WO2019037280A1 - 液晶显示器 - Google Patents

液晶显示器 Download PDF

Info

Publication number
WO2019037280A1
WO2019037280A1 PCT/CN2017/109830 CN2017109830W WO2019037280A1 WO 2019037280 A1 WO2019037280 A1 WO 2019037280A1 CN 2017109830 W CN2017109830 W CN 2017109830W WO 2019037280 A1 WO2019037280 A1 WO 2019037280A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
layer
color filter
resistance
Prior art date
Application number
PCT/CN2017/109830
Other languages
English (en)
French (fr)
Inventor
陈黎暄
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to JP2020508549A priority Critical patent/JP2020531897A/ja
Priority to EP17922270.8A priority patent/EP3674786A4/en
Priority to KR1020207008289A priority patent/KR102333358B1/ko
Priority to US15/574,252 priority patent/US20190064564A1/en
Publication of WO2019037280A1 publication Critical patent/WO2019037280A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements

Definitions

  • the present invention relates to the field of liquid crystal display, and more particularly to a liquid crystal display.
  • Liquid crystal displays have the advantages of high image quality, small size, light weight, low voltage drive, low power consumption and wide application range. Therefore, they have replaced cathode ray tubes (CRTs) as the mainstream of next-generation displays.
  • the liquid crystal display is mainly composed of a liquid crystal display panel (LiquidCrystal) Panel) and a backlight module (BlackLightModule).
  • the surface light source provided by the backlight module (usually using a white light source) can be displayed in gray scale after being controlled by the liquid crystal display panel.
  • color filter layers are usually used in liquid crystal display panels.
  • the color filter corresponding to each pixel is usually made of red, green, and blue color resists (Color).
  • the composition of the resist, and the size and arrangement pitch of each color resist are smaller than the size range recognizable by the human eye, so that the liquid crystal display seen by the human eye can display a color display in which different color lights (red light, green light, and blue light) are mixed. .
  • the thin film transistor liquid crystal display includes an array substrate 10 and a color filter substrate 11 opposite to the array substrate 10 .
  • a thin film transistor (TFT) 12 and a color filter layer 13 are disposed on the array substrate 10, wherein, as described above, the color filter layer 13 corresponding to each pixel is generally red (R), green ( G) and blue (B) color resistance, and the size and arrangement pitch of each color resistance are smaller than the size range recognizable by the human eye, so the liquid crystal display seen by the human eye can display different color lights (red light, green light, and Blu-ray) mixed color display.
  • a light blocking block 14 is disposed on the color film substrate 11 at a position corresponding to the thin film transistor 12 to ensure complete shielding of the backlight in the area of the thin film transistor 12.
  • a pillar 15 is further disposed between the array substrate 10 and the color filter substrate 11 to form a cell gap between the array substrate 10 and the color filter substrate 11 (shown by a double arrow in the figure).
  • FIG. 2 is a schematic structural view of a conventional RGB pixel array
  • FIG. 3 is a side view of FIG.
  • the thin film transistor 12 is connected to the pixel electrode of the color filter layer 13 region through the in-plane conductive line, and controls the corresponding liquid crystal deflection in the vertical direction of the RGB pixel.
  • LCD liquid crystal display
  • OLED organic light emitting diode display
  • bus line (Bus).
  • Line area connecting the row/data line of each row/column pixel and array trace (WOA, wire on Array).
  • WOA wire on Array
  • Such edge routing design is necessary, but at the same time their presence increases the distance from the display area to the edge of the display panel, making the borderless/ultra-narrow bezel display more difficult, and there is a wider black outside the display area.
  • Side non-display area At the same time, when the resolution of the display panel is from HD (HD, High Definition) Rise to Ultra HD (UHD, Ultra High) Definition) or higher, more areas are needed to place an increased number of scan lines/data lines, which makes it difficult to narrow the border area.
  • the number of thin film transistors per sub-pixel is greatly increased, especially when a compensation circuit is required, even as many as 5-6 thin film transistors.
  • the area occupied by these thin film transistors greatly reduces the area of the open area (ie, display area) of the display, so that the transmittance is greatly reduced.
  • the technical problem to be solved by the present invention is to provide a liquid crystal display capable of effectively reducing the area occupied by the thin film transistor, especially for a complex driving design, which greatly increases the opening area of the display, improves the transmittance and reduces the energy consumption.
  • the present invention provides a liquid crystal display comprising: an array substrate, on which a first thin film transistor layer and a first color filter layer are disposed; a color film substrate; The array substrate is oppositely disposed, and a second thin film transistor layer and a second color filter layer are disposed on the color filter substrate, and the color resistance of the first color filter layer and the second color filter layer are The color resistances are staggered, the thin film transistor of the first thin film transistor layer is disposed opposite to the thin film transistor of the second thin film transistor layer; and a light shielding layer is disposed on the array substrate side and the first thin film transistor layer The thin film transistor vertically corresponds to the direction.
  • the present invention also provides a liquid crystal display comprising: an array substrate, a first thin film transistor layer and a first color filter layer disposed on the array substrate; and a color film substrate, and the array substrate a second thin film transistor layer and a second color filter layer are disposed on the color filter substrate, and the color resistance of the first color filter layer is interlaced with the color resistance of the second color filter layer. arrangement.
  • the thin film transistor of the first thin film transistor layer is disposed opposite to the thin film transistor of the second thin film transistor layer.
  • a light shielding layer is disposed on a side of the array substrate opposite to a thin film transistor of the first thin film transistor layer.
  • the light shielding layer is disposed above the thin film transistor of the first thin film transistor layer.
  • the light shielding layer is disposed under the thin film transistor of the first thin film transistor layer.
  • a light shielding layer is disposed on a side of the color filter substrate opposite to a thin film transistor of the second thin film transistor layer.
  • the light shielding layer is disposed above the thin film transistor of the second thin film transistor layer.
  • the light shielding layer is disposed under the thin film transistor of the second thin film transistor layer.
  • a first filter layer is disposed on the thin film transistor of the first thin film transistor layer, and a second filter layer is disposed on the thin film transistor of the second thin film transistor layer.
  • the color resistance of the first color filter layer and the color resistance of the second color filter layer are staggered in the order of red resistance, green resistance, and blue resistance.
  • the color resistance of the first color filter layer and the color resistance of the second color filter layer are staggered in the order of red resistance, green resistance, blue resistance, and white resistance.
  • the color resistance of the first color filter layer and the color resistance of the second color filter layer are staggered in the order of red resistance, green resistance, blue resistance, and yellow resistance.
  • the first thin film transistor layer includes a plurality of thin film transistors arranged at intervals.
  • the second thin film transistor layer includes a plurality of thin film transistors arranged at intervals.
  • the invention has the advantages that the thin film transistor and the color filter layer are disposed on the array substrate and the color film substrate, which can effectively reduce the area occupied by the thin film transistor, especially for complex driving designs such as 2T and 3T, so that the display opening area Significantly increase, increase penetration and reduce energy consumption.
  • FIG. 1 is a schematic structural view of a conventional thin film transistor liquid crystal display
  • FIG. 2 is a schematic structural view of a conventional RGB pixel array
  • Figure 3 is a side view of Figure 2;
  • FIG. 4 is a schematic structural view of a first embodiment of a liquid crystal display according to the present invention.
  • FIG. 5 is a schematic view showing the arrangement of the photoresist of the first filter layer of the liquid crystal display of the present invention and the photoresist of the second filter layer;
  • FIG. 6 is a schematic structural view of a pixel array of a liquid crystal display according to the present invention.
  • Figure 7 is a schematic structural view of a second embodiment of the liquid crystal display of the present invention.
  • Fig. 8 is a schematic view showing another structure of a second embodiment of the liquid crystal display of the present invention.
  • a narrow border or borderless display will give a better appearance experience.
  • the distance from the display area to the edge of the display panel is increased, making the borderless/ultra-narrow border display difficult, in the display area.
  • HD High The Definition
  • the resolution of the display panel is from HD (HD, High The Definition rises to Ultra HD or higher, requiring more areas to place an increased number of scan lines/data lines, which makes it difficult to narrow the border area.
  • the number of thin film transistors per sub-pixel is greatly increased, especially when a compensation circuit is required, even as many as 5-6 thin film transistors.
  • the area occupied by these thin film transistors greatly reduces the area of the open area (ie, display area) of the display, so that the transmittance is greatly reduced.
  • the present invention provides a liquid crystal display capable of effectively reducing the area occupied by a thin film transistor or the like, particularly for a complex driving design such as 2T, 3T, etc., so that the display area of the display is greatly improved, the transmittance is improved, and the power consumption is reduced.
  • the liquid crystal display of the present invention comprises an array substrate 20 and a color filter substrate 30 disposed opposite to the array substrate 20.
  • the array substrate 20 and the color filter substrate 30 may be a glass substrate.
  • a box gap is supported between the array substrate 20 and the color filter substrate 30 through a pillar (not shown in the drawing) for placing a liquid crystal on the array substrate 20 and the color
  • the film substrate 30 is sealed around to prevent liquid crystal leakage.
  • a first thin film transistor layer 21 and a first color filter layer 22 are disposed on the array substrate 20.
  • the first thin film transistor layer 21 includes a plurality of thin film transistors 23 arranged at intervals.
  • the structure of the thin film transistor 23 is the same as that of the thin film transistor in the prior art, and will not be described again.
  • the first color filter layer 22 includes a plurality of red resistors R, green resistors G, blue resistors B or red resistors R, green resistors G, blue resistors B, white resistors W or red resistors R, and green resistors G. Blue resistance B, yellow resistance Y.
  • the color resistance of the first color filter layer 22 is disposed between the adjacent two thin film transistors 23, and is also disposed on the thin film transistor 23 adjacent thereto to prevent the light from being blocked.
  • the position of the thin film transistor 23 leaks the backlight, affecting the display effect of the liquid crystal display.
  • a second thin film transistor layer 31 and a second color filter layer 32 are disposed on the color filter substrate 30.
  • the second thin film transistor layer 31 includes a plurality of thin film transistors 33 arranged at intervals.
  • the structure of the thin film transistor 33 is the same as that of the thin film transistor in the prior art, and will not be described again.
  • the second color filter layer 32 includes a plurality of red resistors R, green resistors G, blue resistors B or red resistors R, green resistors G, blue resistors B, white resistors W or red resistors R, and green resistors G. Blue resistance B, yellow resistance Y.
  • the color resistance of the second color filter layer 32 is disposed between the adjacent two thin film transistors 33, and is also disposed on the thin film transistor 33 adjacent thereto to prevent the light from being blocked.
  • the position of the thin film transistor 33 leaks the backlight, affecting the display effect of the liquid crystal display.
  • FIG. 5 is a schematic view showing the arrangement of the photoresist of the first filter layer of the liquid crystal display of the present invention and the photoresist of the second filter layer
  • FIG. 6 is a schematic structural view of the pixel array of the liquid crystal display of the present invention. Referring to FIG. 4, FIG. 5 and FIG. 6, in the vertical direction, on the color filter substrate 30, the color of the second color filter layer 32 is not disposed at a position corresponding to the color resistance of the first color filter layer 22. On the array substrate 20, the color resistance of the first color filter layer 22 is not provided at a position corresponding to the color resistance of the second color filter layer 32.
  • the color resistance of the first color filter layer 22 and the color resistance of the second color filter layer 32 are sequentially arranged in the order of RGB or RGBW or RGBY.
  • the color resistance of the first color filter layer 22 and the color resistance of the second color filter layer 32 are arranged in the order of RGB, if the first color resistance on the array substrate 20 is
  • the red resistor R is provided with a green resistance G on the color film substrate 30 at a position after the red resistor R, a blue resistance B at a position corresponding to the green resistance G on the array substrate 20, and a blue color on the color filter substrate 30.
  • the position after the color resistance B is set to a red resistance R, and the color resistance of the first color filter layer 22 and the color resistance of the second color filter layer 32 are alternately arranged.
  • the thin film transistor of the first thin film transistor layer 21 is disposed opposite to the thin film transistor of the second thin film transistor layer 31, that is, in the vertical direction (Z direction), the thin film transistor of the first thin film transistor layer 21 Provided directly opposite to the thin film transistor of the second thin film transistor layer 31, further reducing the area of the area occupied by the thin film transistor.
  • the color resistance of the first color filter layer 22 is disposed between the adjacent two thin film transistors 23, and is also disposed on the thin film transistor 23 adjacent thereto, and the second color filter layer 32 is The color resist is disposed between the adjacent two thin film transistors 33 and is also disposed on the thin film transistor 33 adjacent thereto, and a double-layer color resist is formed in a region occupied by the thin film transistor to further strengthen the thin film transistor region.
  • the shading effect prevents the position of the thin film transistor 23 from leaking the backlight, affecting the display effect of the liquid crystal display.
  • a double color resistance is formed to enhance the light shielding effect of the thin film transistor region, preventing the position of the thin film transistor 23 from leaking the backlight, and affecting the display effect of the liquid crystal display.
  • a light shielding layer such as a black matrix (BM) is disposed in the thin film transistor region, and the light shielding effect is superior to that of the color resist layer.
  • BM black matrix
  • FIG. 7 is a schematic view showing the structure of a second embodiment of the liquid crystal display of the present invention.
  • a light shielding layer 24 is disposed on a side of the array substrate 20 that is perpendicular to a thin film transistor of the first thin film transistor layer 21.
  • the light shielding layer 24 may be disposed above the thin film transistor 23 (ie, the side facing the color filter substrate 30) or below (ie, the side facing the array substrate 20).
  • the light shielding layer 24 is disposed at the The upper surface of the thin film transistor 23 of the thin film transistor layer 21 (i.e., the surface facing the side of the color filter substrate 30), wherein if the light shielding layer 24 is provided on the thin film transistor, the color resistance is not provided on the surface of the thin film transistor 23.
  • the presence of the light shielding layer 24 further enhances the light shielding effect of the thin film transistor region, blocks the backlight of the thin film transistor region, prevents the position of the thin film transistor 23 from leaking the backlight, and affects the display effect of the liquid crystal display.
  • Fig. 8 is a schematic view showing another structure of a second embodiment of the liquid crystal display of the present invention.
  • a light shielding layer 34 is disposed on a side of the color filter substrate 30 in a direction perpendicular to the thin film transistor 33 of the second thin film transistor layer 31.
  • the light shielding layer 34 may be disposed above or below the thin film transistor 33 (ie, toward the side of the array substrate 20), that is, the side facing the color filter substrate 30.
  • the light shielding layer 34 is disposed at The lower surface of the thin film transistor 33 of the thin film transistor layer 31 (i.e., the surface facing the side of the color filter substrate 30), wherein if the light shielding layer 34 is provided on the thin film transistor, the color resistance is not provided on the surface of the thin film transistor 33.
  • the presence of the light shielding layer 34 further enhances the light shielding effect of the thin film transistor region, blocks the backlight of the thin film transistor region, prevents the position of the thin film transistor 33 from leaking the backlight, and affects the display effect of the liquid crystal display.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示器,其包括一阵列基板(20),在阵列基板(20)上设置有一第一薄膜晶体管层(21)及一第一彩色滤光层(22);以及一彩膜基板(30),与阵列基板(20)相对设置,在彩膜基板(30)上设置有一第二薄膜晶体管层(31)及一第二彩色滤光层(32),第一彩色滤光层(22)色阻与第二彩色滤光层(32)色阻交错排列。能够提高穿透率并降低能耗。

Description

液晶显示器 技术领域
本发明涉及液晶显示领域,尤其涉及一种液晶显示器。
背景技术
液晶显示器具有高画质、体积小、重量轻、低电压驱动、低消耗功率及应用范围广等优点,因此其已取代阴极射线管(cathoderaytube,CRT)成为新一代显示器的主流。液晶显示器主要由一液晶显示面板(LiquidCrystal Panel)及一背光模块(BlackLightModule)所构成。通过背光模块所提供的面光源(通常使用白光源),在经过液晶显示面板的控制后,可以进行灰阶的显示。
至于液晶显示器的色彩表现上,通常在液晶显示面板中使用彩色滤光层 来使背光模块的光线加以混色,达到色彩呈现。举例而言,以薄膜晶体管液晶显示器(Thin‑FilmTransistorLiquidCrystalDisplay,TFT‑LCD)为例,每一像素所对应的彩色滤光层(ColorFilter)通常是由红色、绿色以及蓝色色阻(Color resist)所构成,且各色阻的尺寸以及排列间距皆小于人眼可辨识的尺寸范围,因此人眼所看见的液晶显示器可以呈现不同色光(红光、绿光以及蓝光)混合而成的彩色显示。
图1是现有的一种薄膜晶体管液晶显示器的结构示意图。请参阅图1,所述薄膜晶体管液晶显示器包括阵列基板10及与所述阵列基板10相对的彩膜基板11。在所述阵列基板10上设置有薄膜晶体管(TFT)12及彩色滤光层13,其中,如上文所述,每一像素所对应的彩色滤光层13通常是由红色(R)、绿色(G)以及蓝色(B)色阻所构成,且各色阻的尺寸以及排列间距皆小于人眼可辨识的尺寸范围,因此人眼所看见的液晶显示器可以呈现不同色光(红光、绿光以及蓝光)混合而成的彩色显示。在所述彩膜基板11上对应薄膜晶体管12位置设置有遮光块14,以保证在薄膜晶体管12区域对背光的完全遮蔽。同时,在阵列基板10与彩膜基板11之间还设置有支柱15,以在阵列基板10与彩膜基板11之间形成盒间隙(如图中双向箭头所示)。
图2是现有的RGB像素阵列结构示意图,图3是图2的侧视图。请参阅图2及图3,其中薄膜晶体管12通过面内导线与彩色滤光层13区域的像素电极相连,并控制驱动RGB像素垂直方向上对应的液晶偏转。
随着显示器的发展,超窄边框的显示器渐渐成为一种趋势。不论液晶显示器(LCD)还是有机发光二极管显示器(OLED),窄边框或无边框显示将带来更好的外观体验。
然而,在面板的边缘,包括面板的两侧及与源极驱动(Source Driver)接触的天侧,存在汇流线(Bus line)区域连接各行/列像素的扫描线/数据线(gate/data line)以及阵列走线(WOA,wire on array)。这样的边缘走线的设计是必须的,但同时它们的存在使得显示面板的显示区域到边缘的距离增大,使得无边框/超窄边框显示较为困难,在显示区域之外存在较宽的黑边非显示区。同时,当显示面板的分辨率从高清(HD,High Definition)上升到超高清(UHD,Ultra High Definition)或者更高,需要更多的区域用来放置数量增加的扫描线/数据线,导致边框区域缩窄困难。
另一方面,随着LCD显示器采用2D1G或其他技术来改善画质时,每个子像素对应的薄膜晶体管数量大幅增加,特别是当需要补偿电路时,薄膜晶体管甚至多达5-6个。这些薄膜晶体管所占据的面积大大降低了显示器开口区域(即显示区域)面积,使得穿透率大幅下降。
技术问题
本发明所要解决的技术问题是,提供一种液晶显示器,其能够有效降低薄膜晶体管占据的区域面积,特别是对于复杂驱动设计,使得显示器开口区域大幅提高,提高穿透率并降低能耗。
技术解决方案
为了解决上述问题,本发明提供了一种液晶显示器,其包括:一阵列基板,在所述阵列基板上设置有一第一薄膜晶体管层及一第一彩色滤光层;一彩膜基板,与所述阵列基板相对设置,在所述彩膜基板上设置有一第二薄膜晶体管层及一第二彩色滤光层,所述第一彩色滤光层的色阻与所述第二彩色滤光层的色阻交错排列,所述第一薄膜晶体管层的薄膜晶体管与所述第二薄膜晶体管层的薄膜晶体管相对设置;以及一遮光层,设置在所述阵列基板侧与所述第一薄膜晶体管层的薄膜晶体管垂直对应的方向。
本发明还提供了一种液晶显示器,其包括:一阵列基板,在所述阵列基板上设置有一第一薄膜晶体管层及一第一彩色滤光层;以及一彩膜基板,与所述阵列基板相对设置,在所述彩膜基板上设置有一第二薄膜晶体管层及一第二彩色滤光层,所述第一彩色滤光层的色阻与所述第二彩色滤光层的色阻交错排列。
在一实施例中,所述第一薄膜晶体管层的薄膜晶体管与所述第二薄膜晶体管层的薄膜晶体管相对设置。
在一实施例中,在所述阵列基板侧,与所述第一薄膜晶体管层的薄膜晶体管垂直对应的方向上设置有一遮光层。
在一实施例中,所述遮光层设置在所述第一薄膜晶体管层的薄膜晶体管的上方。
在一实施例中,所述遮光层设置在所述第一薄膜晶体管层的薄膜晶体管的下方。
在一实施例中,在所述彩膜基板侧,与所述第二薄膜晶体管层的薄膜晶体管垂直对应的方向上设置有一遮光层。
在一实施例中,所述遮光层设置在所述第二薄膜晶体管层的薄膜晶体管的上方。
在一实施例中,所述遮光层设置在所述第二薄膜晶体管层的薄膜晶体管的下方。
在一实施例中,在所述第一薄膜晶体管层的薄膜晶体管上设置有一第一滤光层,在所述第二薄膜晶体管层的薄膜晶体管上设置有一第二滤光层。
在一实施例中,所述第一彩色滤光层的色阻与所述第二彩色滤光层的色阻按照红色阻、绿色阻、蓝色阻的顺序交错排列。
在一实施例中,所述第一彩色滤光层的色阻与所述第二彩色滤光层的色阻按照红色阻、绿色阻、蓝色阻、白色阻的顺序交错排列。
在一实施例中,所述第一彩色滤光层的色阻与所述第二彩色滤光层的色阻按照红色阻、绿色阻、蓝色阻、黄色阻的顺序交错排列。
在一实施例中,所述第一薄膜晶体管层包括多个间隔排列的薄膜晶体管。
在一实施例中,所述第二薄膜晶体管层包括多个间隔排列的薄膜晶体管。
有益效果
本发明的优点在于,在阵列基板及彩膜基板上均设置薄膜晶体管和彩膜滤光层,可有效降低薄膜晶体管占据的区域面积,特别是对于2T、3T等复杂驱动设计,使得显示器开口区域大幅提高,提高穿透率并降低能耗。
附图说明
图1是现有的一种薄膜晶体管液晶显示器的结构示意图;
图2是现有的RGB像素阵列结构示意图;
图3是图2的侧视图;
图4是本发明液晶显示器第一实施例的结构示意图;
图5是本发明液晶显示器的第一滤光层的光阻与第二滤光层的光阻交替排列的示意图;
图6是本发明液晶显示器的像素阵列结构示意图;
图7是本发明液晶显示器第二实施例的一结构示意图;
图8是本发明液晶显示器第二实施例的另一结构示意图。
本发明的最佳实施方式
下面结合附图对本发明提供的液晶显示器的具体实施方式做详细说明。
窄边框或无边框显示器将带来更好的外观体验,但是,由于边缘走线的设计使得显示面板的显示区域到边缘的距离增大,使得无边框/超窄边框显示较为困难,在显示区域之外存在较宽的黑边非显示区。同时,当显示面板的分辨率从高清(HD,High Definition上升到超高清或者更高,需要更多的区域用来放置数量增加的扫描线/数据线,导致边框区域缩窄困难。并且,随着LCD显示器采用2D1G或其他技术来改善画质时,每个子像素对应的薄膜晶体管数量大幅增加,特别是当需要补偿电路时,薄膜晶体管甚至多达5-6个。这些薄膜晶体管所占据的面积大大降低了显示器开口区域(即显示区域)面积,使得穿透率大幅下降。
基于此,本发明提供一种液晶显示器,其能够有效降低薄膜晶体管等占据的区域面积,特别是对于2T、3T等复杂驱动设计,使得显示器显示区域大幅提高,提高穿透率并降低能耗。
图4是本发明液晶显示器第一实施例的结构示意图。请参阅图4,在第一实施例中,本发明液晶显示器包括阵列基板20及与所述阵列基板20相对设置的彩膜基板30。所述阵列基板20及彩膜基板30可以为玻璃基板。如背景技术所述,在阵列基板20与彩膜基板30之间通过支柱(附图中未标示)支撑形成盒间隙,所述盒间隙用于放置液晶,在所述阵列基板20与所述彩膜基板30周围密封,以防止液晶泄漏。
在所述阵列基板20上设置有第一薄膜晶体管层21及第一彩色滤光层22。所述第一薄膜晶体管层21包括多个间隔排列的薄膜晶体管23。所述薄膜晶体管23的结构与现有技术中的薄膜晶体管的结构相同,不再赘述。所述第一彩色滤光层22包括多个红色阻R、绿色阻G、蓝色阻B或者红色阻R、绿色阻G、蓝色阻B、白色阻W或者红色阻R、绿色阻G、蓝色阻B、黄色阻Y。在本实施例中,第一彩色滤光层22的色阻除设置在相邻的两个薄膜晶体管23之间,还设置在与其相邻的薄膜晶体管23上,以起到遮光的作用,防止薄膜晶体管23的位置泄漏背光,影响液晶显示器的显示效果。
在所述彩膜基板30上设置有第二薄膜晶体管层31及第二彩色滤光层32。所述第二薄膜晶体管层31包括多个间隔排列的薄膜晶体管33。所述薄膜晶体管33的结构与现有技术中的薄膜晶体管的结构相同,不再赘述。所述第二彩色滤光层32包括多个红色阻R、绿色阻G、蓝色阻B或者红色阻R、绿色阻G、蓝色阻B、白色阻W或者红色阻R、绿色阻G、蓝色阻B、黄色阻Y。在本实施例中,第二彩色滤光层32的色阻除设置在相邻的两个薄膜晶体管33之间,还设置在与其相邻的薄膜晶体管33上,以起到遮光的作用,防止薄膜晶体管33的位置泄漏背光,影响液晶显示器的显示效果。
所述第一彩色滤光层22的色阻与所述第二彩色滤光层32的色阻交错排列。图5是本发明液晶显示器的第一滤光层的光阻与第二滤光层的光阻交替排列的示意图,图6是本发明液晶显示器的像素阵列结构示意图。请参阅图4、图5及图6,在垂直方向上,在彩膜基板30上,在对应所述第一彩色滤光层22的色阻的位置没有设置第二彩色滤光层32的色阻,在阵列基板20上,在对应所述第二彩色滤光层32的色阻的位置没有设置第一彩色滤光层22的色阻。所述第一彩色滤光层22的色阻与所述第二彩色滤光层32的色阻按照RGB或者RGBW或者RGBY的顺序依次排列。例如,以所述第一彩色滤光层22的色阻与所述第二彩色滤光层32的色阻按照RGB的顺序排列为例,若所述阵列基板20上的第一个色阻为红色阻R,则在彩膜基板30上对用红色阻R之后的位置设置绿色阻G,在阵列基板20上对应绿色阻G之后的位置设置蓝色阻B,在彩膜基板30上对应蓝色阻B之后的位置设置红色阻R,依此类托,所述第一彩色滤光层22的色阻与所述第二彩色滤光层32的色阻交错排列。
优选地,所述第一薄膜晶体管层21的薄膜晶体管与所述第二薄膜晶体管层31的薄膜晶体管相对设置,即在垂直方向上(Z方向),所述第一薄膜晶体管层21的薄膜晶体管与所述第二薄膜晶体管层31的薄膜晶体管正对设置,进一步减小薄膜晶体管占据的区域的面积。在本实施例中,第一彩色滤光层22的色阻除设置在相邻的两个薄膜晶体管23之间,还设置在与其相邻的薄膜晶体管23上,第二彩色滤光层32的色阻除设置在相邻的两个薄膜晶体管33之间,还设置在与其相邻的薄膜晶体管33上,则在薄膜晶体管占据的区域,会形成双层的色阻,进一步加强薄膜晶体管区域的遮光效果,防止薄膜晶体管23的位置泄漏背光,影响液晶显示器的显示效果。
在第一实施例中,在薄膜晶体管占据的区域,会形成双层的色阻,以加强薄膜晶体管区域的遮光效果,防止薄膜晶体管23的位置泄漏背光,影响液晶显示器的显示效果。而在第二实施例中,为了进一步加强薄膜晶体管区域的遮光效果,在薄膜晶体管区域设置遮光层,例如黑色矩阵(BM),其遮光效果优于色阻层。
图7是本发明液晶显示器第二实施例的一结构示意图。请参阅图7,在本实施例中,在所述阵列基板20侧,与所述第一薄膜晶体管层21的薄膜晶体管垂直对应的方向上设置有遮光层24。所述遮光层24可以设置在薄膜晶体管23的上方(即朝向彩膜基板30的一侧)或者下方(即朝向阵列基板20的一侧),在图7中,所述遮光层24设置在第一薄膜晶体管层21的薄膜晶体管23的上表面(即朝向彩膜基板30的一侧的表面),其中,若在薄膜晶体管上设置遮光层24,则色阻不会设置在薄膜晶体管23表面。遮光层24的存在进一步加强了薄膜晶体管区域的遮光效果,会遮挡薄膜晶体管区域的背光,防止薄膜晶体管23的位置泄漏背光,影响液晶显示器的显示效果。
图8是本发明液晶显示器第二实施例的另一结构示意图。请参阅图8,在本实施例中,在所述彩膜基板30侧,与所述第二薄膜晶体管层31的薄膜晶体管33垂直对应的方向上设置有遮光层34。所述遮光层34可以设置在薄膜晶体管33的上方(即朝向阵列基板20的一侧)或者下方(即朝向彩膜基板30的一侧),在图8中,所述遮光层34设置在第二薄膜晶体管层31的薄膜晶体管33的下表面(即朝向彩膜基板30的一侧的表面),其中,若在薄膜晶体管上设置遮光层34,则色阻不会设置在薄膜晶体管33表面。遮光层34的存在进一步加强了薄膜晶体管区域的遮光效果,会遮挡薄膜晶体管区域的背光,防止薄膜晶体管33的位置泄漏背光,影响液晶显示器的显示效果。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (15)

  1. 一种液晶显示器,其包括:
    一阵列基板,在所述阵列基板上设置有一第一薄膜晶体管层及一第一彩色滤光层;
    一彩膜基板,与所述阵列基板相对设置,在所述彩膜基板上设置有一第二薄膜晶体管层及一第二彩色滤光层,所述第一彩色滤光层的色阻与所述第二彩色滤光层的色阻交错排列,所述第一薄膜晶体管层的薄膜晶体管与所述第二薄膜晶体管层的薄膜晶体管相对设置;以及
    一遮光层,设置在所述阵列基板侧与所述第一薄膜晶体管层的薄膜晶体管垂直对应的方向。
  2. 一种液晶显示器,其包括:
    一阵列基板,在所述阵列基板上设置有一第一薄膜晶体管层及一第一彩色滤光层;以及
    一彩膜基板,与所述阵列基板相对设置,在所述彩膜基板上设置有一第二薄膜晶体管层及一第二彩色滤光层,所述第一彩色滤光层的色阻与所述第二彩色滤光层的色阻交错排列。
  3. 根据权利要求2所述的液晶显示器,其中所述第一薄膜晶体管层的薄膜晶体管与所述第二薄膜晶体管层的薄膜晶体管相对设置。
  4. 根据权利要求2所述的液晶显示器,其中在所述阵列基板侧,与所述第一薄膜晶体管层的薄膜晶体管垂直对应的方向上设置有一遮光层。
  5. 根据权利要求4所述的液晶显示器,其中所述遮光层设置在所述第一薄膜晶体管层的薄膜晶体管的上方。
  6. 根据权利要求4所述的液晶显示器,其中所述遮光层设置在所述第一薄膜晶体管层的薄膜晶体管的下方。
  7. 根据权利要求2所述的液晶显示器,其中在所述彩膜基板侧,与所述第二薄膜晶体管层的薄膜晶体管垂直对应的方向上设置有一遮光层。
  8. 根据权利要求7所述的液晶显示器,其中所述遮光层设置在所述第二薄膜晶体管层的薄膜晶体管的上方。
  9. 根据权利要求7所述的液晶显示器,其中所述遮光层设置在所述第二薄膜晶体管层的薄膜晶体管的下方。
  10. 根据权利要求2所述的液晶显示器,其中在所述第一薄膜晶体管层的薄膜晶体管上设置有一第一滤光层,在所述第二薄膜晶体管层的薄膜晶体管上设置有一第二滤光层。
  11. 根据权利要求2所述的液晶显示器,其中所述第一彩色滤光层的色阻与所述第二彩色滤光层的色阻按照红色阻、绿色阻、蓝色阻的顺序交错排列。
  12. 根据权利要求2所述的液晶显示器,其中所述第一彩色滤光层的色阻与所述第二彩色滤光层的色阻按照红色阻、绿色阻、蓝色阻、白色阻的顺序交错排列。
  13. 根据权利要求2所述的液晶显示器,其中所述第一彩色滤光层的色阻与所述第二彩色滤光层的色阻按照红色阻、绿色阻、蓝色阻、黄色阻的顺序交错排列。
  14. 根据权利要求2所述的液晶显示器,其中所述第一薄膜晶体管层包括多个间隔排列的薄膜晶体管。
  15. 根据权利要求2所述的液晶显示器,其中所述第二薄膜晶体管层包括多个间隔排列的薄膜晶体管。
PCT/CN2017/109830 2017-08-22 2017-11-08 液晶显示器 WO2019037280A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020508549A JP2020531897A (ja) 2017-08-22 2017-11-08 液晶ディスプレイ
EP17922270.8A EP3674786A4 (en) 2017-08-22 2017-11-08 LIQUID CRYSTAL DISPLAY
KR1020207008289A KR102333358B1 (ko) 2017-08-22 2017-11-08 액정 디스플레이
US15/574,252 US20190064564A1 (en) 2017-08-22 2017-11-08 Liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710723028.1 2017-08-22
CN201710723028.1A CN107357078B (zh) 2017-08-22 2017-08-22 液晶显示器

Publications (1)

Publication Number Publication Date
WO2019037280A1 true WO2019037280A1 (zh) 2019-02-28

Family

ID=60288009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109830 WO2019037280A1 (zh) 2017-08-22 2017-11-08 液晶显示器

Country Status (5)

Country Link
EP (1) EP3674786A4 (zh)
JP (1) JP2020531897A (zh)
KR (1) KR102333358B1 (zh)
CN (1) CN107357078B (zh)
WO (1) WO2019037280A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109343280B (zh) 2018-11-26 2020-12-29 惠科股份有限公司 一种显示面板和显示装置
CN111708214B (zh) * 2020-06-30 2021-08-31 厦门天马微电子有限公司 一种显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1689025A (zh) * 2002-10-17 2005-10-26 三星电子株式会社 内置指纹识别装置的液晶显示装置及其制造方法
KR100749458B1 (ko) * 2000-11-13 2007-08-14 삼성에스디아이 주식회사 티에프티 어레이 상에 칼라 필터가 형성된 엘시디 및 그 제조방법
CN101165576A (zh) * 2006-10-18 2008-04-23 群康科技(深圳)有限公司 液晶显示装置
CN101661204A (zh) * 2009-09-24 2010-03-03 友达光电股份有限公司 彩色滤光片形成于薄膜晶体管阵列基板上的制造方法
CN106324933A (zh) * 2016-10-12 2017-01-11 深圳市华星光电技术有限公司 薄膜晶体管阵列基板及其制备方法及液晶显示面板
CN107024812A (zh) * 2017-06-08 2017-08-08 深圳市华星光电技术有限公司 具有彩色滤光层的阵列基板及其制备方法、液晶显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159520A (ja) * 1982-03-18 1983-09-21 Seiko Epson Corp 液晶表示パネル
JPH07198614A (ja) * 1993-12-28 1995-08-01 Nippon Petrochem Co Ltd 液晶表示装置及びその欠陥有無検査法
JP2000147553A (ja) * 1998-11-11 2000-05-26 Sharp Corp 液晶表示装置
JP3918412B2 (ja) * 2000-08-10 2007-05-23 ソニー株式会社 薄膜半導体装置及び液晶表示装置とこれらの製造方法
JP2006301089A (ja) * 2005-04-18 2006-11-02 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置およびその製造方法
JP4179344B2 (ja) * 2006-06-06 2008-11-12 エプソンイメージングデバイス株式会社 液晶装置及び電子機器
KR101348605B1 (ko) * 2006-12-21 2014-01-07 삼성디스플레이 주식회사 컬러 필터 기판 및 이를 포함하는 액정표시패널
KR20080092717A (ko) * 2007-04-13 2008-10-16 엘지디스플레이 주식회사 액정 표시 장치
TWI584028B (zh) * 2012-12-28 2017-05-21 鴻海精密工業股份有限公司 液晶顯示面板及薄膜電晶體基板
CN104865742A (zh) * 2015-06-23 2015-08-26 京东方科技集团股份有限公司 显示面板及其控制方法和制造方法、显示装置
CN105242472B (zh) * 2015-11-02 2018-08-21 深圳市华星光电技术有限公司 液晶面板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100749458B1 (ko) * 2000-11-13 2007-08-14 삼성에스디아이 주식회사 티에프티 어레이 상에 칼라 필터가 형성된 엘시디 및 그 제조방법
CN1689025A (zh) * 2002-10-17 2005-10-26 三星电子株式会社 内置指纹识别装置的液晶显示装置及其制造方法
CN101165576A (zh) * 2006-10-18 2008-04-23 群康科技(深圳)有限公司 液晶显示装置
CN101661204A (zh) * 2009-09-24 2010-03-03 友达光电股份有限公司 彩色滤光片形成于薄膜晶体管阵列基板上的制造方法
CN106324933A (zh) * 2016-10-12 2017-01-11 深圳市华星光电技术有限公司 薄膜晶体管阵列基板及其制备方法及液晶显示面板
CN107024812A (zh) * 2017-06-08 2017-08-08 深圳市华星光电技术有限公司 具有彩色滤光层的阵列基板及其制备方法、液晶显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3674786A4 *

Also Published As

Publication number Publication date
JP2020531897A (ja) 2020-11-05
KR102333358B1 (ko) 2021-12-02
EP3674786A4 (en) 2021-03-24
CN107357078A (zh) 2017-11-17
EP3674786A1 (en) 2020-07-01
CN107357078B (zh) 2020-10-16
KR20200039787A (ko) 2020-04-16

Similar Documents

Publication Publication Date Title
US10013938B2 (en) Display panel and display device, and fabrication method thereof
US8207924B2 (en) Display device
US8816350B2 (en) Array substrate, liquid crystal panel, liquid crystal display device, and television receiver
EP2352057B1 (en) Display panel
WO2017092082A1 (zh) 阵列基板以及液晶显示装置
WO2016201724A1 (zh) 像素结构及液晶显示面板
US9780126B2 (en) Z-inversion type display device and method of manufacturing the same
WO2017071090A1 (zh) 广视角面板和显示装置
WO2017117850A1 (zh) 阵列基板、液晶显示面板及液晶显示装置
KR20090092415A (ko) 표시 기판 및 이를 갖는 표시 장치
WO2017079992A1 (zh) 改善大视角色偏的液晶显示器
KR20160005654A (ko) 디스플레이 패널
WO2023217261A1 (zh) 显示面板和显示装置
TWI572963B (zh) 顯示面板
WO2014023010A1 (zh) 一种阵列基板及液晶显示面板
WO2018120386A1 (zh) 显示面板及其阵列基板
WO2019028974A1 (zh) 一种rgbw液晶面板
WO2021056769A1 (zh) 显示面板及其制作方法
WO2019037280A1 (zh) 液晶显示器
WO2023279440A1 (zh) 显示面板和显示装置
WO2017210943A1 (zh) 像素结构、液晶显示面板及其驱动方法
KR20130007746A (ko) 화소 유닛 및 이를 포함하는 표시 패널
WO2016070464A1 (zh) 显示面板及显示装置
KR20100054242A (ko) 액정표시장치
US7518686B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508549

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207008289

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017922270

Country of ref document: EP

Effective date: 20200323