WO2019028974A1 - 一种rgbw液晶面板 - Google Patents

一种rgbw液晶面板 Download PDF

Info

Publication number
WO2019028974A1
WO2019028974A1 PCT/CN2017/102619 CN2017102619W WO2019028974A1 WO 2019028974 A1 WO2019028974 A1 WO 2019028974A1 CN 2017102619 W CN2017102619 W CN 2017102619W WO 2019028974 A1 WO2019028974 A1 WO 2019028974A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sub
white
pixels
blue
Prior art date
Application number
PCT/CN2017/102619
Other languages
English (en)
French (fr)
Inventor
邢振周
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/561,062 priority Critical patent/US10353261B2/en
Publication of WO2019028974A1 publication Critical patent/WO2019028974A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Definitions

  • the present invention relates to a liquid crystal display field, and more particularly to an RGBW liquid crystal panel.
  • RGBW four-primary color display technology adds white sub-pixels to the RGW three primary colors, which can improve the transmittance of the liquid crystal panel.
  • the liquid crystal panel can be reduced by using the sub-pixel sharing algorithm without changing the resolution.
  • the number of pixels of 3 achieves the effect of reducing the ultra-high resolution production yield risk and reducing the backlight power consumption by 40% while improving the contrast of the image. Therefore, the RGBW liquid crystal panel has a broad development space in the future.
  • RGBW liquid crystal panels also have some inherent defects, such as the problem of dark color, such as when viewing large angles (view Angle) When viewing, the optical brightness curve does not match gamma 2.2, which is a problem of color shift. And when the viewing angle is larger, the color drift phenomenon is more obvious.
  • FIG. 1 is a gamma curve of a prior art liquid crystal panel at different viewing angles.
  • the gamma value is 2.2.
  • the viewing angle changes from a frontal angle of 0° to a squint angle of 30° and then to a squint angle of 60°, the gamma curve corresponding to different viewing angles deviates from the gamma curve corresponding to the frontal angle of 0°, and the degree of color drift is more serious. More and more obvious.
  • the technical problem to be solved by the present invention is to provide an RGWB liquid crystal panel capable of simultaneously improving the problem of solid color darkness and color drift of the liquid crystal panel.
  • a technical solution adopted by the present invention is to provide an RGBW liquid crystal panel including a plurality of scanning lines and a plurality of data lines vertically intersecting each other, and a plurality of scanning lines and a plurality of data lines.
  • the line is divided into a plurality of sub-pixel regions; each sub-pixel region includes a sub-pixel and a thin film transistor, and a gate line and a source of each thin film transistor are respectively connected with one scan line and one data line, and a drain connector of each thin film transistor a plurality of sub-pixels including a plurality of first white sub-pixels and a plurality of second white sub-pixels, wherein the thin film transistor corresponding to the first white sub-pixel and the thin film transistor corresponding to the second white sub-pixel have different channel width and length
  • the first white sub-pixel and the second white sub-pixel have different brightnesses, wherein the channel width-to-length ratio of the thin film transistor corresponding to the first white sub-pixel is a first aspect ratio, and the second white sub-pixel corresponds to
  • the thin film transistor has a channel width to length ratio of a second aspect ratio, and the first width to length ratio is smaller than the second aspect ratio to make the first white subpixel white sub
  • the brightness of the pixel is smaller
  • an RGBW liquid crystal panel including a plurality of scanning lines and a plurality of data lines vertically intersecting each other, and a plurality of scanning lines and a plurality of lines.
  • the data line is divided into a plurality of sub-pixel regions; each sub-pixel region includes a sub-pixel and a thin film transistor, and a gate line and a source of each thin film transistor are respectively connected to one scan line and one data line, and the drain connection of each thin film transistor is connected a sub-pixel; wherein the plurality of sub-pixels comprise a plurality of first white sub-pixels and a plurality of second white sub-pixels, and the thin film transistors corresponding to the first white sub-pixel and the thin film transistors corresponding to the second white sub-pixel have different channel widths
  • the length ratio is such that the first white sub-pixel and the second white sub-pixel have different brightness.
  • the beneficial effects of the present invention are that the plurality of sub-pixels in the RGBW liquid crystal panel of the present invention include a first white sub-pixel and a plurality of second white sub-pixels, wherein the first white sub-pixel corresponds to the thin film transistor and the second white sub-pixel
  • the corresponding thin film transistors have different channel aspect ratios such that the first white sub-pixel and the second white sub-pixel have different brightness.
  • the present invention can simultaneously improve the problem of solid color darkness and color drift of the liquid crystal panel, thereby improving the display quality of the liquid crystal panel.
  • 1 is a gamma curve of a prior art liquid crystal panel at different viewing angles
  • FIG. 2 is a schematic structural view of an RGBW liquid crystal panel according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural view of the thin film transistor of FIG. 2;
  • FIG. 4 is a schematic diagram of a channel width to length ratio of a thin film transistor corresponding to different sub-pixels in FIG. 2;
  • FIG. 5 is a comparison diagram of observation curves when the liquid crystal panel is observed at a large viewing angle before and after;
  • Fig. 6 is a schematic structural view of an RGBW liquid crystal panel according to a second embodiment of the present invention.
  • the RGBW liquid crystal panel 10 includes a plurality of scanning lines G(N) (N is a natural number) and a plurality of data lines D(N) (N is a natural number) that intersect each other vertically, and is composed of a plurality of scanning lines G. (N) and the plurality of data lines D(N) are divided into a plurality of sub-pixel regions 11.
  • Each sub-pixel region 11 includes a sub-pixel 111 and a thin film transistor 112.
  • the gate and the source of each thin film transistor 112 are respectively connected to one scan line and one data line, and the drain of each thin film transistor 112 is connected to the sub-pixel.
  • the plurality of sub-pixels 111 includes a plurality of first white sub-pixels W1 and a plurality of second white sub-pixels W2.
  • the thin film transistor 112 corresponding to the first white sub-pixel W1 and the thin film transistor 112 corresponding to the second white sub-pixel W2 have different channel width to length ratios W/L, so that the first white sub-pixel W1 and the second white sub-pixel W2 Have different brightness.
  • the channel width-to-length ratio W/L of the thin film transistor 112 corresponding to the first white sub-pixel W1 is the first aspect ratio W1/L1
  • the channel width of the thin film transistor 112 corresponding to the second white sub-pixel W2 is long.
  • the ratio W/L is the second width to length ratio W2/L2
  • the first aspect ratio W1/L1 is smaller than the second aspect ratio W2/L2 such that the luminance of the first white sub-pixel W1 is smaller than the luminance of the second white sub-pixel W2.
  • the drain current Id is only related to the channel width-to-length ratio W/L of the thin film transistor, and the larger the channel width-to-length ratio W/L is, the larger the drain current Id is.
  • the greater the brightness of the sub-pixel corresponding to the thin film transistor the smaller the channel width-to-length ratio W/L is, the smaller the drain current Id is.
  • the second white sub-pixel When the channel width-to-length ratio of the thin film transistor corresponding to the pixel W2 is larger than the channel width-to-length ratio of the thin film transistor corresponding to the first white sub-pixel W1, the luminance of the second white sub-pixel W2 is greater than the luminance of the first white sub-pixel W1.
  • FIG. 3 is a schematic structural view of the thin film transistor of FIG. As shown in FIG. 3, a represents the channel width W of the thin film transistor, and b represents the channel length L of the thin film transistor.
  • the thin film transistor corresponding to the first white sub-pixel W1 and the thin film transistor corresponding to the second white sub-pixel W2 have the same channel length, and the channel width of the thin film transistor corresponding to the first white sub-pixel W1 is smaller than the first
  • the channel width of the thin film transistor corresponding to the second white sub-pixel W2 is such that the channel width-to-length ratio of the thin film transistor corresponding to the first white sub-pixel W1 is smaller than the channel width-to-length ratio of the thin film transistor corresponding to the second white sub-pixel W2 .
  • the channel length of the thin film transistor corresponding to the first white sub-pixel W1 is greater than
  • the channel length of the thin film transistor corresponding to the second white sub-pixel W2 may also be such that the channel width-to-length ratio of the thin film transistor corresponding to the first white sub-pixel W1 is smaller than the channel width of the thin film transistor corresponding to the second white sub-pixel W2.
  • the present invention is not limited to the embodiment.
  • the plurality of sub-pixels 111 further includes a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B, wherein the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel
  • the channel width to length ratio W/L of the thin film transistor 112 corresponding to the pixel B is the second width to length ratio W2/L2.
  • the plurality of sub-pixels 111 in the liquid crystal panel 10 are repeatedly arranged every two rows, wherein the first row and the second row of the sub-pixels 111 in the two rows are repeatedly arranged in four colors, and the two rows are arranged.
  • the first row and the second row of sub-pixels 111 are arranged in the reverse order.
  • the first row of sub-pixels 111 are in accordance with the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, the first white sub-pixel W1, the red sub-pixel R, the green sub-pixel G, and the blue sub-pixel.
  • the second white sub-pixels W2 are repeatedly arranged in order, and the second row of sub-pixels 111 are in accordance with the second white sub-pixel W2, the blue sub-pixel B, the green sub-pixel G, the red sub-pixel R, and the first white sub-pixel W1.
  • the order of the blue sub-pixel B, the green sub-pixel G, and the red sub-pixel R is repeatedly arranged.
  • the channel width to length ratio of the thin film transistor corresponding to the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, and the second white sub-pixel W2 is W/L.
  • the second aspect ratio W2/L2 is set, and the channel width-to-length ratio W/L of the thin film transistor corresponding to the first white sub-pixel W1 is set to the first aspect ratio W1/L1, thereby reducing the overall luminance of the white sub-pixel. , in order to achieve the effect of improving the darkness of the solid color.
  • the channel width-to-length ratio W/L of the thin film transistor corresponding to some white sub-pixels in the liquid crystal panel is changed from the second aspect ratio while ensuring that other sub-pixels are unchanged.
  • W2/L2 is reduced to the first aspect ratio W1/L1, so that the overall brightness of the white sub-pixel can be reduced.
  • Fig. 5 is a comparison diagram of observation curves when the liquid crystal panel is observed at a large viewing angle before and after. As shown in FIG. 5, comparing the liquid crystal panel before the improvement and the liquid crystal panel after the improvement, the observation curve formed by the positive viewing angle brightness and the off-angle brightness observed by the latter is closer to the ideal straight line, that is, when viewed at a large viewing angle, Good display effect.
  • the channel width-to-length ratio of the thin film transistors corresponding to the white sub-pixels in the liquid crystal panel before the improvement is the second width-to-length ratio W2/L2
  • the thin film transistor corresponding to the second white sub-pixel in the improved liquid crystal panel The channel width to length ratio is the second width to length ratio W2/L2
  • the channel width to length ratio of the thin film transistor corresponding to the first white subpixel is the first width to length ratio W1/L1, wherein the first width to length ratio W1/L1 Less than the second width to length ratio W2/L2.
  • the actual observation curve is a curve formed by superimposing the first observation curve and the second observation curve, wherein the first observation curve is a thin film transistor of a white sub-pixel
  • the channel width-to-length ratio is an observation curve corresponding to the liquid crystal panel of the second width-to-length ratio W2/L2
  • the second observation curve is a liquid crystal transistor of the white sub-pixel having a channel width-to-length ratio of the first aspect ratio W1/L1.
  • the corresponding observation curve of the panel therefore, the actual observation curve is closer to the ideal line.
  • Fig. 6 is a schematic structural view of an RGBW liquid crystal panel according to a second embodiment of the present invention. As shown in FIG. 6, the main differences between the RGBW liquid crystal panel 20 shown in FIG. 6 and the RGBW liquid crystal panel 10 shown in FIG. 2 are as follows:
  • the plurality of sub-pixels 111 in the liquid crystal panel 20 are repeatedly arranged in six rows, and the sub-pixels 111 in the six rows are repeatedly arranged in four colors, and the arrangement order of the sub-pixels 111 in the six rows is different from each other.
  • the four colors of the sub-pixels 111 between the first row and the second row, between the third row and the fourth row, and between the fifth row and the sixth row of the six rows are arranged in reverse order, six
  • Each row of sub-pixels 111 in the row includes both the first white sub-pixel W1 and the second white sub-pixel W2.
  • the first row of sub-pixels 111 are in accordance with the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, the first white sub-pixel W1, the red sub-pixel R, the green sub-pixel G, The order of the blue sub-pixel B, the second white sub-pixel W2, the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, and the first white sub-pixel W1 is repeatedly arranged;
  • the second row of sub-pixels 111 is in accordance with the first white Sub-pixel W1, blue sub-pixel B, green sub-pixel G, red sub-pixel R, second white sub-pixel W2, blue sub-pixel B, green sub-pixel G, red sub-pixel R, first white sub-pixel W1
  • the blue sub-pixel B, the green sub-pixel G, and the red sub-pixel R are repeatedly arranged in sequence;
  • the third row of sub-pixels 111 are in accordance with the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B,
  • Red sub-pixel R, green sub-pixel G, blue sub-pixel B, first white sub-pixel W1, red sub-pixel R, green sub-pixel G, blue sub-pixel B, and second white sub-pixel W2 are repeatedly arranged in sequence;
  • the fourth row of sub-pixels 111 is in accordance with the first white sub-pixel W1, the blue sub-pixel B, The color sub-pixel G, the red sub-pixel R, the first white sub-pixel W1, the blue sub-pixel B, the green sub-pixel G, the red sub-pixel R, the second white sub-pixel W2, the blue sub-pixel B, and the green sub-pixel G
  • the red sub-pixels R are sequentially arranged in sequence
  • the fifth row of sub-pixels 111 are in accordance with the red sub-pixel R, the green sub-pixel G, the blue sub-pixel B, the second white sub-pixel W2, the red sub-pixel R, the green sub-pixel G, and the blue The sub-pixel B, the first white sub-pixel W1, the red sub-pixel R
  • the arrangement of the RGBW liquid crystal panel 20 shown in FIG. 6 is the same except that the arrangement order of the sub-pixels is different from that of the RGBW liquid crystal panel 10 shown in FIG. 2. For the sake of simplicity, the rest of the content will not be described herein.
  • the beneficial effects of the present invention are that the plurality of sub-pixels in the RGBW liquid crystal panel of the present invention include a first white sub-pixel and a plurality of second white sub-pixels, wherein the first white sub-pixel corresponds to the thin film transistor and the second white sub-pixel
  • the corresponding thin film transistors have different channel aspect ratios such that the first white sub-pixel and the second white sub-pixel have different brightness.
  • the present invention can simultaneously improve the problem of solid color darkness and color drift of the liquid crystal panel, thereby improving the display quality of the liquid crystal panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Liquid Crystal (AREA)

Abstract

一种RGBW液晶面板,包括多条扫描线及多条数据线,并由多条扫描线及多条数据线分为多个子像素区域(11);每个子像素区域(11)包括一子像素(111)以及一薄膜晶体管(112),每个薄膜晶体管(112)的栅极和源极分别连接一扫描线及一数据线、漏极连接一子像素(111);其中,多个子像素(111)包括多个第一白色子像素(W1)和多个第二白色子像素(W2),第一白色子像素(W1)对应的薄膜晶体管(112)和第二白色子像素(W2)对应的薄膜晶体管(112)具有不同的沟道宽长比,从而使得第一白色子像素(W1)和第二白色子像素(W2)具有不同的亮度。

Description

一种RGBW液晶面板
【技术领域】
本发明涉及液晶显示域,特别是涉及一种RGBW液晶面板。
【背景技术】
RGBW四基色显示技术在RGW三基色的基础上增加了白色子像素,从而可以提高液晶面板的穿透率;同时,通过使用子像素共享算法在解析度不变的前提下可以减少液晶面板1/3的像素数目,实现在降低超高解析度的生产良率风险、降低40%的背光功耗的同时,提高图像对比度的效果,因此RGBW液晶面板在未来具有广阔的发展空间。
但是RGBW液晶面板也存在某些固有缺陷,例如纯色偏暗的问题,例如当大视角(view angle)观看时,光学亮度曲线无法符合gamma 2.2,即出现颜色漂移(color shift)的问题。且当观看视角越大时,颜色漂移现象越明显。
图1是现有技术的液晶面板在不同视角时的gamma曲线。如图1所示,当视角为正视角度0°时,gamma值为2.2。随着视角由正视角度0°变为斜视角度30°再变为斜视角度60°,不同视角对应的gamma曲线偏离正视角度0°所对应的gamma曲线的程度越来越严重,从而使得颜色漂移现象越来越明显。
因此,如何同时改善RGBW液晶面板的纯色偏暗和颜色漂移的问题,进而提高RGBW液晶面板的显示品质是个亟待解决的问题。
【发明内容】
本发明主要解决的技术问题是提供一种RGWB液晶面板,能够同时改善液晶面板的纯色偏暗和颜色漂移的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种RGBW液晶面板,该液晶面板包括互相垂直交叉的多条扫描线及多条数据线,并由多条扫描线及多条数据线分为多个子像素区域;每个子像素区域包括一个子像素以及一薄膜晶体管,每个薄膜晶体管的栅极和源极分别连接一条扫描线及一条数据线,每个薄膜晶体管的漏极连接子像素;其中,多个子像素包括多个第一白色子像素和多个第二白色子像素,第一白色子像素对应的薄膜晶体管和第二白色子像素对应的薄膜晶体管具有不同的沟道宽长比,从而使得第一白色子像素和第二白色子像素具有不同的亮度;其中,第一白色子像素对应的薄膜晶体管的沟道宽长比为第一宽长比,第二白色子像素对应的薄膜晶体管的沟道宽长比为第二宽长比,第一宽长比小于第二宽长比以使第一白色子像素白色子像素的亮度小于第二白色子像素白色子像素的亮度;其中,第一白色子像素对应的薄膜晶体管和第二白色子像素对应的薄膜晶体管具有相同的沟道长度,第一白色子像素对应的薄膜晶体管的沟道宽度小于第二白色子像素对应的薄膜晶体管的沟道宽度;其中,多个子像素还包括红色子像素、绿色子像素和蓝色子像素,红色子像素、绿色子像素和蓝色子像素对应的薄膜晶体管的沟道宽长比为第二宽长比。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种RGBW液晶面板,该液晶面板包括互相垂直交叉的多条扫描线及多条数据线,并由多条扫描线及多条数据线分为多个子像素区域;每个子像素区域包括一个子像素以及一薄膜晶体管,每个薄膜晶体管的栅极和源极分别连接一条扫描线及一条数据线,每个薄膜晶体管的漏极连接子像素;其中,多个子像素包括多个第一白色子像素和多个第二白色子像素,第一白色子像素对应的薄膜晶体管和第二白色子像素对应的薄膜晶体管具有不同的沟道宽长比,从而使得第一白色子像素和第二白色子像素具有不同的亮度。
本发明的有益效果是:本发明的RGBW液晶面板中的多个子像素包括第一白色子像素和多个第二白色子像素,其中,第一白色子像素对应的薄膜晶体管和第二白色子像素对应的薄膜晶体管具有不同的沟道宽长比,从而使得第一白色子像素和第二白色子像素具有不同的亮度。通过上述方式,本发明能够同时改善液晶面板的纯色偏暗和颜色漂移的问题,进而提高液晶面板的显示品质。
【附图说明】
图1是现有技术的液晶面板在不同视角时的gamma曲线;
图2是本发明第一实施例的RGBW液晶面板的结构示意图;
图3是图2中薄膜晶体管的结构示意图;
图4是图2中不同子像素对应的薄膜晶体管的沟道宽长比的示意图;
图5是改善前后大视角观测液晶面板时的观测曲线对比图;
图6是本发明第二实施例的RGBW液晶面板的结构示意图。
【具体实施方式】
在说明书及权利要求书当中使用了某些词汇来指称特定的组件,所属领域中的技术人员应可理解,制造商可能会用不同的名词来称呼同样的组件。本说明书及权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的基准。下面结合附图和实施例对本发明进行详细说明。
图2是本发明第一实施例的RGBW液晶面板的结构示意图。如图2所示,RGBW液晶面板10包括互相垂直交叉的多条扫描线G(N)(N为自然数)及多条数据线D(N)(N为自然数),并由多条扫描线G(N)及多条数据线D(N)分为多个子像素区域11。
其中,每个子像素区域11包括一个子像素111和一个薄膜晶体管112,每个薄膜晶体管112的栅极和源极分别连接一条扫描线及一条数据线,每个薄膜晶体管112的漏极连接该子像素区域11内的子像素111。
其中,多个子像素111包括多个第一白色子像素W1和多个第二白色子像素W2。第一白色子像素W1对应的薄膜晶体管112和第二白色子像素W2对应的薄膜晶体管112具有不同的沟道宽长比W/L,从而使得第一白色子像素W1和第二白色子像素W2具有不同的亮度。
具体来说,第一白色子像素W1对应的薄膜晶体管112的沟道宽长比W/L为第一宽长比W1/L1,第二白色子像素W2对应的薄膜晶体管112的沟道宽长比W/L为第二宽长比W2/L2,第一宽长比W1/L1小于第二宽长比W2/L2使得第一白色子像素W1的亮度小于第二白色子像素W2的亮度。
本领域的技术人员可以理解,由薄膜晶体管的漏电流为Id=0.5*K*W/L*(Vgs-Vth)^2(其中K、Vth都是只与薄膜晶体管的材料相关的常数)可知,当给薄膜晶体管的Vgs一定时,其漏极电流Id只与该薄膜晶体管的沟道宽长比W/L相关,沟道宽长比W/L越大则漏极电流Id越大,此时薄膜晶体管对应的子像素的亮度越大,沟道宽长比W/L越小则漏极电流Id越小,此时薄膜晶体管对应的子像素的亮度越小,因此,当第二白色子像素W2对应的薄膜晶体管的沟道宽长比大于第一白色子像素W1对应的薄膜晶体管的沟道宽长比时,第二白色子像素W2的亮度大于第一白色子像素W1的亮度。
请一并参考图3,图3是图2中薄膜晶体管的结构示意图。如图3所示,a代表薄膜晶体管的沟道宽度W,b代表薄膜晶体管的沟道长度L。
在本实施例中,第一白色子像素W1对应的薄膜晶体管和第二白色子像素W2对应的薄膜晶体管具有相同的沟道长度,第一白色子像素W1对应的薄膜晶体管的沟道宽度小于第二白色子像素W2对应的薄膜晶体管的沟道宽度时,从而使得第一白色子像素W1对应的薄膜晶体管的沟道宽长比小于第二白色子像素W2对应的薄膜晶体管的沟道宽长比。在其它实施例中,当第一白色子像素W1对应的薄膜晶体管和第二白色子像素W2对应的薄膜晶体管具有相同的沟道宽度,第一白色子像素W1对应的薄膜晶体管的沟道长度大于第二白色子像素W2对应的薄膜晶体管的沟道长度,也可以实现第一白色子像素W1对应的薄膜晶体管的沟道宽长比小于第二白色子像素W2对应的薄膜晶体管的沟道宽长比,本发明不以本实施例为限。
在本实施例中,请一并参考图4,多个子像素111还包括红色子像素R、绿色子像素G和蓝色子像素B,其中,红色子像素R、绿色子像素G和蓝色子像素B对应的薄膜晶体管112的沟道宽长比W/L为第二宽长比W2/L2。
在本实施例中,液晶面板10中的多个子像素111按照每两行重复排列,其中,该两行中的第一行和第二行子像素111按照四种颜色重复排列,且该两行中第一行和第二行子像素111的排列顺序相反。
在本实施例中,第一行子像素111按照红色子像素R、绿色子像素G、蓝色子像素B、第一白色子像素W1、红色子像素R、绿色子像素G、蓝色子像素B、第二白色子像素W2的顺序重复排列,第二行子像素111按照第二白色子像素W2、蓝色子像素B、绿色子像素G、红色子像素R、第一白色子像素W1、蓝色子像素B、绿色子像素G、红色子像素R的顺序重复排列。
本领域的技术人员可以理解,在本实施例中,将红色子像素R、绿色子像素G、蓝色子像素B、第二白色子像素W2对应的薄膜晶体管的沟道宽长比W/L设置为第二宽长比W2/L2,第一白色子像素W1对应的薄膜晶体管的沟道宽长比W/L设置为第一宽长比W1/L1,从而能够降低白色子像素的整体亮度,进而达到改善纯色偏暗的效果。
换个角度来说,在本实施例中,在保证其它子像素不变的前提下,通过将液晶面板中部分白色子像素对应的薄膜晶体管的沟道宽长比W/L从第二宽长比W2/L2缩小为第一宽长比W1/L1,从而能够降低白色子像素的整体亮度。
图5是改善前后大视角观测液晶面板时的观测曲线对比图。如图5所示,比较改善前的液晶面板和改善后的液晶面板,后者观测到的正视角亮度和偏视角亮度形成的观测曲线更接近理想直线,也即在大视角观测时,具有更好的显示效果。
其中,改善前的液晶面板中的白色子像素对应的薄膜晶体管的沟道宽长比均为第二宽长比W2/L2,改善后的液晶面板中的第二白色子像素对应的薄膜晶体管的沟道宽长比为第二宽长比W2/L2,第一白色子像素对应的薄膜晶体管的沟道宽长比为第一宽长比W1/L1,其中,第一宽长比W1/L1小于第二宽长比W2/L2。
本领域的技术人员可以理解,在改善后的液晶面板中,由于实际观测曲线为第一观测曲线和第二观测曲线叠加后形成的曲线,其中,第一观测曲线为白色子像素的薄膜晶体管的沟道宽长比为第二宽长比W2/L2的液晶面板对应的观测曲线,第二观测曲线为白色子像素的薄膜晶体管的沟道宽长比为第一宽长比W1/L1的液晶面板对应的观测曲线,因此,实际观测曲线更接近理想直线。
图6是本发明第二实施例的RGBW液晶面板的结构示意图。如图6所示,图6所示的RGBW液晶面板20与图2所示的RGBW液晶面板10的主要差别在于:
液晶面板20中的多个子像素111按照每六行重复排列,该六行中子像素111按照四种颜色重复排列,该六行中子像素111的排列顺序互不相同。优选地,该六行中的第一行和第二行之间、第三行和第四行之间、第五行和第六行之间的子像素111的四种颜色的排列顺序相反,六行中每一行子像素111同时包括第一白色子像素W1和第二白色子像素W2。
具体来说,在本实施例中,第一行子像素111按照红色子像素R、绿色子像素G、蓝色子像素B、第一白色子像素W1、红色子像素R、绿色子像素G、蓝色子像素B、第二白色子像素W2、红色子像素R、绿色子像素G、蓝色子像素B、第一白色子像素W1的顺序重复排列;第二行子像素111按照第一白色子像素W1、蓝色子像素B、绿色子像素G、红色子像素R、第二白色子像素W2、蓝色子像素B、绿色子像素G、红色子像素R、第一白色子像素W1、蓝色子像素B、绿色子像素G、红色子像素R的顺序重复排列;第三行子像素111按照红色子像素R、绿色子像素G、蓝色子像素B、第一白色子像素W1、红色子像素R、绿色子像素G、蓝色子像素B、第一白色子像素W1、红色子像素R、绿色子像素G、蓝色子像素B、第二白色子像素W2的顺序重复排列;第四行子像素111按照第一白色子像素W1、蓝色子像素B、绿色子像素G、红色子像素R、第一白色子像素W1、蓝色子像素B、绿色子像素G、红色子像素R、第二白色子像素W2、蓝色子像素B、绿色子像素G、红色子像素R的顺序重复排列;第五行子像素111按照红色子像素R、绿色子像素G、蓝色子像素B、第二白色子像素W2、红色子像素R、绿色子像素G、蓝色子像素B、第一白色子像素W1、红色子像素R、绿色子像素G、蓝色子像素B、第一白色子像素W1的顺序重复排列;第六行子像素111按照第二白色子像素W2、蓝色子像素B、绿色子像素G、红色子像素R、第一白色子像素W1、蓝色子像素B、绿色子像素G、红色子像素R、第一白色子像素W1、蓝色子像素B、绿色子像素G、红色子像素R的顺序重复排列。
图6所示RGBW液晶面板20除子像素的排列顺序与图2所示的RGBW液晶面板10不同外,其它均相同,为简约起见,其它内容在此不再赘述。
本发明的有益效果是:本发明的RGBW液晶面板中的多个子像素包括第一白色子像素和多个第二白色子像素,其中,第一白色子像素对应的薄膜晶体管和第二白色子像素对应的薄膜晶体管具有不同的沟道宽长比,从而使得第一白色子像素和第二白色子像素具有不同的亮度。通过上述方式,本发明能够同时改善液晶面板的纯色偏暗和颜色漂移的问题,进而提高液晶面板的显示品质。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种RGBW液晶面板,其中,所述液晶面板包括互相垂直交叉的多条扫描线及多条数据线,并由所述多条扫描线及多条数据线分为多个子像素区域;每个所述子像素区域包括一个子像素以及一个薄膜晶体管,每个所述薄膜晶体管的栅极和源极分别连接一条扫描线及一条数据线,每个所述薄膜晶体管的漏极连接所述子像素;
    其中,多个所述子像素包括多个第一白色子像素和多个第二白色子像素,所述第一白色子像素对应的薄膜晶体管和所述第二白色子像素对应的所述薄膜晶体管具有不同的沟道宽长比,从而使得所述第一白色子像素和所述第二白色子像素具有不同的亮度;
    其中,所述第一白色子像素对应的所述薄膜晶体管的沟道宽长比为第一宽长比,所述第二白色子像素对应的所述薄膜晶体管的沟道宽长比为第二宽长比,所述第一宽长比小于所述第二宽长比以使所述第一白色子像素白色子像素的亮度小于所述第二白色子像素白色子像素的亮度;
    其中,所述第一白色子像素对应的薄膜晶体管和所述第二白色子像素对应的薄膜晶体管具有相同的沟道长度,所述第一白色子像素对应的薄膜晶体管的沟道宽度小于所述第二白色子像素对应的薄膜晶体管的沟道宽度;
    其中,多个所述子像素还包括红色子像素、绿色子像素和蓝色子像素,所述红色子像素、绿色子像素和蓝色子像素对应的所述薄膜晶体管的沟道宽长比为所述第二宽长比。
  2. 根据权利要求1所述的液晶面板,其中,所述液晶面板中的多个所述子像素按照每两行重复排列,其中,所述两行中的第一行和第二行所述子像素按照四种颜色重复排列,所述两行中的第一行和第二行所述子像素的排列顺序相反。
  3. 根据权利要求2所述的液晶面板,其中,第一行所述子像素按照红色子像素、绿色子像素、蓝色子像素、第一白色子像素、红色子像素、绿色子像素、蓝色子像素、第二白色子像素的顺序重复排列,第二行所述子像素按照第二白色子像素、蓝色子像素、绿色子像素、红色子像素、第一白色子像素、蓝色子像素、绿色子像素、红色子像素的顺序重复排列。
  4. 根据权利要求1所述的液晶面板,其中,所述液晶面板中的多个所述子像素按照每六行重复排列,所述六行中所述子像素按照四种颜色重复排列,所述六行中所述子像素的排列顺序互不相同。
  5. 根据权利要求4所述的液晶面板,其中,所述六行中第一行和第二行之间、第三行和第四行之间、第五行和第六行之间所述子像素的四种颜色的排列顺序相反,所述六行中每一行所述子像素同时包括所述第一白色子像素和所述第二白色子像素。
  6. 根据权利要求5所述的液晶面板,其中,第一行所述子像素按照红色子像素、绿色子像素、蓝色子像素、第一白色子像素、红色子像素、绿色子像素、蓝色子像素、第二白色子像素、红色子像素、绿色子像素、蓝色子像素、第一白色子像素的顺序重复排列,第二行所述子像素按照第一白色子像素、蓝色子像素、绿色子像素、红色子像素、第二白色子像素、蓝色子像素、绿色子像素、红色子像素、第一白色子像素、蓝色子像素、绿色子像素、红色子像素的顺序重复排列,第三行所述子像素按照红色子像素、绿色子像素、蓝色子像素、第一白色子像素、红色子像素、绿色子像素、蓝色子像素、第一白色子像素、红色子像素、绿色子像素、蓝色子像素、第二白色子像素的顺序重复排列,第四行所述子像素按照第一白色子像素、蓝色子像素、绿色子像素、红色子像素、第一白色子像素、蓝色子像素、绿色子像素、红色子像素、第二白色子像素、蓝色子像素、绿色子像素、红色子像素的顺序重复排列,第五行所述子像素按照红色子像素、绿色子像素、蓝色子像素、第二白色子像素、红色子像素、绿色子像素、蓝色子像素、第一白色子像素、红色子像素、绿色子像素、蓝色子像素、第一白色子像素的顺序重复排列,第六行所述子像素按照第二白色子像素、蓝色子像素、绿色子像素、红色子像素、第一白色子像素、蓝色子像素、绿色子像素、红色子像素、第一白色子像素、蓝色子像素、绿色子像素、红色子像素的顺序重复排列。
  7. 一种RGBW液晶面板,其中,所述液晶面板包括互相垂直交叉的多条扫描线及多条数据线,并由所述多条扫描线及多条数据线分为多个子像素区域;每个所述子像素区域包括一个子像素以及一个薄膜晶体管,每个所述薄膜晶体管的栅极和源极分别连接一条扫描线及一条数据线,每个所述薄膜晶体管的漏极连接所述子像素;
    其中,多个所述子像素包括多个第一白色子像素和多个第二白色子像素,所述第一白色子像素对应的薄膜晶体管和所述第二白色子像素对应的所述薄膜晶体管具有不同的沟道宽长比,从而使得所述第一白色子像素和所述第二白色子像素具有不同的亮度。
  8. 根据权利要求7所述的液晶面板,其中,所述第一白色子像素对应的所述薄膜晶体管的沟道宽长比为第一宽长比,所述第二白色子像素对应的所述薄膜晶体管的沟道宽长比为第二宽长比,所述第一宽长比小于所述第二宽长比以使所述第一白色子像素白色子像素的亮度小于所述第二白色子像素白色子像素的亮度。
  9. 根据权利要求8所述的液晶面板,其中,所述第一白色子像素对应的薄膜晶体管和所述第二白色子像素对应的薄膜晶体管具有相同的沟道长度,所述第一白色子像素对应的薄膜晶体管的沟道宽度小于所述第二白色子像素对应的薄膜晶体管的沟道宽度。
  10. 根据权利要求8所述的液晶面板,其中,所述第一白色子像素对应的薄膜晶体管和所述第二白色子像素对应的薄膜晶体管具有相同的沟道宽度,所述第一白色子像素对应的薄膜晶体管的沟道长度大于所述第二白色子像素对应的薄膜晶体管的沟道长度。
  11. 根据权利要求8所述的液晶面板,其中,多个所述子像素还包括红色子像素、绿色子像素和蓝色子像素,所述红色子像素、绿色子像素和蓝色子像素对应的所述薄膜晶体管的沟道宽长比为所述第二宽长比。
  12. 根据权利要求11所述的液晶面板,其中,所述液晶面板中的多个所述子像素按照每两行重复排列,其中,所述两行中的第一行和第二行所述子像素按照四种颜色重复排列,所述两行中的第一行和第二行所述子像素的排列顺序相反。
  13. 根据权利要求12所述的液晶面板,其中,第一行所述子像素按照红色子像素、绿色子像素、蓝色子像素、第一白色子像素、红色子像素、绿色子像素、蓝色子像素、第二白色子像素的顺序重复排列,第二行所述子像素按照第二白色子像素、蓝色子像素、绿色子像素、红色子像素、第一白色子像素、蓝色子像素、绿色子像素、红色子像素的顺序重复排列。
  14. 根据权利要求11所述的液晶面板,其中,所述液晶面板中的多个所述子像素按照每六行重复排列,所述六行中所述子像素按照四种颜色重复排列,所述六行中所述子像素的排列顺序互不相同。
  15. 根据权利要求14所述的液晶面板,其中,所述六行中第一行和第二行之间、第三行和第四行之间、第五行和第六行之间所述子像素的四种颜色的排列顺序相反,所述六行中每一行所述子像素同时包括所述第一白色子像素和所述第二白色子像素。
  16. 根据权利要求15所述的液晶面板,其中,第一行所述子像素按照红色子像素、绿色子像素、蓝色子像素、第一白色子像素、红色子像素、绿色子像素、蓝色子像素、第二白色子像素、红色子像素、绿色子像素、蓝色子像素、第一白色子像素的顺序重复排列,第二行所述子像素按照第一白色子像素、蓝色子像素、绿色子像素、红色子像素、第二白色子像素、蓝色子像素、绿色子像素、红色子像素、第一白色子像素、蓝色子像素、绿色子像素、红色子像素的顺序重复排列,第三行所述子像素按照红色子像素、绿色子像素、蓝色子像素、第一白色子像素、红色子像素、绿色子像素、蓝色子像素、第一白色子像素、红色子像素、绿色子像素、蓝色子像素、第二白色子像素的顺序重复排列,第四行所述子像素按照第一白色子像素、蓝色子像素、绿色子像素、红色子像素、第一白色子像素、蓝色子像素、绿色子像素、红色子像素、第二白色子像素、蓝色子像素、绿色子像素、红色子像素的顺序重复排列,第五行所述子像素按照红色子像素、绿色子像素、蓝色子像素、第二白色子像素、红色子像素、绿色子像素、蓝色子像素、第一白色子像素、红色子像素、绿色子像素、蓝色子像素、第一白色子像素的顺序重复排列,第六行所述子像素按照第二白色子像素、蓝色子像素、绿色子像素、红色子像素、第一白色子像素、蓝色子像素、绿色子像素、红色子像素、第一白色子像素、蓝色子像素、绿色子像素、红色子像素的顺序重复排列。
PCT/CN2017/102619 2017-08-11 2017-09-21 一种rgbw液晶面板 WO2019028974A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/561,062 US10353261B2 (en) 2017-08-11 2017-09-21 RGBW liquid crystal panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710694520.0A CN107422557A (zh) 2017-08-11 2017-08-11 一种rgbw液晶面板
CN201710694520.0 2017-08-11

Publications (1)

Publication Number Publication Date
WO2019028974A1 true WO2019028974A1 (zh) 2019-02-14

Family

ID=60438020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102619 WO2019028974A1 (zh) 2017-08-11 2017-09-21 一种rgbw液晶面板

Country Status (3)

Country Link
US (1) US10353261B2 (zh)
CN (1) CN107422557A (zh)
WO (1) WO2019028974A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333821B (zh) * 2018-02-28 2021-04-23 厦门天马微电子有限公司 一种显示面板和显示装置
CN108388052B (zh) * 2018-03-01 2022-07-26 上海天马微电子有限公司 一种显示面板及显示装置
US11636809B2 (en) 2019-11-29 2023-04-25 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate and display device
EP4089740A1 (en) * 2019-11-29 2022-11-16 BOE Technology Group Co., Ltd. Array substrate and manufacturing method therefor, display device and display substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122231A (ja) * 2007-11-13 2009-06-04 Sony Corp 表示装置及び表示装置の駆動方法
JP2010002530A (ja) * 2008-06-19 2010-01-07 Sony Corp 表示装置および電子機器
CN104269131A (zh) * 2014-08-25 2015-01-07 友达光电股份有限公司 显示装置
CN105321488A (zh) * 2014-07-31 2016-02-10 三星显示有限公司 显示装置
CN106200150A (zh) * 2016-07-19 2016-12-07 武汉华星光电技术有限公司 液晶显示面板及液晶显示装置
CN106415702A (zh) * 2014-05-27 2017-02-15 索尼公司 显示装置和电子设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001318627A (ja) * 2000-02-29 2001-11-16 Semiconductor Energy Lab Co Ltd 発光装置
US7285902B2 (en) * 2003-04-17 2007-10-23 Samsung Sdi Co., Ltd. Flat panel display with improved white balance
US7385223B2 (en) * 2003-04-24 2008-06-10 Samsung Sdi Co., Ltd. Flat panel display with thin film transistor
KR100554911B1 (ko) * 2003-12-26 2006-02-24 엘지.필립스 엘시디 주식회사 액정표시장치
JP5342064B2 (ja) * 2010-02-26 2013-11-13 シャープ株式会社 液晶表示装置
CN102508386B (zh) * 2011-11-28 2014-11-26 深圳市华星光电技术有限公司 液晶显示器
US9219083B1 (en) * 2014-09-29 2015-12-22 Shenzhen China Star Optoelectronics Technology Co., Ltd Array substrate and liquid crystal display panel
CN106652805B (zh) * 2016-10-21 2019-03-19 上海天马微电子有限公司 显示面板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009122231A (ja) * 2007-11-13 2009-06-04 Sony Corp 表示装置及び表示装置の駆動方法
JP2010002530A (ja) * 2008-06-19 2010-01-07 Sony Corp 表示装置および電子機器
CN106415702A (zh) * 2014-05-27 2017-02-15 索尼公司 显示装置和电子设备
CN105321488A (zh) * 2014-07-31 2016-02-10 三星显示有限公司 显示装置
CN104269131A (zh) * 2014-08-25 2015-01-07 友达光电股份有限公司 显示装置
CN106200150A (zh) * 2016-07-19 2016-12-07 武汉华星光电技术有限公司 液晶显示面板及液晶显示装置

Also Published As

Publication number Publication date
US20190049766A1 (en) 2019-02-14
US10353261B2 (en) 2019-07-16
CN107422557A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
US9217905B2 (en) Dual-gate driven lateral pixel arrangement structure and display panel
EP2407822B1 (en) Array substrate, liquid crystal panel, liquid crystal display device, and television receiver
CN103091917B (zh) 透明液晶显示面板的像素结构
WO2019028974A1 (zh) 一种rgbw液晶面板
WO2017092082A1 (zh) 阵列基板以及液晶显示装置
CN104078490B (zh) 基板及显示装置
WO2015043036A1 (zh) 一种阵列基板及液晶显示面板
CN110456585A (zh) 双栅阵列基板和显示装置
CN106782404A (zh) 像素驱动架构及液晶显示面板
JP6373498B2 (ja) 配列基板及び液晶パネル及び液晶ディスプレイ
WO2017101190A1 (zh) 显示器和其驱动方法
CN104701354B (zh) 一种显示基板、显示面板和显示装置
CN105954951B (zh) 一种液晶显示面板
WO2017024644A1 (zh) 一种液晶显示面板及其驱动电路
WO2016033827A1 (zh) 像素结构、液晶显示面板及其驱动方法
WO2017088268A1 (zh) 具有数据线共享架构的阵列基板
WO2017075886A1 (zh) 液晶显示设备及液晶面板与液晶面板的驱动方法
CN112540487A (zh) 显示面板及其显示装置
WO2017071090A1 (zh) 广视角面板和显示装置
WO2017092143A1 (zh) 液晶面板、液晶显示装置及像素阵列
WO2017088264A1 (zh) 具有低切换频率的数据线驱动极性的阵列基板
WO2019127767A1 (zh) 显示面板的驱动方法及显示装置
WO2016074205A1 (zh) 用于曲面屏幕的液晶显示面板
WO2021184450A1 (zh) 像素驱动电路及显示面板
WO2018120386A1 (zh) 显示面板及其阵列基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921108

Country of ref document: EP

Kind code of ref document: A1