有している。従って、本実施例において、実施例1で説明した赤外線加熱装置と同等の構成には同じ符号を付し、重複する説明は省略する。
 本実施例の赤外線加熱装置は、加熱対象物Tに対する赤外線ランプ11及び放射温度計14の相対的な位置を適切に設定するため、1対のレーザポインタ15a、15bに加えて、もう1対のレーザポインタ15c、15d(レーザ光照射手段)を有している。
 1対のレーザポインタ15a、15bについては、実施例1と同様に取り付けられている。もう1対のレーザポインタ15c、15dは、放射温度計14を中心にして、2つのリフレクタ12の幅方向WDの両端に、各々、支持板16c、16dを介して取り付けられ、上記の計測方向20に対して線対称となるように配置されている。また、支持板16c、16dは、各々、レーザポインタ15c、15dの支持角度を調整可能に支持している。このような構成により、レーザポインタ15a、15bに加えて、レーザポインタ15c、15dも、各々異なる位置から加熱対象物Tの表面へレーザ光21c、21dを照射している。なお、レーザポインタ15c、15dは、同等の位置であれば、例えば、保持部材13の大きさや形状を変更する等して、保持部材13の方へ取り付けるようにしても良い。
 そして、距離DIが適切な所定距離のときに、レーザ光21aとレーザ光21bが加熱対象物Tの表面の一点で一致することに加えて、もう1対のレーザポインタ15c、15dについても、レーザポインタ15cからのレーザ光21cとレーザポインタ15dからのレーザ光21dが上記の一点で一致する(交わる)ように、つまり、レーザ光21a、21b、21c、21dが一点で一致するように、レーザポインタ15c、15dの支持角度を調整して、各々、支持板16c、16dで支持している。作業内容に応じて、適切な所定距離を変更する必要がある場合には、レーザポインタ15a、15bと共に、レーザポインタ15c、15dの支持角度を調整することで、適切な所定距離を変更すれば良い。
 このように、本実施例においては、レーザ光21a、21b、21c、21dを加熱対象物Tの表面の一点で一致させているが、ここでは、点P0の一点で一致させており、この点P0の直上には放射温度計14が配置されている。つまり、放射温度計14の直下である、加熱対象物Tの表面の点P0の一点において、距離DIが適切な所定距離となるようにしている。
 従って、保持部材13を支持するアームやリンク機構等により、赤外線ランプ11及びリフレクタ12の高さ位置を調整したとき、距離DIが適切な所定距離であるときは、図5Aに示すように、加熱対象物Tの表面でレーザ光21a、21b、21c、21dが一点(点P0)で一致する。一方、距離DIが適切な所定距離でないとき(距離が近い又は遠いとき)は、図5Bに示すように、レーザ光21a、21b、21c、21dは一致しない。
 つまり、加熱対象物Tの表面でレーザ光21a、21b、21c、21dが一点で一致するように、赤外線ランプ11及びリフレクタ12の高さ位置を調整すれば、距離を計測する計測器を用いて距離DIを実測しなくても、距離DIを適切な所定距離に簡単に調整することができる。このようにして、距離DIを適切な所定距離に設定できるので、加熱時の赤外線ランプ11の出力を適正な出力に抑えて、放射温度計14の誤差を少なくすると共に、高精度に温度制御することができる。その結果、実施例1と同様に、塗装乾燥やシーラント硬化の作業効率の向上を図ることができる。
[実施例3]
 図6Aは、本実施例の赤外線加熱装置を示す上面図であり、図6Bは、図6Aに示した赤外線加熱装置のC-C線矢視図であり、図6Cは、図6Aに示した赤外線加熱装置の側面図である。また、図7Aは、適切な位置の場合のレーザポインタからのレーザ光を示す図であり、図7Bは、不適切な位置の場合のレーザポインタからのレーザ光を示す図である。
 本実施例の赤外線加熱装置も、基本的には、上記の実施例1、2で説明した赤外線加熱装置と同等の構成を有している。従って、本実施例において、実施例1、2で説明した赤外線加熱装置と同等の構成には同じ符号を付し、重複する説明は省略する。
 本実施例の赤外線加熱装置は、加熱対象物Tに対する赤外線ランプ11及び放射温度計14の相対的な位置を適切に設定するため、2対のレーザポインタ15e、15f、15g、15h(レーザ光照射手段)を有している。
 1対のレーザポインタ15e、15fは、保持部材13の長手方向LDの両端であって、一方のリフレクタ12側寄りの方に、各々、支持板16e、16fを介して取り付けられ、上記の計測方向20を通る面に対して面対称となるように配置されている。もう1対のレーザポインタ15g、15hは、保持部材13の長手方向LDの両端であって、他方のリフレクタ12側寄りの方に、各々、支持板16g、16hを介して取り付けられ、上記の計測方向20を通る面に対して面対称となるように配置されている。また、支持板16e、16f、16g、16hは、各々、レーザポインタ15e、15f、15g、15hの支持角度を調整可能に支持している。このような構成により、レーザポインタ15e、15f、15g、15hは、各々異なる位置から加熱対象物Tの表面へレーザ光21e、21f、21g、21hを照射している。
 そして、距離DIが適切な所定距離のときに、レーザポインタ15eからのレーザ光21eとレーザポインタ15fからのレーザ光21fが加熱対象物Tの表面の点P1の一点で一致する(交わる)ように、レーザポインタ15e、15fの支持角度を調整して、各々、支持板16e、16fで支持している。同様に、距離DIが適切な所定距離のときに、レーザポインタ15gからのレーザ光21gとレーザポインタ15hからのレーザ光21hが加熱対象物Tの表面の点P2の一点で一致する(交わる)ように、レーザポインタ15g、15hの支持角度を調整して、各々、支持板16g、16hで支持している。作業内容に応じて、適切な所定距離を変更する必要がある場合には、レーザポインタ15e、15f、15g、15hの支持角度を調整することで、適切な所定距離を変更すれば良い。
 このように、本実施例においては、レーザ光21eとレーザ光21fを加熱対象物Tの表面の点P1の一点で一致させており、レーザ光21gとレーザ光21hを加熱対象物Tの表面の他の点P2の一点で一致させている。つまり、対毎に異なる点P1、P2の二点において、各々、距離DIが適切な所定距離となるようにしている。
 従って、保持部材13を支持するアームやリンク機構等により、赤外線ランプ11及びリフレクタ12の位置を調整したとき、距離DIが適切な所定距離であるときは、図7Aに示すように、加熱対象物Tの表面でレーザ光21eとレーザ光21fが点P1の一点で一致し、レーザ光21gとレーザ光21hが点P2の一点で一致する。一方、距離DIが適切な所定距離でないとき(距離が近い又は遠いとき)は、図7Bに示すように、加熱対象物Tの表面でレーザ光21eとレーザ光21fが一致せず、レーザ光21gとレーザ光21hが一致しない。
 つまり、加熱対象物Tの表面において、レーザ光21eとレーザ光21fが点P1の一点で一致すると共に、レーザ光21gとレーザ光21hが点P2の一点で一致するように、赤外線ランプ11及びリフレクタ12の位置を調整すれば、距離を計測する計測器を用いて距離DIを実測しなくても、距離DIを適切な所定距離に簡単に調整することができる。
 加えて、加熱対象物Tの表面の点P1、P2の二点において、距離DIを適切な所定距離としているので、加熱対象物Tの表面の点P1及び点P2を通る一軸に対し、赤外線ランプ11及びリフレクタ12が平行に配置されることになる。つまり、加熱対象物Tの表面に対し、赤外線ランプ11及びリフレクタ12の所定の軸方向(例えば、長手方向LD、幅方向WDなど)を平行に配置することができる。
 このようにして、距離DIを適切な所定距離に設定できると共に、加熱対象物Tの表面に対し、赤外線ランプ11及びリフレクタ12の所定の軸方向を平行に配置するので、加熱時の赤外線ランプ11の出力を適正な出力に抑えて、放射温度計14の誤差を少なくすると共に、高精度に温度制御することができる。その結果、実施例1、2と同様に、塗装乾燥やシーラント硬化の作業効率の向上を図ることができる。
[実施例4]
 図8Aは、本実施例の赤外線加熱装置を示す上面図であり、図8Bは、図8Aに示した赤外線加熱装置のD-D線矢視図であり、図8Cは、図8Aに示した赤外線加熱装置の側面図である。また、図9Aは、適切な位置の場合のレーザポインタからのレーザ光を示す図であり、図9Bは、不適切な位置の場合のレーザポインタからのレーザ光を示す図である。
 本実施例の赤外線加熱装置も、基本的には、上記の実施例1~3で説明した赤外線加熱装置と同等の構成を有している。従って、本実施例において、実施例1~3で説明した赤外線加熱装置と同等の構成には同じ符号を付し、重複する説明は省略する。
 本実施例の赤外線加熱装置は、加熱対象物Tに対する赤外線ランプ11及び放射温度計14の相対的な位置を適切に設定するため、2対のレーザポインタ15e、15f、15g、15hに加えて、もう1対のレーザポインタ15i、15j(レーザ光照射手段)を有している。
 2対のレーザポインタ15e、15f、15g、15hについては、実施例3と同様に取り付けられている。もう1対のレーザポインタ15i、15jは、2つのリフレクタ12の一方の端部であって、2つのリフレクタ12の内側に、各々、支持板16i、16jを介して取り付けられ、上記の計測方向20を通る面に対して面対称となるように配置されている。また、支持板16i、16jは、各々、レーザポインタ15i、15jの支持角度を調整可能に支持している。このような構成により、レーザポインタ15e、15f、15g、15hに加えて、レーザポインタ15i、15jも、各々異なる位置から加熱対象物Tの表面へレーザ光21i、21jを照射している。なお、レーザポインタ15i、15jは、同等の位置であれば、例えば、保持部材13の大きさや形状を変更する等して、保持部材13の方へ取り付けるようにしても良い。
 そして、距離DIが適切な所定距離のときに、レーザ光21eとレーザ光21fが加熱対象物Tの表面の点P1の一点で一致し、レーザ光21gとレーザ光21hが加熱対象物Tの表面の点P2の一点で一致することに加えて、もう1対のレーザポインタ15i、15jについても、レーザポインタ15iからのレーザ光21iとレーザポインタ15jからのレーザ光21jが加熱対象物Tの表面の点P3の一点で一致する(交わる)ように、レーザポインタ15i、15jの支持角度を調整して、各々、支持板16i、16jで支持している。作業内容に応じて、適切な所定距離を変更する必要がある場合には、レーザポインタ15e、15f、15g、15h、15i、15jの支持角度を調整することで、適切な所定距離を変更すれば良い。
 このように、本実施例においては、レーザ光21eとレーザ光21fを加熱対象物Tの表面の点P1の一点で一致させており、レーザ光21gとレーザ光21hを加熱対象物Tの表面の他の点P2の一点で一致させており、レーザ光21iとレーザ光21jを加熱対象物Tの表面の他の点P3の一点で一致させている。つまり、対毎に異なる点P1、P2、P3の三点において、各々、距離DIが適切な所定距離となるようにしている。
 従って、保持部材13を支持するアームやリンク機構等により、赤外線ランプ11及びリフレクタ12の位置を調整したとき、距離DIが適切な所定距離であるときは、図9Aに示すように、加熱対象物Tの表面でレーザ光21eとレーザ光21fが点P1の一点で一致し、レーザ光21gとレーザ光21hが点P2の一点で一致し、レーザ光21iとレーザ光21jが点P3の一点で一致する。一方、距離DIが適切な所定距離でないとき(距離が近い又は遠いとき)は、図9Bに示すように、加熱対象物Tの表面でレーザ光21eとレーザ光21fが一致せず、レーザ光21gとレーザ光21hが一致せず、レーザ光21gとレーザ光21hが一致しない。
 つまり、加熱対象物Tの表面において、レーザ光21eとレーザ光21fが点P1の一点で一致し、レーザ光21gとレーザ光21hが点P2の一点で一致すると共に、レーザ光21iとレーザ光21jが点P3の一点で一致するように、赤外線ランプ11及びリフレクタ12の位置を調整すれば、距離を計測する計測器を用いて距離DIを実測しなくても、距離DIを適切な所定距離に簡単に調整することができる。
 加えて、加熱対象物Tの表面の点P1、P2、P3の三点において、距離DIを適切な所定距離としているので、加熱対象物Tの表面の点P1、点P2及び点P3で形成する平面に対し、赤外線ランプ11及びリフレクタ12が平行に配置されることになる。つまり、加熱対象物Tの表面に対し、赤外線ランプ11及びリフレクタ12を平行に(上記の主照射方向を垂直に)配置することができる。
 このようにして、距離DIを適切な所定距離に設定できると共に、加熱対象物Tの表面上の平面に対し、赤外線ランプ11及びリフレクタ12を平行に配置するので、加熱時の赤外線ランプ11の出力を適正な出力に抑えて、放射温度計14の誤差を少なくすると共に、高精度に温度制御することができる。その結果、実施例1~3と同様に、塗装乾燥やシーラント硬化の作業効率の向上を図ることができる。
 なお、本発明は、上述した実施例1、2の構成に実施例3、4の構成を組み合わせた構成としても良い。
 本発明は、特に、航空機の塗装乾燥やシーラント硬化に好適である。
 11 赤外線ランプ
 12 リフレクタ
 13 保持部材
 14 放射温度計
 15a~15j レーザポインタ
 16a~16j 支持板

Claims (5)

  1.  加熱対象物に赤外線を照射して加熱する赤外線照射手段と、
     前記赤外線照射手段を保持する保持部材と、
     前記保持部材に取り付けられ、前記加熱対象物の表面の温度を計測する非接触温度計測手段と、
     前記保持部材に取り付けられ、各々異なる位置から前記加熱対象物の表面へレーザ光を照射する少なくとも1対のレーザ光照射手段と、
    を有し、
     対となる前記レーザ光照射手段は、前記加熱対象物の表面と前記赤外線照射手段との距離が所定距離のとき、前記加熱対象物の表面の一点で互いの前記レーザ光が一致するように配置されている
    ことを特徴とする赤外線加熱装置。
  2.  請求項1に記載の赤外線加熱装置において、
     各々の前記レーザ光照射手段は、当該レーザ光照射手段の支持角度を調整可能な支持板に支持されて、前記保持部材に取り付けられ、前記所定距離を変更する場合には前記支持角度が変更される
    ことを特徴とする赤外線加熱装置。
  3.  請求項1又は請求項2に記載の赤外線加熱装置において、
     前記非接触温度計測手段は、当該非接触温度計測手段の計測方向が前記赤外線の主照射方向と平行になるように前記保持部材に取り付けられ、
     前記レーザ光照射手段は、前記距離が前記所定距離のとき、前記加熱対象物の表面と前記計測方向が交わる一点で全ての前記レーザ光が一致するように配置されている
    ことを特徴とする赤外線加熱装置。
  4.  請求項1又は請求項2に記載の赤外線加熱装置において、
     複数対の前記レーザ光照射手段を有し、
     複数対の前記レーザ光照射手段は、前記距離が前記所定距離のとき、対毎に異なる前記加熱対象物の表面の一点で、該当する対の前記レーザ光が一致するように配置されている
    ことを特徴とする赤外線加熱装置。
  5.  請求項1から請求項4のいずれか1つに記載の赤外線加熱装置において、
     前記赤外線照射手段は、赤外線を放出する赤外線ランプと、前記赤外線ランプからの前記赤外線を反射するリフレクタからなり、
     少なくとも1対の前記レーザ光照射手段を前記リフレクタに取り付ける
    ことを特徴とする赤外線加熱装置。
PCT/JP2017/030235 2017-08-24 2017-08-24 赤外線加熱装置 WO2019038870A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/030235 WO2019038870A1 (ja) 2017-08-24 2017-08-24 赤外線加熱装置
US16/639,350 US11778698B2 (en) 2017-08-24 2017-08-24 Laser and infrared heating device
EP17922710.3A EP3657903B1 (en) 2017-08-24 2017-08-24 Infrared heating device
JP2019537493A JP6896866B2 (ja) 2017-08-24 2017-08-24 赤外線加熱装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/030235 WO2019038870A1 (ja) 2017-08-24 2017-08-24 赤外線加熱装置

Publications (1)

Publication Number Publication Date
WO2019038870A1 true WO2019038870A1 (ja) 2019-02-28

Family

ID=65438467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030235 WO2019038870A1 (ja) 2017-08-24 2017-08-24 赤外線加熱装置

Country Status (4)

Country Link
US (1) US11778698B2 (ja)
EP (1) EP3657903B1 (ja)
JP (1) JP6896866B2 (ja)
WO (1) WO2019038870A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3657903B1 (en) * 2017-08-24 2022-01-12 Mitsubishi Heavy Industries, Ltd. Infrared heating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111922A (ja) * 1992-05-04 1994-04-22 Bgk Finishing Syst Inc 温度感知手段を備える移動式加熱装置
JPH06178964A (ja) 1992-12-15 1994-06-28 Toyota Auto Body Co Ltd ポ−タブルヒ−タ
JP2005294243A (ja) * 2004-03-11 2005-10-20 Toshiba Ceramics Co Ltd 赤外線加熱装置
JP2008006438A (ja) * 2006-06-27 2008-01-17 Illinois Tool Works Inc <Itw> 仕上げシステムおよび方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2675246B1 (fr) * 1991-04-12 1993-08-13 Omia Dispositif de sechage par infra-rouge notamment pour peinture.
US6217695B1 (en) * 1996-05-06 2001-04-17 Wmw Systems, Llc Method and apparatus for radiation heating substrates and applying extruded material
CA2260276A1 (fr) * 1999-02-09 2000-08-09 Hydro-Quebec Appareil et methode de chauffage par superposition de lumieres
US6970644B2 (en) * 2000-12-21 2005-11-29 Mattson Technology, Inc. Heating configuration for use in thermal processing chambers
US20040136700A1 (en) * 2003-01-15 2004-07-15 Yackel Matthew H. Control system for repair arm curing device
US20050082480A1 (en) * 2003-08-26 2005-04-21 Aegis Semiconductor, Inc. Infrared camera system
US10857722B2 (en) * 2004-12-03 2020-12-08 Pressco Ip Llc Method and system for laser-based, wavelength specific infrared irradiation treatment
DE102005022308B4 (de) * 2005-05-13 2007-03-22 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial
US7212736B2 (en) * 2005-06-03 2007-05-01 Illinois Tool Works Inc. Infrared curing device having electrically actuated arm and system and method therewith
DE102010004036A1 (de) * 2010-01-05 2011-07-07 EOS GmbH Electro Optical Systems, 82152 Vorrichtung zum generativen Herstellen eines dreidimensionalen Objekts mit kontinuierlicher Wärmezufuhr
US9108338B2 (en) * 2011-04-13 2015-08-18 Align Technology, Inc. Methods and systems for thermal forming an object
CN104428879B (zh) * 2012-05-30 2018-01-30 应用材料公司 用于快速热处理的设备及方法
FR2991544B1 (fr) * 2012-06-04 2017-10-13 Sunaero-Helitest Dispositif pour emettre un rayonnement infrarouge destine a chauffer un materiau polymere pour une operation de maintenance d’un composant d’aeronef
JP6560550B2 (ja) * 2015-07-06 2019-08-14 株式会社Screenホールディングス 熱処理方法および熱処理装置
JP6024841B1 (ja) * 2016-01-27 2016-11-16 株式会社リコー 照明装置、パターン照射装置およびシステム
EP3657903B1 (en) * 2017-08-24 2022-01-12 Mitsubishi Heavy Industries, Ltd. Infrared heating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06111922A (ja) * 1992-05-04 1994-04-22 Bgk Finishing Syst Inc 温度感知手段を備える移動式加熱装置
JPH06178964A (ja) 1992-12-15 1994-06-28 Toyota Auto Body Co Ltd ポ−タブルヒ−タ
JP2005294243A (ja) * 2004-03-11 2005-10-20 Toshiba Ceramics Co Ltd 赤外線加熱装置
JP2008006438A (ja) * 2006-06-27 2008-01-17 Illinois Tool Works Inc <Itw> 仕上げシステムおよび方法

Also Published As

Publication number Publication date
JPWO2019038870A1 (ja) 2020-08-20
EP3657903A1 (en) 2020-05-27
EP3657903A4 (en) 2020-07-08
US11778698B2 (en) 2023-10-03
US20200221546A1 (en) 2020-07-09
EP3657903B1 (en) 2022-01-12
JP6896866B2 (ja) 2021-06-30

Similar Documents

Publication Publication Date Title
CN109937100B (zh) 用于校准扫描装置的方法和加工机
TWI544522B (zh) 光纖雷射之雷射尖峰退火系統及其方法
US11356585B1 (en) System and method for optical alignment and calibration of an infrared camera lens
JP2013545272A5 (ja)
EP3190441B1 (en) Light illuminating apparatus
KR20130130813A (ko) 광 주사 장치 및 레이저 가공 장치
US20170210006A1 (en) Irradiation apparatus, pattern irradiation apparatus, and system
CN103814331B (zh) 在微光刻投射曝光设备中热致动反射镜的布置
JP6896866B2 (ja) 赤外線加熱装置
US20180320851A1 (en) Laser-based light source with light emission control
CN110926601B (zh) 一种光辐射传感器角度响应特性测试装置
CN103900422B (zh) 多波段目标/背景生成装置
CN206161944U (zh) 一种自动调节的斜入射光路
KR200327382Y1 (ko) 제철소에서사용되는복사온도계의자동교정장치
US9653866B2 (en) Real-time wavelength correction system for visible light
JP7187672B2 (ja) テストコンタクト配列を修理するための方法および装置
CN109341578B (zh) 测量装置及曲面玻璃的测量方法
US20150055674A1 (en) Laser adjustment device, laser adjustment system and laser adjustment method for infrared radiation thermometer thereof
CN104601983A (zh) 离轴多反空间相机绝对光谱透过率及其均匀性测试装置
JP2967939B2 (ja) レーザマーキング装置
EP3255421A1 (en) Device for the contactless and non-destructive testing of a surface by measuring its infrared radiation
JP2017150936A (ja) 温度計測装置
CN117606388A (zh) 基于分立后向反射原理的拼接用共焦测角光学边缘传感器
JP2001336879A (ja) 輻射加熱機
Civita Optimal setting of bendable optics based on FEA calculations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537493

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017922710

Country of ref document: EP

Effective date: 20200217

NENP Non-entry into the national phase

Ref country code: DE