WO2019035644A1 - 모노아세틸디아실글리세롤 화합물을 함유하는 슈도모나스 속 미생물 감염증의 예방 또는 치료용 조성물 - Google Patents

모노아세틸디아실글리세롤 화합물을 함유하는 슈도모나스 속 미생물 감염증의 예방 또는 치료용 조성물 Download PDF

Info

Publication number
WO2019035644A1
WO2019035644A1 PCT/KR2018/009348 KR2018009348W WO2019035644A1 WO 2019035644 A1 WO2019035644 A1 WO 2019035644A1 KR 2018009348 W KR2018009348 W KR 2018009348W WO 2019035644 A1 WO2019035644 A1 WO 2019035644A1
Authority
WO
WIPO (PCT)
Prior art keywords
pseudomonas
pharmaceutical composition
infection
plag
composition according
Prior art date
Application number
PCT/KR2018/009348
Other languages
English (en)
French (fr)
Inventor
김재화
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2019035644A1 publication Critical patent/WO2019035644A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/22Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health

Definitions

  • the present invention relates to a composition for preventing, treating or improving a microorganism infectious disease of Pseudomonas sp . Containing a mono acetyl diacyl glycerol compound.
  • Microorganisms are organoleptic, aerobic, gram-negative bacilli that exist widely in nature. These pathogens usually cause opportunistic infections that occur frequently in patients with various underlying diseases such as cancer or diabetes, patients receiving immunosuppressive drugs, and the like, , Cystic fibrosis, sepsis, urinary tract infections, and the like, often resulting in severe outcomes (Patrick PR, et al., Manual of Clinical Microbiology 8th eds ASM press.
  • Pseudomonas spp. Is not susceptible to existing antibiotics and is easily resistant to various antibiotics, it is highly likely to be refractory. Therefore, Pseudomonas spp. Is considered to be one of the most difficult infections in clinical practice (Korean Patent Publication No. 10-2011-0128856). Therefore, it is urgent to develop an effective therapeutic agent for Pseudomonas aeruginosa infection.
  • antler is one of the herbal medicines widely used in oriental medicine together with ginseng, which is dried by picking up the unkeratified angles of the deer belonging to the corn cervi .
  • the antler has been known for various effects such as tonic action, growth, growth promotion action, and neuroleptic treatment action, and various studies have been conducted on its ingredients in order to identify the effect of antler.
  • the antler contains monoacetyldiglyceride compounds such as 1-palmitoyl-2-linoleoyl-3-acetylglycerol, It is known to have a promoting effect.
  • the monoacetyl diacyl glycerol type compound has on microorganism infections of Pseudomonas sp. Is not yet known.
  • the present inventors have made intensive efforts to develop a therapeutic agent for Pseudomonas sp. Infectious disease.
  • the present inventors have found that mono acetyl diacyl glycerol-type compounds accelerate the formation of NETosis in the environment of Pseudomonas sp. And thus the present invention has been completed.
  • One object of the present invention containing mono acetyl diacyl glycerol compound represented by the following general formula (1) as an active ingredient, Pseudomonas species (Pseudomonas sp . ), A pharmaceutical composition for preventing, treating or ameliorating a microbial infection, or a health functional food.
  • Pseudomonas species Pseudomonas sp .
  • R1 and R2 are each a fatty acid group having 14 to 22 carbon atoms.
  • a Pseudomonas containing mono acetyl diacyl glycerol compound represented by the formula (I) as an active ingredient (Pseudomonas sp . ) Is a pharmaceutical composition for preventing or treating microbial infection.
  • R1 and R2 are each a fatty acid group having 14 to 22 carbon atoms.
  • the fatty acid group means the remainder of the carboxyl group of the fatty acid in which the -OH group is excluded.
  • &quot monoacetyldiacylglycerol (MADG) compound " in the present invention means a derivative of glycerol having one acetyl group and two acyl groups, and exhibits excellent effects in preventing or treating Pseudomonas aeruginosa infection.
  • MADG monoacetyldiacylglycerol
  • R 1 and R 2 may each be a fatty acid group having 14 to 22 carbon atoms. Specific examples thereof include palmitoyl, oleoyl, linoleoyl, But are not limited to, linolenoyl, stearoyl, myristoyl or arachidonoyl, and the like.
  • R1 and R2 is selected from the group consisting of oleoyl / palmitoyl, palmitoyl / oleoyl, palmitoyl / linoleoyl, palmitoyl / linolenoyl, palmitoyl / arachidonoyl, palmitoyl / Stearoyl / palmitoyl, oleoyl / stearoyl, linoleoyl / palmitoyl, linoleoyl / stearoyl, stearoyl / linoleoyl, stearoyl / oleoyl, myristoyl / / Linoleoyl < / RTI > or myristoyl / oleoyl, and the like.
  • the mono acetyl diacyl is selected from the group consisting of oleoy
  • the mono acetyl diacyl glycerol compound of the present invention represented by the formula (1) can be extracted / isolated from antler, or can be produced by a known organic synthesis method (Korean Patent No. 10-0789323), but is not limited thereto.
  • the mono acetyl diacyl glycerol compound of the present invention can be prepared by the following procedure. First, the antler is extracted with hexane, the extracted residue is extracted again with chloroform, and the obtained extract is vacuum distilled to obtain a chloroform extract of antler. The amounts of hexane and chloroform used as the extraction solvents used in the above extraction are sufficient for the deer antler to be used.
  • hexane and chloroform may be used in an amount of about 4 to 5 liters per kilogram of antler, And the kind and amount of use thereof are not limited thereto.
  • the chloroform extract of green tea extract obtained by this method is further fractionated and purified by a series of silica gel column chromatography and TLC methods to obtain the mono acetyl diacyl glycerol compound used in the present invention.
  • chloroform / methanol, hexane / ethyl acetate, hexane / ethyl acetate / acetic acid and the like may be used, but not limited thereto.
  • a method for chemically synthesizing the mono acetyl diacyl glycerol compound of the present invention is disclosed in Korean Patent Registration No. 10-0789323. Specifically, (a) a process for producing 1-R1-3-protecting group-glycerol by attaching a protecting group to the 3-position of 1-R1-glycerol; (b) introducing an R 2 group at the 2-position of the 1-R 1 -3-protecting group-glycerol to prepare a 1-R 1 -2-R 2 -3-protecting group-glycerol; (c) simultaneously carrying out the deprotection reaction and the acetylation reaction of 1-R1-2-R2-3-protecting group-glycerol and, if necessary, purifying the desired mono acetyl diacyl glycerol compound
  • phosphatidylcholine may be obtained by acetolysis of acetic acid, but the present invention is not limited thereto. Also, the stereoisomers of the monoacetyl
  • the mono acetyl diacyl glycerol type compound includes, but is not limited to, a compound represented by the following formula (2).
  • the compound represented by Formula 2 is called 1-palmitoyl-2-linoleoyl-3-acetylglycerol and may be called PLAG or EC-18.
  • R1 and R2 of the compound correspond to palmitoyl and linoleoyl, respectively.
  • the PLAG compound represented by the formula (2) is provided as an example of a monoacetyl diacyl glycerol type compound exhibiting an effect of preventing or treating Pseudomonas sp.
  • Pseudomonas species Pseudomonas sp .
  • Microorganism is gram-negative bacillus and is glucose non-fermenting bacteria. They are distributed in the natural environment including soil, water, sewage, etc., human skin, oral cavity, and respiratory mucosa. The microorganisms can cause endogenous opportunistic infections in neonatal, splenic, patients receiving long-term steroids, cancer patients undergoing chemotherapy, organ transplant patients, or immunocompromised high-risk patients such as intensive care patients.
  • microorganisms of the genus Pseudomonas include P. aeruginosa , P. chlororaphis , P. fluorescens , P. pertucinogena , P. putida ), P. stutzeri , P. syringae , and the like.
  • the disease may be caused, for example, in the lungs, but is not limited thereto.
  • the disease may be, but is not limited to, cystic fibrosis, sepsis, pneumonia, mucositis, urinary tract infection, liver abscess, otitis media, keratitis, inner lining, bacteremia, burn wound infection, meningitis or peritonitis.
  • the mono acetyl diacyl glycerol compound of the present invention has an effect of removing the infected Pseudomonas sp. Microorganism, the preventive and therapeutic effect against all diseases caused by Pseudomonas infection can be expected. Accordingly, the pharmaceutical composition comprising the mono acetyl diacyl glycerol compound according to the present invention can be used for preventing or treating Pseudomonas sp. Microbial infection.
  • prevent in the present invention means all the actions of inhibiting or retarding the onset of Pseudomonas sp. Microbial infection by administration of the composition of the present invention.
  • treatment means that the composition of the present invention causes symptoms due to Pseudomonas sp. Means any act that improves or benefits.
  • a pharmaceutical composition comprising a mono acetyl diacyl glycerol compound according to the present invention can be used to prevent or treat a Pseudomonas sp. Microbial infection that occurs in an immunosuppressed state.
  • the immunologically depressed condition may include, but is not limited to, leukopenia, such as, for example, neutropenia.
  • the immunocompromised condition may be caused by, but not limited to, chemotherapy or radiotherapy.
  • the PLAG compound of formula (2) of the present invention promotes bacterial clearance at the early stage of infection in mice infected with Pseudomonas aeruginosa ( Figures 1 to 5) (FIG. 15 to FIG. 26) promotes the secretion of chemokines such as CXCL2 and CXCL8 (FIG. 6 to FIG. 12) and induces an excellent therapeutic effect in infectious diseases caused in immunocompromised states such as neutrophil- 30).
  • the present invention firstly confirmed that PLAG stimulates chemokine secretion of macrophages, promotes neutrophil recruitment, and induces NETosis by promoting the activity of NF- ⁇ B through STAT3 inhibition (FIG. 31) . Therefore, the composition of the present invention can be used as a prophylactic or therapeutic agent for a microorganism infectious disease of Pseudomonas sp.
  • the pharmaceutical composition comprising the mono acetyl diacyl glycerol compound of the present invention may further comprise an appropriate carrier, excipient or diluent conventionally used in the production of a pharmaceutical composition.
  • the content of the mono acetyl diacyl glycerol compound contained in the composition is not particularly limited, but it may be 0.0001 to 100.0% by weight, 0.001 to 50.0% by weight, or 0.01 to 20% by weight based on the total weight of the composition .
  • the pharmaceutical composition may be any one selected from the group consisting of tablets, pills, powders, granules, capsules, suspensions, solutions, emulsions, syrups, sterilized aqueous solutions, nonaqueous solvents, suspensions, emulsions, And may be oral or parenteral formulations of various forms.
  • a diluent or excipient such as a filler, an extender, a binder, a wetting agent, a disintegrant, or a surfactant is usually used.
  • Solid formulations for oral administration include tablets, pills, powders, granules, capsules and the like, which may contain at least one excipient such as starch, calcium carbonate, sucrose or lactose, gelatin, .
  • excipients such as starch, calcium carbonate, sucrose or lactose, gelatin, .
  • lubricants such as magnesium stearate, talc, and the like may also be used.
  • Liquid preparations for oral administration include suspensions, solutions, emulsions, syrups and the like.
  • excipients such as wetting agents, sweeteners, fragrances, preservatives and the like may be included in addition to water and liquid paraffin, which are simple diluents commonly used. have.
  • Formulations for parenteral administration include sterilized aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories.
  • the non-aqueous solvent and suspending agent include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like.
  • the suppository base include withexol, macrogol, tween 61, cacao butter, laurin, glycerogelatin and the like.
  • composition of the present invention may be administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount as used herein means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and the effective dose level will vary depending on the species and severity, age, sex, The type of drug, the activity of the drug, the sensitivity to the drug, the time of administration, the route of administration and the rate of release, the duration of the treatment, factors including co-administered drugs, and other factors well known in the medical arts.
  • the composition of the present invention may be administered as an individual therapeutic agent or in combination with another therapeutic agent, and may be administered sequentially or simultaneously with a conventional therapeutic agent. And can be administered singly or multiply.
  • the preferred dosage of the composition of the present invention will depend on the condition and the weight of the patient, the degree of disease, the type of drug, the route of administration and the period of time, and the appropriate total daily dose may be determined by treatment, Generally, an amount of 0.0005 to 4000 mg / kg, an amount of 0.001 to 2000 mg / kg, an amount of 0.01 to 1000 mg / kg, an amount of 0.05 to 200 mg / kg, or an amount of 0.1 to 100 mg / It can be administered in divided doses.
  • the composition is not particularly limited as long as it is an object for prevention or treatment of microorganism infectious disease of Pseudomonas sp., And any object can be applied.
  • it can be applied to any individual such as a monkey, a dog, a cat, a rabbit, a guinea pig, a rat, a mouse, a cattle, a pig, a goat, Including without limitation.
  • a monkey a monkey, a dog, a cat, a rabbit, a guinea pig, a rat, a mouse, a cattle, a pig, a goat, Including without limitation.
  • Another aspect of the present invention is a health functional food for preventing or ameliorating microbial infection of Pseudomonas sp. Containing mono acetyl diacyl glycerol compound represented by the following formula (1) as an active ingredient.
  • R1 and R2 are each a fatty acid group having 14 to 22 carbon atoms.
  • the mono acetyl diacyl glycerol compound of the present invention can be included in a health functional food for the purpose of preventing or improving Pseudomonas sp. Microbial infection.
  • the mono acetyl diacyl glycerol compound and the microorganism infectious disease of Pseudomonas sp. are as described above.
  • the term " improvement" refers to all the actions of suspected or suspected microorganism infections of Pseudomonas sp.
  • the compound When the mono acetyl diacyl glycerol compound of the present invention is incorporated into a health functional food, the compound may be added as it is or may be used in combination with other health functional foods or health functional food ingredients and may be suitably used according to a conventional method .
  • the amount of the active ingredient to be mixed can be appropriately determined depending on the purpose of use. Generally, the compound of the present invention may be added in an amount of not more than 15 parts by weight, or not more than 10 parts by weight based on 100 parts by weight of the raw material. However, in the case of long-term intake for the purpose of health control and hygiene, the amount may be less than the above range, and since there is no problem in terms of safety, the active ingredient may be used in an amount exceeding the above range.
  • health functional food that can contain the compound of the present invention.
  • specific examples thereof include nutritional capsules, vitamin complexes, candies, snacks, confectionery, gums, dairy products including ice cream, , Drinks, alcoholic beverages and the like, and may include all of the health functional foods in the conventional sense, and foods used as feed for animals.
  • the health functional food of the present invention may contain various sweetening agents, flavoring agents, or natural carbohydrates as an additional ingredient such as ordinary beverages.
  • the natural carbohydrates may be polysaccharides such as disaccharides such as monosaccharides such as glucose and fructose, maltose, sucrose, dextrin, cyclodextrins, and sugar alcohols such as xylitol, sorbitol and erythritol.
  • the ratio of the natural carbohydrate may be, but is not limited to, 0.01 to 0.04 g, or 0.02 to 0.03 g per 100 ml of the compound of the present invention.
  • the sweeteners may be natural sweeteners such as tau martin and stevia extract, and synthetic sweeteners such as saccharin and aspartame.
  • the health functional food of the present invention may contain various nutrients, vitamins, electrolytes, flavors, colorants, pectic acid and salts thereof, alginic acid and its salts, organic acids such as medium chain fatty acid (MCT) Thickening agents, pH adjusting agents, stabilizers, preservatives, glycerin, alcohols, carbonating agents used in carbonated drinks, and the like. It may also contain flesh for the production of natural fruit juices, fruit juice drinks and vegetable drinks.
  • MCT medium chain fatty acid
  • Another embodiment of the present invention is a method for preventing or treating a Pseudomonas sp. Microbial infection, comprising the step of administering the pharmaceutical composition to a suspected individual of Pseudomonas sp.
  • the suspected individual of Pseudomonas aeruginosa infection refers to all animals including humans who have developed or are capable of developing Pseudomonas aeruginosa infection, and the pharmaceutical composition comprising the compound of the present invention is administered to suspected Pseudomonas aeruginosa infections By administering, the individual can be treated efficiently.
  • the microorganism infection of Pseudomonas sp. Is as described above.
  • administering means introducing the pharmaceutical composition of the present invention into suspected individuals of Pseudomonas aeruginosa infection by any suitable method, and the administration route may include various routes of oral or parenteral routes ≪ / RTI >
  • the therapeutic method of the present invention may include administering a pharmaceutical composition comprising the monoacetyl diacyl glycerol compound of Formula 1 in a pharmaceutically effective amount.
  • Suitable total daily doses may be determined by treatment within the scope of sound medical judgment and are generally in the range of 0.0005 to 4000 mg / kg, 0.001 to 2000 mg / kg, 0.01 to 1000 mg / kg, 0.05 To 200 mg / kg, or an amount of 0.1 to 100 mg / kg, may be administered once to several times per day.
  • the specific therapeutically effective amount for a particular patient will depend upon the nature and extent of the reaction to be achieved, the particular composition, including whether or not other agents are used, the age, weight, Sex and diet of the patient, the time of administration, the route of administration and the rate of administration of the composition, the duration of the treatment, the drugs used or concurrently used with the specific composition, and similar factors well known in the medical arts.
  • the mono acetyl diacyl glycerol compound of the present invention induces NETosis at the early stage of infection in a microorganism infectious disease environment of Pseudomonas sp. , Thereby promoting bacterial elimination .
  • the mono acetyl diacyl glycerol compound exhibits an excellent effect in the prevention or treatment of microorganism infestation of Pseudomonas sp .
  • the pharmaceutical composition and the health functional food of the present invention can be usefully used for prevention, treatment, or improvement of microbial infection of Pseudomonas sp.
  • PLAG (1-palmitoyl-2-linoleoyl-3-acetylglycerol) compound on bacterial elimination in bronchoalveolar lavage fluid (BALF) of infected mice.
  • FIG. 2 shows experimental results for confirming the effect of PLAG (1-palmitoyl-2-linoleoyl-3-acetylglycerol) compound on bacterial elimination in bronchoalveolar lavage fluid (BALF) of infected mice.
  • PLAG 1-palmitoyl-2-linoleoyl-3-acetylglycerol
  • Figure 3 shows an experimental outline to confirm the effect of PLAG on intracellular bacterial CFU of infected THP-1 cells.
  • FIG. 4 shows experimental results for confirming the effect of PLAG on intracellular bacterial CFU of infected THP-1 cells.
  • FIG. 5 shows the results of confirming the effect of PLAG and PLAG derivatives on intracellular bacterial CFU of infected THP-1 cells.
  • Figure 6 shows an experimental outline to determine the effect of PLAG on chemokine secretion and neutrophil count in BALF of infected mice.
  • Figure 7 shows ELISA results confirming the effect of PLAG on the expression level of CXCL2 in BALF of infected mice.
  • FIG. 8 shows the results of confirming the effect of PLAG on the number of neutrophils in BALF of infected mice.
  • Figure 9 shows RT-PCR results confirming the effect of PLAG on the expression level of CXCL8 in THP-1 cells.
  • FIG. 10 shows RT-PCR and ELISA results confirming the effect of PLAG on the expression level of CXCL8 in THP-1 cells.
  • Figure 11 shows the results of confirming the effect of NF- ⁇ B and STAT3 inhibitors on the expression level of CXCL8 in BALF of infected mice.
  • Figure 12 shows the results of confirming the effect of PLAG on the transcriptional activity of NF- ⁇ B and STAT3 in RAW264.7 cells.
  • FIG. 13 shows Western blotting results and confocal microscopic images showing the position of p65 by PLAG in THP-1 cells.
  • Figure 15 shows an experimental outline to confirm the effect of PLAG on extracellular DNA-elastase complex formation in BALF of infected mice.
  • Figure 16 shows experimental results for confirming the effect of PLAG on extracellular DNA-elastase complex formation in BALF of infected mice.
  • 17 shows an experimental outline for confirming the effect of PLAG on extracellular DNA-elastase complex formation in HL-60 cells.
  • Figure 18 shows ELISA results confirming the effect of PLAG on the formation of extracellular DNA-elastase complex in HL-60 cells.
  • FIG. 21 shows ELISA results confirming the effect of PLAG on extracellular DNA-elastase complex formation in bone marrow-derived cells.
  • FIG. 22 shows a confocal microscope image showing the effect of PLAG on extracellular DNA-elastase complex formation in bone marrow derived cells.
  • 25 shows a confocal microscope image showing the effect of NF-kB inhibitor and STAT inhibitor on extracellular DNA-elastase complex formation in HL-60 cells.
  • Figure 26 shows the effect of PLAG on the degradation of I [kappa] B [alpha] in HL-60 cells.
  • Figure 27 shows an experimental outline to confirm the effect of PLAG on bacterial clearance in BALF of infected neutropenic mice.
  • Figure 28 shows experimental results to confirm the effect of PLAG on bacterial clearance in BALF of infected neutropenic mice.
  • 29 shows an outline of the experiment to confirm the effect of PLAG on the survival rate of infected neutropenic mice.
  • Figure 30 shows experimental results to confirm the effect of PLAG on the survival rate of infected neutropenic mice.
  • Figure 31 shows a schematic for the cell mechanism upon infection identified by the present invention.
  • Example 1 Reagents, Experimental animal , Bacterial culture and preparation of infectious inoculum of mouse
  • Cyclophosphamide and doxorubicin were purchased from Sigma-Aldrich (St. Louis, 71 MO, USA).
  • PLAG 1-palmitoyl-2-linoleoyl-3-acetylglycerol
  • SPF pathogen-free male BALB / c mice (6 weeks old) were purchased from Koatech Corporation (South Korea) and maintained at a specific pathogen free facility under moderate temperature and light cycles.
  • Example 2 P. Aeruginosa Identification of CFU levels in bronchoalveolar lavage fluid (BALF) of infected mice
  • the mouse inoculum was administered with the PAK bacterial inoculum prepared in Example 1 (1 x 10 5 CFU per mouse in 20 ⁇ l PBS). Then, the bronchoalveolar lavage fluid (BALF) samples were collected at appropriate time for the experiment, the collected BALF samples were diluted 1: 1000 - 1: 10000 series with PBS, and the diluted samples were collected on the LB agar After plating, the cells were incubated at 37 DEG C overnight. CFU levels in BALF were determined by measuring the number of viable bacteria by the plate count method.
  • BALF bronchoalveolar lavage fluid
  • HL-60 human mononuclear cell line
  • THP-1 human macrophage-like cell line
  • FBS heat-inactivated fetal bovine serum
  • penicillin And 1600 Hyclone, Thermo Scientific
  • streptomycin 0.1 mg / ml
  • CXCL2 and CXCL8 were measured using a MIP2 ELISA kit (BD science, Rockford, IL, 107 USA) or a human CXCL8 ELISA kit (R & D systems, Minneapolis, MN, USA) according to the manufacturer's instructions.
  • the specific method of Western blotting is as follows. First, cells were treated with 20 mM Tris-HCl pH 7.4, 50 mM NaCl, 50 mM sodium pyrophosphate, 30 mM NaF, 5 ⁇ M zinc chloride, 2 mM acetic acid and 1% Triton X-100 containing phosphatase inhibitor for 10 minutes While dissolving in ice. The solution was centrifuged at 15,000 x g for 15 minutes at 4 < 0 > C and the protein concentration was measured by the Bradford method. Proteins were separated on a 10% SDS-PAGE gel and transferred to polyvinylidene difluoride (PVDF) membranes.
  • PVDF polyvinylidene difluoride
  • the membrane was then blocked for 1 hour in PBS (10 mM Tris-HCl, pH 7.5, 150 mM NaCl) containing 5% skim milk and incubated with primary I ⁇ B ⁇ , p65, ⁇ -tubulin, or PARP antibody Signaling, Danvers, Mass., USA) overnight at 4 ° C.
  • PBS 10 mM Tris-HCl, pH 7.5, 150 mM NaCl
  • the immunoblot was then washed and incubated with the appropriate secondary antibody and visualized using SuperSignal West Pico chemiluminescent Substrate (Pierce, Rockford, IL, USA).
  • RAW 264.7 cells were seeded in a 48 well plate and incubated overnight. Thereafter, transfection was carried out on the cells using an attractene transfection reagent according to the manufacturer's instructions. Specifically, a reporter luciferase plasmid pGL4.32 (Promega, Madison, WI, USA) or 5 copies of a sis-inducible element (SIE) containing 5 copies of the NF- A total of 1.5 [mu] g of reporter luciferase plasmid pGL4.47 (Promega, Madison, WI, 127 USA) was transfected into RAW264.7 cells, respectively.
  • SIE sis-inducible element
  • transfected cells were pretreated with PLAG for 1 hour and stimulated with 1 [mu] g of gemcitabine for 24 hours.
  • Transient expression levels of reporter genes were measured using a Dual-Glo luciferase assay system (Promega, Madison, WI, USA) on a TD-131 20/20 Turner luminometer (Promega, Madison, WI, USA).
  • the cells were washed three times with washing buffer, incubated at room temperature for 1 hour with rabbit anti-chlorine IgG (diluted 1/1000 with washing buffer) bound with DyLight 650 dye, washed three times with washing buffer, And analyzed with a focal microscope.
  • HL-60 cells were pre-treated with PLAG for 1 hour and then treated with 10 MOI of PAK. Cells were then fixed at room temperature for 30 minutes (1% PFO, 1 M sodium chocodilate containing 1.25% glutaraldehyde, pH 7.4). The cover slip cells were then postfixed with 1% osmium tetroxide aqueous solution for 1 hour and dehydrated with increasing concentration from 50% ethanol (vol / vol) to 100% (10 minutes per step). The cells were then dried by critical-point drying in CO 2 . The cover slip was mounted on an aluminum holder, sputtered with 5 nm gold and analyzed with a scanning electron microscope (Quanta 200 FEG, FEI, Eindhoven, Netherlands).
  • Formalin was added to the wells, incubated overnight at 4 ° C, and then washed to fix the cells.
  • the anti-elastase antibody was then added to the wells, incubated at 4 [deg.] C overnight, and the antibodies were washed.
  • the HRP-conjugated secondary antibody was then added to the wells, incubated at room temperature for 1 hour, and the secondary antibody was washed. Thereafter, the DNA-elastase complex was measured by spectrophotometry after treatment with tetramethylbenzidine (TMB).
  • TMB tetramethylbenzidine
  • NET formation levels were measured using PicoGreen (Invitrogen).
  • neutrophils or HL-60 cells were co-cultured with PAK in the absence of pretreatment with PLAG, followed by addition of s7 nuclease and incubation at 37 ° C for 15 minutes. The samples were then centrifuged at 300 xg for 5 minutes and the supernatant (100 [mu] l) was transferred to 96 wells and then PicoGreen (50 [mu] l) was added.
  • the formation of NET was confirmed by spectrophotometric fluorescence analysis (484 nm emission / 520 nm emission) using an automated reader (Thermo Scientific).
  • RNA of the cells was isolated using TRIzolr reagent (Invitrogen, USA) according to the manufacturer's instructions. Then, RT-PCR was performed using a PCR reagent (Bioassay, South Korea). First, complementary DNA (cDNA) was synthesized from total RNA using an RT kit (Bioassay), and then conventional PCR was performed.
  • the primers used in the PCR were as follows:
  • Example 10 Neutropenia mouse model induced by AC chemotherapy
  • Neutropenia models were established by intravenous injection of 50 mg / kg cyclophosphamide and 2.5 mg / kg doxorubicin in mice (AC chemotherapy). After 5 hours of AC chemotherapy injection, blood samples were collected through ocular hemorrhage. The number of neutrophils in the blood was measured by a complete blood count (CBC) analysis using a Mindray BC-5300 auto-hematology analyzer (Shenzhen Mindray Bio-medical Electronics, China).
  • CBC complete blood count
  • BALF bronchoalveolar lavage fluid
  • THP-1 cells were cultured and 50 MOI of PAK was administered. After 30 minutes, 1 hour or 2 hours, PAK in THP-1 cells was taken to measure bacterial CFU (FIG. 3).
  • CFU bacterial CFU
  • PLAG stimulates immune cells so that the infected bacteria can be predated more quickly in the early stage of infection.
  • the level of CFU in cells after PAK administration was measured using PLH (palmitoic linoleic hlycerol) in which the acetyl group of PLAG was substituted with a hydroxy group.
  • PLAG promoted intracellular CFU levels at 30 minutes and 1 hour after PAK administration, but PLH showed no significant difference from the control (Fig. 5). From the above results, it can be seen that the acetyl group in the PLAG compound structure plays a key role in the bacterial predation effect of the initial immune cells.
  • mono acetyl diacyl glycerol compounds show an excellent effect of promptly eliminating infected bacteria by stimulating bacterial predation in the early stages of infection of immune cells. Especially, when the acetyl group in the mono acetyl diacyl glycerol compound has the above effect It is clear that the
  • PLAG was induced to induce chemokine secretion or neutrophil recruitment at the site of infection, thereby confirming whether the PLAG exhibits the bacterial removal effect as confirmed in Experimental Example 1 above.
  • the expression level of chemokine in BALF was measured by ELISA 2 hours after PAK administration in normal mice (FIG. 6).
  • the level of protein expression of CXCL2 was increased in BALF infected with PAK, and when PLAG and PAK were treated together, the expression level of CXCL2 was further increased (FIG. 7).
  • THP-1 cells were treated with NF- ⁇ B inhibitor BAY11-7083 or STAT inhibitor, S3I-201, and then the level of chemokine expression was measured.
  • BAY11-7083 or STAT inhibitor
  • S3I-201 the level of chemokine expression was measured.
  • the expression level of CXCL8 in THP-1 cells infected with PAK was markedly inhibited when BAY11-7083 was treated, whereas when S3I-201 was treated (FIG. 11).
  • NF-kB and STAT3 were measured using a luciferase reporter.
  • PAK administration activated the transcription of NF-kB, and when the PLAG was treated together, the transcriptional activity was further enhanced (Fig. 12, left).
  • PAK infection activated STAT3 transcription, but when PLAG was treated together, the transcriptional activity was inhibited (Fig. 12 right).
  • the nuclear and cytoplasmic fractions of THP-1 cells were subjected to western blotting (Fig. 13) or by confocal microscopic imaging (Fig. 14).
  • Fig. 13 western blotting
  • Fig. 14 confocal microscopic imaging
  • monacetyl diacyl glycerol compounds induce chemokine expression of immune cells by promoting NF- ⁇ B activity through inhibition of STAT3 activation during PAK infection.
  • HL-60 cells were cultured and infected with 10 MOI of PAK. Extracellular DNA formed by NETosis at 2 hours was analyzed by ELISA (FIG. 18) or by confocal microscopy or scanning electron microscopy (FIG. 19 ) (Fig. 17). As a result, NETosis was induced in HL-60 cells at the early stage of PAK infection, and NETosis induction was further enhanced when PLAG was treated (FIGS. 18 and 19)
  • HL-60 cells were pretreated with NF- ⁇ B inhibitor BAY11-7083 or STAT inhibitor S3I-201 for 1 hour, and PAK was administered. After 2 hours, NETosis formation was observed (FIG. 23). As a result, PAK induced NETosis, PLAG or STAT inhibitor (S3I-201) further enhanced NETosis occurrence, but NF-KB inhibitor (BAY11-7082) significantly decreased NETosis than PAK alone 25).
  • P. aeruginosa is known to cause serious infections in immunocompromised conditions such as after chemotherapy or transplant surgery. Therefore, an experiment was conducted to confirm whether PLAG is effective in removing infecting bacteria in immunocompromised mice.
  • cyclophosphamide and doxorubicin were administered together (AC chemotherapy) to establish a neutrophil-reducing model mouse.
  • AC chemotherapy doxorubicin
  • 250 mg / kg of PLAG was orally administered to the AC chemotherapy mice daily.
  • the neutrophil decay of the mice was confirmed by a complete blood count (CBC) analysis.
  • the neutrophil reduced mice were infected with PAK and then bacterial CFU in BALF was measured 3 hours later (FIG. 27).
  • the bacterial CFU was rapidly increased during the PAK infection, whereas when the PLAG was treated together, the CFU increase was significantly suppressed (FIG. 28).
  • SEQ ID NO: 1 Human CXCL8 (Forward)
  • SEQ ID NO: 2 Human CXCL8 (Reverse)
  • SEQ ID NO: 3 GAPDH (Forward)
  • SEQ ID NO: 4 GAPDH (Reverse)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Emergency Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

본 발명은 화학식 1로 표시되는 모노아세틸디아실글리세롤 화합물을 유효성분으로 함유하는, 슈도모나스 속 (Pseudomonas sp.) 미생물 감염증의 예방 또는 치료용 약학적 조성물을 제공한다. 본 발명은 또한, 상기 모노아세틸디아실글리세롤 화합물을 함유하는 슈도모나스 속 미생물 감염증의 예방 또는 개선용 건강기능식품을 제공한다. 본 발명에 따른 약학적 조성물 및 건강기능식품은 슈도모나스 속 미생물 감염증에서 박테리아 제거 및 네토시스 (NETosis) 형성을 촉진함으로써 슈도모나스 속 미생물 감염증에 우수한 치료, 예방 및 개선 효과를 나타낸다.

Description

모노아세틸디아실글리세롤 화합물을 함유하는 슈도모나스 속 미생물 감염증의 예방 또는 치료용 조성물
본 발명은 모노아세틸디아실글리세롤 화합물을 함유하는 슈도모나스 속 (Pseudomonas sp .) 미생물 감염증의 예방, 치료 또는 개선용 조성물에 관한 것이다.
슈도모나스 속 (Pseudomonas sp .) 미생물은 자연계에 널리 존재하는 편성 호기성의 그람 음성 간균이다. 이들은 병원성은 통상 낮지만, 암이나 당뇨병 등의 각종 기초 질환을 갖는 환자, 면역 억제 작용을 갖는 약제의 투여를 받고 있는 환자 등에게서 많이 발생하는 기회 감염증을 야기하는 병원균이며, 폐 기능을 손상시키고 폐렴, 낭포성 섬유증, 패혈증, 요로 감염증 등을 야기하여 위독한 결과를 초래하는 경우가 많다 (문헌 [Patrick PR, et al. eds. Manual of Clinical Microbiology. 8th eds. ASM press. 2003] 둥). 특히, 화학요법 또는 이식 수술 후 면역 저하 (immunosuppressed) 상태에 놓인 환자는 슈도모나스 속 미생물 감염에 쉽게 노출되며, 항암화학요법에 의해 유발된 점막염은 슈도모나스 속 미생물 감염증의 핵심적인 위험 인자이다.
슈도모나스 속 미생물은 기존의 항생 물질에 대한 감수성이 낮을 뿐만 아니라, 다양한 항생 물질에 대하여 쉽게 내성을 획득하여 난치화되는 경향이 강하기 때문에, 슈도모나스 속 미생물 감염증은 임상 현장에서 가장 치료가 곤란한 감염증 중 하나로 생각되고 있다 (대한민국 공개특허 제10-2011-0128856호). 따라서, 슈도모나스 속 미생물 감염증의 효과적인 치료제 개발이 시급한 실정이다.
한편, 녹용은 사슴과(Cornu cervi)에 속하는 사슴의 각화되지 않은 유각을 채취하여 건조한 것으로, 인삼과 더불어 한방에서 널리 사용되고 있는 생약 중의 하나이다. 녹용은 예로부터 강장작용, 생장, 발육촉진작용, 신경쇠약 치료작용 등 다양한 효능이 알려졌으며, 녹용의 약효를 규명하기 위해 그의 성분에 관한 다양한 연구가 이루어져왔다. 일례로 녹용에는 1-팔미토일 (palmitoyl)-2-리놀레오일 (linoleoyl)-3-아세틸글리세롤 (acetylglycerol) 등의 모노아세틸디글리세라이드 (monoaetyldiglyceride) 화합물이 포함되어 있으며, 이들은 조혈 세포에 대한 성장 촉진 효과가 있는 것으로 알려져있다. 그러나 상기 모노아세틸디아실글리세롤류 화합물이 슈도모나스 속 미생물 감염증에 있어서 어떠한 효과를 나타낼지에 대하여는 아직까지 알려진 바가 없다.
이에 본 발명자들은 슈도모나스 속 미생물 감염증 치료제를 개발하기 위하여 예의 노력한 결과, 모노아세틸디아실글리세롤류 화합물이 슈도모나스 속 미생물 감염증 환경에서 NETosis의 형성을 가속화하여 감염 초기에 박테리아를 제거함으로써 슈도모나스 속 미생물 감염증을 효과적으로 치료하는 효과가 있음을 확인하고 본 발명을 완성하였다.
본 발명의 하나의 목적은 하기 화학식 1로 표시되는 모노아세틸디아실글리세롤 화합물을 유효성분으로 함유하는, 슈도모나스 속 (Pseudomonas sp .) 미생물 감염증의 예방, 치료 또는 개선용 약학적 조성물 또는 건강기능식품을 제공하는 것이다.
[화학식 1]
Figure PCTKR2018009348-appb-I000001
상기 식에서 R1 및 R2는 각각 탄소수 14 내지 22의 지방산기이다.
본 발명의 다른 목적은, 상기 약학적 조성물을 슈도모나스 속 미생물 감염증의 발병 가능성이 있거나 슈도모나스 속 미생물 감염증을 앓고 있는 개체에 투여하는 단계를 포함하는, 슈도모나스 속 미생물 감염증의 예방 또는 치료방법을 제공하는 것이다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 발명에서 개시된 각각의 설명 및 실시형태는 각각에 대한 다른 설명 및 실시형태에도 적용될 수 있다. 즉, 본 발명에 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.
본 발명의 하나의 양태는 화학식 1로 표시되는 모노아세틸디아실글리세롤 화합물을 유효성분으로 함유하는, 슈도모나스 속 (Pseudomonas sp .) 미생물 감염증의 예방 또는 치료용 약학적 조성물이다.
[화학식 1]
Figure PCTKR2018009348-appb-I000002
상기 식에서 R1 및 R2는 각각 탄소수 14 내지 22의 지방산기이다. 본 명세서에서 지방산기는 지방산의 카르복실기에서 -OH기가 제외된 나머지 부분을 의미한다.
본 발명에서 용어“모노아세틸디아실글리세롤(monoacethyldiacylglycerol; MADG) 화합물”은 하나의 아세틸기와 2개의 아실기를 갖는 글리세롤의 유도체를 의미하며, 슈도모나스 속 미생물 감염증의 예방 또는 치료에 우수한 효과를 나타낸다.
상기 화학식 1로 표시되는 모노아세틸디아실글리세롤류 화합물에서 R1 및 R2는 각각 탄소수 14 내지 22의 지방산기일 수 있으며, 구체적으로 팔미토일 (palmitoyl), 올레오일 (oleoyl), 리놀레오일 (linoleoyl), 리놀레노일 (linolenoyl), 스테아로일 (stearoyl), 미리스토일 (myristoyl) 또는 아라키도노일 (arachidonoyl) 등일 수 있으나, 이에 제한되는 것은 아니다. 구체적으로, 상기 R1 및 R2의 조합 (R1/R2)은 올레오일/팔미토일, 팔미토일/올레오일, 팔미토일/리놀레오일, 팔미토일/리놀레노일, 팔미토일/아라키도노일, 팔미토일/스테아로일, 팔미토일/팔미토일, 올레오일/스테아로일, 리놀레오일/팔미토일, 리놀레오일/스테아로일, 스테아로일/리놀레오일, 스테아로일/올레오일, 미리스토일/리놀레오일 또는 미리스토일/올레오일 등일 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 모노아세틸디아실글리세롤 화합물은 광학활성에 있어, (R)-형, (S)-형 또는 라세미체일 수 있다.
화학식 1로 표시되는 본 발명의 모노아세틸디아실글리세롤 화합물은 녹용으로부터 추출/분리되거나, 공지의 유기합성법 (대한민국등록특허 제10-0789323호)으로 제조될 수 있으나, 이에 제한되는 것은 아니다. 일례로 본 발명의 모노아세틸디아실글리세롤 화합물은 다음의 과정을 통해 제조될 수 있다. 먼저, 녹용을 헥산으로 추출하고, 그 추출잔사를 다시 클로로포름으로 추출한 다음, 수득된 추출액을 감압증류하여 녹용의 클로로포름 추출물을 수득할 수 있다. 상기 추출에서 사용되는 추출용매인 헥산 및 클로로포름의 양은 각각 사용된 녹용이 잠길 정도의 양이면 충분하며, 일반적으로는 녹용 1kg에 대하여 헥산 및 클로로포름을 각각 4~5ℓ정도의 비로 사용할 수 있으나, 추출용매의 종류와 사용량이 이에 제한되는 것은 아니다. 이러한 방법으로 수득한 녹용의 클로로포름 추출물을 계속해서 일련의 실리카겔 칼럼 크로마토그래피 및 TLC 방법에 의해 더 분획화하고 정제하여, 본 발명에 사용되는 모노아세틸디아실글리세롤 화합물을 얻을 수 있다. 상기 크로마토그래피 정제 단계의 용리액으로는 클로로포름/메탄올, 헥산/에틸아세테이트, 헥산/에틸아세테이트/아세트산 등을 사용할 수 있으며, 이에 제한되지 않는다.
또 다른 일례로, 본 발명의 모노아세틸디아실글리세롤 화합물을 화학적으로 합성하는 방법은 대한민국등록특허 제10-0789323호에 공개되어 있다. 구체적으로, (a) 1-R1-글리세롤의 3번 위치에 보호기를 붙여 1-R1-3-보호기-글리세롤을 제조하는 과정; (b) 1-R1-3-보호기-글리세롤의 2번 위치에 R2기를 도입하여 1-R1-2-R2-3-보호기-글리세롤을 제조하는 과정 및; (c) 1-R1-2-R2-3-보호기-글리세롤의 탈보호 반응 및 아세틸화 반응을 동시에 수행하는 과정을 포함할 수 있고, 필요에 따라 정제하여, 목적하는 모노아세틸디아실글리세롤류 화합물을 합성할 수 있으며, 다른 방법으로는 포스파티딜콜린을 가아세트산 분해 (acetolysis)하여 얻을 수도 있으나, 이에 제한되는 것은 아니다. 또한, 상기 화학식 1로 표시되는 모노아세틸디아실글리세롤 화합물의 입체이성질체도 모두 본 발명의 범주 내로 포함될 수 있다.
상기 모노아세틸디아실글리세롤류 화합물은 이에 제한되는 것은 아니나, 하기 화학식 2로 표시되는 화합물을 포함한다.
[화학식 2]
Figure PCTKR2018009348-appb-I000003
상기 화학식 2로 표시되는 화합물은 1-팔미토일 (palmitoyl)-2-리놀레오일 (linoleoyl)-3-아세틸글리세롤 (acetylglycerol)이라고 하며, PLAG 또는 EC-18이라 명명되기도 한다. 상기 화합물의 R1과 R2는 각각 팔미토일과 리놀레오일에 해당한다.
본 발명에서 상기 화학식 2로 표시되는 PLAG 화합물은 슈도모나스 속 미생물 감염증의 예방 또는 치료 효과를 보이는 모노아세틸디아실글리세롤류 화합물의 일 예시로 제공된다.
본 발명에서 용어 “슈도모나스 속 (Pseudomonas sp .) 미생물”은 그람 음성 간균으로 포도당 비발효 세균이다. 이들은 토양, 물, 하수 등을 포함한 자연환경, 사람의 피부, 구강, 호흡기계 점막 등에 상재균으로 분포한다. 상기 미생물은 신생아, 비장 절제술 시행 환자, 장기간 스테로이드를 투여한 환자, 항암 치료 중인 암환자, 장기 이식 환자, 집중치료실 환자와 같은 면역력이 저하된 고위험군 환자에서 내인성 기회감염을 일으킬 수 있다. 본 발명에서 슈도모나스 속 미생물은 P. 아에루기노사 (aeruginosa), P. 클로로라피스 (chlororaphis), P. 플루오레슨스 (fluorescens), P. 퍼투시노게나 (pertucinogena), P. 푸티다 (putida), P. 스투체리 (stutzeri), P. 시린자이 (syringae) 등을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 용어 "슈도모나스 속 미생물 감염증"은 슈도모나스 속 미생물에 의한 감염증 그 자체, 슈도모나스 속 미생물 감염에 의해 유발되거나 악화되는 질환 및 상기 질환에 의한 증상을 모두 포함한다. 상기 질환은 예컨대, 폐에서 유발될 수 있으나 이에 제한되는 것은 아니다. 또는, 상기 질환은 예컨대, 낭포성 섬유증, 패혈증, 폐렴, 점막염, 요로 감염증, 간농양, 중이염, 각막염, 내안구염, 균혈증, 화상 상처 감염, 뇌막염 또는 복막염일 수 있으나 이에 제한되지 않는다. 본 발명의 모노아세틸디아실글리세롤 화합물은 감염된 슈도모나스 속 미생물을 제거하는 효과가 있으므로, 슈도모나스 감염에 의해 발생하는 모든 질환에 대하여 예방 및 치료 효과를 기대할 수 있다. 따라서, 본 발명에 따른 모노아세틸디아실글리세롤 화합물을 포함하는 약학적 조성물은 슈도모나스 속 미생물 감염증을 예방 또는 치료하기 위해 사용될 수 있다.
본 발명에서 용어 "예방"은 본 발명의 조성물의 투여로 슈도모나스 속 미생물 감염증의 발병을 억제 또는 지연시키는 모든 행위를 의미하며, "치료"는 본 발명의 조성물에 의해 슈도모나스 속 미생물 감염증에 의한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.
본 발명의 하나의 양태에서, 본 발명에 따른 모노아세틸디아실글리세롤 화합물을 포함하는 약학적 조성물은 면역 저하 (immunosuppressed) 상태에서 일어나는 슈도모나스 속 미생물 감염증을 예방 또는 치료하기 위해 사용될 수 있다. 상기 면역 저하된 상태는 예컨대, 호중구 감소증과 같은 백혈구 감소증을 포함할 수 있으나 이에 제한되는 것은 아니다. 상기 면역 저하된 상태는 항암화학치료 또는 방사선 치료에 의해 유발된 것일 수 있으나 이에 제한되는 것은 아니다.
본 발명의 구체적 일 실시예에서, 본 발명의 화학식 2로 표시되는 PLAG 화합물은 슈도모나스 아에루기노사 (aeruginosa) 균에 감염된 마우스에서 감염 초기에 박테리아 제거를 촉진시키고 (도 1 내지 도 5), 감염부위에서 CXCL2 및 CXCL8과 같은 케모카인 분비를 촉진하며 (도 6 내지 도 12) NETosis를 유도(도 15 내지 도 26)함으로써 특히 호중구 감소 상태와 같은 면역 저하 상태에서 유발된 감염증에서 우수한 치료 효과 (도 27 내지 도 30)를 나타낸다는 것을 확인하였다. 즉, 본 발명에서 PLAG가 STAT3 억제를 통해 NF-κB의 활성을 촉진함으로써 대식세포의 케모카인 분비를 촉진하고 호중구 모집을 촉진하며, NETosis를 유도하는 효과가 현저하다는 점을 최초로 규명하였다 (도 31). 따라서, 본 발명의 조성물은 슈도모나스 속 미생물 감염증의 예방 또는 치료제로서 사용될 수 있다.
본 발명의 모노아세틸디아실글리세롤 화합물을 포함하는 약학적 조성물은, 약학적 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 또는 희석제를 추가로 포함할 수 있다. 이때, 상기 조성물에 포함되는 모노아세틸디아실글리세롤 화합물의 함량은 특별히 이에 제한되지 않으나, 조성물 총 중량에 대하여 0.0001 내지 100.0 중량%, 0.001 내지 50.0 중량%로, 또는 0.01 내지 20 중량%로 포함될 수 있다.
상기 약학적 조성물은 정제, 환제, 산제, 과립제, 캡슐제, 현탁제, 내용액제, 유제, 시럽제, 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결 건조제 및 좌제으로 이루어진 군으로부터 선택되는 어느 하나의 제형을 가질 수 있으며, 경구 또는 비경구의 여러 가지 제형일 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 하나 이상의 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 탄산칼슘, 수크로오스 또는 락토오스, 젤라틴 등을 섞어 조제된다. 또한, 단순한 부형제 이외에 스테아린산 마그네슘, 탈크 등과 같은 윤활제들도 사용된다. 경구투여를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제가 포함된다. 비수성용제, 현탁용제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔, 마크로골, 트윈 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.
본 발명의 조성물은 약학적으로 유효한 양으로 투여할 수 있다. 본 발명에서 용어, "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 질병의 종류, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와 순차적 또는 동시에 투여될 수 있다. 그리고 단일 또는 다중 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다. 본 발명의 조성물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물 형태, 투여경로 및 기간에 따라 다르며, 적합한 총 1일 사용량은 올바른 의학적 판단범위 내에서 처치의에 의해 결정될 수 있으나, 일반적으로 0.0005 내지 4000 mg/kg의 양, 0.001 내지 2000 mg/kg의 양, 0.01 내지 1000 mg/kg의 양, 0.05 내지 200 mg/kg의 양, 또는 0.1 내지 100 mg/kg의 양을 일일 1회 내지 수회로 나누어 투여할 수 있다. 상기 조성물은 슈도모나스 속 미생물 감염증의 예방 또는 치료를 목적으로 하는 개체이면 특별히 한정되지 않고, 어떠한 개체이든 적용가능하다. 예를 들면, 원숭이, 개, 고양이, 토끼, 모르모트, 랫트, 마우스, 소, 양, 돼지, 염소 등과 같은 비인간동물 및 인간 등 어느 개체에나 적용할 수 있으며, 투여의 방식은 당업계의 통상적인 방법이라면 제한없이 포함한다. 예를 들어, 경구, 직장 또는 정맥, 근육, 피하, 자궁내 경막 또는 뇌혈관 내 주사에 의해 투여될 수 있다.
본 발명의 또 다른 하나의 양태는 하기 화학식 1로 표시되는 모노아세틸디아실글리세롤 화합물을 유효성분으로 함유하는, 슈도모나스 속 미생물 감염증의 예방 또는 개선용 건강기능식품이다.
[화학식 1]
Figure PCTKR2018009348-appb-I000004
상기 화학식 1로 표시되는 모노아세틸디아실글리세롤 화합물에서 R1 및 R2는 각각 탄소수 14 내지 22의 지방산기이다.
구체적으로, 본 발명의 모노아세틸디아실글리세롤 화합물은 슈도모나스 속 미생물 감염증의 예방 또는 개선을 목적으로 건강기능식품에 포함되어 사용될 수 있다. 상기 모노아세틸디아실글리세롤 화합물 및 슈도모나스 속 미생물 감염증에 대해서는 상기에서 설명한 바와 같다. 본 발명에서 용어, "개선"은 상기 화합물을 이용하여 슈도모나스 속 미생물 감염증의 의심 및 발병 개체의 증상이 호전되거나 이롭게 되는 모든 행위를 말한다.
본 발명의 모노아세틸디아실글리세롤 화합물을 건강기능식품에 포함하여 사용할 경우, 상기 화합물을 그대로 첨가하거나 다른 건강기능식품 또는 건강기능식품 성분과 함께 사용할 수 있고, 통상적인 방법에 따라 적절하게 사용할 수 있다. 유효성분의 혼합량은 사용 목적에 따라 적합하게 결정될 수 있다. 일반적으로, 식품 또는 음료의 제조 시에 본 발명의 화합물은 원료 100 중량부에 대하여 15 중량부 이하, 또는 10 중량부 이하의 양으로 첨가될 수 있다. 그러나, 건강 조절 및 위생을 목적으로 하는 장기간의 섭취의 경우에는 상기 양은 상기 범위 이하일 수 있으며, 안전성 면에서 문제가 없기 때문에 유효성분은 상기 범위 이상의 양으로도 사용할 수 있다.
본 발명의 화합물을 포함할 수 있는 건강기능식품의 종류에는 특별한 제한은 없으며, 구체적인 예로는 영양 캡슐, 비타민 복합제, 캔디류, 스넥류, 과자류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 및 알코올 음료 등이 있고, 통상적인 의미에서의 건강기능식품을 모두 포함할 수 있으며, 동물을 위한 사료로 이용되는 식품을 포함할 수 있다. 또한, 본 발명의 건강기능식품이 음료의 형태로 사용될 경우에는 통상의 음료와 같이 여러 가지 감미제, 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상기 천연 탄수화물은 포도당, 과당과 같은 모노사카라이드, 말토스, 수크로스와 같은 디사카라이드, 덱스트린, 사이클로덱스트린과 같은 폴리사카라이드, 및 자일리톨, 소르비톨, 에리트리톨과 같은 당알콜일 수 있다. 상기 천연 탄수화물의 비율은 이에 제한되지는 않으나, 본 발명의 화합물 100 ml 당 0.01 내지 0.04 g, 또는 0.02 내지 0.03 g일 수 있다. 상기 감미제는 타우마틴, 스테비아 추출물과 같은 천연 감미제 및 사카린, 아스파르탐과 같은 합성 감미제일 수 있다. 상기 외에 본 발명의 건강기능식품은 여러 가지 영양제, 비타민, 전해질, 풍미제, 착색제, 펙트산 및 그의 염, 알긴산 및 그의 염, 중쇄 지방산 (medium chain fatty acid; MCT)과 같은 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그밖에 천연 과일쥬스, 과일쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다.
본 발명의 또 다른 하나의 양태는 상기 약학적 조성물을 슈도모나스 속 미생물 감염증의 의심개체에 투여하는 단계를 포함하는, 슈도모나스 속 미생물 감염증의 예방 또는 치료 방법이다. 본 발명에서 상기 슈도모나스 속 미생물 감염증의 의심 개체는 슈도모나스 속 미생물 감염증이 발병하였거나 발병할 수 있는 인간을 포함한 모든 동물을 의미하며, 본 발명의 화합물을 포함하는 약학적 조성물을 슈도모나스 속 미생물 감염증 의심 개체에 투여함으로써, 개체를 효율적으로 치료할 수 있다. 슈도모나스 속 미생물 감염증에 대해서는 상기에서 설명한 바와 같다. 본 발명에서 용어, "투여"는 어떠한 적절한 방법으로 슈도모나스 속 미생물 감염증 의심 개체에게 본 발명의 약학적 조성물을 도입하는 것을 의미하며, 투여 경로는 목적 조직에 도달할 수 있는 한 경구 또는 비경구의 다양한 경로를 통하여 투여될 수 있다.
본 발명의 치료 방법은 상기 화학식 1의 모노아세틸디아실글리세롤 화합물을 포함하는 약학적 조성물을 약학적 유효량으로 투여하는 것을 포함할 수 있다. 적합한 총 1일 사용량은 올바른 의학적 판단범위 내에서 처치의에 의해 결정될 수 있으며, 일반적으로 0.0005 내지 4000 mg/kg의 양, 0.001 내지 2000 mg/kg의 양, 0.01 내지 1000 mg/kg의 양, 0.05 내지 200 mg/kg의 양, 또는 0.1 내지 100 mg/kg의 양을 일일 1회 내지 수회로 나누어 투여할 수 있다. 그러나 본 발명의 목적상, 특정 환자에 대한 구체적인 치료적 유효량은 달성하고자 하는 반응의 종류와 정도, 경우에 따라 다른 제제가 사용되는지의 여부를 비롯한 구체적 조성물, 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료기간, 구체적 조성물과 함께 사용되거나 동시 사용되는 약물을 비롯한 다양한 인자와 의약 분야에 잘 알려진 유사 인자에 따라 다르게 적용하는 것이 바람직하다.
본 발명의 모노아세틸디아실글리세롤 화합물은 슈도모나스 속 (Pseudomonas sp.) 미생물 감염증 환경에서 감염 초기에 NETosis를 유도하여 박테리아 제거를 촉진함으로써, 슈도모나스 속 미생물 감염증의 예방 또는 치료에 우수한 효과를 나타낸다.
따라서, 본 발명의 약학적 조성물 및 건강기능식품은 슈도모나스 속 미생물 감염증의 예방, 치료 또는 개선에 유용하게 사용될 수 있다.
도 1은 감염된 마우스의 기관지 폐포 세척액 (bronchoalveolar lavage fluid, BALF)에서 박테리아 제거에 대한 PLAG (1-palmitoyl-2-linoleoyl-3-acetylglycerol) 화합물의 효과를 확인하기 위한 실험 개요를 나타낸다.
도 2는 감염된 마우스의 기관지 폐포 세척액 (bronchoalveolar lavage fluid, BALF)에서 박테리아 제거에 대한 PLAG (1-palmitoyl-2-linoleoyl-3-acetylglycerol) 화합물의 효과를 확인하기 위한 실험 결과를 나타낸다.
도 3은 감염된 THP-1 세포의 세포내 박테리아 CFU에 대한 PLAG의 효과를 확인하기 위한 실험 개요를 나타낸다.
도 4는 감염된 THP-1 세포의 세포내 박테리아 CFU에 대한 PLAG의 효과를 확인하기 위한 실험 결과를 나타낸다.
도 5는 감염된 THP-1 세포의 세포내 박테리아 CFU에 대한 PLAG 및 PLAG 유도체의 영향을 확인한 결과를 나타낸다.
도 6은 감염된 마우스의 BALF에서 케모카인 분비 및 호중구 수에 대한 PLAG의 효과를 확인하기 위한 실험 개요를 나타낸다.
도 7은 감염된 마우스의 BALF에서 CXCL2의 발현 수준에 대한 PLAG의 효과를 확인한 ELISA 결과를 나타낸다.
도 8은 감염된 마우스의 BALF에서 호중구 수에 대한 PLAG의 효과를 확인한 결과를 나타낸다.
도 9는 THP-1 세포에서 CXCL8의 발현 수준에 대한 PLAG의 효과를 확인한 RT-PCR 결과를 나타낸다.
도 10은 THP-1 세포에서 CXCL8의 발현 수준에 대한 PLAG의 효과를 확인한 RT-PCR 및 ELISA 결과를 나타낸다.
도 11은 감염된 마우스의 BALF에서 CXCL8의 발현 수준에 대한 NF-κB 및 STAT3 억제제의 효과를 확인한 결과를 나타낸다.
도 12는 RAW264.7 세포에서 NF-κB 및 STAT3의 전사 활성에 대한 PLAG의 효과를 확인한 결과를 나타낸다.
도 13은 THP-1 세포에서 PLAG에 의한 p65의 위치를 확인한 웨스턴 블롯팅 결과 및 컨포컬 현미경 이미지를 나타낸다.
도 14는 THP-1 세포에서 PLAG에 의한 p65의 위치를 확인한 웨스턴 블롯팅 결과 및 컨포컬 현미경 이미지를 나타낸다.
도 15는 감염된 마우스의 BALF에서 세포외 DNA-엘라스타제 복합체 형성에 대한 PLAG의 효과를 확인하기 위한 실험 개요를 나타낸다.
도 16은 감염된 마우스의 BALF에서 세포외 DNA-엘라스타제 복합체 형성에 대한 PLAG의 효과를 확인하기 위한 실험 결과를 나타낸다.
도 17은 HL-60 세포에서 세포외 DNA-엘라스타제 복합체 형성에 대한 PLAG의 효과를 확인하기 위한 실험 개요를 나타낸다.
도 18은 HL-60 세포에서 세포외 DNA-엘라스타제 복합체 형성에 대한 PLAG의 효과를 확인한 ELISA 결과를 나타낸다.
도 19는 HL-60 세포에서 세포외 DNA-엘라스타제 복합체 형성에 대한 PLAG의 효과를 확인한 컨포컬 현미경 또는 주사 전자 현미경 이미지를 나타낸다.
도 20은 골수 유래 세포에서 세포외 DNA-엘라스타제 복합체 형성에 대한 PLAG의 효과를 확인하기 위한 실험 개요를 나타낸다.
도 21은 골수 유래 세포에서 세포외 DNA-엘라스타제 복합체형성에 대한 PLAG의 효과를 확인한 ELISA 결과를 나타낸다.
도 22는 골수 유래 세포에서 세포외 DNA-엘라스타제 복합체형성에 대한 PLAG의 효과를 확인한 컨포컬 현미경 이미지를 나타낸다.
도 23은 HL-60 세포에서 세포외 DNA-엘라스타제 복합체 형성에 대한 NF-κB 억제제 및 STAT3 억제제의 효과를 확인하기 위한 실험 개요를 나타낸다.
도 24는 HL-60 세포에서 세포외 DNA-엘라스타제 복합체 형성에 대한 NF-κB 억제제 및 STAT 억제제의 효과를 확인한 ELISA 결과를 나타낸다.
도 25는 HL-60 세포에서 세포외 DNA-엘라스타제 복합체 형성에 대한 NF-κB 억제제 및 STAT 억제제의 효과를 확인한 컨포컬 현미경 이미지를 나타낸다.
도 26은 HL-60 세포에서 IκBα의 분해에 대한 PLAG의 효과를 나타낸다.
도 27은 감염된 호중구 감소증 마우스의 BALF에서 박테리아 제거에 대한 PLAG의 효과를 확인하기 위한 실험 개요를 나타낸다.
도 28은 감염된 호중구 감소증 마우스의 BALF에서 박테리아 제거에 대한 PLAG의 효과를 확인하기 위한 실험 결과를 나타낸다.
도 29는 감염된 호중구 감소증 마우스의 생존율에 대한 PLAG의 효과를 확인하기 위한 실험 개요를 나타낸다.
도 30은 감염된 호중구 감소증 마우스의 생존율에 대한 PLAG의 효과를 확인하기 위한 실험 결과를 나타낸다.
도 31은 본 발명에 의해 확인된 감염시 세포 메커니즘에 대한 도식을 나타낸다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
< 실시예 1> 시약, 실험 동물 , 박테리아 배양 및 마우스의 감염용 접종액의 준비
시클로포스파미드 (Cyclophosphamide) 및 독소루비신 (Doxorubicin)을 Sigma-Aldrich (St. Louis, 71 MO, USA)에서 구입하였다. PLAG (1-palmitoyl-2-linoleoyl-3-acetylglycerol)를 Enzychem Lifesciences Corporation (South Korea)에서 합성하였다. 특정 병원체 부재 (specific pathogen-free; SPF) 수컷 BALB/c 마우스 (6주령)를 Koatech Corporation (South Korea)에서 구입하여, 적당한 온도 및 빛 사이클 하의 특정 병원체 부재 시설에서 유지하였다.
P. 아에루기노사(aeruginosa) K (PAK)를 LB 브로스 또는 LB 아가 플레이트에 37 ℃로 밤새 배양한 후, 배양액을 2 분 동안 13,000 × g에서 원심분리하여 박테리아 펠렛을 수득하였다. 그 후, 박테리아 펠렛을 PBS (phosphate buffered saline)에 현탁하고, 계열 희석액의 광학 밀도를 측정하여 아가(agar) 플레이트에 플레이팅함으로써 일정 집락형성단위 (colony forming unit; CFU)를 갖는 박테리아 접종액을 얻었다. 하기에 기재된 실험예에 사용하기 위해, 20 ㎕당 1 x 105 CFU 농도의 감염용 박테리아 접종액을 준비하였다.
< 실시예 2> P. 아에루기노사 감염 마우스의 기관지 폐포 세척액 (bronchoalveolar lavage fluid, BALF) 내 CFU 수준 확인
상기 실시예 1에서 준비한 PAK 박테리아 접종액 (20 ㎕ PBS 내에 마우스 당 1 × 105 CFU)을 마우스에 비강 주사로 투여하였다. 그 후, 실험에 적합한 시간대에 기관지 폐포 세척액 (bronchoalveolar lavage fluid, BALF) 샘플을 수집한 후, 수집한 BALF 샘플을 PBS로 1:1000 - 1:10000 계열 희석하고, 희석된 샘플을 LB 아가 상에 플레이팅한 후, 37 ℃에서 밤새 인큐베이션하였다. 플레이트 계수법 (plate count method)으로 생존한 박테리아의 수를 측정하여 BALF 내 CFU 수준을 확인하였다.
<실시예 3> 세포주 배양 조건
골수 유래 세포인 HL-60 (인간 단핵구 세포주) 및 THP-1 (인간 대식세포 유사 세포주) 세포를 10% 열-비활성화된 우태아 혈청 (FBS; Hyclone, Thermo Scientific), 페니실린 (100 units/ml) 및 스트렙토마이신 (0.1 mg/ml)을 첨가한 RPMI-1640 (Hyclone, Thermo Scientific)에서 배양하였다. 5% CO2 습윤 인큐베이터에서 37 ℃로 세포를 유지하고 배양하였다.
<실시예 4> ELISA 분석 및 웨스턴 블롯팅
제조사의 설명서에 따라 MIP2 ELISA 키트 (BD science, Rockford, IL, 107 USA) 또는 인간 CXCL8 ELISA 키트 (R&D systems, Minneapolis, MN, USA)를 사용하여 CXCL2 및 CXCL8의 분비량을 각각 측정하였다.
웨스턴 블롯팅의 구체적인 방법은 다음과 같다. 먼저, 포스파타제 억제제가 포함된 20 mM Tris-HCl, pH 7.4, 50 mM NaCl, 50 mM 소듐 피로포스페이트, 30 mM NaF, 5 μM 염화아연, 2 mM 아세트산 및 1% 트리톤 X-100으로 세포를 10 분 동안 아이스에서 용해시켰다. 이 용액을 4 ℃에서 15 분 동안 15,000 × g로 원심분리하고, 단백질 농도를 브래드포드 방법으로 측정하였다. 단백질을 10%의 SDS-PAGE 젤 상에서 분리하여 폴리비닐리덴 디플루오라이드 (PVDF) 멤브레인에 옮겼다. 그 후, 5% 스킴 밀크가 포함된 PBS (10 mM Tris-HCl, pH 7.5, 150 mM NaCl)에서 멤브레인을 1 시간 동안 블로킹한 뒤, 일차 IκBα, p65, α-튜불린, 또는 PARP 항체 (Cell Signaling, Danvers, MA, USA)로 4 ℃에서 밤새 인큐베이션하였다. 그 다음, 면역블롯을 세척하고 적절한 2차 항체로 인큐베이션한 뒤, SuperSignal West Pico chemiluminescent Substrate (Pierce, Rockford, IL, USA)를 사용하여 시각화하였다.
<실시예 5> 루시퍼라제(Luciferase) 리포터를 사용한 전사 활성의 분석
먼저, 48 웰 플레이트에 RAW264.7 세포를 시딩한 뒤 밤새 인큐베이션하였다. 그 후, 제조사의 설명서에 따라 attractene 트랜스팩션 시약을 사용하여 상기 세포에 대한 트랜스펙션을 실시하였다. 구체적으로, 5 카피(copy)의 NF-κB response element (RE)를 포함하는 리포터 루시퍼라제 플라스미드인 pGL4.32 (Promega, Madison, WI, USA) 또는 5 카피의 sis-inducible element (SIE)를 포함하는 리포터 루시퍼라제 플라스미드인 pGL4.47 (Promega, Madison, WI, 127 USA) 총 1.5 ㎍을 RAW264.7 세포에 각각 트랜스팩션하였다. 24 시간 후, 트랜스팩션된 세포를 PLAG로 1 시간 동안 전처리한 뒤, 1 ㎍의 젬시타빈 (Gemsitabin)으로 24시간 동안 자극하였다. TD-131 20/20 Turner luminometer (Promega, Madison, WI, USA)에서 Dual-Glo luciferase assay system (Promega, Madison, WI, USA)을 사용하여 리포터 유전자의 일시적 (transient) 발현 수준을 측정하였다.
<실시예 6> 컨포컬(confocal) 현미경 이미징
37 ℃에서 15 분 동안 ex vivo에서, 또는 1 시간 동안 in vitro에서 NF-κB 억제제가 있거나 없는 조건 하에서, 세포에 10 MOI의 PAK을 투여하였다. 커버슬립을 얼음으로 냉각시킨 PBS로 세척하고, 4% 파라포름알데히드로 4 ℃에서 상기 세포를 밤새 고정한 뒤, 블로킹 용액 (1% BSA, 0.05% 트윈 20, 및 2 mM EDTA가 포함된 PBS)으로 상온에서 1시간 동안 블로킹하였다. 그 후, 커버슬립을 세척 완충액 (1% BSA가 포함된 PBS)으로 세척하고, 항-엘라스타제 항체 (세척 완충액으로 1/100 희석)로 4 ℃에서 밤새 인큐베이션하였다. 그 후, 세척 완충액으로 3 차례 세척한 뒤, DyLight 650 dye가 결합된 토끼 항 염소 IgG (세척 완충액으로 1/1000 희석)로 상온에서 1 시간 동안 인큐베이션한 다음, 세척 완충액으로 3 차례 세척한 뒤 컨포컬 현미경으로 분석하였다.
<실시예 7> 주사 전자 현미경(SEM) 이미징
HL-60 세포에 PLAG를 1 시간 동안 전처리한 다음, 10 MOI의 PAK를 투여하였다. 그 다음, 세포를 상온에서 30 분 동안 고정하였다 (1% PFO, 1.25% 글루트알데히드 함유 1 M 소듐 카코딜레이트, pH 7.4). 그리고, 1% 오스뮴 테트로옥사이드 수용액으로 커버슬립 세포를 1 시간 동안 사후 고정하고, 에탄올 50% (vol/vol)부터 100%까지 (단계당 10 분 동안) 농도를 증가시켜가면서 탈수시켰다. 그 다음, 세포를 CO2에서 임계점 건조법으로 건조시켰다. 커버슬립을 알루미늄 홀더 상에 마운트하고, 5 nm 금으로 스퍼터링 (sputter)하고, 주사 전자 현미경 (Quanta 200 FEG, FEI, Eindhoven, Netherlands)으로 분석하였다.
<실시예 8> NETosis의 관측
포르말린을 웰에 첨가하고 4 ℃에서 밤새 인큐베이션한 뒤 세척하여 세포를 고정시켰다. 그 다음, 항-엘라스타제 항체를 웰에 첨가하고 4 ℃에서 밤새 인큐베이션한 뒤 항체를 세척하였다. 그리고, HRP-콘쥬게이션된 이차 항체를 웰에 첨가하고 상온에서 1 시간 동안 인큐베이션한 뒤 이차 항체를 세척하였다. 그 후, 테트라메틸벤지딘 (TMB)으로 처리한 뒤 분광광도법으로 DNA-엘라스타제 복합체를 측정하였다.
또한, NET 형성 수준을 PicoGreen (Invitrogen)를 사용하여 측정하였다. 이를 위해, PLAG를 전처리하거나 아무것도 처리하지 않은 조건에서 호중구 또는 HL-60 세포를 PAK와 함께 공동 배양한 이후, s7 뉴클레아제를 첨가한 뒤 37 ℃에서 15분 동안 인큐베이션하였다. 그 다음, 샘플을 300 × g에서 5 분 동안 원심분리하고, 상층액 (100 ㎕)을 96 웰에 옮긴 다음 PicoGreen (50 ㎕)을 첨가하였다. 그리고, NET 형성 여부를 자동화 리더 (Thermo Scientific)를 사용한 분광형광 분석법 (484nm exitation/520nm emission)으로 확인하였다.
<실시예 9> RT-PCR
제조사의 설명서에 따라 TRIzolⓡ 시약 (Invitrogen, USA)을 사용하여 세포의 전체 RNA를 분리하였다. 그 다음, PCR 시약 (Bioassay, South Korea)을 사용하여 RT-PCR을 실시하였다. 먼저, RT 키트(Bioassay)를 사용하여 전체 RNA로부터 상보적 DNA (cDNA)를 합성한 다음, 통상적인 PCR을 수행하였다. PCR에 사용된 프라이머는 다음과 같다:
종류 서열
인간 CXCL8(Forward) 5’-AGGGTTGCCAGATGCAATAC-3’ (서열번호 1)
인간 CXCL8(Reverse) 5’-GTGGATCCTGGCTAGCAGAC-3’(서열번호 2)
GAPDH(Foward) 5’-CCATCACCATCTTCCAGGAG-3’ (서열번호 3)
GAPDH(Reverse) 5’-ACAGTCTTCTGGGTGGCAGT-3’(서열번호 4)
<실시예 10> AC 항암화학 요법으로 유도된 호중구 감소증 마우스 모델
마우스에 50 mg/kg의 시클로포스파미드 및 2.5 mg/kg 독소루비신을 정맥 주사하여 (AC 항암화학 요법) 호중구 감소증 모델을 확립하였다. AC 항암화학 요법 주사 5 시간 후, 안구 출혈을 통해 혈액 샘플을 수집하였다. Mindray BC-5300 auto-hematology analyzer (Shenzhen Mindray Bio-medical Electronics, China)를 사용하여 전혈 세포 카운트 (complete blood count; CBC) 분석으로 혈액 내 호중구 수를 측정하였다.
< 실험예 1> P. 아에루기노사에 감염 후 박테리아의 제거를 촉진하는 PLAG (1-palmitoyl-2-linoleoyl-3-acetylglycerol)의 효과
정상 마우스에 P. 아에루기노사 K (PAK)를 투여한 후 1, 2, 4, 8 및 16 시간 째에 마우스의 BALF (bronchoalveolar lavage fluid) 샘플을 수집한 다음, BALF 샘플 내 박테리아 CFU를 측정하였다 (도 1). 그 결과, PAK 투여 1 시간 및 2 시간 째에 BALF 내 박테리아 CFU가 급격히 상승하였음을 확인하였다. 반면, PLAG와 PAK를 함께 투여하는 경우, 1 시간 및 2 시간 째에 BALF 내 박테리아 CFU는 PAK 단독 투여군보다 현저히 낮았다. PAK 단독 투여군과 PLAG 공동 투여군 사이의 CFU 수준의 차이는 시간이 지나면서 점점 작아졌고, 투여 16 시간 후 모든 투여군에서 PAK는 검출되지 않았다 (도 2). 상기 결과는 PAK 감염된 마우스에서 PLAG가 감염 초기에 박테리아 제거를 촉진시킨다는 점을 보여준다.
또한, THP-1 세포를 배양하여 50 MOI의 PAK를 투여한 다음, 30 분, 1 시간 또는 2 시간 후 THP-1 세포 내의 PAK를 취하여 박테리아 CFU를 측정하였다 (도 3). 그 결과, PAK 단독 투여군에서는 투여 2 시간째까지 CFU가 점차 증가하였으나, PLAG를 함께 투여한 군에서는 투여 1 시간째까지 PAK 단독 투여군 대비 CFU가 급격히 증가하였고, 2 시간째에는 오히려 감소하였다 (도 4). 상기 결과를 통해, PLAG는 감염 초기에 주변의 감염 박테리아를 보다 신속하게 포식시킬 수 있도록 면역 세포를 자극한다는 점을 알 수 있다.
한편, PLAG의 유도체에서도 상기와 같은 효과가 나타날지 확인하기 위해, PLAG의 아세틸기가 히드록시기로 치환된 PLH (palmitoic linoleic hlycerol)를 사용하여 도 3에 표시된 것과 같이 PAK 투여 후 세포내 CFU 수준을 측정하였다. 그 결과, PLAG는 PAK 투여 30 분 및 1 시간 후에서 모두 세포 내 CFU 수준을 촉진시켰으나, PLH는 대조군과 별다른 차이를 나타내지 않았다 (도 5). 상기 결과를 통해, PLAG 화합물 구조에서 아세틸기가 감염 초기 면역 세포의 박테리아 포식 효과에 핵심적인 역할을 수행함을 알 수 있다.
상기 실험 결과들을 종합하면, 모노아세틸디아실글리세롤 화합물은 면역세포의 감염 초기 박테리아 포식을 자극하여 감염 박테리아를 신속하게 제거하게 하는 우수한 효과를 보여주며, 특히 모노아세틸디아실글리세롤 화합물 내 아세틸기가 상기 효과에 핵심적인 것임을 알 수 있다.
< 실험예 2> P. 아에루기노사 감염 후 PLAG의 케모카인 발현 및 호중구 모집 유도 효과
PLAG가 감염 부위에서 케모카인 분비 또는 호중구 모집을 유도하여 상기 실험예 1에서 확인한 박테리아 제거 효과를 나타내는지 확인하기 위한 실험을 수행하였다.
먼저, 정상 마우스에 PAK 투여 2 시간 후 BALF 내 케모카인의 발현 수준을 ELISA로 측정하였다 (도 6). 그 결과, PAK에 감염된 BALF에서 CXCL2의 단백질 발현 수준이 증가하였고, PLAG와 PAK를 함께 처리할 경우, CXCL2의 발현 수준은 더욱 증가하는 것을 확인하였다 (도 7).
그 다음, PAK에 감염된 마우스에서 BALF 내 호중구 모집 수준을 전혈 세포 카운트 (complete blood count; CBC) 분석으로 측정하였다. 그 결과, PLAG와 PAK 공동 투여군은 PAK 단독 투여군에 비해 투여 2 시간 후 BALF 내 호중구의 수는 증가하는 경향을 보였다(도 8).
한편, THP-1 세포에서 케모카인 발현 수준을 RT-PCR (도 9) 또는 ELISA (도 10)로 측정하였다. 그 결과, THP-1 세포에서 PAK에 의해 CXCL8의 발현 수준이 증가하였고, PLAG와 PAK를 함께 처리할 경우 CXCL8의 발현 수준은 더욱 증가하는 것을 확인하였다 (도 9 및 도 10).
상기 결과는, PAK 감염 초기에 모노아세틸디아실글리세롤 화합물은 감염에 면역 세포에서 분비되는 CXCL2 및 CXCL8 등의 케모카인 발현을 현저히 강화시키고, 감염 부위로 호중구 모집을 촉진한다는 것을 보여준다.
< 실험예 3> P. 아에루기노사 감염 후 PLAG의 케모카인 발현 촉진에 관여하는 PLAG의 NF-κB 활성 촉진 및 STAT3 억제 효과 확인
상기 실험예 2에서 확인한 PLAG의 케모카인 발현 촉진 효과에 관여하는 신호전달 경로를 확인하기 위한 실험을 수행하였다.
먼저, PAK 감염시 PLAG가 관여하는 신호 경로를 확인하기 위해, THP-1 세포에 NF-κB 억제제인 BAY11-7083 또는 STAT 억제제인 S3I-201를 처리한 후 케모카인의 발현 수준 변화를 각각 측정하였다. 그 결과, PAK로 감염된 THP-1 세포에서 CXCL8의 발현 수준은 BAY11-7083를 처리한 경우에는 현저히 억제된 반면, S3I-201를 처리한 경우 강화되었다 (도 11).
또한, 루시퍼라제 리포터를 사용하여 NF-κB 및 STAT3의 전사 활성을 측정하였다. 그 결과, PAK 투여는 NF-κB의 전사를 활성화시켰고, PLAG를 함께 처리할 경우 상기 전사 활성은 더욱 강화되었다 (도 12 좌측). 반면, PAK 감염은 STAT3의 전사를 활성화시켰으나, PLAG를 함께 처리할 경우 상기 전사 활성은 억제되었다 (도 12 우측).
한편, THP-1 세포의 핵과 세포질 분획에 대해 웨스턴 블롯을 실시하거나 (도 13), 컨포컬 현미경 이미징을 통해 p65의 세포 내 위치에 따른 발현 수준을 관찰하였다 (도 14). 그 결과, PAK 감염시 p65의 발현은 세포질에서 줄어든 반면 핵에서 증가하는 것을 확인하였다. 이때, PLAG를 함께 처리하는 경우 이와 같은 p65의 핵에서 발현 증가가 더욱 강화됨을 확인하였다 (도 13). 이는 컨포컬 이미징으로 p65의 세포내 위치를 관측한 결과에 의해서도 확인된다 (도 14).
상기 결과들은 PAK 감염시 모노아세틸디아실글리세롤 화합물은 STAT3의 활성 억제를 통해 NF-κB 활성을 촉진함으로써, 면역세포의 케모카인 발현을 유도한다는 것을 보여준다.
<실험예 4> P. 아에루기노사 감염 후 PLAG의 NETosis 유도 효과
감염 부위의 호중구는 NETosis를 통해 병원균을 효과적으로 제거하는 것으로 알려져 있으므로, 상기 실험예 1에서 확인한 PLAG의 박테리아 제거 효과가 면역 세포의 NETosis 유도에 의한 것인지 확인하기 위한 실험을 수행하였다.
먼저, PAK 감염 마우스를 확립하고, 감염 2 시간 후 수집된 BALF 샘플에 대해 NETosis에 의해 형성된 세포외 DNA (DNA-엘라스타제 복합체)를 컨포컬 이미징으로 측정하였다 (도 15). 그 결과, PLAG는 PAK 단독 투여시와 비교하여 감염 초기 NETosis의 개시를 더욱 유도하는 것을 확인하였다 (도 16).
또한, HL-60 세포를 배양하여 10 MOI의 PAK로 감염시킨 후 2 시간째에 NETosis에 의해 형성된 세포외 DNA를 ELISA를 통해 (도 18) 또는 컨포컬 현미경 또는 주사 전자 현미경 관찰을 통해 (도 19) 측정하였다 (도 17). 그 결과, PAK 감염 초기에 HL-60 세포에서 NETosis가 유도되었고, PLAG를 처리한 경우 NETosis 유도는 더욱 강화됨을 확인하였다 (도 18 및 도 19)
한편, 골수 유래 세포에 대해 10 MOI의 PAK로 감염시킨 후 2 시간 째에 NETosis에 의해 형성된 세포외 DNA를 측정하였다 (도 20). 그 결과, PAK 감염은 골수 유래 세포에서 NETosis를 유도하였고, PLAG를 처리한 경우 NETosis의 감염 초기 유도는 더욱 강화됨을 확인하였다 (도 21). 이와 같은 결과는 컨포컬 현미경 이미징에 의해서도 확인되었다 (도 22).
상기 결과들은 모노아세틸디아실글리세롤 화합물이 PAK 감염에서 일어나는 면역 세포의 NETosis 형성 작용을 감염 초기에 촉진하여, PAK의 감염증을 효과적으로 치료할 수 있음을 보여준다.
< 실험예 5> P. 아에루기노사 감염 후 PLAG의 NETosis 유도에 관여하는 PLAG의 NF-κB 활성 촉진 및 STAT3 억제 효과 확인
상기 실험예 4에서 확인한 PLAG의 NETosis 유도 효과에 관여하는 신호전달 경로를 확인하기 위한 실험을 수행하였다.
먼저, HL-60 세포에 NF-κB 억제제인 BAY11-7083 또는 STAT 억제제인 S3I-201를 1 시간 동안 전처리한 후 PAK를 투여하고, 2 시간 이후 NETosis 형성 여부를 관찰하였다 (도 23). 그 결과, PAK는 NETosis를 유도하였고, PLAG 또는 STAT 억제제 (S3I-201)는 NETosis 발생을 더욱 강화시켰으나, NF-κB 억제제 (BAY11-7082)는 NETosis를 PAK 단독 투여군보다도 현저히 감소시켰다 (도 24 및 도 25).
한편, PAK 감염에서 PLAG가 NF-κB의 신호전달에 영향을 미치는지 추가로 확인하기 위해, 실시예 4에 기재된 방법에 따라 IκBα에 대해 웨스턴 블롯팅을 실시하였다. 그 결과, PAK 감염은 IκBα의 분해를 유도하였고, PLAG를 처리하거나 또는 S3I-201를 처리할 경우에는 IκBα의 분해 유도는 더욱 강화되었다 (도 26).
상기 결과들은 PAK 감염시 모노아세틸디아실글리세롤 화합물은 STAT3의 활성 억제를 통해 NF-κB 활성을 촉진시킴으로써, NETosis의 형성을 촉진한다는 것을 보여준다.
< 실험예 6> 호중구 감소 마우스에서 PLAG의 P. 아에루기노사 감염증 치료 효과
P. 아에루기노사는 화학요법이나 이식 수술 후와 같은 면역 저하(immunocompromised) 상태에서 심각한 감염증을 일으킬 수 있다고 알려져있다. 이에, 면역 저하 (immunocompromised) 마우스에서 PLAG가 감염 박테리아 제거에 효과적인지 확인하기 위한 실험을 수행하였다.
먼저, 시클로포스파미드 및 독소루비신을 함께 투여 (AC 항암화학요법)하여 호중구 감소 모델 마우스를 확립하였다. PLAG 처리군의 경우, AC 항암화학요법 마우스에 250 mg/kg의 PLAG를 매일 경구 투여하였다. AC 항암화학요법 5일 후, 전혈 세포 카운트 (complete blood count; CBC) 분석을 통해 마우스의 호중구 감소 상태를 확인하였다. 상기 호중구 감소 마우스에 PAK를 감염시킨 다음, 3 시간 후 BALF 내의 박테리아 CFU를 측정하였다 (도 27). 그 결과, AC 항암화학요법군에서는 PAK 감염시 박테리아 CFU가 급격히 증가한 반면, PLAG를 함께 처리한 경우에는 CFU 증가가 현저히 억제됨을 확인하였다 (도 28).
한편, PLAG가 호중구 감소증 마우스에서 PAK 감염에 미치는 효과를 확인하기 위해, AC 항암화학요법 마우스에 250 mg/kg의 PLAG를 매일 경구 투여하였다. AC 항암화학요법 5일 후, 호중구 감소증 마우스에 PAK를 감염시킨 후 마우스의 생존율을 측정하였다 (도 29). 그 결과, 호중구 감소증 마우스의 생존율은 PAK 감염 1-2 일 이내에 현저하게 감소하였다. 그러나, PLAG를 투여한 PAK 감염 호중구 감소증 마우스의 경우, 생존율이 현저히 회복됨을 확인하였다 (도 30).
상기 결과는, 모노아세틸디아실글리세롤 화합물은 면역 저하 상태에서 PAK의 감염증을 효과적으로 치료할 수 있음을 보여준다.
상기 실시예들은 본 발명의 모노아세틸디아실글리세롤 화합물은 슈도모나스 미생물 감염증에서 NETosis 형성(도 15 내지 도 26)을 촉진함으로써 박테리아를 제거 (도 1 내지 도 5)하여 감염증 치료에 우수한 효과를 보이며, 특히 호중구 감소 상태와 같은 면역 저하 상태에서 유발된 감염증의 치료 효과가 우수함을 보여준다 (도 27-30). 다시 말해, 본 발명의 조성물은 슈도모나스 속 미생물 감염증의 예방, 치료 및 개선에 현저한 효과를 나타낸다 (도 31).
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 관련 기술 분야의 통상의 지식을 가진 자에게 있어 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구범위와 그의 등가물에 의하여 정의될 것이다.
서열번호 1: 인간 CXCL8 (Forward)
5’-AGGGTTGCCAGATGCAATAC-3’
서열번호 2: 인간 CXCL8 (Reverse)
5’-GTGGATCCTGGCTAGCAGAC-3’
서열번호 3: GAPDH (Forward)
5’-CCATCACCATCTTCCAGGAG-3’
서열번호 4: GAPDH (Reverse)
5’-ACAGTCTTCTGGGTGGCAGT-3’

Claims (11)

  1. 하기 화학식 1로 표시되는 모노아세틸디아실글리세롤 화합물을 유효성분으로 함유하는, 슈도모나스 속 (Pseudomonas sp .) 미생물 감염증의 예방 또는 치료용 약학 조성물:
    [화학식 1]
    Figure PCTKR2018009348-appb-I000005
    상기 식에서 R1 및 R2는 각각 탄소수 14 내지 22의 지방산기이다.
  2. 제1항에 있어서, 상기 R1 및 R2는 각각 팔미토일 (palmitoyl), 올레오일 (oleoyl), 리놀레오일 (linoleoyl), 리놀레노일 (linolenoyl), 스테아로일 (stearoyl), 미리스토일 (myristoyl) 및 아라키도노일 (arachidonoyl)로 구성되는 군으로부터 선택되는 것인 약학 조성물.
  3. 제1항에 있어서, 상기 모노아세틸디아실글리세롤 화합물은 하기 화학식 2로 표시되는 화합물인 약학 조성물.
    [화학식 2]
    Figure PCTKR2018009348-appb-I000006
  4. 제1항에 있어서, 상기 슈도모나스 속 미생물은 슈도모나스 아에루기노사 (Pseudomonas aeruginosa)인 약학 조성물.
  5. 제1항에 있어서, 상기 슈도모나스 속 미생물 감염증은 폐에서 유발되는 것인 약학 조성물.
  6. 제1항에 있어서, 상기 슈도모나스 속 미생물 감염증은 낭포성 섬유증, 패혈증, 폐렴, 점막염, 요로 감염증, 간농양, 중이염, 각막염, 내안구염, 균혈증, 화상 상처 감염, 뇌막염 또는 복막염인 약학 조성물.
  7. 제1항에 있어서, 상기 슈도모나스 속 미생물 감염증은 면역 저하 상태에서 일어나는 것인 약학 조성물.
  8. 제7항에 있어서, 상기 면역 저하 상태는 호중구 감소증인 약학 조성물.
  9. 제1항에 있어서, 상기 감염증의 예방 또는 치료는 네토시스 (NETosis)에 의한 것인 약학 조성물.
  10. 제1항에 있어서, 상기 약학 조성물은 경구 투여되는 것인 약학 조성물.
  11. 하기 화학식 1로 표시되는 모노아세틸디아실글리세롤 화합물을 유효성분으로 함유하는, 슈도모나스 속 (Pseudomonas sp .) 미생물 감염증 예방 또는 개선용 건강기능식품:
    [화학식 1]
    Figure PCTKR2018009348-appb-I000007
    상기 식에서 R1 및 R2는 각각 탄소수 14 내지 22의 지방산기이다.
PCT/KR2018/009348 2017-08-14 2018-08-14 모노아세틸디아실글리세롤 화합물을 함유하는 슈도모나스 속 미생물 감염증의 예방 또는 치료용 조성물 WO2019035644A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0103140 2017-08-14
KR1020170103140A KR20190018317A (ko) 2017-08-14 2017-08-14 모노아세틸디아실글리세롤 화합물을 함유하는 슈도모나스 속 미생물 감염증의 예방 또는 치료용 조성물

Publications (1)

Publication Number Publication Date
WO2019035644A1 true WO2019035644A1 (ko) 2019-02-21

Family

ID=65362219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009348 WO2019035644A1 (ko) 2017-08-14 2018-08-14 모노아세틸디아실글리세롤 화합물을 함유하는 슈도모나스 속 미생물 감염증의 예방 또는 치료용 조성물

Country Status (2)

Country Link
KR (1) KR20190018317A (ko)
WO (1) WO2019035644A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020144538A1 (en) * 2019-01-07 2020-07-16 Enzychem Lifesciences Corporation Compositions and methods for modulating an inflammatory response

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060047447A (ko) * 2004-04-24 2006-05-18 김상희 모노아세틸디아실글리세롤류 화합물을 유효성분으로함유하는 면역조절제, 항암제 및 건강식품
KR20150021472A (ko) * 2013-08-19 2015-03-02 한국생명공학연구원 모노아세틸디아실글리세롤 화합물을 유효성분으로 함유하는 만성폐쇄성 폐질환의 예방 또는 치료용 조성물
KR20150132325A (ko) * 2013-03-15 2015-11-25 젠자임 코포레이션 아민 작용성 폴리아미드
KR20170066666A (ko) * 2015-11-09 2017-06-14 주식회사 엔지켐생명과학 점막염 치료용 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060047447A (ko) * 2004-04-24 2006-05-18 김상희 모노아세틸디아실글리세롤류 화합물을 유효성분으로함유하는 면역조절제, 항암제 및 건강식품
KR20060122795A (ko) * 2004-04-24 2006-11-30 김상희 모노아세틸디아실글리세롤류 화합물을 유효성분으로함유하는 건강식품
KR20150132325A (ko) * 2013-03-15 2015-11-25 젠자임 코포레이션 아민 작용성 폴리아미드
KR20150021472A (ko) * 2013-08-19 2015-03-02 한국생명공학연구원 모노아세틸디아실글리세롤 화합물을 유효성분으로 함유하는 만성폐쇄성 폐질환의 예방 또는 치료용 조성물
KR20170066666A (ko) * 2015-11-09 2017-06-14 주식회사 엔지켐생명과학 점막염 치료용 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, Y.-J.: "PLAG reduces the infection risk via acceleration of bacteria clearance through NF-kappaB activation in Pseudomonas aeruginosa induced pneumonia model with chemotherapy-induced neutropenia", THE JOURNAL OF IMMUNOLOGY, 1 May 2017 (2017-05-01) *

Also Published As

Publication number Publication date
KR20190018317A (ko) 2019-02-22

Similar Documents

Publication Publication Date Title
WO2019088379A1 (ko) 신규 유산균 및 이의 용도
WO2019098810A2 (ko) 신규 유산균 및 이의 용도
AU2020339348B2 (en) Akkermansia muciniphila EB-AMDK27 strain and use thereof
WO2013058484A2 (ko) 인제난 타입의 디테르펜 화합물 및 이를 포함하는 바이러스 감염 질환의 치료 또는 예방용 약학적 조성물
WO2021261632A1 (ko) 신규한 피칼리박테리움 프로스니치 균주 eb-fpdk11 및 그의 용도
WO2017131402A1 (ko) 면역조절 작용을 가는 사람 소화관 유래 신규 유산균 및 이의 용도
WO2021230581A1 (ko) 신규한 아커만시아 뮤시니필라 ak32 균주의 발견 및 장 손상의 예방 또는 치료를 위한 응용
WO2015111832A1 (ko) 지실 추출물을 포함하는 전립선 관련 질환의 예방 또는 치료용 조성물
WO2019190137A1 (ko) 1,2-디아실글리세롤 화합물, 그 제조방법 및 이를 유효성분으로 함유하는 면역조절제
WO2019035644A1 (ko) 모노아세틸디아실글리세롤 화합물을 함유하는 슈도모나스 속 미생물 감염증의 예방 또는 치료용 조성물
WO2020226438A1 (ko) 염증성 장질환의 예방 또는 치료용 펩타이드
WO2024048934A1 (ko) 체지방 감소용 신규 유산균 락티플랜티바실러스 플란타룸 sko-001 및 이의 용도
WO2012093855A2 (ko) 신규한 프라비마이신 화합물, 이를 포함하는 항균용 조성물 및 이의 생산방법
WO2022039514A1 (ko) 락토바실러스 사케이 또는 이로부터 유래된 세포밖 소포체를 유효성분으로 포함하는 뇌질환의 치료용 조성물
WO2021225363A1 (ko) 해양 유래 진균 페니실리움 글라브룸 sf-7123의 대사체를 포함하는 항염증 또는 항당뇨용 조성물
WO2022015033A1 (ko) 페디오코쿠스 이노피나투스 또는 이로부터 유래된 세포밖 소포체를 유효성분으로 포함하는 뇌질환의 치료용 조성물
WO2014182078A1 (ko) 장 면역활성 조절용 조성물 및 이의 용도
WO2009088264A2 (ko) 아라자임을 유효성분으로 하는 관절염 예방 및 치료용 조성물
WO2023058801A1 (ko) 락토바실러스 애시도필러스 kbl402 또는 kbl409 균주를 포함하는 장 질환 개선, 예방 또는 치료용 조성물
WO2021080298A1 (ko) 엔테로코커스 패칼리스를 유효성분으로 함유하는 비만 또는 비만으로부터 유도된 대사증후군의 예방 또는 치료용 조성물
WO2019098461A1 (ko) 해양 진균 Penicillium sp. SF-5859 유래 커뷰라린 유형의 대사체를 함유하는 염증질환 예방 또는 치료용 조성물
WO2021261631A1 (ko) 신규한 피칼리박테리움 프로스니치 eb-fpdk9 균주 및 그의 용도
WO2021033995A1 (ko) 초과 추출물을 함유하는 근육 감소 관련 질병의 예방, 개선, 또는 치료용 조성물
WO2021020923A1 (ko) 간 손상 예방, 개선, 또는 치료용 조성물 및 간 손상 예방, 개선, 또는 치료방법
WO2012093859A2 (ko) 폴리사이클릭 펩타이드 화합물을 포함하는 항균용 조성물 및 이의 생산방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846096

Country of ref document: EP

Kind code of ref document: A1