WO2019037759A1 - 生成含有纳米级气泡的液体的方法和系统 - Google Patents

生成含有纳米级气泡的液体的方法和系统 Download PDF

Info

Publication number
WO2019037759A1
WO2019037759A1 PCT/CN2018/101945 CN2018101945W WO2019037759A1 WO 2019037759 A1 WO2019037759 A1 WO 2019037759A1 CN 2018101945 W CN2018101945 W CN 2018101945W WO 2019037759 A1 WO2019037759 A1 WO 2019037759A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
millimeters
gas
dimension
pressure
Prior art date
Application number
PCT/CN2018/101945
Other languages
English (en)
French (fr)
Inventor
高地
Original Assignee
四川奉泽水环境技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川奉泽水环境技术有限公司 filed Critical 四川奉泽水环境技术有限公司
Publication of WO2019037759A1 publication Critical patent/WO2019037759A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/2319Methods of introducing gases into liquid media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/234Surface aerating
    • B01F23/2341Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere
    • B01F23/23413Surface aerating by cascading, spraying or projecting a liquid into a gaseous atmosphere using nozzles for projecting the liquid into the gas atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237611Air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237612Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/29Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/70Spray-mixers, e.g. for mixing intersecting sheets of material
    • B01F25/72Spray-mixers, e.g. for mixing intersecting sheets of material with nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/70Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/70Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming
    • B01F33/71Mixers specially adapted for working at sub- or super-atmospheric pressure, e.g. combined with de-foaming working at super-atmospheric pressure, e.g. in pressurised vessels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a method for dissolving gas in water or other liquid in the form of nano-scale bubbles and a system for realizing the same, which is suitable for municipal sewage treatment, industrial wastewater treatment, reoxygenation of natural water bodies, treatment of black and odorous water bodies, Coal washing process, oil and gas field oil and oil separation, medical beauty, agriculture and aquaculture.
  • a bubble is a cavity formed by a gas filled in a liquid.
  • multiphase flow e.g aeration, wastewater treatment, oil and gas exploration
  • the size of the bubbles plays a crucial role.
  • Bubbles can be generated by a mixture of gases and liquids, and the size of the bubbles can vary over a wide range. Based on the size of the bubble, it can be divided into millimeter-level bubbles, micro-scale bubbles (microbubbles), and nano-scale bubbles (hereinafter also referred to as "nano bubbles").
  • the size of the bubbles has a significant effect on heat transfer, mass transfer, chemical reaction kinetics, and thermodynamic equilibrium of the gas-liquid interface. Reducing the size of the bubbles promotes heat transfer, mass transfer, significantly changes in thermodynamic equilibrium, and accelerates chemical reactions occurring at the gas-liquid interface.
  • Nanoscale bubbles have significant advantages over micron-sized bubbles, millimeter-scale bubbles, or larger bubbles. It is well known that the specific surface area of bubbles within a unit volume is inversely proportional to the size of the bubbles (L. Albright, Albright's Chemical Engineering Handbook, CRC Press, 2008). Therefore, the specific surface area of the nano-sized bubble is about 1000 times the specific surface area of the micron-sized bubble, which is about 1 million times the specific surface area of the millimeter-sized bubble. The larger the specific surface area, the larger the interface area between gas and liquid, and the faster the rate of heat and mass transfer.
  • the rate of rise of the bubble is proportional to the square of the bubble size (D.G. Karamanev, AIChE J. 40(8), 1418 (1994)). Therefore, the rate of rise of the nano-scale bubbles is about one millionth of that of the micron-sized bubbles, and is about one-hundredth of a millimeter of the millimeter-sized bubbles.
  • a bubble having a diameter of less than 1 micrometer is usually in a random Brownian motion state because its buoyancy is too small. The gas can stay in the liquid for a long time and can therefore be fully utilized for efficient mass transfer.
  • the air pressure inside the bubble is inversely proportional to the size of the bubble (J.Holocher, F. Peeters, W.Aeschback-Hertig, W.Kinzelback) , R. Kipfer, Environ. Sci. Technol. 37, 1337, (2003)). Therefore, the gas pressure that the nanobubbles can maintain is 1000 times that of the microbubbles, which is 1 million times that of the millimeter bubbles. The higher the gas pressure inside the bubble, the faster the mass transfer rate.
  • Nanoscale bubbles containing oxygen can produce reactive oxygen species for degrading pollutants in water (TLHwang, CLFang, SA Al-Suwayeh, LJ Yang, JYYang, Toxicol Lett. 203(2), 172 , (2011)).
  • Highly active free radicals also have a strong demulsification function.
  • Nanoscale bubbles can coalesce emulsified oil droplets that are similar in size to nanobubbles ( ⁇ 1 ⁇ m), while microbubbles or millimeter bubbles will be difficult to accomplish.
  • nanobubbles can be generated by electrolysis (K. Kikuchi, Y. Tanaka, Y. Saihara, M. Maeda, M. Kawamura and Z. Ogumi, J. Colloid Interface Sci. 298, 914-919 (2006) ); K. Kikuchi, S. Nagata, Y. Tanaka, Y. Saihara, Z. Ogumi, J. Electroanal. Chem. 600, 303-310 (2007); K. Kikuchi, A. Ioka, T. Okua, Y. Tanaka Y. Saihara and Z. Ogumi, J. Colloid Interface Sci. 329, 306-309 (2009)).
  • Nanobubbles can also be produced by the use of surfactants and sonication and have been used in scientific research (Z.Xing, J. Wang, H.Ke, B.Zhao, X.Yue, Z.Dai, and J). .Liu, Nanotechnology 21, 14 (2010). Nanobubbles generated by this method can be used as ultrasound contrast agents or for targeted administration (S.Sirsi and M.Borden, Bubble Sci.Eng.Technol.1) , 3 (2009)).
  • Chinese patent application publication CN 105457546A introduces a nano-scale micro-bubble water secondary gas-liquid mixing pump, which has a complicated structure and cannot meet the requirements of large-flux processes.
  • Another object of the present invention is to provide a novel method and system for dissolving a gas in water in the form of nanobubbles.
  • Another additional object of the present invention is to provide a novel nanobubble forming method and system that is efficient and easy to operate.
  • the present invention provides a method of producing a liquid containing nanoscale bubbles (ie, a method of dissolving a gas in the form of nanobubbles in water) comprising three steps: first step, passing the liquid through the mist The nozzle is introduced into a pressurized container containing a gas, the liquid forms a droplet in the pressurized container, and the gas diffuses into the droplet at a pressure higher than atmospheric pressure; in the second step, the gas-containing liquid in the pressurized container is sent To a narrow space (the space is at least one dimensional dimension less than 20 mm); in the third step, the gas-containing liquid is ejected from a narrow space into an open environment below the pressure of the narrow space.
  • the present invention provides an apparatus for generating a liquid containing nanoscale bubbles (ie, a system for dissolving a gas in water in the form of nanobubbles) comprising two main components: a first component
  • the invention comprises a pressure vessel for containing two phases of gas and mixed gas and liquid and an atomizing nozzle for conveying the liquid to the pressure vessel;
  • the second component comprises a pipeline connected to the first component with a conveying nozzle, the conveying
  • the nozzle contains one or more capillaries or one or more channels sandwiched between two or more plate faces, the capillaries or channels having a dimension of at least one dimension of less than 20 mm.
  • the device has simple structure and convenient operation
  • the equipment can be modified in many ways. It can be easily adjusted and changed according to the needs of practical applications. Therefore, it can be used in a wide range of applications, such as municipal sewage treatment, industrial wastewater treatment, reoxygenation of natural water bodies, and treatment of black and odorous water. , coal washing process, oil and gas field water and oil separation, medical beauty, agriculture and aquaculture.
  • pressure and “pressure” are understood to have the same meaning and mean the pressure per unit area in units of Pa or MPa.
  • the present invention provides a method of producing a liquid containing nanoscale bubbles (ie, a method of dissolving a gas in the form of nanobubbles in water) comprising three steps: first step, passing the liquid through the mist The nozzle is introduced into a pressurized container containing gas (hereinafter also referred to as "pressure vessel"), the liquid forms a droplet in the pressurized container, and the gas diffuses into the droplet at a pressure higher than atmospheric pressure; the second step is The gas-containing liquid in the pressurized container is sent to a narrow space; in the third step, the gas-containing liquid is sprayed from a narrow space into an open environment below a narrow space pressure.
  • a pressurized container containing gas hereinafter also referred to as "pressure vessel”
  • the method may include other necessary steps, and each of the above three steps may include multiple sub-steps or be combined with previous or subsequent steps.
  • the absolute pressure of the gas and liquid mixture in the first step is between about 0.15 MPa and about 100 MPa, preferably between about 0.2 MPa and about 20 MPa, and most preferably at about 0.3 MPa. It is between about 10 MPa.
  • the liquid to be used is not particularly limited, but preferably the liquid is water or an aqueous liquid.
  • the gas in the pressurized container is not particularly limited as long as it is insoluble or slightly soluble in the liquid to be used, for example, the gas may be oxygen, nitrogen, air, hydrogen or other gas.
  • Introduction of the liquid into the pressurized container can take a variety of means known in the art, such as by pumping or using a high pressure ejector.
  • the narrow space used in the second step has at least one dimension dimension of less than 20 millimeters (mm), such as in the range of between about 1 micrometer ( ⁇ m) and 20 millimeters, preferably between about 100 micrometers and about 10 millimeters, most preferably From about 0.5 mm to about 5 mm.
  • mm millimeters
  • the narrow space used in the second step employs a capillary having an inner diameter of between about 1 micrometer and 20 millimeters, preferably an inner diameter of between about 100 micrometers and about 10 millimeters, most It is preferably from about 0.5 mm to about 5 mm.
  • the narrow space used in the second step may employ a channel (hereinafter also referred to as "via") sandwiched between two or more plates.
  • the cross-sectional profile of the channel can be circular, square, rectangular, elliptical, triangular, etc., and at least one dimension dimension is less than 20 mm, ranging between about 1 micrometer and 20 millimeters, preferably between about 100 micrometers and about 10 millimeters. Most preferably from about 0.5 mm to about 5 mm.
  • the surface of the capillary or passage in contact with the liquid in the second step needs to allow liquid to infiltrate, so the intrinsic liquid contact angle of the surface of the capillary or passage in contact with the liquid should be less than 60°. It is preferably less than 40°, most preferably less than 30°. If the liquid is water or an aqueous liquid, the inner surfaces of the capillary and passage should be hydrophilic and have an intrinsic water contact angle of less than 60°, preferably less than 40°, and most preferably less than 30°.
  • the liquid-containing liquid droplets are ejected from a narrow space to an open environment below the pressure of the narrow space. Since the narrow space is in communication with the pressure vessel, its pressure is generally substantially equal to the internal pressure of the pressure vessel.
  • the pressure of the open environment is preferably atmospheric pressure.
  • the "open environment” may be, for example, a non-sealed container, an atmosphere, an open body of water (lakes, reservoirs, etc.).
  • thermodynamic equilibrium concentration of gas in a liquid is determined by Henry's law.
  • gases such as oxygen, nitrogen, hydrogen
  • liquids such as water
  • increasing the pressure will increase the maximum concentration of gas that can be reached in the liquid.
  • cavitation usually occurs at the outlet of the pressurized container, accompanied by rapid generation of bubbles and escape of gas from the gas. The phenomenon.
  • the change in system free energy caused by cavitation in homogeneous media includes two terms.
  • the first term is the loss of free energy (G v ) due to the gas dissolved in the liquid becoming a gas that escapes the liquid. When the gas escapes the saturated liquid as the pressure drops, the change in free energy is negative.
  • the second term is the free energy increased due to the new interface between gas and liquid, expressed as 4 ⁇ r 2 ⁇ , ⁇ is the surface tension of the gas-liquid interface, and r is the bubble radius.
  • the overall change in free energy can be expressed by equation (1):
  • Equation 1 The first term in Equation 1 is negative, proportional to the third power of the radius; the second term in Equation 1 is positive, proportional to the second power of the radius. Therefore, the sum of the two items increases and then decreases, and the trend is shown in Figure 1.
  • the energy barrier In order to form bubbles, the energy barrier must be overcome.
  • the radius at the peak of the energy barrier is the critical radius r*, which can be calculated as follows:
  • the bubble when the radius of the bubble is less than r * , the bubble will spontaneously decrease in size and the gas will eventually dissolve in the liquid. When the radius of the bubble is greater than r * , the bubble will spontaneously increase in size.
  • FIG. 2 shows the heterogeneous cavitation process in the presence of a cavitation nucleus with a radius of R, where the critical cavitation nucleus is r c .
  • the correlation between the energy barrier ( ⁇ G homo ) of the homogeneous nucleation process in homogeneous media and the energy barrier ( ⁇ G c ) in the presence of cavitation nuclei can be expressed by the following classical heterogeneous nuclear generation theory (Liu, XYJChem.Phys) .1999,111,1628–1635):
  • is the contact angle of the liquid with the cavitation nucleus.
  • the bubble needs to grow in the liquid to a bubble exceeding the critical radius r * .
  • the system overcomes energy barriers.
  • the energy used to overcome energy barriers is typically provided by thermal disturbances or mechanical disturbances at high temperatures. If a cavitation nucleus is present in the system, the energy barrier can be significantly reduced, and bubble growth requires relatively little energy input.
  • the present disclosure employs the following methods and systems to avoid or reduce the formation of cavitation nuclei and the heterogeneous nucleation pathway of the bubbles.
  • the method of dissolving a gas in the form of nanobubbles in water or other liquid is divided into three steps, each step may include multiple sub-steps, or cover other steps (before or after).
  • the gas and liquid are mixed at a pressure higher than atmospheric pressure, and the gas is dissolved in the liquid.
  • the gas-containing liquid is sent to a small space (at least one dimension is less than 20 mm).
  • the gas-containing liquid is ejected from a narrow space into an open environment below the pressure of the narrow space.
  • the method can dissolve the gas in the form of nanobubbles in water or other liquids, and can be applied to small-scale applications (such as medical beauty industry) and large-scale applications (such as water treatment, oil and gas industry, agriculture and aquaculture).
  • the purpose of the first step is to introduce a gas into the liquid to a higher gas concentration than the gas saturation concentration in the liquid at atmospheric pressure.
  • the absolute pressure of the gas liquid mixture in the first step is between about 0.15 MPa and about 100 MPa, preferably between about 0.2 MPa and about 20 MPa, and most preferably between about 0.3 MPa and about 10 MPa.
  • the gas-containing liquid is sent to a small space (at least one dimension is less than 20 mm).
  • This narrow space acts as a capillary passage to remove cavitation nuclei and bubbles in the liquid and to prevent cavitation nuclei and bubbles from forming when the liquid is sprayed into an environment at a lower pressure.
  • at least one dimension of the narrow space used in the second step is less than 20 mm, ranging from 1 micrometer to 20 millimeters, preferably between about 100 micrometers to about 10 millimeters, most preferably About 0.5 mm to about 5 mm.
  • the narrow space used in the second step may employ a capillary tube 310 having an inner diameter between about 1 micrometer and 20 millimeters, preferably between about 100 micrometers and about 10 millimeters, most preferably in Between about 0.5 mm and about 5 mm.
  • a plurality of capillaries can be assembled together as a capillary bundle 320. The cross section of the capillary and capillary bundle is shown in Figure 3.
  • the narrow space used in the second step may form a passage 410 between the faces 420, as shown in FIG.
  • the cross-sectional profile of the passageway may be circular, square, rectangular, elliptical, triangular, etc., and at least one of the dimensions is less than 20 mm, ranging from 1 micrometer to 20 millimeters, preferably between about 100 micrometers to about 10 millimeters, Most preferably it is from about 0.5 mm to about 5 mm.
  • the capillaries and passages in the second step require liquid wetting to prevent cavitation nuclei from forming within the capillaries and passages.
  • the wettability of the liquid on the solid can be expressed by the contact angle ⁇ .
  • Figure 5 shows the contact angle of the liquid on the solid. According to Young's equation, if the solid surface is smooth and smooth, the contact angle is called the intrinsic contact angle ⁇ , the surface free energy ( ⁇ SL ) at the solid-liquid interface, the surface free energy at the liquid-vapor interface ( ⁇ LV ), and the solid-gas interface.
  • the intrinsic contact angle of the capillary and the passage surface should be less than 60°, preferably less than 40°, and most preferably less than 30°. If the liquid is water, the capillaries and passages should be hydrophilic and have an intrinsic water contact angle of less than 60°, preferably less than 40°, and most preferably less than 30°. Small contact angles within the capillary and passage prevent cavitation nucleation. A small contact angle also reduces the factor f in equations (4), (5), and (6), maintaining an energy barrier to prevent smaller bubbles from growing.
  • the gas-containing liquid is ejected from a narrow space into an open environment below the pressure of the narrow space.
  • the open environment can be an application environment for nanobubbles or liquids containing nanoscale bubbles, such as a body of water to be purified, or a non-hermetic container for containing a liquid containing nanoscale bubbles.
  • the present invention provides an apparatus for generating a liquid containing nanoscale bubbles (ie, a system for dissolving a gas in the form of nanobubbles in water) comprising two main components: the first component a pressure vessel for containing two phases of gas and mixed gas and liquid and an atomizing nozzle for delivering the liquid to the pressure vessel; the second component comprises a conduit connected to the first component (pressure vessel) with a delivery nozzle
  • the delivery nozzle contains one or more capillaries or one or more channels sandwiched between two or more plate faces, the capillaries or channels having a dimension of at least one dimension of less than 20 mm.
  • FIG. 6 shows a block diagram of a system (apparatus) for generating nanobubbles and a liquid containing nanobubbles, comprising two main components: a first component comprising a gas liquid, in accordance with a preferred embodiment of the present invention.
  • a mixed pressurized container 610 wherein the gas is dissolved in the liquid at a pressure above atmospheric pressure;
  • the second component includes a hose 620 with a delivery nozzle 630 consisting of one or more capillaries (at least one dimension The size is less than 20mm) or the passage formed between the plates (at least one dimension is less than 20mm).
  • the liquid passes through the atomizing nozzle 640 in the first component of the system and enters the pressurized container 610. After the liquid passes through the nozzle, droplets 650 are formed in the pressurized container, and the gas is dissolved into the droplets.
  • the liquid entering the pressurized container may be taken from a different source of water (eg, sink, pool, lake, stream, river).
  • the liquid entering the pressurized container may also be taken from the filtered wastewater within the wastewater treatment system. Usually the wastewater needs to be filtered before entering the system to prevent system blockage.
  • the pressurized container can be a pressurized container commonly used in the chemical industry and the like.
  • the gas entering the pressurized vessel may be oxygen, nitrogen, hydrogen, which may be taken from an oxygen cylinder or an oxygen generator, a nitrogen or nitrogen generator, a hydrogen cylinder, or a hydrogen production facility.
  • the gas entering the pressurized container may also be air.
  • the capillary used in the delivery nozzle in the second component of the system may be a conduit having an inner diameter of between about 1 micrometer and 20 millimeters, preferably between about 100 micrometers and about 10 millimeters, most It is preferably between about 0.5 mm and about 5 mm.
  • the delivery nozzle used in the second component of the system is a plate-based nozzle comprising one or more panels that may form a plurality of passages.
  • the cross-sectional profile of the passageway can be a different shape, circular, square, rectangular, elliptical, triangular, etc., at least one conduit having a dimension between about 1 micrometer and 20 millimeters, preferably between about 100 micrometers and about 10 millimeters. Most preferably between about 0.5 mm and about 5 mm.
  • the inner diameter of the capillary or the dimension of at least one dimension of the channel section is less than 1 mm, between about 10 nm and about 1 mm, preferably between about 1 micron and about 500 microns. Most preferably between about 10 microns and about 100 microns.
  • the capillary or face used in the second component of the system is made of silica or silicate glass. It can also be made from a variety of metals, alloys, glass, plastics, polymers, ceramics, or other suitable materials.
  • Figure 1 is a schematic diagram showing the change in free energy with homogeneous cavitation in a homogeneous medium.
  • Figure 2 is a schematic illustration of a heterogeneous cavitation process in the presence of a cavitation nucleus.
  • FIG. 3 is a schematic cross-sectional view of a capillary and capillary bundle of an apparatus for generating nanobubbles in accordance with some embodiments of the present invention.
  • FIG. 4 is a schematic illustration of the formation of vias between the plates in accordance with some embodiments of the present invention.
  • Figure 5 is a schematic view of the contact angle between solid liquids.
  • Figure 6 is a schematic illustration of a system (apparatus) for dissolving a gas in the form of nanobubbles in water in accordance with a preferred embodiment of the present invention.
  • a pressure vessel filled with 10 MPa of oxygen through an atomizing nozzle (stainless steel, 6 mm inner diameter).
  • the water sprayed from the atomizing nozzle is misted, and the water droplets dissolved in the oxygen are collected at the bottom of the pressure vessel.
  • the collected water exits the pressure vessel through the conduit and is then sprayed into the sink through a bundle of borosilicate capillaries (within 1 mm) at the end of the output line.
  • the dissolved oxygen content measured at the outlet of the capillary was 800 ppm.
  • an aqueous solution (D 5 W solution) containing 5% glucose was introduced into a pressure vessel filled with 10 MPa of oxygen through an atomizing nozzle (stainless steel, 6 mm inner diameter).
  • the oxygen-dissolved D 5 W solution was sprayed into the water bath through a bundle of borosilicate capillaries (within 1 mm).
  • the gas-dissolved D 5 W solution exiting the capillary nozzle was observed under an argon ion laser emitting 488/515 nm light, and no bubbles having a diameter greater than 500 nm were observed.
  • the water in the landscape lake was introduced into a pressure vessel filled with 2 MPa of oxygen through an atomizing nozzle (stainless steel, 6 mm inner diameter) at a flow rate of 3 tons per hour.
  • the oxygen-dissolved water is then reinjected into the landscape lake through a bundle of borosilicate capillaries (within 1 mm).
  • the water sample was taken every hour from the water injection point at 10 meters.
  • the results are shown in Table 1.
  • the ammonia nitrogen (NH 3 -N) was reduced from 7.5 to 0.9 mg/L, and the chemical oxygen demand (COD) was from 53. Dropped to 26mg/L.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)

Abstract

本专利申请公开了一种生成含有纳米级气泡的液体的方法和系统。首先,将液体通过雾化喷嘴引入含有气体的压力容器内,液体在压力容器内形成液滴,气体在高于大气压的压力下扩散到液滴中;而后,将压力容器内的含气液体送至狭小空间,且所述空间至少一个维度的尺寸小于20毫米;最后,将含气液体从狭小空间喷射至低于狭小空间压力的开放环境内。

Description

生成含有纳米级气泡的液体的方法和系统
本申请要求于2017年8月25日递交的201710742408.X号中国专利申请的优先权,该在先申请的全部内容通过引用并入本文。
发明领域
本发明涉及一种将气体以纳米级气泡的形式溶于水或其他液体中的方法和实现此方法的系统,适用于市政污水处理、工业废水处理、天然水体的复氧、黑臭水体治理、煤炭洗煤工艺、油气田水油分离、医疗美容、农业及水产养殖业。
发明背景
气泡是液体中由气体填充形成的空洞。在众多涉及多相流领域的工业应用中(例如曝气、废水处理、油气勘探),气泡的大小起着至关重要的作用。
气泡可通过混合气、液体生成,气泡的大小可以在很大范围内变化。基于气泡的尺寸,可分为毫米级气泡、微米级气泡(微泡)和纳米级气泡(后文亦称“纳米气泡”)。气泡的大小对于传热、传质、化学反应动力学及气液界面的热力学平衡具有显著的影响。减小气泡的尺寸可促进传热、传质、显著改变热力学平衡、加速在气液界面发生的化学反应。
较之微米级气泡、毫米级气泡或更大的气泡,纳米级气泡具有明显的优势。众所周知,单位体积内气泡的比表面积与气泡的大小成反比(L.Albright,Albright’s Chemical Engineering Handbook,CRC Press,2008)。因此,纳米级气泡的比表面积是微米级气泡比表面积的约1000倍,是毫米级气泡比表面积的约100万倍。比表面积越大就意味着气、液体之间的界面面积越大,传热传质的速率越快。
另外,气泡的上升速度与气泡大小的平方成正比(D.G.Karamanev, AIChE J.40(8),1418(1994))。因此,纳米级气泡的上升速度是微米级气泡的约百万分之一,是毫米级气泡的约万亿分之一。直径小于1微米的气泡,因其浮力太小,通常为随机布朗运动状态。气体可在液体中停留很长时间,因此可被充分利用以进行高效的传质。
另外,在气液界面表面张力的作用下,如果气泡能够保持完好未被破坏,那么气泡内的气压与气泡的大小成反比(J.Holocher,F.Peeters,W.Aeschback-Hertig,W.Kinzelback,R.Kipfer,Environ.Sci.Technol.37,1337,(2003))。因而,纳米气泡可维持的气压是微米气泡的1000倍,为毫米气泡的100万倍。气泡内的气压越高,传质的速率越快。
现有技术已知含有氧气的纳米级气泡可产生用于降解水中污染物的活性氧物质(T.L.Hwang,C.L.Fang,S.A.Al-Suwayeh,L.J.Yang,J.Y.Yang,Toxicol Lett.203(2),172,(2011))。高活性自由基还具备很强的破乳功能。纳米级气泡可聚结跟纳米气泡大小(<1μm)相近的乳化油滴,而微米气泡或毫米气泡将难以完成此类聚结。
在研究实验室内,可以通过电解的方式生成纳米气泡(K.Kikuchi,Y.Tanaka,Y.Saihara,M.Maeda,M.Kawamura and Z.Ogumi,J.Colloid Interface Sci.298,914-919(2006);K.Kikuchi,S.Nagata,Y.Tanaka,Y.Saihara,Z.Ogumi,J.Electroanal.Chem.600,303-310(2007);K.Kikuchi,A.Ioka,T.Okua,Y.Tanaka,Y.Saihara and Z.Ogumi,J.Colloid Interface Sci.329,306-309(2009))。
纳米气泡也可通过使用表面活性剂和声波降解法来产生,并已被应用于科学研究(Z.Xing,J.Wang,H.Ke,B.Zhao,X.Yue,Z.Dai,and J.Liu,Nanotechnology 21,14(2010)。这种方法生成的纳米气泡可以作为超声造影剂使用,也可以用于靶向给药(S.Sirsi and M.Borden,Bubble Sci.Eng.Technol.1,3(2009))。
但是,在水处理等普通工业领域以及医疗、美容产业等普通服务业领域,特别是市政污水处理、工业废水处理、天然水体的复氧、黑臭水体治理、煤炭洗煤工艺、油气田水油分离、医疗美容、农业及水产养殖业等领域,仍然急需一种更加方便的、成本更低的纳米气泡形成系统和方法,以 便以可接受的成本形成纳米气泡从而扩宽其应用范围。
中国专利申请公开CN 105457546A介绍一种纳米级微小气泡水二级气液混合泵,结构复杂,无法实现大通量工艺要求。另外,CN 205045842U、CN 204803069U、CN 204752239U、CN 105417674A、CN 105289219A、CN 105347519A、CN 104710002A、CN 105240269A、CN 105293673A、CN 203862408U、CN 203946901U、CN 203976498U、CN 204134485U、CN 204162498U、CN 204097182U、CN 105233643A、CN 204159287U等公开的各种纳米气泡形成装置,或者难以形成真正的纳米气泡,或者存在结构复杂、精度不高、效率低、能耗高等各种问题,因而难以大规模推广应用。
发明内容
本发明的一个目的是提供一种新型的纳米气泡形成方法和系统。
本发明的另一个目的是提供一种新型的将气体以纳米气泡的形式溶于水中的方法和系统。
本发明的另一个额外目的在于提供一种效率高、操作方便的新型的纳米气泡形成方法和系统。
在一个方面,本发明提供了一种生成含有纳米级气泡的液体的方法(即,将气体以纳米气泡的形式溶于水中的方法),其包括三个步骤:第一步,将液体通过雾化喷嘴引至含有气体的加压容器内,液体在加压容器内形成液滴,气体在高于大气压的压力下扩散到液滴中;第二步,将加压容器内的含气液体送至狭小空间(所述空间至少一个维度尺寸小于20毫米);第三步,将含气液体从狭小空间喷射至低于狭小空间压力的开放环境内。
在另一个方面,本发明提供了一种用于生成含有纳米级气泡的液体的设备(即,将气体以纳米气泡的形式溶于水中的系统),其包括2个主要组件:第一个组件包括用于容纳气体和混合气液两相的压力容器和用于将液体输送至压力容器的雾化喷嘴;第二个组件包括带有输送喷嘴的与第一个组件连接的管路,该输送喷嘴含有一个或多个毛细管或一个或多个夹在 两个或多个板面之间的通道,所述毛细管或通道至少在一个维度上的尺寸小于20mm。
根据本发明的用于生成含有纳米级气泡的液体的设备和方法可以具有以下一个或多个优势:
1.设备结构简单、操作方便;
2.成本低;
3.设备可以有多种变型,根据实际应用场合的需要容易进行适应性调整和改变,因此适应范围广,例如可以用于市政污水处理、工业废水处理、天然水体的复氧、黑臭水体治理、煤炭洗煤工艺、油气田水油分离、医疗美容、农业及水产养殖业等领域。
具体实施方式
根据本申请说明书和权利要求中所述(包括实施例中所述),除非特殊指明,这里使用的涉及工艺参数的数字前都可以加上“大约”这个词汇,即使有的地方没有明确使用“大约”这个词汇。同时,所有以数值范围形式描述的区间区域包括所描述区域内的所有子区域,特别是包括由本文所公开的任意具体数值作为区间端点所构成的子区间。
根据本说明书所述,除非另有说明,否则当按照上述方式表达时,术语“约”或“大约”是指所示范围、所示值或所示结构的±20%、更优选±10%、进一步优选±5%、最优选±3%。除非另有明确说明,否则替代方法的使用(例如,“或者”)是指替代方案中的任意一个、二个、或其中任意组合形式。
在本公开中“压力”和“压强”被理解为具有相同的含义,表示单位面积的压力大小,单位为Pa或MPa。
本领域技术人员可以理解:以下分别描述的本发明的各个实施方式和实施例中不同的优选项、参数范围、结构特征等可以互相组合(只要它们之间不存在内在矛盾即可),而所有可能的组合方式都视为本发明公开的一部分。
在一个方面,本发明提供了一种生成含有纳米级气泡的液体的方法 (即,将气体以纳米气泡的形式溶于水中的方法),其包括三个步骤:第一步,将液体通过雾化喷嘴引至含有气体的加压容器(下文亦称“压力容器”)内,液体在加压容器内形成液滴,气体在高于大气压的压力下扩散到液滴中;第二步,将加压容器内的含气液体送至狭小空间;第三步,将含气液体从狭小空间喷射至低于狭小空间压力的开放环境内。
所述方法可以包括其他必要步骤,且以上三个步骤中每个步骤可以包括多个子步骤,或与之前或之后的步骤合并。
根据本发明所述的一些实施方式,所述第一步中气、液体混合的绝对压强在约0.15MPa至约100MPa之间,优选在约0.2MPa至约20MPa之间,最优选在约0.3MPa至约10MPa之间。
对于所采用的液体并不特殊限制,但是优选地所述液体是水或含水液体。所述加压容器内的气体并无特殊限制,只要其不溶或微溶于所采用的液体即可,例如气体可以是氧气、氮气、空气、氢气或者其他气体。将液体引入加压容器可以采用本领域已知的各种方式,例如可以采用泵送的方式或使用高压喷射器。
所述第二步中使用的狭小空间至少一个维度尺寸小于20毫米(mm),例如范围在约1微米(μm)至20毫米之间,优选在约100微米至约10毫米之间,最优选在约0.5毫米至约5毫米。
根据本发明所述的一些实施方式,所述第二步中使用的狭小空间采用内直径在约1微米至20毫米之间的毛细管,优选内直径在约100微米至约10毫米之间,最优选在约0.5毫米至约5毫米。
根据本发明所述的另一些实施方式,所述第二步中使用的狭小空间可采用夹在两个或多个板面间的通道(下文亦称“通路”)。通道的截面轮廓可以是圆形、正方形、矩形、椭圆形、三角形等,且至少一个维度尺寸小于20毫米,范围在约1微米至20毫米之间,优选在约100微米至约10毫米之间,最优选在约0.5毫米至约5毫米。
根据本发明所述的一些实施方式,所述第二步中的毛细管或通路与液体接触的表面需要允许液体浸润,所以毛细管或通路的与液体接触的表面的固有液体接触角应小于60°,优选小于40°,最优选小于30°。如果液体 是水或含水液体,毛细管和通路内表面应具有亲水性,且固有水接触角小于60°,优选小于40°,最优选小于30°。
根据本发明,在第三步,将含气液体液滴由狭小空间喷射至低于狭小空间压力的开放环境。所述狭小空间由于与压力容器连通,所以其压力通常基本等于压力容器的内压。而所述开放环境的压力优选为大气压。所述“开放环境”例如可以是非密封的容器、大气、开放的水体(湖泊、蓄水池等)。
下面简单介绍本发明的将气体以纳米气泡的形式溶于水中的方法的原理,但是应该理解:这里提供的理论解释仅是为了便于技术人员理解本发明,其不以任何形式构成对本发明的限制,且随着科技进步对本发明的理论阐述有可能有进一步的发展和变化。
气体在液体中的热力学平衡浓度是由亨利定律决定。在大气压力下,许多气体(如氧气、氮气、氢气)在液体(如水)中的溶解度很低,即这些气体在液体中可达到的最大浓度很低。根据亨利定律,增加压力将增加气体在液体中可达到的最大浓度。然而,当含有相对较高浓度气体的液体从加压容器内喷射至低压环境(比如常压)时,在加压容器的出口通常会出现空化现象,伴随着气泡急速生成和气体逸出液体的现象。
从热力学角度看,在均相介质中由空化现象引起的系统自由能变化包括二项。第一项是由于溶解于液体的气体成为逸出液体的气体而导致的自由能的损失(G v)。当气体在压力下降时逸出饱和液体,其自由能的变化为负数。第二项是由于气液之间新界面的产生而增加的自由能,表示为4πr 2σ,σ为气液界面的表面张力,r为气泡半径。自由能的整体变化可用等式(1)表示:
Figure PCTCN2018101945-appb-000001
等式1中的首项为负,与半径的3次方成比例;等式1中的第二项为正,与半径的2次方成比例。因此,二项的和先增加再减小,其趋势如图1所示。为形成气泡,需克服能障,能障峰值时的半径为临界半径r*,可按照如下计算:
Figure PCTCN2018101945-appb-000002
相应自由能变化(ΔG*)为:
Figure PCTCN2018101945-appb-000003
根据该能量图所示,当气泡的半径小于r *时,气泡将自发减小尺寸,气体最终将溶于液体中。当气泡的半径大于r *时,气泡将自发增大尺寸。
当系统存在空化核时,气泡的形成和生长需克服的能障显著降低。图2所示的是存在空化核的情况下的异相空化过程,球形颗粒的半径为R,此时临界空化核半径为r c。均相介质中均相核化过程的能障(ΔG homo)与存在空化核时的能障(ΔG c)之间的相关性可用如下经典的异相核生成理论表达(Liu,X.Y.J.Chem.Phys.1999,111,1628–1635):
Figure PCTCN2018101945-appb-000004
其中
Figure PCTCN2018101945-appb-000005
x=R/r C,m=cosθ,w=(1+x 2-2xm) 1/2         (6)
θ为液体与空化核的接触角。
根据等式(1),(2),(3),(4),(5)和(6),如果系统无空化核,气泡要在液体中成长为超过临界半径r *的气泡仍需系统克服能障。用于克服能障的能量通常由高温下的热扰动或机械扰动提供。如果有空化核存在于系统中,能障可显著降低,气泡的生长则需要相对较小的能量输入。
因而,为了使气泡半径保持在临界半径以下,本次公开采用以下方法和系统以避免或减少空化核的形成以及气泡的异相成核途径。将气体以纳米气泡的形式溶于水或者其他液体的方法分为三步,每个步骤可以包括多个子步骤,或涵盖其它步骤(前或后)。第一步,气、液体在高于大气压的压力下混合,且气体溶于液体之中。第二步,将含气液体送至狭小空间(至少一个维度小于20mm)。第三步,含气液体从狭小空间喷射至低于狭小空间压力的开放环境内。该方法能够将气体以纳米气泡的形式溶于水或者其他液体中,可适用于小规模应用(如医疗美容行业)和大规模应用(如水处理、油气产业、农业及养殖业)中。
第一步的目的是将气体引入到液体之中,达到比在常压下液体中气体饱和浓度更高的气体浓度。因此,第一步骤中气液体混合的绝对压强在约0.15MPa至约100MPa之间,优选在约0.2MPa至约20MPa之间,最优选在约0.3MPa至约10MPa之间。
第二步,将含气液体送至狭小空间(至少一个维度小于20mm)。该狭小空间起到毛细管通路的作用以去除液体中的空化核和气泡,并防止在液体喷射至较低压力下的环境中时形成空化核和气泡。根据本次公开所述实施方式,第二步中使用的狭小空间至少其中一个维度小于20毫米,范围在1微米至20毫米之间,优选在约100微米至约10毫米之间,最优选在约0.5毫米至约5毫米。
在本发明的一些实施例中,第二步中使用的狭小空间可采用内直径在约1微米至20毫米之间的毛细管310,优选在约约100微米至约10毫米之间,最优选在约0.5毫米至约5毫米之间。多个毛细管可组装在一起作为毛细管束320。毛细管和毛细管束的横截面如图3所示。
在本发明的一些实施例中,第二步中使用的狭小空间可在板面420间形成通路410,如图4所示。通路的截面轮廓可为圆形、正方形、矩形、椭圆形、三角形等,且至少其中一个维度小于20毫米,范围在1微米至20毫米之间,优选在约100微米至约10毫米之间,最优选在约0.5毫米至约5毫米。
在本发明的一些优选实施例中,第二步中的毛细管和通路需要液体浸润,以防止毛细管和通路内形成空化核。固体上液体的湿润性可通过接触角θ表示。图5所示为固体上液体的接触角。根据杨氏方程,如果固体表面平整光滑,接触角被称为固有接触角θ,与固液界面的表面自由能(γ SL)、液气界面的表面自由能(γ LV)和固气界面的表面自由能(γ SV)相关:
Figure PCTCN2018101945-appb-000006
所以,在本发明的一些优选实施例中,毛细管和通路表面的固有接触角应小于60°,优选为小于40°,最优选为小于30°。如果液体是水,毛细管和通路应具有亲水性,且固有水接触角小于60°,优选小于40°,最优选 小于30°。毛细管和通路内小的接触角可防止空化核的形成。小的接触角也可减小等式(4)、(5)和(6)中的因子f,保持能障来阻止较小的气泡长大。
第三步,含气液体从狭小空间喷射至低于狭小空间压力的开放环境内。该开放环境可以是纳米气泡或含有纳米级气泡的液体的应用环境,例如待净化的水体,或者是用于容纳含有纳米级气泡的液体的非密闭容器。
在一个方面,本发明提供了一种用于生成含有纳米级气泡的液体的设备(即,将气体以纳米气泡的形式溶于水中的系统),其包括2个主要组件:第一个组件用于容纳气体和混合气液两相的压力容器和用于将液体输送至压力容器的雾化喷嘴;第二个组件包括带有输送喷嘴的与第一个组件(的压力容器)连接的管路,该输送喷嘴含有一个或多个毛细管或一个或多个夹在两个或多个板面之间的通道,所述毛细管或通道至少在一个维度上的尺寸小于20mm。
图6示出了根据本发明的一个优选实施例的用于生成纳米气泡和含有纳米气泡液体的系统(设备)的结构简图,其包括2个主要组件:第一个组件包括用于气液体混合的加压容器610,其中气体在高于大气压的压力下溶于液体中;第二个组件包括带有输送喷嘴630的软管620,该输送喷嘴630由一个或多个毛细管(至少一个维度尺寸小于20mm)或板面间形成的通路(至少一个维度尺寸小于20mm)组成。根据该实施例,液体通过系统的第一个组件中的雾化喷嘴640后进入加压容器610内。液体通过喷嘴后在加压容器内形成液滴650,气体溶入到液滴内。
在本发明的一些实施例中,进入加压容器的液体可以取自不同的水源(如水槽、水池、湖泊、溪流、江河)。在本发明的另一些实施例中,进入加压容器内的液体也可以取自废水处理系统内的已过滤的废水。通常废水需要经过过滤后再进入系统,防止造成系统阻塞。加压容器可以采用化工等领域常用的加压容器。
在本发明的一些实施例中,进入加压容器内的气体可以为氧气、氮气、氢气,这些气体可以取自氧气瓶或者制氧机、氮气瓶或者制氮机、氢气瓶或者制氢设备。在本发明的另一些实施例中,进入加压容器内的气体也可 以是空气。
在本发明的一些实施例中,系统第二个组件中输送喷嘴中使用的毛细管可以是内直径在约1微米至20毫米之间的导管,优选在约100微米至约10毫米之间,最优选在约0.5毫米至约5毫米之间。
在本发明的一些实施例中,系统第二个组件中使用的输送喷嘴为板基喷嘴,包括可形成多个通路的一个或多个板面。通路的截面轮廓可以是不同的形状,圆形、正方形、矩形、椭圆形、三角形等,至少一个维度尺寸在约1微米至20毫米之间的导管,优选在约100微米至约10毫米之间,最优选在约0.5毫米至约5毫米之间。
在本发明的另外一些实施例中,所述毛细管的内直径或所述通道截面的至少一个维度的尺寸小于1mm,在约10nm至约1mm之间,优选在约1微米至约500微米之间,最优选在约10微米至约100微米之间。
在本发明的一些实施例中,系统第二个组件中使用的毛细管或板面是由二氧化硅或硅酸盐玻璃制成。也可以是由多种金属、合金、玻璃、塑料、聚合物、陶瓷、或其他适宜材料制成。
下面结合具体实施例对本发明进行更新的说明,这些实施例不构成对本发明的限制。
附图概述
图1为均相介质中伴随均相空化的自由能变化示意图。
图2为存在空化核的条件下异相空化过程的示意图。
图3为根据本发明的一些实施例用于生成纳米气泡的设备的毛细管和毛细管束的截面示意图。
图4为根据本发明的一些实施例在板面间形成通路的示意图。
图5为固液体间接触角示意图。
图6为根据本发明的优选实施例的用于将气体以纳米气泡的形式溶于水中的系统(设备)的示意图。
实施例
实施例1
采用图6所示设备,将溶解氧含量为6ppm的水通过雾化喷嘴(不锈钢、6毫米内径)引入至充有10MPa氧气的压力容器内。从雾化喷嘴喷出来的水成雾状,溶入氧气之后的水滴被收集在压力容器底部。被收集的水通过导管离开压力容器,而后在输出管路的末端经过一束硼硅酸盐毛细管(内经1毫米)喷射至水槽内。毛细管出口处测得的溶解氧含量为800ppm。
实施例2
采用图6所示设备,将含有5%葡萄糖的水溶液(D 5W溶液)通过雾化喷嘴(不锈钢、6毫米内径)引入至充有10MPa氧气的压力容器内。溶有氧气的D 5W溶液经过一束硼硅酸盐毛细管(内经1毫米)喷射至水槽内。在发射488/515nm波长光的氩离子激光器下,观测离开毛细管喷嘴的溶有气体的D 5W溶液,无直径大于500nm的气泡被观测到。
实施例3
采用图6所示设备,将水通过雾化喷嘴(不锈钢、6毫米内径)引入至充有10MPa氧气的压力容器内。而后溶有氧气的水经过一束硼硅酸盐毛细管(内经1毫米)喷射至白蛋白溶液中。使用亚微米颗粒粒度分析仪(Tri-Blue Microtrac,Leeds&Northrup Instruments)查看白蛋白溶液中的气泡粒径分布,发现气泡的粒径在约50nm至170nm之间呈正态分布,平均粒径约为110nm。
实施例4
采用图6所示设备,将水通过雾化喷嘴(不锈钢、6毫米内径)引入至充有10MPa空气的压力容器内。而后溶有空气的水经过一束硼硅酸盐毛细管(内经1毫米)喷射至白蛋白溶液中。使用亚微米颗粒粒度分析仪(Tri-Blue Microtrac,Leeds&Northrup Instruments)查看白蛋白溶液中的气泡粒径分布,发现气泡的粒径在约40nm至180nm之间呈正态分布,平均 粒径约为100nm。
实施例5
采用跟图6所示类似的设备,将景观湖中的水以3吨/小时的流量通过雾化喷嘴(不锈钢、6毫米内径)引入至充有2MPa氧气的压力容器内。而后溶有氧气的水经过一束硼硅酸盐毛细管(内经1毫米)回注至景观湖中。距离注水点10米处每小时取水样分析,结果如表1所示,在24小时内,氨氮(NH 3-N)从7.5降至0.9mg/L,化学需氧量(COD)从53降至26mg/L。
表1.氨氮及化学需氧量(COD)随时间变化。
时间(小时) 0 1 3 24
氨氮(NH 3-N,mg/L) 7.5 4.8 3.5 0.9
COD(mg/L) 53 50 32 26
尽管上文已经对具体实施例进行了具体描述,本领域的技术人员可以理解的是,在不脱离本发明的精神的范围内可进行形式和细节上的改变。可以理解,在不脱离此处披露的和根据所附权利要求所理解的更广泛的概念范围内,可以对不同实施例的适应性描述做出各种改变。

Claims (12)

  1. 一种生成含有纳米级气泡的液体的方法,包括:
    1)将液体通过雾化喷嘴引入含有气体的压力容器内,液体在压力容器内形成液滴,气体在高于大气压的压力下扩散到液滴中;
    2)将压力容器内的含气液体送至狭小空间,且所述空间至少一个维度的尺寸小于20毫米;
    3)将含气液体从狭小空间喷射至低于狭小空间压力的开放环境内。
  2. 根据权利要求1所述的方法,所述步骤1)中气液体混合时的绝对压强在0.15MPa至100MPa之间,优选在0.2MPa至20MPa之间,更优选在0.3MPa至10MPa之间。
  3. 根据权利要求1或2所述的方法,所述狭小空间所述至少一个维度的尺寸在1微米至20毫米之间,优选在100微米至10毫米之间,更优选在0.5毫米至5毫米之间。
  4. 根据权利要求1或2所述的方法,所述狭小空间是内直径在1微米至20毫米之间、优选在100微米至10毫米之间、最优选在0.5毫米至5毫米之间的毛细管。
  5. 根据权利要求1或2所述的方法,所述狭小空间是夹在两个或多个板面之间的通道,通道的横截面轮廓是圆形、正方形、矩形、椭圆形或三角形,且所述通道在至少一个维度上尺寸在1微米至20毫米之间,优选在100微米至10毫米之间,最优选在0.5毫米至5毫米之间。
  6. 根据权利要求1或2所述的方法,所述狭小空间与液体接触的表面的固有液体接触角应小于60°、优选小于40°、最优选小于30°,从而允许液体浸润所述所述狭小空间的所述表面。
  7. 根据权利要求4或5所述的方法,液体为水或含水液体,所述毛细管或通道内表面具有亲水性,且固有水接触角小于60°,优选小于40°,最优选小于30°。
  8. 根据权利要求1-7任一项所述的方法,其中所述压力容器内的 气体是氧气、空气、氢气、氮气或者其他气体。
  9. 一种用于生成含有纳米级气泡的液体的设备,包括第一组件和第二组件,
    所述第一组件包括:
    a)用于容纳气体和混合气液两相的压力容器;
    b)用于将液体输送至压力容器的雾化喷嘴;
    所述第二组件包括:
    c)带有输送喷嘴的与第一组件连接的管路,该输送喷嘴由一个或多个毛细管构成,或由夹在两个或多个板面间的一个或多个通道构成,且所述毛细管或通道至少在一个维度上的尺寸小于20mm。
  10. 根据权利要求9所述的设备,所述第二组件中输送喷嘴使用的是内直径在1微米至20毫米之间,优选在100微米至10毫米之间,最优选在0.5毫米至5毫米之间的毛细管。
  11. 根据权利要求9所述的设备,所述第二组件中使用的输送喷嘴是板基喷嘴,由两个或多个板面和夹在板面间的通道构成,所述通道的截面轮廓是圆形、正方形、矩形、椭圆形、三角形等,且至少一个维度的尺寸范围在约1微米至20毫米之间,优选在约100微米至约10毫米之间,最优选在约0.5毫米至约5毫米。
  12. 根据权利要求9或10或11所述的设备,所述第二组件中的毛细管或板面是由选自二氧化硅、硅酸盐玻璃、金属、合金、聚合物、陶瓷、或其他合适材料的材料制成。
PCT/CN2018/101945 2017-08-25 2018-08-23 生成含有纳米级气泡的液体的方法和系统 WO2019037759A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710742408.X 2017-08-25
CN201710742408.XA CN109420435A (zh) 2017-08-25 2017-08-25 生成含有纳米级气泡的液体的方法和系统

Publications (1)

Publication Number Publication Date
WO2019037759A1 true WO2019037759A1 (zh) 2019-02-28

Family

ID=65439375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101945 WO2019037759A1 (zh) 2017-08-25 2018-08-23 生成含有纳米级气泡的液体的方法和系统

Country Status (2)

Country Link
CN (1) CN109420435A (zh)
WO (1) WO2019037759A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185207A1 (en) * 2021-03-03 2022-09-09 Appleton Peter Lang Systems and methods for generating and regulating nano-bubbles

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894022A (zh) * 2003-12-15 2007-01-10 宫崎县 单分散气泡的生成方法
JP2011121002A (ja) * 2009-12-10 2011-06-23 Takenaka Komuten Co Ltd ナノバブル発生装置
JP4914399B2 (ja) * 2008-04-17 2012-04-11 株式会社オ−ラテック ナノバブル発生方法およびナノバブル発生装置
CN104030434A (zh) * 2014-06-26 2014-09-10 浙江大学 一种纳米曝气装置及其方法
CN203946901U (zh) * 2014-07-15 2014-11-19 昆明水啸科技有限公司 反冲激式微纳米气泡释放器
CN204097182U (zh) * 2014-08-19 2015-01-14 百事德机械(江苏)有限公司 一种微气泡释放头
CN105451888A (zh) * 2012-12-07 2016-03-30 高级水回收有限公司 用于将浮力材料和盐类从水中分离的溶气浮选、抗溶剂结晶和膜分离
CN205252919U (zh) * 2015-12-09 2016-05-25 陈璧颖 一种新型微纳米气泡发生装置
CN105621643A (zh) * 2016-03-23 2016-06-01 无锡德林海藻水分离技术发展有限公司 一种水体超饱和溶解氧增氧方法及超饱和溶解氧增氧系统
CN105967376A (zh) * 2016-07-19 2016-09-28 茌平县蓝天使赤泥科技有限公司 一种纳米还氧高氢气泡水及其制备装置和制备方法
CN206082230U (zh) * 2016-08-26 2017-04-12 宁波筑鸿纳米科技有限公司 翼型气液或液液混合纳米气泡发生单元及纳米气泡发生装置
CN106964268A (zh) * 2017-04-28 2017-07-21 宁波福莱源纳米科技有限公司 一种微纳米气泡发生装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101096000A (zh) * 2007-05-18 2008-01-02 广州甘蔗糖业研究所 在液体中形成微细气泡的方法和设备
CN103747859A (zh) * 2011-12-16 2014-04-23 松下电器产业株式会社 纳米气泡的生成系统以及生成方法
KR101153290B1 (ko) * 2012-01-03 2012-06-07 심성경 액체 속 나노버블 용존량 증가장치
EP2946829B1 (en) * 2013-01-17 2018-08-29 Idec Corporation Method for generating high density micro-bubble liquid and device for generating high density micro-bubble liquid
CA2921749A1 (en) * 2016-02-23 2017-08-23 0984767 B.C. Ltd. Method and system for removing hydrogen sulfide from wastewater
JP6129390B1 (ja) * 2016-07-28 2017-05-17 株式会社カクイチ製作所 ナノバブル生成ノズル及びナノバブル生成装置
CN106390786A (zh) * 2016-10-21 2017-02-15 杭州巧润科技有限公司 一种微纳米气泡发生器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894022A (zh) * 2003-12-15 2007-01-10 宫崎县 单分散气泡的生成方法
JP4914399B2 (ja) * 2008-04-17 2012-04-11 株式会社オ−ラテック ナノバブル発生方法およびナノバブル発生装置
JP2011121002A (ja) * 2009-12-10 2011-06-23 Takenaka Komuten Co Ltd ナノバブル発生装置
CN105451888A (zh) * 2012-12-07 2016-03-30 高级水回收有限公司 用于将浮力材料和盐类从水中分离的溶气浮选、抗溶剂结晶和膜分离
CN104030434A (zh) * 2014-06-26 2014-09-10 浙江大学 一种纳米曝气装置及其方法
CN203946901U (zh) * 2014-07-15 2014-11-19 昆明水啸科技有限公司 反冲激式微纳米气泡释放器
CN204097182U (zh) * 2014-08-19 2015-01-14 百事德机械(江苏)有限公司 一种微气泡释放头
CN205252919U (zh) * 2015-12-09 2016-05-25 陈璧颖 一种新型微纳米气泡发生装置
CN105621643A (zh) * 2016-03-23 2016-06-01 无锡德林海藻水分离技术发展有限公司 一种水体超饱和溶解氧增氧方法及超饱和溶解氧增氧系统
CN105967376A (zh) * 2016-07-19 2016-09-28 茌平县蓝天使赤泥科技有限公司 一种纳米还氧高氢气泡水及其制备装置和制备方法
CN206082230U (zh) * 2016-08-26 2017-04-12 宁波筑鸿纳米科技有限公司 翼型气液或液液混合纳米气泡发生单元及纳米气泡发生装置
CN106964268A (zh) * 2017-04-28 2017-07-21 宁波福莱源纳米科技有限公司 一种微纳米气泡发生装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185207A1 (en) * 2021-03-03 2022-09-09 Appleton Peter Lang Systems and methods for generating and regulating nano-bubbles

Also Published As

Publication number Publication date
CN109420435A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
US10598447B2 (en) Compositions containing nano-bubbles in a liquid carrier
Parmar et al. Microbubble generation and microbubble-aided transport process intensification—A state-of-the-art report
Rehman et al. Fluidic oscillator-mediated microbubble generation to provide cost effective mass transfer and mixing efficiency to the wastewater treatment plants
KR101937133B1 (ko) 마이크로·나노 버블의 발생 방법, 발생 노즐 및 발생 장치
US11179684B2 (en) System, device, and method to manufacture nanobubbles
Levitsky et al. Micro and nanobubbles in water and wastewater treatment: A state-of-the-art review
WO2016136762A1 (ja) 微細気泡生成装置
Xie et al. Preparation of microbubbles with the generation of Dean vortices in a porous membrane
TW201313623A (zh) 用於改良氣-液質傳的氣體分散設備
WO2019037759A1 (zh) 生成含有纳米级气泡的液体的方法和系统
JPS6148970B2 (zh)
KR101665078B1 (ko) 오존을 이용한 선박의 평형유지수 처리 시스템
CN104221989A (zh) 高速率水体充氧装置
CN209237735U (zh) 一种二次加压多级破碎的纳米气泡发生装置
Levitsky et al. A new bubble generator for creation of large quantity of bubbles with controlled diameters
US20200156018A1 (en) Fine bubble generating method and fine bubble generating apparatus
WO2020054680A1 (ja) ファインバブル発生装置及びファインバブル発生方法
WO2021015633A1 (en) A system for saturating liquids with gas and a method for saturating liquids with gas using this system
WO2020028646A1 (en) Apparatus and method for expanding nano-bubbles in a liquid carrier
US20210299617A1 (en) Nano-bubble generating apparatus and method
JP2009112975A (ja) 微細気泡発生装置、及び微細気泡発生方法
JP2004243173A (ja) 気泡発生装置、揚液装置、攪拌装置及び気泡発生方法
JPH06285482A (ja) 気液接触装置および気液接触システム
CN117861477A (zh) 一种粒径可控的微气泡发生装置
JP2005270935A (ja) 超微細気泡発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847391

Country of ref document: EP

Kind code of ref document: A1