WO2021056769A1 - 显示面板及其制作方法 - Google Patents

显示面板及其制作方法 Download PDF

Info

Publication number
WO2021056769A1
WO2021056769A1 PCT/CN2019/119444 CN2019119444W WO2021056769A1 WO 2021056769 A1 WO2021056769 A1 WO 2021056769A1 CN 2019119444 W CN2019119444 W CN 2019119444W WO 2021056769 A1 WO2021056769 A1 WO 2021056769A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
height
dbs
display panel
substrate
Prior art date
Application number
PCT/CN2019/119444
Other languages
English (en)
French (fr)
Inventor
汤爱华
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/620,891 priority Critical patent/US11353761B2/en
Publication of WO2021056769A1 publication Critical patent/WO2021056769A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136218Shield electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line

Definitions

  • the present invention relates to the field of display technology, in particular to a display panel and a manufacturing method thereof.
  • Liquid Crystal Display has many advantages such as thin body, power saving, and no radiation, and has been widely used, and it has a dominant position in the field of flat panel displays.
  • Most of the existing liquid crystal displays on the market are backlit liquid crystal displays, which include liquid crystal display panels and backlight modules (backlight module).
  • the working principle of liquid crystal display panel is based on thin film transistor array substrate (thin film transistor array substrate).
  • fransistor array substrate,TFT array Liquid crystal molecules are filled between the substrate) and the color filter substrate (Color Filter, CF), and a driving voltage is applied to the two substrates to control the rotation direction of the liquid crystal molecules, so as to refract the light from the backlight module to produce a picture.
  • the shielding metal at the sub-pixels is often selected, and only the DBS electrode is used to shield the light leakage above the data line.
  • this design usually has the problem of insufficient DBS electrode coverage, leading to the risk of light leakage in the panel.
  • the present invention provides a display panel and a manufacturing method.
  • a display panel includes: an array substrate and a color filter substrate arranged oppositely, and a liquid crystal layer provided between the array substrate and the color filter substrate; the array substrate includes a TFT layer and a color filter layer provided on the TFT layer A transparent electrode layer between the liquid crystal layer and the liquid crystal layer; the TFT layer includes a plurality of TFTs arranged in an array, a plurality of columns of data lines, a plurality of rows of scan lines, and a common electrode of an array substrate, and the TFTs are connected to the data lines and The scan line, the transparent electrode layer includes spaced pixel electrodes and DBS electrodes, the pixel electrodes are connected to the TFTs, and the DBS electrodes cover the data lines; the color filter substrate is close to the liquid crystal layer.
  • a common electrode of a color filter substrate is provided on the side; the DBS electrode is connected to the common electrode of the array substrate;
  • the height of the DBS electrode relative to the pixel electrode is 0 to 1 micron lower;
  • the common electrode of the array substrate and the gates of the plurality of TFTs are located in the first metal layer; the plurality of data lines and the source and drain electrodes of the plurality of TFTs are located in the second metal layer.
  • the DBS electrode and the pixel electrode have the same height.
  • the height of the DBS electrode is 0.2 micrometers lower than the height of the pixel electrode.
  • the height of the DBS electrode is 0.5 micrometers lower than the height of the pixel electrode.
  • the height of the DBS electrode is 1 micrometer lower than the height of the pixel electrode.
  • An embodiment of the present invention also provides a display panel, including: an array substrate and a color filter substrate arranged oppositely, and a liquid crystal layer provided between the array substrate and the color filter substrate;
  • the array substrate includes a TFT layer And a transparent electrode layer provided between the TFT layer and the liquid crystal layer;
  • the TFT layer includes a plurality of TFTs arranged in an array, a plurality of columns of data lines, a plurality of rows of scan lines, and a common electrode of the array substrate, the The TFT is connected to the data line and the scan line, the transparent electrode layer includes spaced pixel electrodes and DBS electrodes, the pixel electrode is connected to the TFT, and the DBS electrode covers the data line;
  • the color film A color filter substrate common electrode is provided on the side of the substrate close to the liquid crystal layer;
  • the DBS electrode is connected to the array substrate common electrode;
  • the height of the DBS electrode relative to the pixel electrode is 0 to 1 micron lower.
  • the DBS electrode and the pixel electrode have the same height.
  • the height of the DBS electrode is 0.2 micrometers lower than the height of the pixel electrode.
  • the height of the DBS electrode is 0.5 micrometers lower than the height of the pixel electrode.
  • the height of the DBS electrode is 1 micrometer lower than the height of the pixel electrode.
  • the embodiment of the present invention also provides a manufacturing method of a display panel, which includes the following steps:
  • Step S1 providing an array substrate
  • the array substrate includes an array substrate substrate, a TFT layer is fabricated on the array substrate substrate, and a pixel electrode and a DBS electrode are fabricated on the TFT layer;
  • a semi-transmissive film mask is used when manufacturing the pixel electrode and the DBS electrode, the fully transparent part of the semi-transparent film mask corresponds to the through hole of the pixel electrode, and the semi-transparent film mask
  • the semi-permeable membrane portion corresponds to the DBS electrode;
  • Step S2 providing a color film substrate
  • the color filter substrate includes a color filter substrate substrate, a common electrode layer of the color filter substrate is provided on the color filter substrate substrate, and between the color filter substrate substrate and the common electrode layer of the color filter substrate There is also a color photoresist layer; and
  • Step S3 injecting liquid crystal between the array substrate and the color filter substrate to form a liquid crystal layer.
  • step S1 the light transmittance of the semi-transmissive film mask is controlled so that the height of the pixel electrode and the DBS electrode are the same.
  • step S1 the light transmittance of the semi-transparent film mask is controlled so that the height of the DBS electrode is 0.2 micrometers lower than the height of the pixel electrode.
  • step S1 the light transmittance of the semi-transmissive film mask is controlled so that the height of the DBS electrode is 0.5 micrometers lower than the height of the pixel electrode.
  • step S1 the light transmittance of the semi-transmissive film mask is controlled so that the height of the DBS electrode is 1 micron lower than the height of the pixel electrode.
  • the embodiments of the present invention provide a display panel and a manufacturing method.
  • the electric field range of the data line can be effectively compressed, the light leakage problem of the upper and lower viewing angles of the data line can be significantly reduced, and the problem of vertical crosstalk can be improved , And does not reduce the aperture ratio.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another display panel provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another display panel provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another display panel provided by an embodiment of the present invention.
  • the present invention has the problems of large viewing angle vertical crosstalk and viewing angle light leakage.
  • the current feasible crosstalk solutions all have different degrees of defects, such as the loss of aperture ratio when shielding metal is added.
  • the present invention provides a display panel and a manufacturing method, which can effectively reduce the light leakage on both sides of the DBS electrode and the pixel electrode by reducing the relative height of the DBS electrode and the pixel electrode, and improve the crosstalk of the vertical blocks of the upper and lower viewing angles.
  • FIG. 1 is a schematic structural diagram of a display panel provided by an embodiment of the present invention.
  • the display panel 10 provided by this embodiment includes an array substrate 11 and a color filter substrate 12 that are arranged oppositely, and a liquid crystal layer 13 provided between the array substrate 11 and the color filter substrate 12;
  • the array substrate 11 includes a TFT layer 111 and a transparent electrode layer 112 arranged between the TFT layer 111 and the liquid crystal layer 13;
  • the TFT layer 111 includes a plurality of TFTs 1110 arranged in an array, a plurality of columns of data lines 1111, and a plurality of rows of scan lines (in the figure Not shown) and the common electrode 1113 of the array substrate.
  • Each TFT 1110 is connected to a data line 1111 and a scan line (not shown in the figure).
  • the transparent electrode layer 112 includes spaced pixel electrodes 1121 and DBS electrodes 1122,
  • the pixel electrode 1121 is connected to the TFT 1110, the DBS electrode 1122 covers the data line 1111;
  • the color filter substrate 12 is provided with a color filter substrate common electrode 121 on the side close to the liquid crystal layer 13; the DBS electrode 1122 of the display panel 10 is connected to The common electrode 1113 of the array substrate is connected.
  • the height of the DBS electrode 1122 relative to the pixel electrode 1121 is 0 to 1 micrometer lower.
  • the TFT layer 111 is formed on the array substrate substrate 113, and a passivation layer 115 is provided between the TFT layer 111 and the transparent electrode layer 112.
  • the TFT 1110 specifically includes: a gate electrode 1115 provided on the array substrate substrate 113, a gate insulating layer 114 covering the gate electrode 1115, and an active layer provided on the gate insulating layer 114 1116.
  • the common electrode 1113 and the gate 1115 of the array substrate are both located on the first metal layer, and both are provided on the array substrate substrate 113.
  • the TFT layer 111 further includes a light-shielding layer 1114 which is provided on the array substrate 113 and shields the gap between the pixel electrode 1121 and the DBS electrode 1122.
  • the light shielding layer 1114 is also located on the first metal layer.
  • the data line 1111 and the source electrode 1117 and the drain electrode 1118 are all located in the second metal layer, and are all located on the gate insulating layer 114.
  • the color filter substrate common electrode 121 is provided on the second substrate 122, and the second substrate 122 is between the color filter substrate common electrode 121 A color photoresist layer 123 is also provided.
  • the maximum leakage brightness of the display panel 10 is 0.000661.
  • reducing the height of the DBS electrode 1122 and setting the height of the DBS electrode 1122 to be 0.2 microns lower than the height of the pixel electrode 1121 can reduce the maximum leakage brightness of the display panel 10 to 0.000552, that is, the maximum leakage brightness of the display panel 10 is reduced by 16% compared to the maximum leakage brightness in the first embodiment.
  • reducing the height of the DBS electrode 1122 and setting the height of the DBS electrode 1122 to be 0.5 microns lower than the height of the pixel electrode 1121 can reduce the maximum leakage brightness of the display panel 10 to 0.000403, that is, the maximum leakage brightness of the display panel 10 is reduced by 39% relative to the maximum leakage brightness in the first embodiment.
  • reducing the height of the DBS electrode 1122 and setting the height of the DBS electrode 1122 to be 1 micron lower than the height of the pixel electrode 1121 can reduce the maximum leakage brightness of the display panel 10 to 0.000199, that is, the maximum leakage brightness of the display panel 10 is reduced by 70% relative to the maximum leakage brightness in the first embodiment. That is, by adjusting the relative height of the DBS electrode 1122 and the pixel electrode 1121, the light leakage of the display panel 10 can be reduced.
  • the embodiment of the present invention also provides a manufacturing method of a display panel, which includes the following steps:
  • Step S1 providing an array substrate
  • the array substrate includes an array substrate substrate, a TFT layer is fabricated on the array substrate substrate, and a pixel electrode and a DBS electrode are fabricated on the TFT layer;
  • a semi-transmissive film mask is used when manufacturing the pixel electrode and the DBS electrode.
  • the fully transparent part of the semi-transparent film mask corresponds to the through hole part of the pixel electrode, and the semi-transparent film part of the semi-transparent film mask corresponds to the through hole of the pixel electrode. DBS electrode location;
  • Step S2 providing a color film substrate
  • the color filter substrate includes a color filter substrate substrate, a common electrode layer of the color filter substrate is provided on the color filter substrate substrate, and a common electrode layer of the color filter substrate is also provided between the color filter substrate substrate and the common electrode layer of the color filter substrate.
  • a colored photoresist layer There is a colored photoresist layer;
  • Step S3 injecting liquid crystal between the array substrate and the color filter substrate to form a liquid crystal layer.
  • the height of the DBS electrode and the height of the pixel electrode are lower by 0 to 1 micrometer. It is optional not only to make the height of the DBS electrode 0 microns lower than the height of the pixel electrode; make the height of the DBS electrode 0.2 microns lower than the height of the pixel electrode; make the height of the DBS electrode smaller than The height of the pixel electrode is lower by 0.5 micrometer; the height of the DBS electrode is lower than the height of the pixel electrode by 1 micrometer.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示面板及其制作方法,显示面板(10)包括相对设置的阵列基板(11)及彩膜基板(12)、以及设于阵列基板(11)与彩膜基板(12)之间的液晶层(13);阵列基板(11)包括透明电极层(112);透明电极层(112)包括间隔的像素电极(1121)以及DBS电极(1122), DBS电极(1122)相对于像素电极(1121)的高度低0到1微米。通过降低DBS电极(1122)相对于像素电极(1121)的垂直高度,可有效压缩数据线(1111)的电场范围,显著降低数据线(1111)上下视角的漏光问题,改善垂直串扰的问题,且不使开口率下降。

Description

显示面板及其制作方法
本申请要求于2019年09月29日提交中国专利局、申请号为201910935905.0、发明名称为“显示面板及其制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及显示技术领域,尤其涉及一种显示面板及其制作方法。
背景技术
液晶显示器(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用,在平板显示领域中占主导地位。现有市场上的液晶显示器大部分为背光型液晶显示器,其包括液晶显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在薄膜晶体管阵列基板(thin film fransistor array substrate,TFT array substrate)与彩色滤光片基板(Color Filter,CF)之间灌入液晶分子,并在两片基板上施加驱动电压来控制液晶分子的旋转方向,以将背光模组的光线折射出来产生画面。
传统的液晶显示面板需要在彩膜基板一侧设置黑色矩阵(black matrix, BM)以进行遮光,当应用于曲面液晶显示面板时,对面板进行弯曲会使BM的位置产生偏移(shift)而导致漏光及色偏,为解决这一问题,现有技术采用减少数据线上的黑色矩阵(data line BM less,DBS)的设计。它是在数据线上方覆盖以ITO(即氧化铟锡)的走线,ITO走线的宽度略宽于数据线,这些ITO走线连接COM即公共电极,在面板正常工作时,这些ITO COM电极形成的电场可以使液晶分子保持不偏转的状态,从而起到遮光的目的。
技术问题
为提高开口率,在设计面板产品时往往会选择去掉子像素处的屏蔽金属,仅靠DBS电极来遮蔽数据线上方的漏光。而这种设计通常会出现DBS电极覆盖不充分的问题,导致面板产生漏光的风险。
技术解决方案
为解决上述技术问题,本发明提供显示面板及制作方法。
一种显示面板,包括:相对设置的阵列基板及彩膜基板、以及设于所述阵列基板与所述彩膜基板之间的液晶层;所述阵列基板包括TFT层以及设于所述TFT层与所述液晶层之间的透明电极层;所述TFT层包括阵列排布的多个TFT、多列数据线、多行扫描线、以及阵列基板公共电极,所述TFT连接所述数据线和所述扫描线,所述透明电极层包括间隔的像素电极以及DBS电极,所述像素电极与所述TFT连接,所述DBS电极覆盖所述数据线;所述彩膜基板靠近所述液晶层一侧设有彩膜基板公共电极;所述DBS电极与所述阵列基板公共电极相连;
其中,所述DBS电极相对于所述像素电极的高度低0到1微米;
其中,所述阵列基板公共电极与多个所述TFT中的栅极位于第一金属层;多个所述数据线与多个所述TFT中的源极和漏极位于第二金属层。
根据本发明实施例所提供的显示面板,所述DBS电极与所述像素电极的高度一致。
根据本发明实施例所提供的显示面板,所述DBS电极的高度比所述像素电极的高度低0.2微米。
根据本发明实施例所提供的显示面板,所述DBS电极的高度比所述像素电极的高度低0.5微米。
根据本发明实施例所提供的显示面板,所述DBS电极的高度比所述像素电极的高度低1微米。
本发明实施例还提供了一种显示面板,包括:相对设置的阵列基板及彩膜基板、以及设于所述阵列基板与所述彩膜基板之间的液晶层;所述阵列基板包括TFT层以及设于所述TFT层与所述液晶层之间的透明电极层;所述TFT层包括阵列排布的多个TFT、多列数据线、多行扫描线、以及阵列基板公共电极,所述TFT连接所述数据线和所述扫描线,所述透明电极层包括间隔的像素电极以及DBS电极,所述像素电极与所述TFT连接,所述DBS电极覆盖所述数据线;所述彩膜基板靠近所述液晶层一侧设有彩膜基板公共电极;所述DBS电极与所述阵列基板公共电极相连;
其中,所述DBS电极相对于所述像素电极的高度低0到1微米。
根据本发明实施例所提供的显示面板,所述DBS电极与所述像素电极的高度一致。
根据本发明实施例所提供的显示面板,所述DBS电极的高度比所述像素电极的高度低0.2微米。
根据本发明实施例所提供的显示面板,所述DBS电极的高度比所述像素电极的高度低0.5微米。
根据本发明实施例所提供的显示面板,所述DBS电极的高度比所述像素电极的高度低1微米。
本发明实施例还提供了一种显示面板的制作方法,包括以下步骤:
步骤S1、提供阵列基板;
其中所述阵列基板包括阵列基板衬底,在所述阵列基板衬底上制作TFT层,在所述TFT层上制作像素电极和DBS电极;
其中,在制作所述像素电极和所述DBS电极时采用半透膜光罩,所述半透膜光罩中全透部对应所述像素电极的导通孔,所述半透膜光罩中半透膜部对应所述DBS电极;
步骤S2、提供彩膜基板;
其中,所述彩膜基板包括彩膜基板衬底,彩膜基板公共电极层设于所述彩膜基板衬底上,且所述彩膜基板衬底与所述彩膜基板公共电极层之间还设有彩色光阻层;以及
步骤S3、在所述阵列基板和所述彩膜基板之间注入液晶,形成液晶层。
根据本发明实施例所提供的显示面板的制作方法,在步骤S1中,控制半透膜光罩的透光率,使所述像素电极与所述DBS电极的高度一致。
根据本发明实施例所提供的显示面板的制作方法,在步骤S1中,控制半透膜光罩的透光率,使所述DBS电极的高度比所述像素电极的高度低0.2微米。
根据本发明实施例所提供的显示面板的制作方法,在步骤S1中,控制半透膜光罩的透光率,使所述DBS电极的高度比所述像素电极的高度低0.5微米。
根据本发明实施例所提供的显示面板的制作方法,在步骤S1中,控制半透膜光罩的透光率,使所述DBS电极的高度比所述像素电极的高度低1微米。
有益效果
本发明实施例提供了一种显示面板及制作方法,通过降低DBS电极相对于像素电极的垂直高度,可有效压缩数据线的电场范围,显著降低数据线上下视角的漏光问题,改善垂直串扰的问题,且不使开口率下降。
附图说明
图1为本发明实施例所提供的一种显示面板的结构示意图。
图2为本发明实施例所提供的另一种显示面板的结构示意图。
图3为本发明实施例所提供的另一种显示面板的结构示意图。
图4为本发明实施例所提供的另一种显示面板的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图式,用以例示本揭示可用以实施的特定实施例。
为了让本揭示的上述及其他目的、特征、优点能更明显易懂,下文将特举本揭示优选实施例,并配合所附图式,作详细说明如下。再者,本揭示所提到的方向用语,例如上、下、顶、底、前、后、左、右、内、外、侧层、周围、中央、水平、横向、垂直、纵向、轴向、径向、最上层或最下层等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。
在图中,结构相似的单元是以相同标号表示。
本发明针对现有技术的显示面板,存在大视角垂直串扰以及视角漏光的问题,而目前可行的串扰解决方案均存在不同程度的缺陷,如增加屏蔽金属会损失开口率等问题。
本发明提供一种显示面板及制作方法,通过降低DBS电极与像素电极的相对高度能有效减小其两侧漏光,改善上下视角垂直区块的串扰。
请参阅图1,为本发明实施例所提供的一种显示面板是结构示意图。
如图1所示,本实施例所提供的显示面板10包括相对设置的阵列基板11及彩膜基板12、以及设于阵列基板11与彩膜基板12之间的液晶层13;所述阵列基板11包括TFT层111、设于TFT层111与液晶层13之间的透明电极层112;所述TFT层111包括阵列排布的多个TFT1110、多列数据线1111、多行扫描线(图中未画出)、以及阵列基板公共电极1113,每一TFT1110均连接一数据线1111和一扫描线(图中未画出),所述透明电极层112包括间隔的像素电极1121以及DBS电极1122,所述像素电极1121与TFT1110连接,所述DBS电极1122覆盖数据线1111;所述彩膜基板12靠近液晶层13一侧设有彩膜基板公共电极121;所述显示面板10的DBS电极1122与阵列基板公共电极1113相连。
其中,所述DBS电极1122相对于像素电极1121的高度低0到1微米。
具体地,在本发明实施例中,显示面板10的阵列基板11中,TFT层111形成于阵列基板衬底113上,而TFT层111与透明电极层112之间设置有钝化层115。
具体地,请参阅图1,所述TFT1110具体包括:设于阵列基板衬底113上的栅极1115、覆盖栅极1115的栅极绝缘层114、设于栅极绝缘层114上的有源层1116、设于栅极绝缘层114上且分别连接有源层1116两端的源极1117及漏极1118,像素电极1121经贯穿钝化层115的过孔与漏极1118连接。
具体地,阵列基板公共电极1113与栅极1115均位于第一金属层,均设于阵列基板衬底113上。进一步地,所述TFT层111还包括设于阵列基板衬底113上且遮挡像素电极1121与DBS电极1122之间间隙的遮光层1114。所述遮光层1114也位于第一金属层。
具体地,所述数据线1111与源极1117及漏极1118均位于第二金属层,均设于栅极绝缘层114上。
具体地,在本发明实施例中,显示面板10的彩膜基板12中,彩膜基板公共电极121设于第二衬底122上,且第二衬底122与彩膜基板公共电极121之间还设有彩色光阻层123。
如图1所示,在本实施例一中,若将所述DBS电极1122与所述像素电极1121的高度设为一致,则显示面板10的最大漏光亮度为0.000661。
如图2所示,降低所述DBS电极1122的高度,将所述DBS电极1122的高度设置为比所述像素电极1121的高度低0.2微米,则可将显示面板10的最大漏光亮度减小至0.000552,即显示面板10的最大漏光亮度相对于实施例一中的最大漏光亮度减小了16%。
如图3所示,降低所述DBS电极1122的高度,将所述DBS电极1122的高度设置为比所述像素电极1121的高度低0.5微米,则可将显示面板10的最大漏光亮度减小至0.000403,即显示面板10的最大漏光亮度相对于实施例一中的最大漏光亮度减小了39%。
如图4所示,降低所述DBS电极1122的高度,将所述DBS电极1122的高度设置为比所述像素电极1121的高度低1微米,则可将显示面板10的最大漏光亮度减小至0.000199,即显示面板10的最大漏光亮度相对于实施例一中的最大漏光亮度减小了70%。即通过调整DBS电极1122与像素电极1121的相对高度,可以减小显示面板10的漏光。
本发明实施例还提供了一种显示面板的制作方法,包括以下步骤:
步骤S1、提供阵列基板;
其中所述阵列基板包括阵列基板衬底,在所述阵列基板衬底上制作TFT层,在所述TFT层上制作像素电极和DBS电极;
其中,在制作像素电极和DBS电极时采用半透膜光罩,所述半透膜光罩中全透部位对应像素电极的导通孔部位,所述半透膜光罩中半透膜部位对应DBS电极部位;
步骤S2、提供彩膜基板;
其中,所述彩膜基板包括彩膜基板衬底,彩膜基板公共电极层设于彩膜基板衬底上,且所述彩膜基板衬底与所述彩膜基板公共电极层之间还设有彩色光阻层;
步骤S3、在所述阵列基板和彩膜基板之间注入液晶,形成液晶层。
通过在步骤S1中,控制半透膜光罩的透光率,使所述DBS电极的高度与所述像素电极的高度低0到1微米。可选的不仅仅是使所述DBS电极的高度比所述像素电极的高度低0微米;使所述DBS电极的高度比所述像素电极的高度低0.2微米;使所述DBS电极的高度比所述像素电极的高度低0.5微米;使所述DBS电极的高度比所述像素电极的高度低1微米。
尽管已经相对于一个或多个实现方式示出并描述了本揭示,但是本领域技术人员基于对本说明书和附图的阅读和理解将会想到等价变型和修改。本揭示包括所有这样的修改和变型,并且仅由所附权利要求的范围限制。特别地关于由上述组件执行的各种功能,用于描述这样的组件的术语旨在对应于执行所述组件的指定功能(例如其在功能上是等价的)的任意组件(除非另外指示),即使在结构上与执行本文所示的本说明书的示范性实现方式中的功能的公开结构不等同。此外,尽管本说明书的特定特征已经相对于若干实现方式中的仅一个被公开,但是这种特征可以与如可以对给定或特定应用而言是期望和有利的其他实现方式的一个或多个其他特征组合。而且,就术语“包括”、“具有”、“含有”或其变形被用在具体实施方式或权利要求中而言,这样的术语旨在以与术语“包含”相似的方式包括。
以上仅是本揭示的优选实施方式,应当指出,对于本领域普通技术人员,在不脱离本揭示原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本揭示的保护范围。

Claims (15)

  1. 一种显示面板,包括:相对设置的阵列基板及彩膜基板、以及设于所述阵列基板与所述彩膜基板之间的液晶层;所述阵列基板包括TFT层以及设于所述TFT层与所述液晶层之间的透明电极层;所述TFT层包括阵列排布的多个TFT、多列数据线、多行扫描线、以及阵列基板公共电极,所述TFT连接所述数据线和所述扫描线,所述透明电极层包括间隔的像素电极以及DBS电极,所述像素电极与所述TFT连接,所述DBS电极覆盖所述数据线;所述彩膜基板靠近所述液晶层一侧设有彩膜基板公共电极;所述DBS电极与所述阵列基板公共电极相连;
    其中,所述DBS电极相对于所述像素电极的高度低0到1微米;
    其中,所述阵列基板公共电极与多个所述TFT中的栅极位于第一金属层;多个所述数据线与多个所述TFT中的源极和漏极位于第二金属层。
  2. 根据权利要求1所述的显示面板,其中所述DBS电极与所述像素电极的高度一致。
  3. 根据权利要求1所述的显示面板,其中所述DBS电极的高度比所述像素电极的高度低0.2微米。
  4. 根据权利要求1所述的显示面板,其中所述DBS电极的高度比所述像素电极的高度低0.5微米。
  5. 根据权利要求1所述的显示面板,其中所述DBS电极的高度比所述像素电极的高度低1微米。
  6. 一种显示面板,包括:相对设置的阵列基板及彩膜基板、以及设于所述阵列基板与所述彩膜基板之间的液晶层;所述阵列基板包括TFT层以及设于所述TFT层与所述液晶层之间的透明电极层;所述TFT层包括阵列排布的多个TFT、多列数据线、多行扫描线、以及阵列基板公共电极,所述TFT连接所述数据线和所述扫描线,所述透明电极层包括间隔的像素电极以及DBS电极,所述像素电极与所述TFT连接,所述DBS电极覆盖所述数据线;所述彩膜基板靠近所述液晶层一侧设有彩膜基板公共电极;所述DBS电极与所述阵列基板公共电极相连;
    其中,所述DBS电极相对于所述像素电极的高度低0到1微米。
  7. 根据权利要求6所述的显示面板,其中所述DBS电极与所述像素电极的高度一致。
  8. 根据权利要求6所述的显示面板,其中所述DBS电极的高度比所述像素电极的高度低0.2微米。
  9. 根据权利要求6所述的显示面板,其中所述DBS电极的高度比所述像素电极的高度低0.5微米。
  10. 根据权利要求6所述的显示面板,其中所述DBS电极的高度比所述像素电极的高度低1微米。
  11. 一种显示面板的制作方法,包括以下步骤:
    步骤S1、提供阵列基板;
    其中所述阵列基板包括阵列基板衬底,在所述阵列基板衬底上制作TFT层,在所述TFT层上制作像素电极和DBS电极;
    其中,在制作所述像素电极和所述DBS电极时采用半透膜光罩,所述半透膜光罩中全透部对应所述像素电极的导通孔,所述半透膜光罩中半透膜部对应所述DBS电极;
    步骤S2、提供彩膜基板;
    其中,所述彩膜基板包括彩膜基板衬底,彩膜基板公共电极层设于所述彩膜基板衬底上,且所述彩膜基板衬底与所述彩膜基板公共电极层之间还设有彩色光阻层;以及
    步骤S3、在所述阵列基板和所述彩膜基板之间注入液晶,形成液晶层。
  12. 根据权利要求11所述的显示面板的制作方法,其中在步骤S1中,控制半透膜光罩的透光率,使所述像素电极与所述DBS电极的高度一致。
  13. 根据权利要求11所述的显示面板的制作方法,其中在步骤S1中,控制半透膜光罩的透光率,使所述DBS电极的高度比所述像素电极的高度低0.2微米。
  14. 根据权利要求11所述的显示面板的制作方法,其中在步骤S1中,控制半透膜光罩的透光率,使所述DBS电极的高度比所述像素电极的高度低0.5微米。
  15. 根据权利要求11所述的显示面板的制作方法,其中在步骤S1中,控制半透膜光罩的透光率,使所述DBS电极的高度比所述像素电极的高度低1微米。
PCT/CN2019/119444 2019-09-29 2019-11-19 显示面板及其制作方法 WO2021056769A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/620,891 US11353761B2 (en) 2019-09-29 2019-11-19 Display panel and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910935905.0 2019-09-29
CN201910935905.0A CN110703515A (zh) 2019-09-29 2019-09-29 显示面板及其制作方法

Publications (1)

Publication Number Publication Date
WO2021056769A1 true WO2021056769A1 (zh) 2021-04-01

Family

ID=69198096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119444 WO2021056769A1 (zh) 2019-09-29 2019-11-19 显示面板及其制作方法

Country Status (3)

Country Link
US (1) US11353761B2 (zh)
CN (1) CN110703515A (zh)
WO (1) WO2021056769A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111123576B (zh) * 2020-01-21 2021-02-26 深圳市华星光电半导体显示技术有限公司 阵列基板及显示面板
CN113050330B (zh) 2021-03-26 2022-04-01 Tcl华星光电技术有限公司 液晶显示面板及其配向方法
CN114755865A (zh) * 2022-04-19 2022-07-15 深圳市华星光电半导体显示技术有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120154729A1 (en) * 2010-12-21 2012-06-21 Nex-I Solution. Co., Ltd Display device
CN202522819U (zh) * 2012-02-21 2012-11-07 京东方科技集团股份有限公司 一种液晶面板以及显示装置
CN104516167A (zh) * 2015-01-20 2015-04-15 京东方科技集团股份有限公司 阵列基板及显示装置
CN106200175A (zh) * 2016-08-15 2016-12-07 友达光电(昆山)有限公司 一种显示面板
CN107479268A (zh) * 2017-08-01 2017-12-15 惠科股份有限公司 一种显示面板和显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3396130B2 (ja) * 1996-06-03 2003-04-14 シャープ株式会社 液晶表示装置
KR100736114B1 (ko) * 2000-05-23 2007-07-06 엘지.필립스 엘시디 주식회사 횡전계 방식의 액정표시장치 및 그 제조방법
KR100617031B1 (ko) * 2003-12-30 2006-08-30 엘지.필립스 엘시디 주식회사 반사투과형 액정표시장치 및 그 제조방법
KR100616708B1 (ko) * 2004-04-12 2006-08-28 엘지.필립스 엘시디 주식회사 액정표시장치 어레이 기판 및 그 제조방법
JP6230253B2 (ja) * 2013-04-03 2017-11-15 三菱電機株式会社 Tftアレイ基板およびその製造方法
CN104252083B (zh) * 2014-09-24 2018-04-10 深圳市华星光电技术有限公司 一种液晶透镜及液晶显示装置
US9429763B2 (en) 2014-09-24 2016-08-30 Shenzhen China Star Optoelectronics Technology Co., Ltd Liquid crystal lens and liquid crystal display device
JP2016133771A (ja) * 2015-01-22 2016-07-25 株式会社ジャパンディスプレイ 液晶表示装置
TWI567451B (zh) * 2016-03-04 2017-01-21 友達光電股份有限公司 陣列基板以及平面轉換液晶顯示面板
CN107942587B (zh) * 2017-11-20 2020-10-30 深圳市华星光电半导体显示技术有限公司 液晶显示面板的配向方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120154729A1 (en) * 2010-12-21 2012-06-21 Nex-I Solution. Co., Ltd Display device
CN202522819U (zh) * 2012-02-21 2012-11-07 京东方科技集团股份有限公司 一种液晶面板以及显示装置
CN104516167A (zh) * 2015-01-20 2015-04-15 京东方科技集团股份有限公司 阵列基板及显示装置
CN106200175A (zh) * 2016-08-15 2016-12-07 友达光电(昆山)有限公司 一种显示面板
CN107479268A (zh) * 2017-08-01 2017-12-15 惠科股份有限公司 一种显示面板和显示装置

Also Published As

Publication number Publication date
US11353761B2 (en) 2022-06-07
US20210341776A1 (en) 2021-11-04
CN110703515A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
US20200301179A1 (en) Liquid crystal display
US6747722B2 (en) Liquid crystal display device
US20170146834A1 (en) Display device
US9785017B2 (en) Liquid crystal display
US20180031877A1 (en) Liquid crystal display
US20060221027A1 (en) Liquid crystal display device
JP2018527623A (ja) Va型coa液晶表示パネル
WO2021056769A1 (zh) 显示面板及其制作方法
EP2618209B1 (en) Active matrix substrate and electronic device comprising the same
WO2017035911A1 (zh) Boa型液晶面板
KR20010015210A (ko) 액정표시장치 및 그 제조방법
WO2018103267A1 (zh) 一种显示面板和显示装置
US9335587B2 (en) Liquid crystal cell and method for manufacturing the same
JP6632169B2 (ja) アレイ基板、液晶表示パネル及び液晶表示装置
US20110090417A1 (en) Liquid crystal display with improved side visibility and fabrication method thereof
US20220107528A1 (en) Liquid crystal display panel and manufacturing method thereof
US20210356828A1 (en) Array substrate and liquid crystal display panel
US8432501B2 (en) Liquid crystal display with improved side visibility
WO2021082213A1 (zh) 液晶显示面板及液晶显示装置
WO2012124662A1 (ja) 液晶表示装置
WO2012124699A1 (ja) 液晶表示装置
US20070058112A1 (en) Liquid crystal display panel, color filter, and manufacturing method thereof
CN107357078B (zh) 液晶显示器
WO2020082463A1 (zh) 一种显示面板、显示面板的制作方法和显示装置
CN110412800B (zh) 像素结构及采用该像素结构的显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947391

Country of ref document: EP

Kind code of ref document: A1