WO2021020923A1 - 간 손상 예방, 개선, 또는 치료용 조성물 및 간 손상 예방, 개선, 또는 치료방법 - Google Patents

간 손상 예방, 개선, 또는 치료용 조성물 및 간 손상 예방, 개선, 또는 치료방법 Download PDF

Info

Publication number
WO2021020923A1
WO2021020923A1 PCT/KR2020/010097 KR2020010097W WO2021020923A1 WO 2021020923 A1 WO2021020923 A1 WO 2021020923A1 KR 2020010097 W KR2020010097 W KR 2020010097W WO 2021020923 A1 WO2021020923 A1 WO 2021020923A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
liver
concentration
luminococcus
fatty liver
Prior art date
Application number
PCT/KR2020/010097
Other languages
English (en)
French (fr)
Inventor
고광표
김원
유현주
이길재
조보람
Original Assignee
주식회사 고바이오랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200087105A external-priority patent/KR20210014576A/ko
Application filed by 주식회사 고바이오랩 filed Critical 주식회사 고바이오랩
Priority to MX2022000801A priority Critical patent/MX2022000801A/es
Priority to CN202080055877.4A priority patent/CN114245743B/zh
Priority to BR112022001602A priority patent/BR112022001602A2/pt
Priority to EP20848579.7A priority patent/EP4005578A4/en
Priority to US17/626,628 priority patent/US20220257669A1/en
Priority to JP2022506047A priority patent/JP7303372B2/ja
Priority to AU2020320244A priority patent/AU2020320244B2/en
Priority to CA3148434A priority patent/CA3148434A1/en
Priority claimed from KR1020200095361A external-priority patent/KR102395036B1/ko
Publication of WO2021020923A1 publication Critical patent/WO2021020923A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • G01N33/56916Enterobacteria, e.g. shigella, salmonella, klebsiella, serratia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/24Assays involving biological materials from specific organisms or of a specific nature from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • G01N2333/26Klebsiella (G)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/195Assays involving biological materials from specific organisms or of a specific nature from bacteria
    • G01N2333/36Assays involving biological materials from specific organisms or of a specific nature from bacteria from Actinomyces; from Streptomyces (G)

Definitions

  • the present invention relates to a composition for preventing, improving, or treating liver damage, and a method for preventing, improving, or treating liver damage.
  • Nonalcoholic fatty liver disease is a liver disease of metabolic disorders ranging from simple steatosis to nonalcoholic steatohepatitis, an aggressive tissue form that ultimately leads to advanced fibrosis and cirrhosis. It features.
  • the global prevalence of NAFLD is estimated to be 24-30% in most epidemiological studies, and is increasing parallel to obesity and metabolic syndrome.
  • Gut dysbiosis which refers to an abnormal change in the intestinal microflora compared to the normal microflora, is a decrease in beneficial short-chain fatty acid (SCFA)-producing bacteria, a change in the composition of bile acids, and lipopolysaccharide (LPS). ), increased ethanol production by overgrowth of ethanol-producing bacteria, and conversion of phosphatidylcholine to choline and trimethylamine. Changes in the gut microbiome that affect the gut-liver axis contribute to the progression of chronic liver diseases such as NAFLD and cirrhosis and advanced fibrosis. It is known.
  • SCFA short-chain fatty acid
  • LPS lipopolysaccharide
  • the improvement or treatment effect of NAFLD is not necessarily exhibited. This is because the changes in the intestinal microbiome in the disease group may be the result of physiological changes caused by the disease.
  • An object of the present invention is to provide a composition for preventing, improving or treating liver damage, such as non-alcoholic fatty liver disease, as to solve the above problems.
  • An example of the present invention relates to a composition for preventing, improving, or treating liver damage, including a strain of the genus Ruminococcus spp.
  • Another example of the present invention relates to a composition for culturing a strain of Luminococcus spp. containing a carbon source and a nitrogen source.
  • Another example of the present invention relates to a method for preventing, improving or treating liver damage, comprising administering a composition for preventing, improving, or treating liver damage according to the present invention to a subject in need thereof.
  • An example of the present invention relates to a composition for preventing, improving or treating liver damage, including a strain of Ruminococcus spp.
  • the composition may be a pharmaceutical composition or a food composition.
  • the composition may further include butyric acid.
  • the liver damage may be one or more selected from the group consisting of fatty liver, hepatitis, liver fibrosis, and cirrhosis.
  • the liver damage may be non-alcoholic liver damage.
  • the hepatitis may be non-alcoholic fatty hepatitis
  • the fatty liver may be non-alcoholic fatty liver.
  • the non-alcoholic fatty liver may be non-obesity non-alcoholic fatty liver, obesity non-alcoholic fatty liver, or diabetic non-alcoholic fatty liver, but is not limited thereto.
  • the diabetic non-alcoholic fatty liver may be caused by type 2 diabetes.
  • non-alcoholic steatohepatitis NASH
  • type 2 diabetes patients with non-alcoholic fatty liver are non-alcoholic compared to non-alcoholic fatty liver patients without type 2 diabetes.
  • the prevalence of steatohepatitis (80.2% vs. 64.4%; p ⁇ 0.001) and liver fibrosis (40.3% vs. 17.0%; p ⁇ 0.001) is high. Therefore, there is a need to develop a therapeutic agent for non-alcoholic fatty liver patients with type 2 diabetes.
  • the liver damage caused by the second diabetes is difficult to treat because the prognosis is poorer than that of the case without the second diabetes, but the composition according to the present invention can treat the second diabetic liver damage.
  • the composition may prevent, improve, or treat liver damage independent of insulin.
  • liver damage was significantly improved, and thus the composition according to the present invention improved liver damage independent of insulin and It was confirmed to be treated.
  • composition according to the present invention is administered to a subject with liver damage and exhibits a remarkably improved therapeutic effect on liver damage.
  • the subject with liver damage may have one or more of the following characteristics (1) to (5):
  • the state of increased blood ALT concentration for example, more than 1 times, 1.1 times or more, 1.2 times or more, 1.3 times or more, 1.4 times or more, 1.5 times or more, 1.6 times or more, 1.7 of the blood ALT concentration of the normal control group.
  • a state in which the secondary bile acid concentration in the cecum is reduced for example, less than 1, 0.9 times, 0.8 times or less, 0.7 times or less, 0.6 times or less, 0.5 times or less, 0.4 of the secondary bile acid concentration in the cecum of the normal control group.
  • fibrosis marker gene expression level is increased, for example, more than 1 times, 1.1 times or more, 1.2 times or more, 1.3 times or more, 1.4 times or more, 1.5 times or more, 1.6 times of the fibrosis marker gene expression level of the normal control More than 1.7 times, more than 1.8 times, more than 1.9 times, more than 2 times, more than 2.1 times, more than 2.2 times, more than 2.3 times, more than 2.4 times, more than 2.5 times, more than 2.6 times, more than 2.7 times, more than 2.8 times, 2.9 times or more, 3 times or more, 3.5 times or more, 4 times or more, 4.5 times or more, 5 times or more, 5.5 times or more, 6 times or more, 6.5 times or more, 7 times or more, 7.5 times or more, 8 times or more, 8.5 times More than, 9 times or more, 9.5 times or more, 10 times or more, 11 times or more, 12 times or more, 13 times or more, 14 times or more, 15 times or more,
  • a state in which the ratio of liver weight to body weight is increased for example, greater than 1, 1.1 times, 1.2 times, 1.3 times, 1.4 times, 1.5 times or more of the liver weight ratio of the normal control group. , 1.6 times or more, 1.7 times or more, 1.8 times or more, 1.9 times or more, 2 times or more, 2.1 times or more, 2.2 times or more, 2.3 times or more, 2.4 times or more, 2.5 times or more, 2.6 times or more, 2.7 times or more, 2.8
  • the condition is at least twice as high, at least 2.9 times, or at least three times.
  • the normal control group refers to a control group that does not have liver damage.
  • the liver damage of the subject may be one or more selected from the group consisting of fatty liver, hepatitis, liver fibrosis, and cirrhosis.
  • the liver damage may be non-alcoholic liver damage.
  • the hepatitis may be non-alcoholic fatty hepatitis
  • the fatty liver may be non-alcoholic fatty liver.
  • the non-alcoholic fatty liver may be non-obesity non-alcoholic fatty liver, obesity non-alcoholic fatty liver, or diabetic non-alcoholic fatty liver, but is not limited thereto.
  • composition according to the present invention may be administered to a subject having diabetes, and in particular, the composition according to the present invention may prevent, ameliorate, or treat liver damage independent of insulin, so it is administered to a subject having a second diabetes disease. I can.
  • the ability to reduce ALT concentration in blood, ability to reduce AST concentration in blood, ratio of liver to body weight was remarkably superior to the therapeutic effect shown in the model not having the second diabetes, which means that the composition according to the present invention has a particularly excellent therapeutic effect in the second diabetic subject.
  • the therapeutic effect in subjects with second diabetes was more excellent, and the difference in insulin resistance played an important role in the improvement of liver damage caused by luminococcus or the difference in sensitivity related to treatment.
  • composition according to the present invention may be administered to a subject having liver damage to produce one or more of the following characteristics (1) to (5):
  • Reduction of blood ALT concentration for example, when the composition is administered, the blood ALT concentration is less than 100%, 99% or less, 98% based on 100% of the blood ALT concentration of the control group not administered the composition. Below, 97% or less, 96% or less, 95% or less, 94% or less, 93% or less, 92% or less, 91% or less, 90% or less, 80% or less, 70% or less, 65% or less, 60% or less, 59% or less, 58% or less, 50% or less, 45% or less, or 40% or less (for example, in FIG. 1B, when the MCD and Luminococcus phaensis strains are co-administered, 39.21% of MCD alone is administered compared to the case where MCD alone is administered) It showed ALT levels.)
  • the blood AST concentration is less than 100%, 99% or less, 98% based on 100% of the blood AST concentration of the control group not administered the composition. Or less, 97% or less, 96% or less, 95% or less, 94% or less, 93% or less, 92% or less, 91% or less, 90% or less, 80% or less, 70% or less, 65% or less, 64% or less, 63% or less, 62% or less, 61% or less, 60% or less, or 59% or less (for example, in FIG. 1B, when the MCD and Luminococcus phaensis strains are co-administered, 57.52% of MCD alone is administered compared to the case where MCD alone is administered) AST levels were shown.)
  • secondary bile acids e.g., secondary bile acids in the cecal
  • the secondary bile acid concentration is 100 in the control group to which the composition is not administered.
  • % Above 100% 105% or more, 110% or more, 115% or more, 120% or more, 125% or more, 130% or more, 135% or more, 140% or more, 145% or more, 150% or more, 160% Or more, 170% or more, 180% or more, 190% or more, or 200% or more (for example, in FIG.
  • fibrotic gene expression for example, when the composition is administered, the expression level of one or more of the fibrosis-related genes, such as Col1a1, Timp1, and ⁇ -SMA, in the control group not administered with the composition. Based on the expression level of 100%, less than 100%, 99% or less, 98% or less, 97% or less, 96% or less, 95% or less, 94% or less, 93% or less, 92% or less, 91% or less, 90% or less , 80% or less, 78% or less, 75% or less, 70% or less, 65% or less, or 60% or less (for example, in FIG.1H, when the MCD and Luminococcus phasis strains are co-administered, MCD alone was administered Compared to the case, 90.60% of Col1a1 expression, 77.17% of ⁇ -SMA expression, and 58.50% of Timp1 expression were shown.)
  • the liver weight to body weight ratio is less than 100% of the liver weight ratio to the body weight of the control group without administration of the composition, 99 % Or less, 98% or less, 97% or less, 96% or less, 95% or less, 94% or less, 93% or less, 92% or less, 91% or less, 90% or less, 89% or less, 88% or less, or 87% (For example, in Fig. 1g, when the MCD and Luminococcus phaensis strains were co-administered, the liver ratio was 86.27% compared to the case of MCD alone.)
  • control group to which the composition was not administered refers to a non-administered group having the same disease but not administered the composition according to the present invention.
  • the secondary bile acid may be one or more selected from the group consisting of deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA).
  • DCA deoxycholic acid
  • LCDA lithocholic acid
  • UDCA ursodeoxycholic acid
  • the fibrous gene may be one or more selected from the group consisting of Col1a1, Timp1, and ⁇ -SMA.
  • composition according to the present invention is administered to a subject having liver damage and insulin resistance, for example, a subject having type 2 diabetic liver damage, and at least one of the following (1) to (3) It can be something that generates a feature:
  • the term'active ingredient' refers to a component that exhibits a desired activity alone or can exhibit activity together with a carrier that is not itself active.
  • prevention means inhibiting or delaying the onset of a disease, disorder or disease. Prevention can be considered complete if the onset of the disease, disorder or condition is inhibited or delayed for a predetermined period of time.
  • treatment' in the present invention partially or completely alleviates, ameliorates, alleviates, inhibits or delays symptoms associated with a specific disease, disorder and/or disease or disease, reduces the severity, or reduces the severity of one or more symptoms or characteristics. It means to reduce occurrence.
  • the pharmaceutical composition of the present invention may further include one or more active ingredients exhibiting the same or similar functions in addition to the active ingredients.
  • the pharmaceutical composition according to the present invention is prepared in a unit dosage form by formulating using a pharmaceutically acceptable carrier according to a method that can be clearly carried out by a person having ordinary skill in the art Alternatively, it may be manufactured by placing it in a multi-volume container.
  • a pharmaceutically acceptable carrier according to a method that can be clearly carried out by a person having ordinary skill in the art Alternatively, it may be manufactured by placing it in a multi-volume container.
  • the term'carrier' means a compound that facilitates the addition of the compound into cells or tissues
  • the term'pharmaceutically acceptable' is physiologically acceptable and when administered to a human, it is usually gastrointestinal. It refers to a composition that does not cause an allergic reaction such as disability or dizziness or a similar reaction.
  • the pharmaceutically acceptable carrier is commonly used in formulation, and lactose, dextrose, sucrose, sorbitol, mannitol, starch, gum acacia, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinyl Pyrrolidone, cellulose, water, syrup, methylcellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, and the like, but are not limited thereto.
  • the pharmaceutical composition according to the present invention may further include additives such as fillers, anti-aggregating agents, lubricants, wetting agents, fragrances, emulsifiers, and preservatives in addition to the above components.
  • additives such as fillers, anti-aggregating agents, lubricants, wetting agents, fragrances, emulsifiers, and preservatives in addition to the above components.
  • the content of the additive included in the pharmaceutical composition is not particularly limited, and may be appropriately adjusted within the content range used for conventional formulation.
  • the pharmaceutical composition according to the present invention may be formulated as an oral preparation.
  • the oral formulation include tablets, troches, lozenges, aqueous suspensions, oily suspensions, powders, granules, emulsions, hard capsules, soft capsules, syrup or elixirs, etc. Can be lifted.
  • a binder such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose or gelatin; Excipients such as dicalcium phosphate and the like; Disintegrants such as corn starch or sweet potato starch; Magnesium stearate, calcium stearate, sodium stearyl fumarate, etc. can be used, and sweeteners, fragrances, syrups, and the like can also be used.
  • a liquid carrier such as fatty oil may be additionally used.
  • the term'excipient' refers to a substance that is not a therapeutic agent, and means used as a carrier or medium for delivery of a therapeutic agent, or added to a pharmaceutical composition. Thereby, it is possible to improve handling and storage properties or to allow and promote the formation of unit dosages of the composition.
  • the pharmaceutical composition according to the present invention can be used in oral formulations such as liquids, suspensions, powders, granules, tablets, capsules, pills, extracts, emulsions, syrups, aerosols, etc., according to a conventional method for each purpose of use, and sterile injection.
  • the solution may be formulated and used in various forms such as injections, and may be administered orally or administered through various routes including intravenous, intraperitoneal, subcutaneous, rectal, and topical administration.
  • the term'oral administration' means that the active substance is administered to the gastrointestinal tract for absorption.
  • the preferred dosage of the pharmaceutical composition according to the present invention is the patient's condition and weight, age, sex, health condition, dietary constitution specificity, nature of the formulation, degree of disease, administration time of the composition, administration method, administration period or interval,
  • the range may vary depending on the excretion rate and the drug type, and may be appropriately selected by a person skilled in the art.
  • the term'effective dosage of a pharmaceutical composition means an amount of a composition of an active ingredient sufficient to treat a specific symptom. This may vary depending on the formulation method, mode of administration, administration time, and/or route of administration of the pharmaceutical composition, and the type and degree of reaction to be achieved by administration of the pharmaceutical composition, the type, age, and It will vary according to a number of factors including weight, general health condition, symptoms or severity of disease, sex, diet, excretion, components of drugs or other compositions used simultaneously or simultaneously with the subject, and similar factors well known in the medical field. In addition, a person of ordinary skill in the art can easily determine and prescribe an effective dosage for a desired treatment.
  • the administration of the pharmaceutical composition according to the present invention may be administered once a day, or may be divided several times.
  • the composition may be administered as an individual therapeutic agent or administered in combination with another therapeutic agent, and may be administered sequentially or simultaneously with a conventional therapeutic agent. Considering all of the above factors, it can be administered in an amount capable of obtaining the maximum effect in a minimum amount without side effects.
  • the composition according to the present invention is 0.001 to 10,000 mg, 0.001 to 5,000 mg, 0.001 to 1,000 mg, 0.001 to 500 mg, 0.001 to 300 mg, 0.001 to 100 mg, 0.001 to 50 mg, 0.001 per 1 kg of body weight.
  • the daily dosage of the composition according to the present invention is 0.001 to 10 g/day, 0.001 to 5 g/day, 0.01 to 10 g/day, or 0.01 to 5 g/day based on oral administration of an adult patient. May be one day.
  • the total daily dose may be divided and administered continuously or discontinuously as necessary.
  • composition according to the present invention may further comprise a lyophilized protective agent.
  • the freeze-dried protective agent contains at least one selected from the group consisting of monosaccharides, disaccharides, polysaccharides, carbohydrates, inorganic salts, amino acids, sucrose, calcium phosphate, arginine, sodium chloride, fructose, potassium monophosphate, potassium disaccharide, and trehalose. It can be.
  • the sucrose is 100 to 300 g/L, 100 to 250 g/L, 100 to 200 g/L, 150 to 300 g/L, 150 to 250 g/L, 150 to 200 g/L, 200 to 300 g/ L, or 200 to 250 g/L may be added to the lyophilized protective agent, for example, 200 g/L may be added.
  • the calcium phosphate is 5 to 20 g/L, 5 to 15 g/L, 5 to 12 g/L, 5 to 11 g/L, 7 to 20 g/L, 7 to 15 g/L, 7 to 12 g /L, 7 to 11 g/L, 10 to 20 g/L, 10 to 15 g/L, 10 to 12 g/L, or 10 to 11 g/L may be added to the lyophilized protective agent at a concentration , For example, it may be added at 10.5 g/L.
  • the amino acid is 1 to 10 g/L, 1 to 8 g/L, 1 to 6 g/L, 1 to 5 g/L, 3 to 10 g/L, 3 to 8 g/L, 3 to 6 g/ L, 3 to 5 g/L, 4 to 10 g/L, 4 to 8 g/L, 4 to 6 g/L, or 4 to 5 g/L may be added to the lyophilized protective agent at a concentration, For example, it may be added at 4 g/L.
  • the sodium chloride is freeze-dried at a concentration of 0.1 to 5 g/L, 0.1 to 3 g/L, 0.1 to 1 g/L, 0.5 to 5 g/L, 0.5 to 3 g/L, or 0.5 to 1 g/L It may be added to the protective agent, for example, may be added at 0.8 g/L.
  • the strain of the genus Luminococcus according to the present invention may be one of Luminococcus faecis .
  • the strain of the genus Luminococcus has accession number KCTC no. It may be a Luminococcus Paensis having 5757.
  • Luminococcus faeces having 5757 can be designated as Luminococcus faecs KBL1028.
  • the strain has a carbon source concentration of 5 to 30% (w/v), a nitrogen source concentration of 50 to 90% (w/v), a mineral concentration of 5 to 15% (w/v), and an amino acid concentration of 0.1 to 10%
  • growth may be continued after 8 hours of culture, 9 hours of culture, 10 hours of culture, 11 hours of culture, 12 hours of culture, 13 hours of culture, or 14 hours of culture.
  • the strain may have excellent culture efficiency in the FMK1028 medium having the composition according to Table 3.
  • the strain has an absorbance after culture in FMK1028 medium having a composition according to Table 3, which is higher than the absorbance after incubation in at least one selected from the group consisting of YBHI medium, GAM medium, MRS medium, BL medium, and RCM medium. It can be characterized.
  • the strain is the number of viable cells per unit volume after 14 hours incubation in FMK1028 medium having the composition according to Table 3, 10 times, 50 times, 100 times, 150 times, 200 times, 250 times, when cultured in YBHI medium, It may be 300 times, 350 times, 400 times, 450 times, 500 times, 550 times, or 600 times or more.
  • Another example of the present invention relates to a composition for culturing a strain of Luminococcus spp. containing a carbon source and a nitrogen source.
  • the carbon source may be one or more selected from the group consisting of glucose, sucrose, fructose, lactose, maltose, molasses, and galactose.
  • the nitrogen source is yeast extract, soy peptone, skim milk, tryptone, casamino acids, potato peptone, pea peptone, wheat peptone, It may be one or more selected from the group consisting of broadbean peptone, papaic soy peptone, and lupin peptone.
  • Another example of the present invention relates to a composition for culturing a strain of Luminococcus spp., including a carbon source and a nitrogen source.
  • the carbon source may have a concentration of 5 to 30% (w/v), and the nitrogen source may have a concentration of 50 to 90% (w/v).
  • the strain of the genus Luminococcus is as described above.
  • the carbon source may include one or more selected from the group consisting of glucose, sucrose, fructose, lactose, maltose, molasses, and galactose.
  • the nitrogen source is yeast extract, soy peptone, skim milk, tryptone, casamino acids, potato peptone, pea peptone, wheat peptone, It may include at least one selected from the group consisting of broadbean peptone, papaic soy peptone, and lupin peptone.
  • the composition for culturing the strain of the genus Luminococcus may be one to promote growth after 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, or 14 hours of cultivation of the genus Luminococcus strain.
  • composition for cultivation of the strain of the genus Luminococcus may further include at least one selected from the group consisting of minerals, amino acids, vitamins, nucleic acids, and inorganic salts.
  • the mineral may include at least one selected from the group consisting of sodium acetate, sodium chloride, monosodium phosphate, dibasic sodium phosphate, calcium chloride, magnesium sulfate, and manganese sulfate.
  • the amino acids are L-cystein, L-leucine, L-isoleucine, L-Valine, L-tryptophan, L- It may include threonine (L-threonine), L-phenylalanine (L-phenylalanine), and L-methionine (L-methionine).
  • the concentration of the carbon source is 5 to 30% (w/v)
  • the concentration of the nitrogen source is 50 to 90% (w/v)
  • the concentration of the mineral is 5 to 15% (w/v)
  • the concentration of the amino acid May be 0.1 to 10% (w/v).
  • the Lumi Noko culture composition of the kusu sp according to the invention Rumi Noko kusu in (Ruminococcus spp.), Comprising the step of culturing by inoculating the strain, Rumi Noko kusu in (Ruminococcus spp.) It relates to a method of culturing the strain.
  • the culture method may be to promote growth after 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, or 14 hours of the strain inoculation.
  • the culture may be stationary culture, fed-batch culture, or batch culture, but is not limited thereto.
  • Another example of the present invention relates to a method for preventing, improving or treating liver damage, comprising administering a composition for preventing, improving or treating liver damage according to the present invention to a subject in need thereof.
  • the composition may include a strain of the genus Ruminococcus spp.
  • the composition for preventing, improving or treating liver damage, the strain of the genus Luminococcus, and the like are as described above.
  • the subject is a subject with liver damage, and the subject with liver damage is as described above.
  • the subject having liver damage may be a subject having insulin resistance, for example, a subject having diabetes, specifically, may be a subject having type 2 diabetes.
  • the pharmaceutical composition for prophylaxis or treatment of the present invention can be effectively used in the treatment of liver damage, for example, non-alcoholic fatty liver disease.
  • 1A is a diagram showing an experimental procedure for examining the effect of treatment of liver damage according to administration of luminococcus paensis in an animal model of liver damage induced by MCD diet.
  • 1B is a diagram showing the results of ALT and AST measurements according to the administration of Luminococcus phasis in an animal model of liver injury induced by MCD diet.
  • FIGS. 1C to 1E are diagrams showing that the histological severity of liver damage induced by MCD diet was significantly improved in mice fed Luminococcus phaensis,
  • Figure 1c is a view showing the relief of liver tissue according to the administration of Luminococcus Pasis through H&E (top) and Sirius red (bottom) staining.
  • Figure 1d is a diagram quantified using the NAFLD activity score of pathologic alleviation by administration of Luminococcus pasis.
  • 1E is a diagram showing the distribution of collagen in the liver that is relieved due to administration of Luminococcus phasis.
  • Figure 1f is a diagram showing the change in weight by the MCD diet.
  • Figure 1g is a diagram showing the liver ratio (liver ratio) in body weight compared to the control mice administered (MCD) at the time of administration of luminococcus faecis (MCD + R. faecis ).
  • 1H is a diagram showing that markers of fibrosis incidence and proliferation were alleviated according to the administration of Luminococcus phasis.
  • FIG. 1I is a diagram showing that local levels of secondary bile acids (DCA and LCA) decreased by the MCD diet were increased by treatment with luminococcus pasis.
  • DCA and LCA secondary bile acids
  • Figure 2a is a diagram showing an experimental procedure for examining the effect of treatment of liver damage according to administration of luminococcus phaensis in an animal model of liver damage induced by CDAHFD diet.
  • FIG. 2B is a diagram showing a decrease in ALT levels according to administration of luminococcus phasis in an animal model of liver injury induced by CDAHFD diet.
  • FIG. 2C is a diagram showing a decrease in AST levels according to administration of luminococcus phaensis in an animal model of liver injury induced by CDAHFD diet.
  • FIG. 2D is a diagram showing the ratio of liver weight to body weight according to administration of luminococcus phaensis in an animal model of liver injury induced by CDAHFD diet.
  • FIG. 3A is a diagram showing an experimental procedure for examining the effect of treatment of liver damage according to administration of Luminococcus faecis in a genetic leptin-deficient animal model.
  • FIG. 3B is a diagram showing a decrease in ALT levels according to administration of Luminococcus faecis in a genetic leptin-deficient animal model.
  • FIG. 3C is a diagram showing a decrease in AST levels according to administration of Luminococcus faecis in a genetic leptin-deficient animal model.
  • FIG. 3D is a diagram showing a decrease in the ratio of liver weight to body weight according to administration of Luminococcus faecis in a genetic leptin-deficient animal model.
  • 3E is a diagram showing serum fasting insulin levels and insulin resistance measured by ipGTT in a genetic leptin-deficient animal model.
  • FIG. 4A is a diagram showing that the luminococcus bromi is significantly reduced in the liver fibrosis disease group.
  • Figure 4b is a diagram showing the value of the liver ratio (liver ratio) in body weight according to the administration of luminococcus bromi.
  • Figure 4c is a diagram showing the ALT level according to the administration of Luminococcus bromi.
  • 5A is a diagram showing the results of comparing the cultivation properties of Luminococcus phaensis and cell morphology in YBHI medium, RCM medium, BL medium, MRS medium, GAM medium, or FMK1028 medium.
  • 5B is a diagram showing the growth curve and the number of viable cells per unit volume of Luminococcus paensis.
  • Figure 5c is a view showing the growth curve and viable bacteria number of luminococcus paensis cultured in a fermentor.
  • Luminococcus faecis (KCTC no. 5757 [JCM no. 15917]) was sold at the Korea Research Institute of Bioscience and Biotechnology Biological Resource Center (KCTC, Jeollabuk-do, Republic of Korea) under anaerobic conditions in YBHI medium. Under culture, collected after 24 hours, washed twice with PBS (+ 0.5% cysteine), and fed orally. As experimental animals, 6-week-old male C57BL/6N mice (Orient Bio, Gyeonggi-do, Republic of Korea) were reared in a general animal facility at Seoul National University according to the university guidelines, and all animal experiments were conducted by the Seoul National University Laboratory Animal Steering Committee (Institutional Animal Care and Use Committee).
  • mice were fed a methionine and choline deficient L-amino acid diet (MCD) (Research diet, New Brunswick, NJ, USA; Cat. no.: A02082002B) at the same time.
  • MCD methionine and choline deficient L-amino acid diet
  • mice 200 ⁇ L of either luminococcus phaensis or control PBS (sham) suspended to contain 10 9 CFU in 200 ⁇ L of PBS was administered orally at 200 ⁇ L each day (FIG. 1A ). After 5 weeks of administration, the mice were euthanized and subjected to biochemical analysis, anatomical analysis, confirmation of the expression of markers of liver fibrosis and proliferation, and analysis of bile acids.
  • ALT and AST Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured with a Fuji DRI-CHEM 3500i biochemical analyzer (FujiFilm, Tokyo, Japan). The ALT and AST measurement results are shown in FIG. 1B.
  • liver samples were excised and fixed in 10% formalin solution (Sigma-Aldrich, St. Louis, MO, USA). Hematoxylin and eosin (H & E) and Sirius red staining were performed by LOGONE Bio Convergence Research Foundation (Seoul, Republic of Korea). The stained whole slide image was analyzed using Pannoramic Viewer (3DHISTECH, Budapest, Hungary). To calculate the collagen proportionate area, 8 images per group were randomly selected and analyzed using ImageJ software (NIH, Bethesda, MD, USA; http://imagej.nih.gov/ij). .
  • the weight ratio of liver to body weight was calculated after measuring the weight of the mice to which Luminococcus paensis was administered for 5 weeks and the weight of the liver. The results of measuring the weight of the mice are shown in Figure 1f, and the weight ratio of liver to body weight is shown in Figure 1g.
  • RNA from liver samples was extracted using an easy-spinTM Total RNA Extraction kit (iNtRON Biotechnology, Gyeonggi-do, Republic of Korea), and a High Capacity RNA-to-cDNA kit (Thermo Fisher Scientific, Waltham, MA, USA). ) was used to reverse transcription to cDNA. Quantitative PCR was performed using SYBRTM Green qPCR Master Mix (Thermo Fisher Scientific, Waltham, MA, USA) and Applied BiosystemsTM QuantStudioTM 6 Flex qPCR system (Thermo Fisher Scientific, Waltham, MA, USA). The primer sequence used was as follows.
  • 80% methanol corresponding to a 10-fold volume ratio was added and mixed.
  • the samples were crushed for 3 minutes with a sonicator and then stored for 24 hours at 4°C. Thereafter, 1 mL of 100% methanol was added to the supernatant obtained through centrifugation, and a second extraction was performed under conditions of 15 frequency and 30 minutes using a bead beating machine. Methanol in which bile acid was dissolved was vacuum-dried at 30° C. for 24 hours to evaporate all liquid substances, and the remaining solid substances were dissolved using 55% methanol. The extracted bile acid was transferred to a dedicated tube and measured using a Micromass® Q-ToF mass spectrometer (Waters Technologies, Milford, MA, USA).
  • MCD diet caused a rapid weight loss as known in the existing literature, and administration of luminococcus phasis did not affect body weight (Fig. 1f).
  • MCD + R.faecis the liver ratio in body weight decreased compared to the control-administered mice (MCD) (Fig. 1g).
  • CDAHFD choline-deficient, L-amino acid-defined, high-fat diet
  • Choline plays a role in accumulating and releasing triglycerides in hepatocytes in the form of VLDL, but the CDAHFD diet lacks choline, so triglycerides from a high-fat diet accumulate in hepatocytes to induce fatty liver. Is a diet model in which weight loss does not occur and fibrosis is more severely induced. However, it is known that the CDAHFD model does not induce insulin resistance.
  • ALT and AST levels decreased according to the administration of luminococcus phaensis (FIGS. 2b and 2c), but the ratio of liver to body weight was significant by administration of luminococcus phaensis. There was no difference (Fig. 2d). This means that Luminococcus paensis has a therapeutic effect on non-alcoholic fatty liver damage induced by CDAHFD diet, but the liver ratio to body weight did not show a significant difference, indicating whether the accumulated fat in the liver was significantly reduced. Means not.
  • Example 3 Liver damage treatment test using genetic leptin-deficiency model
  • the db/db model is a model having a mutation in the leptin receptor, which induces obesity and insulin resistance, resulting in hyperglycemia, and is widely used as a model for type 2 diabetes.
  • the db/db model it is known that steatosis is rapidly induced, but it is known that steatosis (NASH) and fibrosis are not easily induced.
  • Serum fasting insulin levels measured by ipGTT in db/db mice were measured using an Ultra Sensitive Mouse Insulin ELISA kit (Crystal Chem, Elk Grove Village, IL, USA).
  • the intraperitoneal glucose tolerance test to confirm insulin resistance was conducted at the 3rd week of administration of luminococcus faesis, and after 16 hours of diet other than water, a glucose solution was administered intraperitoneally so that 1 g glucose per 1 kg of body weight was administered. After that, blood glucose was measured using an Accu-Chek® Performa blood glucose meter (Roche Diagnostics, Risch-Rotnch, Switzerland) at a predetermined time.
  • ALT and AST levels were decreased according to the administration of Luminococcus faeces (FIGS. 3B and 3C ), and in particular, the ratio of liver to body weight was also significantly decreased (FIG. 3D ). Nevertheless, as shown in Fig. 3e, serum fasting insulin levels and insulin resistance measured by ipGTT in db/db mice were not affected by the luminococcus faecis treatment.
  • Luminococcus faecis showed a therapeutic effect on non-alcoholic fatty liver even in the db/db model with insulin resistance, and these results indicate that Luminococcus faecis has the therapeutic effect of NAFLD in an insulin-independent manner, and type 2 It means that it can be used effectively in the treatment of non-alcoholic fatty liver in diabetics.
  • the db/db model and the CDAHFD model were selected as a comparative model therefor to confirm the sensitivity of the treatment response according to the difference in insulin resistance.
  • the CDAHFD model induces non-alcoholic fatty liver disease without insulin resistance, so it is suitable when comparing the treatment effect according to insulin resistance compared to the db/db model in which insulin resistance is induced.
  • the MCD model it is not suitable to be used as a control group to confirm the sensitivity of the treatment response according to the difference in insulin resistance because it causes rapid weight loss and a decrease in body function.
  • the ALT level decreased by about 42.98% according to the administration of luminococcus paensis
  • the AST level decreased by about 41.00% as shown in FIG. 3C
  • the liver weight to body weight ratio as shown in FIG. 3D This decreased by about 9.43%.
  • the liver weight ratio to body weight was not significantly reduced, but in the animal model having insulin resistance, the liver weight ratio to body weight was significantly reduced.
  • Example 4 Luminococcus bromy ( Ruminococcus bromii ) The treatment effect of fibrosis
  • Luminococcus bromi which was shown to be significantly reduced in the non-alcoholic fatty liver disease group, has the therapeutic effect of non-alcoholic fatty liver.
  • Luminococcus bromii (ATCC no. 27255) was pre-sale from ATCC (American Type Culture Collection, Manassas, VA, USA) and cultured in modified PYG medium under anaerobic conditions, and after 24 hours It was collected, washed twice with PBS (+ 0.5% cysteine), and fed orally.
  • mice C57BL/6N mice were fed by dissolving streptomycin (1 g/L) in drinking water for 1 week in order to settle the intestine of Luminococcus bromy after 1 week environmental adaptation on a standard chow diet.
  • mice were fed a methionine and choline deficient L-amino acid diet (MCD) (Research diet, New Brunswick, NJ, USA; Cat. no.: A02082002B).
  • MCD methionine and choline deficient L-amino acid diet
  • 200 ⁇ L of either luminococcus bromi or control PBS (sham) suspended to contain 10 9 CFU in 200 ⁇ L of PBS was orally administered daily.
  • the mice were euthanized and biochemical analysis was performed. As biochemical analysis, ALT and AST analysis were performed in substantially the same manner as in Example 1, and the ratio of liver to body weight was measured in substantially the same manner as in Example 1.
  • Luminococcus bromi did not show a therapeutic effect on non-alcoholic fatty liver, which was found that not all strains shown to be reduced in the non-alcoholic fatty liver disease group had a therapeutic effect on non-alcoholic fatty liver. All strains belonging to the same genus did not have a therapeutic effect on non-alcoholic fatty liver, and therefore, it was found that the non-alcoholic therapeutic effect is a unique effect of Luminococcus paensis. In addition, Luminococcus bromy was significantly reduced in the non-alcoholic fatty liver disease group, but it was difficult to predict that administration of the reduced strain in non-alcoholic fatty liver would lead to treatment as it did not show any effect on treatment of non-alcoholic fatty liver even when administered.
  • Example 5 Culture and production of Luminococcus paensis
  • YBHI medium containing the commercially available BactoTM brain heart infusion (BHI) Medium (BD, Franklin Lakes, NJ, USA) for the search for the optimal medium of Luminococcus faecs (accession number KCTC no.5757), and commercially available Difco TM Reinforced Clostridial Medium (RCM medium) (BD, Franklin Lakes, NJ, USA), MB cell BL broth (BL medium) (Kisan Bio, Seoul, Repulic of Korea), DifcoTM Lactobacilli MRS broth (MRS medium) (BD, Franklin Lakes, NJ, USA), MB cell Gifu anaerobic medium (GAM medium) (Kisan Bio, Seoul, Repulic of Korea) and the FMK1028 medium prepared in the present invention were confirmed cultivation. Cultivation for optimal medium selection was evaluated on the basis of increasing absorbance and decreasing pH after cultivation, and cell homogeneity confirmed by microscopy.
  • the composition of YBHI medium and FMK1028 medium is shown in Table
  • YBHI medium Components g/L BactoTM brain heart infusion 37 Yeast Extract 5 Cellobiose One Maltose One L-cysteine 0.5
  • FMK1028 badge Components g/L Glucose 10 Yeast Extract 45 Soy peptone 10 Sodium acetate 3 Sodium chloride 5 L-cysteine 0.5
  • Luminococcus faecis pre-culture solution cultured in YBHI medium for 14 hours was each inoculated to YBHI medium, RCM medium, BL medium, MRS medium, GAM medium, or FMK1028 medium at a final volume ratio of 1%. After inoculation, it was cultured in an anaerobic condition at 37°C, and after 14 hours, the absorbance and pH at 600 nm of the culture solution were measured, and the morphology of the cells was observed.
  • the absorbance was measured using an Orion Aquamate 8000 spectrometer (Thermo Scientific, Waltham, MA, USA), and the pH was measured with a SevenCompact pH/Ion meter (Mettler Toledo, Columbus, OH, USA). The morphology of the cells was observed with an Optinity KB-320 optical microscope (Korea Labtech, Gyeonggi-do, Republic of Korea).
  • FIG. 5A is a result of comparing the cultivation properties of Luminococcus phaensis and cell morphology in each medium.
  • the absorbance of the culture medium was highest in FMK1028 medium, followed by YBHI medium, GAM medium, MRS medium, BL medium, and RCM medium in that order.
  • the pH of the culture medium was lowest in FMK1028 medium, followed by BL medium, YBHI medium, MRS medium, RCM medium, and GAM medium in that order.
  • the homogeneity of cells derived from FMK1028 and GAM medium was the best, followed by cells cultured in YBHI medium.
  • Luminococcus paensis was the best in the FMK1028 medium prepared in the present invention.
  • the growth curve and the number of viable cells were measured using FMK1028 medium having the best cultivation of Luminococcus paensis. YBHI medium was used as a control.
  • Luminococcus paensis cultured in YBHI medium for 14 hours was inoculated in YBHI medium and FMK1028 medium at a volume ratio of 1%. After inoculation, a standing culture was performed at 37° C. under anaerobic conditions for 14 hours, and the absorbance at 600 nm of the culture solution was measured and expressed as a growth curve.
  • Luminococcus paensis inoculated in each medium was cultured for 14 hours, and then diluted according to 10-fold serial dilution using GAM medium, and 0.1 mL of the dilution was taken and GAM medium After spreading on an agar plate, it was incubated for 24 hours at 37°C under anaerobic conditions. After cultivation, the colonies of the agar plate in which about 30-300 colonies were formed were counted and converted into the number of viable cells per unit volume of the culture medium (CFU/mL). The measured growth curve and the number of viable cells per unit volume are shown in FIG. 5B. As shown in FIG.
  • luminococcus phaensis reached a stationary phase after 8 hours of culturing in YBHI medium as a control and showed an absorbance of 2.55. It showed a growth curve similar to that of YHBI up to 8 hours after cultivation in FMK1028 medium, but continued to grow up to 14 hours after cultivation, showing an absorbance of 6.18. As a result of measuring the number of viable cells per unit volume after 14 hours incubation, the number of viable cells was 600 times higher in FMK1028 medium than in YBHI medium.
  • the time of recovery of the cultured cells was confirmed using a fermentor for mass cultivation and originalization of Luminococcus paensis.
  • a fermenter Fermentec, Chungcheongbuk-do, Republic of Korea
  • the growth curve and the number of viable cells according to the culture time were measured and shown in FIG. 5C.
  • 5C is a result showing the growth curve and the number of viable cells of Luminococcus paensis grown by operating the fermentor.
  • the luminococcus phaensis reached a stationary phase after 8 hours incubation and exhibited an absorbance of 8.25 and a number of viable cells of 5.15 ⁇ 10 9 CFU/mL.
  • the absorbance decreased to 7.25, and the number of viable cells was also slightly decreased, resulting in 4.95 ⁇ 10 9 CFU/mL.
  • the time to reach the stationary phase as a result of culture using a fermentor is shortened to 8 hours, and the absorbance (6.18 ⁇ 8.25) and viable cells in the stationary phase when compared with the 14-hour culture result in the flask batch culture. It was confirmed that the number (1.2 ⁇ 10 9 CFU/mL ⁇ 5.15 ⁇ 10 9 CFU/mL) measurement results were also improved.
  • Luminococcus paensis was mass-cultured using a fermentor. Eight hours after incubation, cells cultured at 7,000 rpm and 40 minutes were recovered using a 2236R high-speed centrifuge (Labogene, Liller ⁇ d, Denmark). The recovered cells were placed in a 300 mL beaker and mixed for 20 minutes at a weight ratio of 1:1 with a cryoprotectant using a magnetic bar and a stirrer. The composition of the cryoprotectant used is shown in Table 4 below. The cells mixed with the cryoprotectant were frozen for 24 hours in an ultra-low temperature freezer at -80°C, freeze-dried for 72 hours, and finely pulverized to powder.
  • Cryoprotective agents Components g/L Sucrose 200 Potassium phosphate dibasic 6 Potassium phosphate monobasic 4.5 L-arginine 4 NaCl 0.8

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Polymers & Plastics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nutrition Science (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)

Abstract

본 발명은 간손상, 예를 들면 비-알코올성 지방간 예방, 개선, 또는 치료용 조성물에 관한 것으로, 더욱 자세하게는 루미노코쿠스 속 균주를 포함하는 간손상 예방 또는 치료용 조성물에 관한 것이다.

Description

간 손상 예방, 개선, 또는 치료용 조성물 및 간 손상 예방, 개선, 또는 치료방법
본 발명은 간 손상 예방, 개선, 또는 치료용 조성물 및 간 손상 예방, 개선, 또는 치료방법에 관한 것이다.
비알코올성 지방간 질환(Nonalcoholic fatty liver disease, NAFLD)은 단순한 지방증(steatosis)에서부터, 궁극적으로 진행성 (advanced) 섬유증 및 간경변으로 이어지는 공격적인 조직 형태인 비알코올성 지방간염(nonalcoholic steatohepatitis)에 이르는 대사 장애의 간 질환을 특징으로 한다. NAFLD의 세계 유병율은 대부분의 역학 연구에서 24-30%로 추정되며, 비만 및 대사 증후군과 평행하게 증가하고 있다.
최근 증가된 관심은 다양한 대사성 질환에서 장 미생물총(intestinal microbiota)의 특정 역할을 확인하고 이해하는데 초점을 맞추고 있다. 정상 미생물총에 비한 장내 미생물총의 비정상적인 변화를 일컫는 장내 미생물 불균형(Gut dysbiosis)은, 이로운 단쇄 지방산(short-chain fatty acid, SCFA) 생산 박테리아의 감소, 담즙산 조성의 변화, 지질다당류(lipopolysaccharide, LPS)에 대한 면역 반응의 활성화, 에탄올 생산 박테리아의 과증식에 의한 에탄올 생산 증가, 및 포스파티딜콜린(phosphatidylcholine)의 콜린(choline) 및 트리메틸아민(trimethylamine)으로의 전환과 관련되어 있다. 장-간 축(gut-liver axis)에 영향을 주는 장내 마이크로바이옴(gut microbiome)의 변화는, NAFLD 및 간경변과 같은 만성간질환(chronic liver disease) 및 진행성(advanced) 섬유증의 진행에 기여하는 것으로 알려져 있다. 그러나, NAFLD 질병군에서 증가 또는 감소된 상태에 있는 균주를 정상 상태로 감소 또는 증가시키더라도 NAFLD의 개선 또는 치료 효과가 반드시 나타나는 것은 아니다. 그 이유는 질병군에서 나타난 장내 마이크로바이옴의 변화가 질환으로 인해 나타나는 생리학적 변화로 인한 결과일 수도 있기 때문이다.
그러므로, NAFLD의 조직학적(histological) 중증도 여부를 결정하고, 장내 마이크로바이옴 변화를 잘 규정짓고 효과적인 NAFLD의 예방, 치료 및 진단 방법이 요망된다.
본 발명은 상기와 같은 문제를 해결하기 위한 것으로서, 간 손상, 예를 들어 비알코올성 지방간 질환의 예방, 개선 또는 치료용 조성물 제공하는 것을 그 목적으로 한다.
본 발명의 일 예는 루미노코쿠스 속 (Ruminococcus spp.) 균주를 포함하는, 간 손상의 예방, 개선, 또는 치료용 조성물에 관한 것이다.
본 발명의 또 다른 일 예는, 탄소원 및 질소원을 포함하는 루미노코쿠스 속 (Ruminococcus spp.) 균주의 배양용 조성물에 관한 것이다.
본 발명의 또 다른 일 예는 본 발명에 따른 간 손상의 예방, 개선, 또는 치료용 조성물을 이를 필요로 하는 대상에게 투여하는 단계를 포함하는, 간 손상의 예방, 개선 또는 치료 방법에 관한 것이다.
이하, 본 발명을 더욱 자세히 설명하고자 한다.
본 발명의 일 예는 루미노코쿠스 속 (Ruminococcus spp.) 균주를 포함하는, 간 손상의 예방, 개선 또는 치료용 조성물에 관한 것이다. 상기 조성물은 약학적 조성물 또는 식품 조성물인 것일 수 있다. 상기 조성물은 부티르산(butyric acid)을 추가로 포함하는 것일 수 있다.
상기 간 손상은 지방간, 간염, 간섬유화, 및 간경화로 이루어지는 군에서 선택된 1종 이상인 것일 수 있다. 상기 간 손상은 비-알코올성 간손상인 것일 수 있다. 구체적으로, 상기 간염은 비-알코올성 지방간염일 수 있으며, 상기 지방간은 비-알코올성 지방간인 것일 수 있다. 상기 비-알코올성 지방간은 비-비만성 비-알코올성 지방간, 비만성 비-알코올성 지방간, 또는 당뇨성 비-알코올성 지방간인 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 당뇨성 비-알코올성 지방간은 2형 당뇨병에 기인한 것일 수 있다.
제2형 당뇨병 환자 중 40%의 확률로 비알코올성 지방간염 (NASH)을 가지고 있으며, 비알코올성 지방간을 갖고 있는 제2형 당뇨병 환자의 경우 제2형 당뇨병이 없는 비알코올성 지방간 환자와 비교하여 비알코올성 지방간염 (80.2% vs. 64.4%; p < 0.001) 및 간섬유화의 (40.3% vs. 17.0%; p < 0.001) 유병률이 높다. 따라서 제2형 당뇨병이 있는 비알코올성 지방간 환자를 위한 치료제의 개발이 필요한 실정이다. 제2당뇨병에 의한 간 손상은 제2당뇨병을 가지지 않는 경우보다 예후가 좋지 않기 때문에 치료에 어려움이 있으나, 본 발명에 따른 조성물은 제2당뇨병성 간 손상을 치료할 수 있다.
상기 조성물은 인슐린 비의존적으로 간 손상을 예방, 개선, 또는 치료하는 것일 수 있다. 본원 실시예에서 인슐린 저항성을 가지는 동물 모델을 이용하여 본 발명에 따른 조성물의 간 손상 효과를 확인해본 결과, 간 손상이 현저히 개선되었으며, 이에 본 발명에 따른 조성물은 인슐린 비의존적으로 간 손상을 개선 및 치료하는 것을 확인하였다.
본 발명에 따른 조성물은 간 손상을 가진 대상에게 투여하여, 현저히 개선된 간손상의 치료 효과를 나타낸다. 상기 간 손상을 가진 대상은 하기 (1) 내지 (5) 중 1종 이상의 특징을 가지는 것일 수 있다:
(1) 혈중 ALT 농도가 증가된 상태, 예를 들어 정상 대조군의 혈중 ALT 농도의 1배 초과, 1.1배 이상, 1.2배 이상, 1.3배 이상, 1.4배 이상, 1.5배 이상, 1.6배 이상, 1.7배 이상, 1.8배 이상, 1.9배 이상, 2배 이상, 2.1배 이상, 2.2배 이상, 2.3배 이상, 2.4배 이상, 2.5배 이상, 2.6배 이상, 2.7배 이상, 2.8배 이상, 2.9배 이상, 3배 이상, 3.5배 이상, 4배 이상, 4.5배 이상, 5배 이상, 5.5배 이상, 6배 이상, 6.5배 이상, 7배 이상, 7.5배 이상, 8배 이상, 8.5배 이상, 9배 이상, 9.5배 이상, 또는 10배 이상인 상태.
(2) 혈중 AST 농도가 증가된 상태, 예를 들어 정상 대조군의 혈중 AST 농도의 1배 초과, 1.1배 이상, 1.2배 이상, 1.3배 이상, 1.4배 이상, 1.5배 이상, 1.6배 이상, 1.7배 이상, 1.8배 이상, 1.9배 이상, 2배 이상, 2.1배 이상, 2.2배 이상, 2.3배 이상, 2.4배 이상, 2.5배 이상, 2.6배 이상, 2.7배 이상, 2.8배 이상, 2.9배 이상, 3배 이상, 3.5배 이상, 4배 이상, 4.5배 이상, 5배 이상, 5.5배 이상, 6배 이상, 6.5배 이상, 7배 이상, 7.5배 이상, 8배 이상, 8.5배 이상, 9배 이상, 9.5배 이상, 또는 10배 이상인 상태.
(3) 맹장 내 이차 담즙산 농도가 감소된 상태, 예를 들어 정상 대조군의 맹장 내 이차 담즙산 농도의 1배 미만, 0.9배 이하, 0.8배 이하, 0.7배 이하, 0.6배 이하, 0.5배 이하, 0.4배 이하, 0.3배 이하, 0.2배 이하, 또는 0.1배 이하인 상태.
(4) 섬유증 마커 유전자 발현량이 증가된 상태, 예를 들어 정상 대조군의 섬유증 마커 유전자 발현량의 1배 초과, 1.1배 이상, 1.2배 이상, 1.3배 이상, 1.4배 이상, 1.5배 이상, 1.6배 이상, 1.7배 이상, 1.8배 이상, 1.9배 이상, 2배 이상, 2.1배 이상, 2.2배 이상, 2.3배 이상, 2.4배 이상, 2.5배 이상, 2.6배 이상, 2.7배 이상, 2.8배 이상, 2.9배 이상, 3배 이상, 3.5배 이상, 4배 이상, 4.5배 이상, 5배 이상, 5.5배 이상, 6배 이상, 6.5배 이상, 7배 이상, 7.5배 이상, 8배 이상, 8.5배 이상, 9배 이상, 9.5배 이상, 10배 이상, 11배 이상, 12배 이상, 13배 이상, 14배 이상, 15배 이상, 16배 이상, 17배 이상, 18배 이상, 19배 이상, 또는 20배 이상 과발현된 상태. 상기 섬유증 마커 유전자는 Col1a1, Timp1, 및 α-SMA로 이루어지는 군에서 선택된 1종 이상인 것일 수 있다.
(5) 체중에 대한 간 무게 비율이 증가된 상태, 예를 들어 정상 대조군의 체중에 대한 간 무게 비율의 1배 초과, 1.1배 이상, 1.2배 이상, 1.3배 이상, 1.4배 이상, 1.5배 이상, 1.6배 이상, 1.7배 이상, 1.8배 이상, 1.9배 이상, 2배 이상, 2.1배 이상, 2.2배 이상, 2.3배 이상, 2.4배 이상, 2.5배 이상, 2.6배 이상, 2.7배 이상, 2.8배 이상, 2.9배 이상, 또는 3배 이상인 상태.
상기 정상 대조군은 간 손상을 가지지 않는 대조군을 의미한다.
또한 상기 대상의 간 손상은 지방간, 간염, 간섬유화, 및 간경화로 이루어지는 군에서 선택된 1종 이상인 것일 수 있다. 상기 간 손상은 비-알코올성 간손상인 것일 수 있다. 구체적으로, 상기 간염은 비-알코올성 지방간염일 수 있으며, 상기 지방간은 비-알코올성 지방간인 것일 수 있다. 상기 비-알코올성 지방간은 비-비만성 비-알코올성 지방간, 비만성 비-알코올성 지방간, 또는 당뇨성 비-알코올성 지방간인 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에 따른 조성물은 당뇨병을 가지는 대상에게 투여되는 것일 수 있으며, 특히 본 발명에 따른 조성물은 인슐린 비의존적으로 간 손상을 예방, 개선, 또는 치료할 수 있으므로, 제2당뇨병을 가지는 대상에게 투여되는 것일 수 있다.
본원 실시예에서 제2당뇨병 모델을 이용하여 본 발명에 따른 조성물의 간 손상, 예를 들어 비-알코올성 지방간 치료 효과를 확인한 결과, 혈중 ALT 농도 감소능, 혈중 AST 농도 감소능, 체중에 대한 간의 비율 감소능 등의 치료 효과가, 제2당뇨병을 가지지 않는 모델에서 나타난 치료 효과 대비 현저히 우수하였으며, 이는 본 발명에 따른 조성물이 제2당뇨병 대상에서 특히 우수한 치료 효과를 가지는 것을 의미한다.
특히, 제2당뇨병을 가지는 대상에서의 치료 효과가 더욱 우수하였으며, 인슐린 저항성 차이가 루미노코쿠스에 의한 간 손상 개선 또는 치료와 관련된 감수성 차이에 중요한 역할을 하였다.
본 발명에 따른 조성물은 간 손상을 가지는 대상에 투여되어 하기 (1) 내지 (5) 중 1종 이상의 특징을 발생시키는 것일 수 있다:
(1) 혈중 ALT 농도의 감소, 예를 들어 상기 조성물을 투여한 경우의 혈중 ALT 농도가, 상기 조성물을 투여하지 않은 대조군의 혈중 ALT 농도 100%를 기준으로 100% 미만, 99% 이하, 98% 이하, 97% 이하, 96% 이하, 95% 이하, 94% 이하, 93% 이하, 92% 이하, 91% 이하, 90% 이하, 80% 이하, 70% 이하, 65% 이하, 60% 이하, 59% 이하, 58% 이하, 50% 이하, 45% 이하, 또는 40% 이하 (일 예로 도 1b에서, MCD와 루미노코쿠스 파에시스 균주를 병용 투여할 경우, MCD 단독 투여한 경우 대비 39.21%의 ALT 수치를 보였다.)
(2) 혈중 AST 농도의 감소, 예를 들어 상기 조성물을 투여한 경우의 혈중 AST 농도가, 상기 조성물을 투여하지 않은 대조군의 혈중 AST 농도 100%를 기준으로 100% 미만, 99% 이하, 98% 이하, 97% 이하, 96% 이하, 95% 이하, 94% 이하, 93% 이하, 92% 이하, 91% 이하, 90% 이하, 80% 이하, 70% 이하, 65% 이하, 64% 이하, 63% 이하, 62% 이하, 61% 이하, 60% 이하, 또는 59% 이하 (일 예로 도 1b에서, MCD와 루미노코쿠스 파에시스 균주를 병용 투여할 경우, MCD 단독 투여한 경우 대비 57.52%의 AST 수치를 보였다.)
(3) 이차 담즙산 (예를 들어, 맹장 (cecal) 내 이차 담즙산) 농도의 증가, 예를 들어 상기 조성물을 투여한 경우의 이차 담즙산 농도가, 상기 조성물을 투여하지 않은 대조군의 이차 담즙산의 농도 100%를 기준으로 100% 초과, 105% 이상, 110% 이상, 115% 이상, 120% 이상, 125% 이상, 130% 이상, 135% 이상, 140% 이상, 145% 이상, 150% 이상, 160% 이상, 170% 이상, 180% 이상, 190% 이상, 또는 200% 이상 (일 예로 도 1i에서, MCD와 루미노코쿠스 파에시스 균주를 병용 투여할 경우, MCD 단독 투여한 경우 대비 217.50%의 LCA 농도, 143.37%의 DCA 농도를 보였다.)
(4) 섬유성 유전자 발현량의 감소, 예를 들어 상기 조성물을 투여한 경우의 섬유증 관련 유전자, 예를 들어 Col1a1, Timp1, α-SMA 중 1종 이상의 발현량이, 상기 조성물을 투여하지 않은 대조군의 발현량 100%를 기준으로 100% 미만, 99% 이하, 98% 이하, 97% 이하, 96% 이하, 95% 이하, 94% 이하, 93% 이하, 92% 이하, 91% 이하, 90% 이하, 80% 이하, 78% 이하, 75% 이하, 70% 이하, 65% 이하, 또는 60% 이하 (일 예로 도 1h에서, MCD와 루미노코쿠스 파에시스 균주를 병용 투여할 경우, MCD 단독 투여한 경우 대비 90.60%의 Col1a1 발현량, 77.17%의 α-SMA 발현량, 58.50%의 Timp1 발현량을 보였다.)
(5) 체중에 대한 간 무게 비율의 감소, 예를 들어 상기 조성물을 투여한 경우의 체중에 대한 간 무게 비율이, 상기 조성물을 투여하지 않은 대조군의 체중에 대한 간 무게 비율의 100% 미만, 99% 이하, 98% 이하, 97% 이하, 96% 이하, 95% 이하, 94% 이하, 93% 이하, 92% 이하, 91% 이하, 90% 이하, 89% 이하, 88% 이하, 또는 87% 이하 (일 예로 도 1g에서, MCD와 루미노코쿠스 파에시스 균주를 병용 투여할 경우, MCD 단독 투여한 경우 대비 86.27%의 liver ratio를 보였다.)
상기 조성물을 투여하지 않은 대조군은, 동일한 질병을 가지나 본 발명에 따른 조성물을 투여하지 않은 비투여군을 의미한다.
상기 이차 담즙산은 deoxycholic acid(DCA), lithocholic acid(LCA), 및ursodeoxycholic acid(UDCA)로 이루어지는 군에서 선택된 1종 이상인 것일 수 있다.
상기 섬유성 유전자는 Col1a1, Timp1, 및 α-SMA로 이루어지는 군에서 선택된 1종 이상인 것일 수 있다.
본 발명에 따른 조성물은 간 손상을 가지고 인슐린 저항성을 가지는 대상(subject), 예를 들어 제2형 당뇨병성 간 손상을 가지는 대상(subject)에 투여되어 하기 (1) 내지 (3) 중 1종 이상의 특징을 발생시키는 것일 수 있다:
(1) 인슐린 저항성을 가지지 않는 대조군 대비 1배 초과, 1.1배 이상, 1.2배 이상, 1.3배 이상, 1.4배 이상, 1.5배 이상, 1.6배 이상, 1.7배 이상, 1.8배 이상, 1.9배 이상, 2배 이상, 2.1배 이상, 2.2배 이상, 2.3배 이상, 2.4배 이상, 2.5배 이상, 또는 2.6배 이상의 ALT 수치 감소율,
(2) 인슐린 저항성을 가지지 않는 대조군 대비 1배 초과, 1.1배 이상, 1.2배 이상, 1.3배 이상, 1.4배 이상, 1.5배 이상, 1.6배 이상, 1.7배 이상, 1.8배 이상, 1.9배 이상, 2배 이상, 2.1배 이상, 또는 2.2배 이상의 AST 수치 감소율,
(3) 인슐린 저항성을 가지지 않는 대조군 대비 1배 초과, 1.1배 이상, 1.2배 이상, 1.3배 이상, 1.4배 이상, 1.5배 이상, 2배 이상, 3배 이상, 4배 이상, 5배 이상, 6배 이상, 7배 이상, 8배 이상, 9배 이상, 또는 10배 이상의 체중에 대한 간 무게 비율 (liver ratio)의 감소율.
본 발명에서 용어 '유효성분'이란, 단독으로 목적하는 활성을 나타내거나 또는 그 자체는 활성이 없는 담체와 함께 활성을 나타낼 수 있는 성분을 의미한다.
본 발명에서 용어 '예방'은, 질병, 장애 또는 질환의 발병을 억제하거나 지연을 의미한다. 질병, 장애 또는 질환의 발병이 예정된 기간 동안 억제되거나 지연된 경우 예방은 완전한 것으로 간주될 수 있다.
본 발명에서 용어 '치료'란, 특정 질병, 장애 및/또는 질환 또는 질환에 따른 증상을 부분적으로 또는 완전히 경감, 개선, 완화, 저해 또는 지연시키며, 중증도를 감소시키거나, 하나 이상의 증상 또는 특징의 발생을 감소시키는 것을 의미한다.
본 발명의 약학적 조성물은 상기 유효성분 이외에 추가로 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 추가로 포함할 수 있다.
또한, 본 발명에 따른 약학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 명확하게 실시할 수 있는 방법에 따라, 약학적으로 허용되는 담체를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수 있다. 본 발명에서 용어 '담체'는, 세포 또는 조직 내로의 화합물의 부가를 용이하게 하는 화합물을 의미하고, 용어 '약학적으로 허용되는'이란, 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다.
상기 약학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토오스, 덱스트로오스, 수크로오스, 소르비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미결정셀룰로스, 폴리비닐피롤리돈, 셀룰로오스, 물, 시럽, 메틸셀룰로오스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다.
또한, 본 발명에 따른 약학적 조성물은 상기 성분들 이외에 충전제, 항응집제, 윤활제, 습윤제, 향료, 유화제, 방부제 등의 첨가제를 추가로 포함할 수 있다. 본 발명에 있어서, 상기 약학적 조성물에 포함되는 첨가제의 함량은 특별히 한정되는 것은 아니며 통상의 제제화에 사용되는 함량 범위 내에서 적절하게 조절될 수 있다.
또한, 본 발명에 따른 약학적 조성물은 경구용 제제로 제형화될 수 있다. 상기 경구용 제제의 비제한적인 예로는, 정제, 트로키제(troches), 로젠지(lozenge), 수용성 현탁액, 유성 현탁액, 조제 분말, 과립, 에멀젼, 하드 캡슐, 소프트 캡슐, 시럽 또는 엘릭실제 등을 들 수 있다. 본 발명에 따른 약학적 조성물을 경구 투여용으로 제제화하기 위하여, 락토오스, 사카로오스, 소르비톨, 만니톨, 전분, 아밀로펙틴, 셀룰로오스 또는 젤라틴 등과 같은 결합제; 디칼슘 포스페이트 등과 같은 부형제; 옥수수 전분 또는 고구마 전분 등과 같은 붕해제; 스테아르산 마그네슘, 스테아르산 칼슘, 스테아릴 푸마르산 나트륨 등을 사용할 수 있으며, 감미제, 방향제, 시럽제 등도 사용할 수 있다. 나아가 캡슐제의 경우에는 상기 언급한 물질 외에도 지방유와 같은 액체 담체 등을 추가로 사용할 수 있다.
본 발명에서 용어 '부형제'는, 치료제가 아닌, 어느 물질을 의미하며, 치료제의 전달을 위한 담체 또는 매체로 이용되거나 또는 약학적 조성물에 추가되는 것을 의미한다. 이에 의해, 취급 및 저장 특성을 개선하거나 또는 조성물의 단위 투여량 형성을 허용 및 촉진시키게 된다.
본 발명에 따른 약학적 조성물은 각각의 사용 목적에 맞게 통상의 방법에 따라 액제, 현탁제, 산제, 과립제, 정제, 캡슐제, 환제, 엑스제, 에멀젼, 시럽제, 에어로졸 등의 경구 제형, 멸균 주사용액의 주사제 등 다양한 형태로 제형화하여 사용할 수 있으며, 경구 투여하거나 정맥 내, 복강 내, 피하, 직장, 국소 투여 등을 포함한 다양한 경로를 통해 투여될 수 있다. 본 발명에서 용어 '경구 투여'는, 활성물질이 소화되도록 제조된 물질, 즉 흡수를 위한 위장기관으로 투여되는 것을 의미한다.
본 발명에 따른 약학적 조성물의 바람직한 투여량은 환자의 상태 및 체중, 연령, 성별, 건강상태, 식이 체질 특이성, 제제의 성질, 질병의 정도, 조성물의 투여시간, 투여방법, 투여기간 또는 간격, 배설율 및 약물 형태에 따라 그 범위가 다양할 수 있으며, 이 분야 통상의 기술자에 의해 적절하게 선택될 수 있다.
본 발명에서 용어 '약학적 조성물의 유효 투여량'은, 특정한 증상을 치료하기 위해 충분한 활성 성분의 조성물의 양을 의미한다. 이는 약학적 조성물의 제제화 방법, 투여 방식, 투여 시간 및/또는 투여 경로 등에 의해 다양해질 수 있고, 약학적 조성물의 투여로 달성하고자 하는 반응의 종류와 정도, 투여 대상이 되는 개체의 종류, 연령, 체중, 일반적인 건강 상태, 질병의 증세나 정도, 성별, 식이, 배설, 해당 개체에 동시 또는 일시에 함께 사용되는 약물 기타 조성물의 성분 등을 비롯한 여러 인자 및 의약 분야에서 잘 알려진 유사 인자에 따라 다양해질 수 있으며, 당해 기술 분야에서 통상의 지식을 가진 자는 목적하는 치료에 효과적인 투여량을 용이하게 결정하고 처방할 수 있다.
본 발명에 따른 약학적 조성물의 투여는 하루에 1회 투여될 수 있고, 수회에 나누어 투여될 수도 있다. 상기 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고 종래의 치료제와는 순차적 또는 동시에 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양으로 투여할 수 있다.
예를 들어, 본 발명에 따른 조성물은 체중 1 ㎏ 당 0.001 내지 10,000 mg, 0.001 내지 5,000 mg, 0.001 내지 1,000 ㎎, 0.001 내지 500 mg, 0.001 내지 300 mg, 0.001 내지 100 mg, 0.001 내지 50 mg, 0.001 내지 30 mg, 0.001 내지 10 mg, 0.001 내지 5 mg, 0.001 내지 1 mg, 0.001 내지 0.5 mg, 0.001 내지 0.1 mg, 0.001 내지 0.05 mg, 0.001 내지 0.01 mg, 0.01 내지 10,000 mg, 0.01 내지 5,000 mg, 0.01 내지 1,000 ㎎, 0.01 내지 500 mg, 0.01 내지 300 mg, 0.01 내지 100 mg, 0.01 내지 50 mg, 0.01 내지 30 mg, 0.01 내지 10 mg, 0.01 내지 5 mg, 0.01 내지 1 mg, 0.01 내지 0.5 mg, 0.01 내지 0.1 mg, 0.01 내지 0.05 mg, 0.1 내지 10,000 mg, 0.1 내지 5,000 mg, 0.1 내지 1,000 ㎎, 0.1 내지 500 mg, 0.1 내지 300 mg, 0.1 내지 200 mg, 0.1 내지 100 mg, 0.1 내지 50 mg, 0.1 내지 30 mg, 0.1 내지 10 mg, 0.1 내지 5 mg, 0.1 내지 1 mg, 0.1 내지 0.5 mg, 1 내지 10,000 mg, 1 내지 5,000 mg, 1 내지 1,000 ㎎, 1 내지 500 mg, 1 내지 300 mg, 1 내지 200 mg, 1 내지 100 mg, 1 내지 50 mg, 1 내지 10 mg, 1 내지 5 mg, 10 내지 10,000 mg, 10 내지 5,000 mg, 10 내지 1,000 ㎎, 10 내지 500 mg, 10 내지 300 mg, 10 내지 200 mg, 10 내지 100 mg, 10 내지 50 mg, 10 내지 40 mg, 10 내지 30 mg, 10 내지 20 mg, 100 내지 10,000 mg, 100 내지 5,000 mg, 100 내지 1,000 ㎎, 100 내지 500 mg, 100 내지 300 mg, 또는 100 내지 200 mg의 일일 투여량으로 투여될 수 있으나, 이에 제한되는 것은 아니다. 일 예로, 본 발명에 따른 조성물의 일일 투여량은 성인 환자의 경구 투여 기준으로 0.001 내지 10 g/1일, 0.001 내지 5 g/1일, 0.01 내지 10 g/1일, 또는 0.01 내지 5 g/1일인 것일 수 있다. 또한, 일일 총 투여량을 분할하여 필요에 따라 연속적 또는 비연속적으로 투여할 수 있다.
본 발명에 따른 조성물은 동결건조 보호제를 추가로 포함하는 것일 수 있다. 상기 동결건조 보호제는 단당류, 이당류, 다당류, 탄수화물, 무기염류, 아미노산, 자당, 인산칼슘, 아르지닌, 염화나트륨, 과당, 제일인산칼륨, 제이인산칼륨, 및 트레할로스로 이루어지는 군에서 선택된 1종 이상을 포함하는 것일 수 있다.
상기 자당은 100 내지 300 g/L, 100 내지 250 g/L, 100 내지 200 g/L, 150 내지 300 g/L, 150 내지 250 g/L, 150 내지 200 g/L, 200 내지 300 g/L, 또는 200 내지 250 g/L로 동결건조 보호제에 첨가되는 것일 수 있으며, 일 예로 200 g/L로 첨가되는 것일 수 있다.
상기 인산칼슘은 5 내지 20 g/L, 5 내지 15 g/L, 5 내지 12 g/L, 5 내지 11 g/L, 7 내지 20 g/L, 7 내지 15 g/L, 7 내지 12 g/L, 7 내지 11 g/L, 10 내지 20 g/L, 10 내지 15 g/L, 10 내지 12 g/L, 또는 10 내지 11 g/L의 농도로 동결건조 보호제에 첨가되는 것일 수 있으며, 일 예로 10.5 g/L로 첨가되는 것일 수 있다.
상기 아미노산은 1 내지 10 g/L, 1 내지 8 g/L, 1 내지 6 g/L, 1 내지 5 g/L, 3 내지 10 g/L, 3 내지 8 g/L, 3 내지 6 g/L, 3 내지 5 g/L, 4 내지 10 g/L, 4 내지 8 g/L, 4 내지 6 g/L, 또는 4 내지 5 g/L의 농도로 동결건조 보호제에 첨가되는 것일 수 있으며, 일 예로 4 g/L로 첨가되는 것일 수 있다.
상기 염화나트륨은 0.1 내지 5 g/L, 0.1 내지 3 g/L, 0.1 내지 1 g/L, 0.5 내지 5 g/L, 0.5 내지 3 g/L, 또는 0.5 내지 1 g/L의 농도로 동결건조 보호제에 첨가되는 것일 수 있으며, 일 예로 0.8 g/L로 첨가되는 것일 수 있다.
본 발명에 따른 루미노코쿠스 속 균주는 루미노코쿠스 파에시스 (Ruminococcus faecis)인 것일 수 있다. 일 예로, 상기 루미노코쿠스 속 균주는 기탁번호 KCTC no. 5757를 가지는 루미노코쿠스 파에시스인 것일 수 있다. 본 명세서에서 상기 기탁번호 KCTC no. 5757를 가지는 루미노코쿠스 파에시스는 루미노코쿠스 파에시스 KBL1028로 표기될 수 있다.
상기 균주는 탄소원의 농도 5 내지 30% (w/v), 질소원의 농도 50 내지 90% (w/v), 미네랄의 농도 5 내지 15% (w/v), 및 아미노산의 농도 0.1 내지 10% (w/v)인 배양 배지에서 배양 8시간, 배양 9시간, 배양 10시간, 배양 11시간, 배양 12시간, 배양 13시간, 또는 배양 14시간 이후 성장을 지속하는 것일 수 있다.
상기 균주는 표 3에 따른 조성을 가지는 FMK1028 배지에서 배양 효율이 우수한 것일 수 있다. 예를 들어, 상기 균주는 표 3에 따른 조성을 가지는 FMK1028 배지에서 배양 후 흡광도가, YBHI 배지, GAM 배지, MRS 배지, BL 배지, 및 RCM 배지로 이루어지는 군에서 선택된 1종 이상에서 배앙 후 흡광도보다 높은 것을 특징으로 할 수 있다. 일 예로, 상기 균주는 표 3에 따른 조성을 가지는 FMK1028 배지에서 14시간 배양 후 단위 부피 당 생균수가, YBHI 배지에서 배양한 경우의 10배, 50배, 100배, 150배, 200배, 250배, 300배, 350배, 400배, 450배, 500배, 550배, 또는 600배 이상인 것일 수 있다.
본 발명의 또 다른 일 예는, 탄소원 및 질소원을 포함하는 루미노코쿠스 속 (Ruminococcus spp.) 균주의 배양용 조성물에 관한 것이다. 상기 탄소원은 포도당, 자당, 과당, 유당, 맥아당, 당밀, 및 갈락토스로 이루어지는 군에서 선택된 1종 이상인 것일 수 있다. 상기 질소원은 효모추출물 (yeast extract), 대두펩톤 (soy peptone), 탈지유, 트립톤, 카자미노산 (Casamino acids), 감자펩톤 (potato peptone), 완두콩펩톤 (pea peptone), 밀펩톤 (wheat peptone), 잠두펩톤 (broadbean peptone), 파파익 대두 펩톤 (papaic soy peptone), 및 루핀 펩톤(lupin peptone) 으로 이루어지는 군에서 선택된 1종 이상인 것일 수 있다.
본 발명의 또 다른 일 예는 탄소원 및 질소원을 포함하는, 루미노코쿠스 속 (Ruminococcus spp.) 균주의 배양용 조성물에 관한 것이다. 상기 탄소원은 5 내지 30% (w/v)의 농도일 수 있으며, 상기 질소원은 50 내지 90% (w/v)의 농도일 수 있다. 상기 루미노코쿠스 속 균주는 전술한 바와 같다.
상기 탄소원은 포도당, 자당, 과당, 유당, 맥아당, 당밀, 및 갈락토스로 이루어지는 군에서 선택된 1종 이상을 포함하는 것일 수 있다.
상기 질소원은 효모추출물 (yeast extract), 대두펩톤 (soy peptone), 탈지유, 트립톤, 카자미노산 (Casamino acids), 감자펩톤 (potato peptone), 완두콩펩톤 (pea peptone), 밀펩톤 (wheat peptone), 잠두펩톤 (broadbean peptone), 파파익 대두 펩톤 (papaic soy peptone), 및 루핀 펩톤(lupin peptone) 으로 이루어지는 군에서 선택된 1종 이상을 포함하는 것일 수 있다.
상기 루미노코쿠스 속 균주의 배양용 조성물은 루미노코쿠스 속 균주의 배양 8시간, 9시간, 10시간, 11시간, 12시간, 13시간, 또는 14시간 이후의 성장을 촉진하는 것일 수 있다.
상기 루미노코쿠스 속 균주의 배양용 조성물은 미네랄, 아미노산, 비타민, 핵산 및 무기염류로 이루어지는 군에서 선택된 1종 이상을 추가로 포함하는 것일 수 있다.
상기 미네랄은 아세트산 나트륨, 염화나트륨, 제일인산나트륨, 제이인산나트륨, 염화칼슘, 황산마그네슘, 및 황산망간으로 이루어지는 군에서 선택된 1종 이상을 포함하는 것일 수 있다.
상기 아미노산은 L-시스테인(L-cystein), L-류신(L-leucine), L-이소류신(L-isoleucine), L-발린(L-Valine), L-트립토판(ㅣ-tryptophan), L-트레오닌(L-threonine), L-페닐알라닌(L-phenylalanine), 및 L-메티오닌(L-methionine)을 포함하는 것일 수 있다.
상기 탄소원의 농도는 5 내지 30% (w/v), 상기 질소원의 농도는 50 내지 90% (w/v), 상기 미네랄의 농도는 5 내지 15% (w/v), 및 상기 아미노산의 농도는 0.1 내지 10% (w/v)인 것일 수 있다.
본 발명의 또 다른 일 예는, 본 발명에 따른 루미노코쿠스 속 균주의 배양용조성물에, 루미노코쿠스 속 (Ruminococcus spp.) 균주를 접종하여 배양하는 단계를 포함하는, 루미노코쿠스 속 (Ruminococcus spp.) 균주의 배양방법에 관한 것이다.
상기 배양 방법은 상기 균주 접종 8시간, 9시간, 10시간, 11시간, 12시간, 13시간, 또는 14시간 이후의 성장을 촉진하는 것일 수 있다.
상기 배양은 정치 배양, 유가식 배양, 또는 회분식 배양인 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 일 예는 본 발명에 따른 간 손상 예방, 개선 또는 치료용 조성물을 이를 필요로 하는 대상 (subject)에게 투여하는 단계를 포함하는, 간 손상 예방, 개선 또는 치료 방법에 관한 것이다. 상기 조성물은 루미노코쿠스 속 (Ruminococcus spp.) 균주를 포함하는 것일 수 있다. 상기 간 손상 예방, 개선 또는 치료용 조성물, 상기 루미노코쿠스 속 균주 등은 전술한 바와 같다. 상기 대상 (subject)은 간 손상을 가진 대상이며, 상기 간 손상을 가진 대상은 전술한 바와 같다. 예를 들어, 상기 간 손상을 가진 대상은 인슐린 저항성을 가지는 대상인 것일 수 있으며, 일 예로 당뇨병을 가지는 대상, 구체적으로 제2형 당뇨병을 가지는 대상인 것일 수 있다.
본 발명의 예방 또는 치료용 약학적 조성물은 간 손상, 예를 들어 비알코올성 지방간 질환의 치료에 효과적으로 사용할 수 있다.
도 1a는 MCD 식이에 의해 유도된 간손상 동물 모델에서 루미노코쿠스 파에시스 투여에 따른 간손상 치료 효과를 알아보기 위한 실험 과정을 나타낸 도면이다.
도 1b는 MCD 식이에 의해 유도된 간손상 동물 모델에서 루미노코쿠스 파에시스 투여에 따른 ALT 및 AST 측정 결과를 나타낸 도면이다.
도 1c 내지 도 1e는 MCD 식이에 의해 유도된 간손상의 조직학적 심각성이 루미노코쿠스 파에시스를 먹인 생쥐에서 유의하게 개선된 것을 나타낸 도면으로,
도 1c는 루미노코쿠스 파에시스 투여에 따른 간 조직이 완화된 것을 H&E (위), Sirius red (아래) 염색법을 통하여 나타낸 도면이다.
도 1d는 루미노코쿠스 파에시스 투여로 병리학적으로 완화된 것을 NAFLD activity score 를 이용해 정량한 도면이다.
도 1e는 루미노코쿠스 파에시스 투여로 인해 완화된 간 속 콜라겐 분포를 나타낸 도면이다.
도 1f는 MCD 식이에 의한 체중 변화를 나타낸 도면이다.
도 1g는 루미노코쿠스 파에시스 투여시(MCD + R.faecis) 대조군 투여 생쥐(MCD)와 비교하여 체중 내 간 비율(liver ratio)을 나타낸 도면이다.
도 1h는 루미노코쿠스 파에시스 투여에 따라 섬유증 발생 및 증식의 마커가 완화된 것을 나타낸 도면이다.
도 1i는 MCD 식이에 의해 감소된 이차 담즙산(DCA 및 LCA)의 국소 수준이 루미노코쿠스 파에시스 처리에 의해 증가된 것을 나타낸 도면이다.
도 2a는 CDAHFD 식이에 의해 유도된 간손상 동물 모델에서 루미노코쿠스 파에시스 투여에 따른 간손상 치료 효과를 알아보기 위한 실험 과정을 나타낸 도면이다.
도 2b는 CDAHFD 식이에 의해 유도된 간손상 동물 모델에서 루미노코쿠스 파에시스 투여에 따라 ALT 수준이 감소한 것을 나타낸 도면이다.
도 2c는 CDAHFD 식이에 의해 유도된 간손상 동물 모델에서 루미노코쿠스 파에시스 투여에 따라 AST 수준이 감소한 것을 나타낸 도면이다.
도 2d는 CDAHFD 식이에 의해 유도된 간손상 동물 모델에서 루미노코쿠스 파에시스 투여에 따른 체중에 대한 간 무게의 비율을 나타낸 도면이다.
도 3a는 유전적 렙틴-결핍 동물 모델에서 루미노코쿠스 파에시스 투여에 따른 간손상 치료 효과를 알아보기 위한 실험 과정을 나타낸 도면이다.
도 3b는 유전적 렙틴-결핍 동물 모델에서 루미노코쿠스 파에시스 투여에 따라 ALT 수준이 감소한 것을 나타낸 도면이다.
도 3c는 유전적 렙틴-결핍 동물 모델에서 루미노코쿠스 파에시스 투여에 따라 AST 수준이 감소한 것을 나타낸 도면이다.
도 3d는 유전적 렙틴-결핍 동물 모델에서 루미노코쿠스 파에시스 투여에 따라 체중에 대한 간 무게의 비율이 감소한 것을 나타낸 도면이다.
도 3e는 유전적 렙틴-결핍 동물 모델에서 ipGTT에 의해 측정된 혈청 공복 인슐린 수치 및 인슐린 저항성을 나타낸 도면이다.
도 4a는 간 섬유화 질환군에서 루미노코쿠스 브로미가 유의하게 감소된 상태인 것을 나타낸 도면이다.
도 4b는 루미노코쿠스 브로미 투여에 따른 체중 내 간 비율(liver ratio) 수치를 나타낸 도면이다.
도 4c는 루미노코쿠스 브로미 투여에 따른 ALT 수치를 나타낸 도면이다.
도 5a는 YBHI 배지, RCM 배지, BL 배지, MRS 배지, GAM 배지, 또는 FMK1028 배지에서 루미노코쿠스 파에시스의 배양성과 세포의 형태를 비교한 결과를 나타낸 도면이다.
도 5b는 루미노코쿠스 파에시스의 성장곡선과 단위 부피당 생균수를 나타낸 도면이다.
도 5c는 발효기에서 배양된 루미노코쿠스 파에시스의 성장곡선과 생균수를 나타낸 도면이다.
이하, 본 발명을 하기의 실시예에 의하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.
실시예 1: 실험 동물을 이용한 간손상 치료 시험
(1) 실험 동물의 준비
루미노코쿠스 파에시스(Ruminococcus faecis, KCTC no. 5757 [JCM no. 15917])를 한국생명공학연구원 생물자원센터(KCTC, Jeollabuk-do, Republic of Korea)에서 분양받아 YBHI 배지에서 혐기성(anaerobic) 조건 하에 배양하고, 24시간 후 채취하고, PBS (+ 0.5% 시스테인)을 사용하여 2회 세척한 후, 경구로 급식하였다. 실험 동물로 6주의 수컷 C57BL/6N 생쥐(Orient Bio, Gyeonggi-do, Republic of Korea)를 대학 가이드라인에 따라 서울대학교의 일반 동물 시설에서 사육하였고, 모든 동물 실험은 서울대학교 실험동물운영위원회(Institutional Animal Care and Use Committee)의 승인을 받았다.
MCD 식이에 의해 유도된 NAFLD 동물 모델 실험을 진행하고자, 생쥐를 표준 식이(standard chow diet)에 적응시킨지 1주일 후, 루미노코쿠스 파에시스의 장내 정착을 위하여 스트렙토마이신(streptomycin)을 1 g/L 농도로 식수에 처리하여 1주일간 급수하였다. 이후 5주 동안, 생쥐에게 메티오닌 및 콜린 결핍 L-아미노산 식이(methionine and choline deficient L-amino acid diet, MCD) (Research diet, New Brunswick, NJ, USA; Cat. no.: A02082002B)를 공급하는 동시에, 200 μL의 PBS에 109 CFU가 들어가도록 현탁한 루미노코쿠스 파에시스 또는 대조군 PBS(sham)중 하나를 200 μL씩 매일 경구 투여하였다(도 1a). 5주간의 투여 이후 생쥐를 안락사시켜 생화학적 분석, 해부학적 분석, 간 섬유증 발생 및 증식의 마커 발현 확인, 및 담즙산 분석을 진행하였다.
(2) 생화화학적 분석
혈청 알라닌 아미노전달효소(alanine aminotransferase, ALT) 및 아스파테이트 아미노전이효소(aspartate aminotransferase, AST) 수치는 Fuji DRI-CHEM 3500i 생화학 분석기(FujiFilm, Tokyo, Japan)로 측정하였다. ALT 및 AST 측정 결과를 도 1b에 나타내었다.
(3) 해부학적 분석
안락사 후, 간 시료를 절제하고 10% 포르말린 용액(Sigma-Aldrich, St. Louis, MO, USA)에 고정시켰다. 헤마톡실린 및 에오신(H & E) 및 시리우스 레드 염색(Sirius red staining)은 록원바이오융합연구재단(LOGONE Bio Convergence Research Foundation, Seoul, Republic of Korea)에서 수행되었다. 염색된 전체 슬라이드 이미지는 Pannoramic Viewer(3DHISTECH, Budapest, Hungary)를 사용하여 분석되었다. 콜라겐 비례 면적(collagen proportionate area)을 계산하기 위해, 그룹당 8 개의 이미지를 무작위로 선택하고 ImageJ 소프트웨어(NIH, Bethesda, MD, USA; http://imagej.nih.gov/ij)를 사용하여 분석하였다.
또한, 체중에 대한 간의 비율은 5주간의 루미노코쿠스 파에시스를 투여한 생쥐의 체중과 간의 무게를 측정한 후 체중 대비 간의 무게 비율을 계산하였다. 생쥐의 체중 측정 결과를 도 1f에 나타내었고, 체중 대비 간의 무게 비율을 도 1g에 나타내었다.
(4) 간 섬유증 발생 및 증식의 마커 발현 확인
간 샘플의 총 RNA를 easy-spin™ Total RNA Extraction 키트(iNtRON Biotechnology, Gyeonggi-do, Republic of Korea)를 이용하여 추출하였고, High Capacity RNA-to-cDNA 키트(Thermo Fisher Scientific, Waltham, MA, USA)를 이용하여 cDNA로 역전사하였다. 정량적 PCR은 SYBR™ Green qPCR Master Mix (Thermo Fisher Scientific, Waltham, MA, USA) 및 Applied Biosystems™ QuantStudio™ 6 Flex qPCR 시스템(Thermo Fisher Scientific, Waltham, MA, USA)을 이용하여 수행하였다. 사용한 프라이머 서열은 다음과 같았다.
Gene name Primer category Sequences SEQ ID NO.
Cyclophilin A Forward 5'-TGGAGAGCACCAAGACAGACA-3' 1
reverse 5'- TGCCGGAGTCGACAATGAT-3' 2
Col1a1 forward 5'- ACCTGTGTGTTCCCTACTCA-3' 3
reverse 5'-GACTGTTGCCTTCGCCTCTG-3' 4
Timp1 forward 5'-TGCCTGCTGCGATTACAACC-3' 5
reverse 5'-GGAATGGTGTGGTGATGCATGG-3' 6
α-SMA forward 5'-GGCTCTGGGCTCTGTAAGG-3' 7
reverse 5'-CTCTTGCTCTGGGCTTCATC-3' 8
(5) 답즙산 분석
생쥐의 맹장을 추출한 후, 10배의 부피비에 해당하는 80% 메탄올을 넣고 섞어주었다. 담즙산 추출을 위하여 초음파분쇄기(sonicator)로 3 분간 시료를 파쇄한 후 4 ℃ 조건에서 24시간동안 보관하였다. 이후 원심분리를 통해 획득한 상층액에 100% 메탄올 1 mL를 추가하고 bead beating 기계를 이용하여 15 frequency, 30 분 조건으로 두번째 추출을 진행하였다. 담즙산이 용해된 메탄올은 30 ℃, 24시간 조건으로 진공 건조를 통해 액체상 물질을 모두 증발시키며 나머지 고형물질을 55% 메탄올을 이용하여 녹였다. 추출된 담즙산을 전용 튜브에 옮겨담은 후 Micromass® Q-ToF 질량 분석기(Waters Technologies, Milford, MA, USA)를 이용하여 측정하였다.
(6) 실험 결과
루미노코쿠스 파에시스 투여시(MCD + R.faecis) 대조군 투여 생쥐(MCD)와 비교하여 ALT 및 AST 수치가 감소되었다 (도 1b).
해부학적 및 조직학적 분석 결과로, MCD 식이에 의해 유도된 NAFLD의 조직학적 심각성이 루미노코쿠스 파에시스를 먹인 생쥐에서 유의하게 개선되었다 (도 1c 내지 도 1e). MCD 식이는 기존 문헌에 알려진 대로 급격한 체중 저하를 일으켰으며 루미노코쿠스 파에시스 투여는 체중에 영향을 미치지 않았다 (도 1f). 그러나 루미노코쿠스 파에시스 투여시(MCD + R.faecis) 대조군 투여 생쥐(MCD)와 비교하여 체중 내 간 비율(liver ratio)이 감소하였다 (도 1g).
간 섬유증 발생 및 증식의 마커 발현 확인 결과, 간 섬유증 발생 및 증식의 마커가 루미노코쿠스 파에시스 급식 생쥐에서 현저하게 완화되었다(Timp1, p=0.0018; α-SMA, p=0.0330) (도 1h).
생화학적 및 조직학적 간 손상 마커의 변화와 병행하여, 이차 담즙산(DCA 및 LCA)의 국소 수준 또한 MCD 식이에 의해 감소되고 루미노코쿠스 파에시스 처리에 의해 증가되었다 (도 1i).
이러한 결과는 루미노코쿠스 파에시스 MCD 다이어트 생쥐 모델에서 간 섬유증에 대한 보호 효과가 있음을 나타낸다.
실시예 2: 동물 모델을 이용한 간손상 치료 시험
비알코올성 지방간에 의한 간 손상에 대한 루미노코쿠스 파에시스의 완화 효과를 확인하기 위해, 체중 감소를 방지하고 인슐린 저항성을 보이지 않는 choline-deficient, L-amino acid-defined, high-fat diet(CDAHFD) 식이 생쥐 모델을 사용하였다.
콜린(choline)은 간세포 속의 트리글리세리드(triglyceride)를 VLDL의 형태로 축적하고 배출시키는 역할을 하나, CDAHFD 식이에는 콜린이 결여되어 있어 고지방 식이로 인한 트리글리세리드가 간세포 안에 누적되어 지방간이 유도되며, MCD 모델과는 다르게 체중저하가 발생하지 않고 간섬유화(fibrosis)가 더욱 심하게 유도되는 식이모델이다. 그러나, CDAHFD 모델은 인슐린 저항성이 유도되지는 않는 것으로 알려져 있다.
구체적으로, 도 2a에 나타난 바와 같이, C57BL/6N 생쥐를 표준 식이 (standard chow diet)에 적응한지 1주일 후, 루미노코쿠스 파에시스의 장내 정착을 위하여 1주일 동안 스트렙토마이신(streptomycin) (1 g/L)을 음용수에 녹여 먹였다. 그 후 8주 동안, choline이 결여되고 지방 60%의 고지방이 포함되어 있는 CDAHFD (choline-deficient, L-amino acid-defined, high-fat diet) 사료를 먹였고, 200 μL의 PBS에 109 CFU가 첨가되도록 현탁한 루미노코쿠스 파에시스 또는 대조군 PBS(sham)중 하나를 200 μL씩 매일 경구 투여하였다. 8주간의 투여 이후 생쥐를 안락사시켜 혈청 생화학적 분석 및 해부학적 분석을 진행하였다. 생화학적 분석으로서 ALT 및 AST 분석은 상기 실시예 1과 동일한 방법으로 수행하였으며, 체중에 대한 간 비율을 상기 실시예 1과 동일한 방법으로 측정하였다.
도 2b 내지 도 2d에 나타난 바와 같이, 루미노코쿠스 파에시스 투여에 따라 ALT 및 AST 수준이 감소하였으며 (도 2b 및 도 2c), 다만 체중에 대한 간 비율은 루미노코쿠스 파에시스 투여에 의해 유의한 차이를 보이지 않았다 (도 2d). 이는 루미노코쿠스 파에시스가 CDAHFD 사료로 유도된 비-알코올성 지방간 손상에 대해 치료 효과를 가지는 것을 의미하며, 다만 체중에 대한 간 비율이 유의한 차이를 보이지 않은 것은 간 속에 축적된 지방이 유의하게 줄지 않은 것을 의미한다.
실시예 3: 유전적 렙틴-결핍 모델을 이용한 간손상 치료 시험
인슐린 저항성을 가지는 경우에도 루미노코쿠스 파에시스에 의한 비알코올성 지방간 치료 효과가 발생하는지 여부를 확인하기 위해, 인슐린 저항성을 갖는 자발적인 당뇨병 및 지방간을 발생시키는 유전적 렙틴 결핍(genetic leptin-deficient) (db/db) 모델을 사용하여 루미노코쿠스 파에시스의 비알코올성 지방간 치료 효과를 확인해보았다. db/db 모델의 대조군으로 db/m 을 사용하였으며 db allele의 heterozygote에 해당한다.
db/db 모델은 렙틴 수용체(leptin receptor)에 돌연변이를 가지는 모델로서, 비만, 인슐린 저항성이 유도되어 고혈당이 나타나며, 제2형 당뇨 모델로 많이 사용된다. db/db 모델의 경우에는 간내 지방증(steatosis)이 빠르게 유도되는 것으로 알려져 있지만, 지방간염(NASH), 간섬유화(fibrosis)는 쉽게 유도되지 않는 것으로 알려져 있다.
구체적으로, 도 3a에 나타난 바와 같이, db/db 모델 생쥐를 표준 식이(standard chow diet)에 적응시킨 지 1주일 후, 루미노코쿠스 파에시스의 장 내 정착을 위하여 1주일 동안 스트렙토마이신(streptomycin) (1 g/L)을 음용수에 녹여 처리하였다. 그 후 5주 동안 보통 식이를 급여하는 동시에, 200 μL의 PBS에 109 CFU가 들어가도록 현탁한 루미노코쿠스 파에시스 또는 대조군 PBS(sham)중 하나를 200 μL씩 매일 경구 투여하였다. 5주간의 투여 이후 생쥐를 안락사시켜 생화학적 분석 및 해부학적 분석을 진행하였다. 생화학적 분석으로서 ALT 및 AST 분석은 상기 실시예 1과 실질적으로 동일한 방법으로 수행하였으며, 체중에 대한 간 비율을 상기 실시예 1과 실질적으로 동일한 방법으로 측정하였다.
db/db 생쥐에서 ipGTT에 의해 측정된 혈청 공복 인슐린 수치는 Ultra Sensitive Mouse Insulin ELISA 키트 (Crystal Chem, Elk Grove Village, IL, USA)를 사용하여 측정하였다. 인슐린 저항성을 확인하기 위한 복강 당부하 검사는 루미노코쿠스 파에시스 투여 3주차 때 진행되었으며 16시간의 물 이외의 식이제한 후 글루코스 용액을 체중 1 kg 당 1 g 글루코스가 투여되도록 복강에 투여하였다. 이후 정해진 시간에 Accu-Chek® Performa 혈당측정기(Roche Diagnostics, Risch-Rotkreuz, Switzerland)를 이용하여 혈당을 측정하였다.
도 3b 내지 도 3d에 나타난 바와 같이, 루미노코쿠스 파에시스 투여에 따라 ALT 및 AST 수준이 감소하였으며 (도 3b 및 도 3c), 특히 체중에 대한 간 비율 또한 유의하게 감소하였다 (도 3d). 그럼에도 불구하고, 도 3e에 나타난 바와 같이 db/db 생쥐에서 ipGTT에 의해 측정된 혈청 공복 인슐린 수치 및 인슐린 저항성은 루미노코쿠스 파에시스 처리에 의해 영향을 받지 않았다.
루미노코쿠스 파에시스는 인슐린 저항성을 가지는 db/db 모델에서도 비알코올성 지방간 치료 효과를 보였으며, 이러한 결과는 루미노코쿠스 파에시스가 인슐린 비의존적 방식으로 NAFLD 치료 효과를 가지는 것을 의미하며, 제2형 당뇨병 환자의 비알코올성 지방간 치료에도 효과적으로 사용될 수 있음을 의미한다.
특히, 인슐린 저항성 차이에 따른 치료 반응 감수성을 확인하기 위해서 db/db 모델과 그에 대한 비교 모델로 CDAHFD 모델을 선택하였다. 그 이유는 CDAHFD 모델의 경우 인슐린 저항성 없이 비알코올성 지방간 질환이 유도되므로 인슐린 저항성이 유도되는 db/db 모델과 비교하여 인슐린 저항성에 따른 치료 효과를 비교할 때 적합하기 때문이다. MCD 모델의 경우 급격한 체중 저하를 비롯한 신체 기능의 저하를 불러오기 때문에 인슐린 저항성 차이에 따른 치료 반응의 감수성을 확인하기 위한 대조군으로 활용하기에는 적합하지 않았다.
도 3b에 나타난 바와 같이 루미노코쿠스 파에시스 투여에 따라 ALT 수치가 약 42.98% 감소하였고, 도 3c에 나타난 바와 같이 AST 수치가 약 41.00% 감소하였으며, 도 3d에 나타난 바와 같이 체중에 대한 간 무게 비율이 약 9.43% 감소하였다. 이는 도 2b의 CDAHFD 모델에서 ALT 수치가 약 16.40% 감소한 것 대비하여 약 2.6배 이상의 ALT 수치 감소율을 보였고, 도 2c의 CDAHFD 모델에서 AST 수치가 약 18.18% 감소한 것 대비하여 약 2.2배 이상의 AST 수치 감소율을 보였으며, 도 2d의 CDAHFD 모델에서 체중에 대한 간 무게 비율이 유의하게 감소하지 않았으나 인슐린 저항성을 가지는 동물모델에서는 체중에 대한 간 무게 비율이 유의하게 감소한 점을 고려해보았을 때, 루미노코쿠스 파에시스는 인슐린 저항성의 차이, 또는 제2형 당뇨병 발병 유무의 차이에 따른 간 손상 개선 또는 치료와 관련된 감수성 차이를 가지며, 제2당뇨병 대상에서 현저히 우수한 치료 효과를 나타냄을 의미한다.
실시예 4: 루미노코쿠스 브로미 ( Ruminococcus bromii )의 섬유증 치료 효과
(1) 비-알코올성 지방간 질환군에서 유의하게 감소된 루미노코쿠스 브로미
생체 검사를 통해 NAFLD를 가지고 있는 것으로 입증된 171명의 대상자와 31명의 NAFLD를 가지고 있지 않은 대상자가 포함되었으며 조직학적으로(histologically) NAFLD를 분류하였다. 대변 샘플의 DNA는 QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany)를 이용하여 추출하였다. 16S rRNA 유전자의 V4 영역을 타겟으로 한 시퀀싱(sequencing)은 MiSeq system (Illumina, San Diego, CA, USA)을 이용하여 수행하였고, 시퀀싱 데이터의 추가적인 분석은 QIIME™ 파이프라인 (v 1.8.0; http://qiime.org/)을 이용하여 수행하였다. 도 4a에 나타난 바와 같이, 루미노코쿠스 브로미는 간 섬유화 질환군에서 유의하게 감소한 것으로 나타났다.
(2) 루미노코쿠스 브로미의 비-알코올성 지방간 치료 효과 검증
다음으로, 비알코올성 지방간 질환군에서 유의하게 감소한 것으로 나타난 루미노코쿠스 브로미가 비알코올성 지방간 치료 효과를 가지는지 여부를 확인해보았다.
구체적으로, 루미노코쿠스 브로미(Ruminococcus bromii, ATCC no. 27255)를 ATCC(American Type Culture Collection, Manassas, VA, USA)에서 분양받아 modified PYG 배지에서 혐기성(anaerobic) 조건 하에 배양하고, 24시간 후 채취하고, PBS(+ 0.5% 시스테인)을 사용하여 2회 세척한 후, 경구로 급식하였다.
C57BL/6N 생쥐를 표준 식이(standard chow diet)에서 1주일 환경적응 후, 루미노코쿠스 브로미의 장내 정착을 위하여 1주일 동안 스트렙토마이신(streptomycin) (1 g/L)을 음용수에 녹여 먹였다. 그 후 5주 동안, 생쥐에게 메티오닌 및 콜린 결핍 L-아미노산 식이(methionine and choline deficient L-amino acid diet, MCD) (Research diet, New Brunswick, NJ, USA; Cat. no.: A02082002B)를 먹였고, 200 μL의 PBS에 109 CFU가 들어가도록 현탁한 루미노코쿠스 브로미 또는 대조군 PBS (sham) 중 하나를 200 μL씩 매일 경구 투여하였다. 5주간의 투여 이후 생쥐를 안락사시켜 생화학적 분석을 진행하였다. 생화학적 분석으로서 ALT 및 AST 분석은 상기 실시예 1과 실질적으로 동일한 방법으로 수행하였으며, 체중에 대한 간 비율을 상기 실시예 1과 실질적으로 동일한 방법으로 측정하였다.
그러나, 도 4b 내지 도 4c에 나타난 바와 같이, 루미노코쿠스 브로미 투여시(MCD + R.bromii) 대조군 투여 생쥐(MCD)와 비교하여 체중 내 간 비율(liver ratio)과 ALT 수치 모두 유의한 변화가 나타나지 않았다.
루미노코쿠스 브로미는 비알코올성 지방간 치료 효과를 나타내지 않았으며, 이는 비알코올성 지방간 질환군에서 감소된 것으로 나타난 모든 균주가 비알코올성 지방간 치료 효과를 가지는 것은 아님을 알 수 있었으며, 특히 루미노코쿠스 파에시스와 동일한 속(genus)에 속하는 균주라 하더라도 모두 비알코올성 지방간 치료 효과를 가지는 것은 아니며, 따라서 비알코올성 치료 효과는 루미노코쿠스 파에시스의 고유한 효과임을 알 수 있었다. 또한, 루미노코쿠스 브로미는 비알코올성 지방간 질환군에서 유의하게 감소하였으나, 이를 투여하여도 비알코올성 지방간 치료 효과를 보이지 않아, 비알코올성 지방간에서 감소된 균주의 투여가 치료로 연결될 것으로 예측하기는 어려웠다.
실시예 5: 루미노코쿠스 파에시스의 배양 및 생산
(1) 최적 배지 탐색
루미노코쿠스 파에시스(기탁번호 KCTC no.5757)의 최적 배지 탐색을 위해 시판중인 Bacto™ brain heart infusion(BHI) Medium (BD, Franklin Lakes, NJ, USA)를 포함하는 YBHI 배지와, 시판중인 Difco™ Reinforced Clostridial Medium(RCM 배지) (BD, Franklin Lakes, NJ, USA), MB cell BL broth(BL 배지) (Kisan Bio, Seoul, Repulic of Korea), Difco™ Lactobacilli MRS broth(MRS 배지) (BD, Franklin Lakes, NJ, USA), MB cell Gifu anaerobic medium(GAM 배지) (Kisan Bio, Seoul, Repulic of Korea)들과 본 발명에서 제조한 FMK1028 배지에서 배양성을 확인하였다. 최적 배지 선별을 위한 배양성은 배양 후 흡광도 증가와 pH 감소, 그리고 현미경 검경으로 확인된 세포 균질성을 기준으로 평가하였다. YBHI 배지와 FMK1028 배지의 조성은 각각 하기 표 2와 표 3에 나타내었다.
YBHI 배지
Components g/L
Bacto™ brain heart infusion 37
Yeast Extract 5
Cellobiose 1
Maltose 1
L-cysteine 0.5
FMK1028 배지
Components g/L
Glucose 10
Yeast Extract 45
Soy peptone 10
Sodium acetate 3
Sodium chloride 5
L-cysteine 0.5
최적 배지 탐색에 사용된 배지들은 모두 멸균 전 pH를 6.8로 조정하였다. YBHI 배지에서 14 시간 동안 배양된 루미노코쿠스 파에시스 전배양액을 각각 YBHI 배지, RCM 배지, BL 배지, MRS 배지, GAM 배지, 또는 FMK1028 배지에 최종 부피비로 1%를가 되도록 각각 접종하였다. 접종 후 혐기 조건, 37 ℃에서 정치배양(standing culture) 하였으며 14 시간 뒤에 배양액의 600 nm에서의 흡광도와 pH를 측정하고 세포의 형태를 관찰하였다. 흡광도는 Orion Aquamate 8000 분광기(Thermo Scientific, Waltham, MA, USA)를 사용하여 측정하였으며, pH는 SevenCompact pH/Ion meter (Mettler Toledo, Columbus, OH, USA)로 측정하였다. 세포의 형태는 Optinity KB-320 광학현미경(Korea Labtech, Gyeonggi-do, Republic of Korea)으로 관찰하였다.
도 5a는 각 배지에서 루미노코쿠스 파에시스의 배양성과 세포의 형태를 비교한 결과이다. 도 5a에 나타난 바와 같이, 14시간 배양 후 배양액의 흡광도는 FMK1028 배지에서 가장 높았으며 다음으로는 YBHI 배지, GAM 배지, MRS 배지, BL 배지, RCM 배지 순으로 높았다. 배양 후 배양액의 pH는 FMK1028 배지에서 가장 낮았으며 다음으로는 BL 배지, YBHI 배지, MRS 배지, RCM 배지, GAM 배지 순으로 낮았다. 현미경으로 관찰한 결과는 FMK1028과 GAM 배지에서 유래한 세포의 균질성이 가장 우수하였으며 다음으로 YBHI 배지에서 배양된 세포가 우수하였다.
종합적으로, 루미노코쿠스 파에시스의 배양성은 본 발명에서 제조한 FMK1028 배지에서 가장 우수하였다.
(2) 최적 배지 성장곡선 및 생균수
루미노코쿠스 파에시스의 배양성이 가장 우수한 FMK1028 배지를 이용하여 성장곡선과 생균수를 측정하였다. 대조군으로 YBHI 배지를 사용하였다.
YBHI 배지에서 14 시간 동안 배양된 루미노코쿠스 파에시스 전배양액을 YBHI 배지와 FMK1028 배지에 부피비로 1%가 되도록 각각 접종하였다. 접종 후 혐기 조건, 37 ℃에서 정치 배양(standing culture)을 14 시간 동안 진행하였고, 배양액의 600 nm 에서의 흡광도를 측정하여 성장곡선으로 나타내었다.
생균수 측정을 위해 각각의 배지에 접종된 루미노코쿠스 파에시스를 14 시간 배양 후 GAM 배지를 이용하여 십배수 연속희석법(10-fold serial dilution)에 따라 희석하였으며, 그 희석액 0.1 mL을 취하여 GAM 배지 아가(agar) 평판에 도말 한 후 혐기 조건, 37 ℃에서 24 시간 배양하였다. 배양 후 30 - 300개 정도의 콜로니가 형성된 아가 평판의 콜로니를 계수하여 배양액의 단위 부피 당 생균수(CFU/mL)로 환산하였다. 측정된 성장곡선과 단위 부피당 생균수는 도 5b에 나타내었다. 도 5b에 나타난 바와 같이, 루미노코쿠스 파에시스는 대조군인 YBHI 배지에서 배양 8 시간 후 정지상에 도달하여 흡광도 2.55를 나타내었다. FMK1028 배지에서 배양 후 8 시간까지 YHBI와 유사한 성장곡선을 나타내었으나, 배양 후 14 시간까지 지속 성장하여 흡광도 6.18을 나타내었다. 14 시간 배양 후 단위 부피 당 생균수를 측정한 결과 YBHI 배지보다 FMK1028 배지에서 600 배 높은 생균수가 확인되었다.
(3) 발효기를 이용한 대량배양 및 원말화
루미노코쿠스 파에시스의 대량배양 및 원말화를 위해 발효기를 이용하여 배양 세포의 회수시점을 확인하였다. 루미노코쿠스 파에시스 전배양액 16 mL을 8 L의 FMK1028 배지에 접종 후 발효기(Fermentec, Chungcheongbuk-do, Republic of Korea)를 가동하여 혐기조건, 37 ℃, 250 rpm 조건으로 배양하였다. 배양시간에 따른 성장곡선과 생균수를 측정하여 도 5c에 나타내었다. 도 5c은 발효기를 가동하여 배양한 루미노코쿠스 파에시스의 성장곡선과 생균수를 나타낸 결과이다.
도 5c에 나타난 바와 같이, 루미노코쿠스 파에시스는 8시간 배양 후 정지상에 도달하여 흡광도 8.25와 생균수 5.15 × 109 CFU/mL를 나타내었다. 정지상인 배양 후 11시간에는 흡광도가 감소하여 7.25를 나타내었으며 생균수도 소폭 감소하여 4.95 × 109 CFU/mL를 나타내었다. 도 5b에서 제시된 정치 배양 결과와는 달리 발효기를 이용한 배양결과 정지상에 도달하는 시간이 8시간으로 단축되며, 플라스크 회분 배양시의 14시간 배양 결과와 비교시 정지상에서의 흡광도(6.18 → 8.25) 및 생균수(1.2 × 109 CFU/mL → 5.15 × 109 CFU/mL) 측정 결과도 향상되었음을 확인할 수 있었다.
상기 결과를 근거로 발효기를 이용하여 루미노코쿠스 파에시스를 대량 배양하였다. 배양 후 8시간에 2236R 고속원심분리기(Labogene, Lillerød, Denmark)를 이용하여 7,000 rpm, 40 분 조건으로 배양된 세포를 회수하였다. 회수된 세포는 300 mL 비이커에 넣고 마그네틱 바와 교반기를 이용하여 동결보호제와 무게 비율 1:1로 20 분 동안 혼합하였다. 사용된 동결보호제의 조성은 하기 표 4에 나타내었다. 동결보호제와 혼합된 세포는 -80 ℃ 초저온 냉동고에서 24 시간 동결시킨 후 72 시간동안 동결 건조 후 세밀 분쇄하여 분말화시켰다.
Cryoprotective agents (CPA)
Components g/L
Sucrose 200
Potassium phosphate dibasic 6
Potassium phosphate monobasic 4.5
L-arginine 4
NaCl 0.8
최종적으로, 발효기를 이용한 대량배양 및 원말화 과정에서 측정된 생균수는 하기 표 5에 나타내었다.
Culture condition Culture container 14 L jar vessel
Medium FMK1028
Culture volume (L) 8
Culture time (h) 8
Viable cells Harvested cells (CFU/mL) 5.50 × 109 ± 2.83 × 108
Mixture with CPA (CFU/mL) 1.43 × 1011 ± 2.41 × 1010
Powder (CFU/g) 2.67 × 1010 ± 5.28 × 109

Claims (35)

  1. 루미노코쿠스 속 (Ruminococcus spp.) 균주를 포함하는, 간 손상의 예방, 개선, 또는 치료용 약학적 또는 식품 조성물.
  2. 제1항에 있어서, 상기 간 손상은 하기 (1) 내지 (5) 중 1종 이상의 특성을 갖는 것인, 조성물:
    (1) 혈중 ALT 농도가 증가됨,
    (2) 혈중 AST 농도가 증가됨,
    (3) 맹장 내 이차 담즙산 농도가 감소됨,
    (4) 섬유성 유전자 발현량이 증가됨, 및
    (5) 체중에 대한 간 무게 비율이 증가됨.
  3. 제1항에 있어서, 상기 간 손상은 지방간, 간염, 간섬유화, 및 간경화로 이루어지는 군에서 선택된 1종 이상인, 조성물.
  4. 제3항에 있어서, 상기 지방간은 비-알코올성 지방간인, 조성물.
  5. 제4항에 있어서, 상기 비-알코올성 지방간은 비-비만성 비-알코올성 지방간인, 조성물.
  6. 제4항에 있어서, 상기 비-알코올성 지방간은 비만성 비-알코올성 지방간인, 조성물.
  7. 제4항에 있어서, 상기 비-알코올성 지방간은 당뇨병성 비-알코올성 지방간인, 조성물.
  8. 제1항에 있어서, 상기 조성물은 하기 (1) 내지 (5) 중 1종 이상을 특징으로 하는 것인, 조성물:
    (1) 혈중 ALT 농도의 감소,
    (2) 혈중 AST 농도의 감소,
    (3) 맹장 내 이차 담즙산 농도의 증가,
    (4) 섬유성 유전자 발현량의 감소, 및
    (5) 체중에 대한 간 무게 비율의 감소.
  9. 제8항에 있어서, 상기 이차 담즙산은 deoxycholic acid(DCA), lithocholic acid(LCA), 및 ursodeoxycholic acid(UDCA)로 이루어지는 군에서 선택된 1종 이상인, 조성물.
  10. 제8항에 있어서, 상기 섬유성 유전자는 Col1a1, Timp1, 및 α-SMA로 이루어지는 군에서 선택된 1종 이상인, 조성물.
  11. 제1항에 있어서, 상기 조성물은 인슐린 비의존적으로 간 손상을 개선 또는 치료하는 것인, 조성물.
  12. 제1항에 있어서, 상기 조성물은 인슐린 저항성을 가지는 대상에게 투여되는 것인, 조성물.
  13. 제1항에 있어서, 상기 조성물은 인슐린 저항성을 가지는 대상(subject)에 투여되어 하기 (1) 내지 (3) 중 1종 이상을 특징으로 하는 것인, 조성물:
    (1) 인슐린 저항성을 가지지 않는 대조군 대비 높은 혈중 ALT 수치 감소율,
    (2) 인슐린 저항성을 가지지 않는 대조군 대비 높은 혈중 AST 수치 감소율,
    (3) 인슐린 저항성을 가지지 않는 대조군 대비 높은 체중에 대한 간 무게 비율 (liver ratio)의 감소율.
  14. 제1항에 있어서, 상기 조성물은 섬유증 마커 유전자가 과발현된 대상에 투여되는 것인, 조성물.
  15. 제14항에 있어서, 상기 섬유증 마커 유전자는 Col1a1, Timp1, 및 α-SMA로 이루어지는 군에서 선택된 1종 이상인, 조성물.
  16. 제1항에 있어서, 상기 루미노코쿠스 속 균주는 루미노코쿠스 파에시스 (Ruminococcus faecis)인, 조성물.
  17. 제1항에 있어서, 상기 루미노코쿠스 속 균주는 기탁번호 KCTC 5757를 가지는 루미노코쿠스 파에시스 (Ruminococcus faecis)인, 조성물.
  18. 제1항에 있어서, 상기 균주는 탄소원의 농도 5 내지 30% (w/v), 질소원의 농도 50 내지 90% (w/v), 미네랄의 농도 5 내지 15% (w/v), 및 아미노산의 농도 0.1 내지 10% (w/v)인 배양 배지에서 배양 8시간 이후 성장을 지속하는 것인, 조성물.
  19. 제1항에 있어서, 상기 조성물은 동결건조 보호제를 추가로 포함하는 것인, 조성물.
  20. 제19항에 있어서, 상기 동결건조 보호제는 자당, 인산칼슘, 아르지닌, 염화나트륨, 과당, 제일인산칼륨, 제이인산칼륨, 및 트레할로스로 이루어지는 군에서 선택된 1종 이상을 포함하는 것인, 조성물.
  21. 5 내지 30% (w/v) 농도의 탄소원 및 50 내지 90% (w/v) 농도의 질소원을 포함하며,
    상기 탄소원은 포도당, 자당, 과당, 유당, 맥아당, 당밀, 및 갈락토스로 이루어지는 군에서 선택된 1종 이상이고,
    상기 질소원은 효모추출물 (yeast extract), 대두펩톤 (soy peptone), 탈지유, 트립톤, 카자미노산 (Casamino acids), 감자펩톤 (potato peptone), 완두콩펩톤 (pea peptone), 밀펩톤 (wheat peptone), 잠두펩톤 (broadbean peptone), 파파익 대두 펩톤 (papaic soy peptone), 및 루핀 펩톤(lupin peptone) 으로 이루어지는 군에서 선택된 1종 이상인,
    루미노코쿠스 속 (Ruminococcus spp.) 균주의 배양용 조성물.
  22. 제21항에 있어서, 상기 조성물은 루미노코쿠스 속 균주의 배양 8시간 이후의 성장을 촉진하는 것인, 조성물.
  23. 제21항에 있어서, 상기 조성물은 미네랄, 아미노산, 비타민, 핵산 및 무기염류로 이루어지는 군에서 선택된 1종 이상을 추가로 포함하는 것인, 조성물.
  24. 제21항에 있어서, 상기 조성물은 미네랄 및 아미노산을 추가로 포함하며,
    상기 탄소원의 농도는 5 내지 30% (w/v),
    상기 질소원의 농도는 50 내지 90% (w/v),
    상기 미네랄의 농도는 5 내지 15% (w/v), 및
    상기 아미노산의 농도는 0.1 내지 10% (w/v)인, 조성물.
  25. 제21항 내지 제24항 중 어느 한 항에 따른 배양용 조성물에, 루미노코쿠스 속 (Ruminococcus spp.) 균주를 접종하여 배양하는 단계를 포함하는, 루미노코쿠스 속 (Ruminococcus spp.) 균주의 배양방법.
  26. 제25항에 있어서, 상기 배양 방법은 상기 균주 접종 8시간 이후의 성장을 촉진하는 것인, 방법.
  27. 제25항에 있어서, 상기 배양은 정치 배양, 유가식 배양, 또는 회분식 배양인, 방법.
  28. 제1항 내지 제20항 중 어느 한 항에 따른 조성물을 대상에게 투여하는 단계를 포함하는, 간 손상 예방, 개선, 또는 치료방법.
  29. 제28항에 있어서, 상기 대상은 하기 (1) 내지 (5) 중 1종 이상의 특성을 가지는 것인, 방법:
    (1) 혈중 ALT 농도가 증가된 상태,
    (2) 혈중 AST 농도가 증가된 상태,
    (3) 맹장 내 이차 담즙산 농도가 감소된 상태,
    (4) 섬유성 마커 유전자가 과발현된 상태,
    (5) 체중에 대한 간 무게 비율이 증가된 상태.
  30. 제28항에 있어서, 상기 대상은 인슐린 저항성을 가지는 것인, 방법.
  31. 제28항에 있어서, 상기 대상은 제2형 당뇨병을 가지는 것인, 방법.
  32. 제28항에 있어서, 상기 간 손상은 하기 (1) 내지 (5) 중 1종 이상의 특성을 갖는 것인, 방법:
    (1) 혈중 ALT 농도가 증가됨,
    (2) 혈중 AST 농도가 증가됨,
    (3) 맹장 내 이차 담즙산 농도가 감소됨,
    (4) 섬유성 유전자 발현량이 증가됨, 및
    (5) 체중에 대한 간 무게 비율이 증가됨.
  33. 제28항에 있어서, 상기 간 손상은 지방간, 간염, 간섬유화, 및 간경화로 이루어지는 군에서 선택된 1종 이상인, 방법.
  34. 제33항에 있어서, 상기 지방간은 비-알코올성 지방간인, 조성물.
  35. 제34항에 있어서, 상기 비-알코올성 지방간은 당뇨병성 비-알코올성 지방간인, 조성물.
PCT/KR2020/010097 2019-07-30 2020-07-30 간 손상 예방, 개선, 또는 치료용 조성물 및 간 손상 예방, 개선, 또는 치료방법 WO2021020923A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2022000801A MX2022000801A (es) 2019-07-30 2020-07-30 Composicion y metodo para prevenir, aliviar o tratar lesion del higado.
CN202080055877.4A CN114245743B (zh) 2019-07-30 2020-07-30 预防、缓解或治疗肝损伤的组合物和方法
BR112022001602A BR112022001602A2 (pt) 2019-07-30 2020-07-30 Composição e método para prevenir, aliviar ou tratar lesão hepática
EP20848579.7A EP4005578A4 (en) 2019-07-30 2020-07-30 COMPOSITION AND METHODS FOR PREVENTING, RELIEVING OR TREATING LIVER INJURY
US17/626,628 US20220257669A1 (en) 2019-07-30 2020-07-30 Composition and method for preventing, alleviating, or treating liver injury
JP2022506047A JP7303372B2 (ja) 2019-07-30 2020-07-30 肝損傷予防、改善、または治療用組成物、および肝損傷予防、改善、または治療方法
AU2020320244A AU2020320244B2 (en) 2019-07-30 2020-07-30 Composition and method for preventing, alleviating, or treating liver injury
CA3148434A CA3148434A1 (en) 2019-07-30 2020-07-30 Composition and method for preventing, alleviating, or treating liver injury

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2019-0092689 2019-07-30
KR20190092689 2019-07-30
KR1020200087105A KR20210014576A (ko) 2019-07-30 2020-07-14 비알코올성 지방간 질환의 예측 또는 진단용 키트, 및 그의 예방 또는 치료용 약학적 조성물
KR10-2020-0087105 2020-07-14
KR1020200095361A KR102395036B1 (ko) 2019-07-30 2020-07-30 비알코올성 지방간 질환의 예측 또는 진단용 키트, 및 진단방법
KR1020200094922A KR102401535B1 (ko) 2019-07-30 2020-07-30 간 손상 예방, 개선, 또는 치료용 조성물
KR10-2020-0095361 2020-07-30
KR10-2020-0094922 2020-07-30

Publications (1)

Publication Number Publication Date
WO2021020923A1 true WO2021020923A1 (ko) 2021-02-04

Family

ID=74228956

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2020/010092 WO2021020920A2 (ko) 2019-07-30 2020-07-30 비알코올성 지방간 질환의 예측 또는 진단용 키트, 및 진단방법
PCT/KR2020/010097 WO2021020923A1 (ko) 2019-07-30 2020-07-30 간 손상 예방, 개선, 또는 치료용 조성물 및 간 손상 예방, 개선, 또는 치료방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010092 WO2021020920A2 (ko) 2019-07-30 2020-07-30 비알코올성 지방간 질환의 예측 또는 진단용 키트, 및 진단방법

Country Status (7)

Country Link
US (2) US20220257669A1 (ko)
JP (3) JP7499841B2 (ko)
AU (2) AU2020323825B2 (ko)
BR (2) BR112022001637A2 (ko)
CA (2) CA3148434A1 (ko)
MX (2) MX2022000802A (ko)
WO (2) WO2021020920A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023205651A2 (en) * 2022-04-19 2023-10-26 Cedars-Sinai Medical Center Methods of treating and diagnosing fatty liver disease

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120008034A (ko) * 2009-03-17 2012-01-25 엡탈리스 파마 캐나다 아이엔씨. 우르소데옥시콜산의 증가된 투여량으로 비알콜성 지방간염을 치료하는 방법
KR20180010237A (ko) * 2015-05-21 2018-01-30 예다 리서치 앤드 디벨럽먼트 캄파니 리미티드 건강 증진을 위한 박테리아 집단
WO2018118941A1 (en) * 2016-12-19 2018-06-28 Axcella Health Inc. Amino acid compositions and methods for the treatment of liver diseases
KR20190026687A (ko) * 2016-06-03 2019-03-13 케모센트릭스, 인크. 간 섬유화 치료 방법
WO2019118515A2 (en) * 2017-12-11 2019-06-20 Vedanta Biosciences, Inc. Compositions and methods for suppressing pathogenic organisms

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538893A (ja) * 2005-04-28 2008-11-13 国立大学法人高知大学 脂質代謝不全の検出方法、及びそれに使用する検査薬
JP4918674B2 (ja) * 2005-06-15 2012-04-18 国立大学法人 東京医科歯科大学 非アルコール性脂肪肝の治療薬のスクリーニング方法
AU2017252299A1 (en) * 2016-04-20 2018-12-06 Human Longevity, Inc. Use of a microbiome profile to detect liver disease
EP3522902A1 (en) * 2016-10-04 2019-08-14 Institut National de la Recherche Agronomique Use of ahr agonist for the preventive or curative treatment of metabolic syndrome and the associated disorders
IT201600109507A1 (it) * 2016-10-28 2018-04-28 Probiotical Spa Composizione per il trattamento preventivo o curativo dei disturbi epatici
JP6799230B2 (ja) * 2017-01-12 2020-12-16 ビオフェルミン製薬株式会社 非アルコール性脂肪性肝疾患の診断方法、又は診断用キット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120008034A (ko) * 2009-03-17 2012-01-25 엡탈리스 파마 캐나다 아이엔씨. 우르소데옥시콜산의 증가된 투여량으로 비알콜성 지방간염을 치료하는 방법
KR20180010237A (ko) * 2015-05-21 2018-01-30 예다 리서치 앤드 디벨럽먼트 캄파니 리미티드 건강 증진을 위한 박테리아 집단
KR20190026687A (ko) * 2016-06-03 2019-03-13 케모센트릭스, 인크. 간 섬유화 치료 방법
WO2018118941A1 (en) * 2016-12-19 2018-06-28 Axcella Health Inc. Amino acid compositions and methods for the treatment of liver diseases
WO2019118515A2 (en) * 2017-12-11 2019-06-20 Vedanta Biosciences, Inc. Compositions and methods for suppressing pathogenic organisms

Also Published As

Publication number Publication date
AU2020320244A1 (en) 2022-03-17
US20220257669A1 (en) 2022-08-18
US20220276246A1 (en) 2022-09-01
AU2020320244B2 (en) 2024-10-10
MX2022000801A (es) 2022-02-16
JP7499841B2 (ja) 2024-06-14
WO2021020920A2 (ko) 2021-02-04
WO2021020920A3 (ko) 2021-03-25
CA3148434A1 (en) 2021-02-04
BR112022001637A2 (pt) 2022-03-22
JP7303372B2 (ja) 2023-07-04
AU2020323825B2 (en) 2024-05-09
CA3148431A1 (en) 2021-02-04
MX2022000802A (es) 2022-02-16
JP2024056699A (ja) 2024-04-23
JP2022542506A (ja) 2022-10-04
AU2020323825A1 (en) 2022-03-17
BR112022001602A2 (pt) 2022-03-22
JP2022542944A (ja) 2022-10-07

Similar Documents

Publication Publication Date Title
WO2021137603A1 (ko) 락토바실러스 플란타럼 균주 및 이를 포함하는 대사질환의 예방 또는 치료용 조성물
AU2020336649B2 (en) Akkermansia muciniphila EB-AMDK19 strainand use thereof
WO2017082611A1 (ko) 비만 억제능을 갖는 균주 및 이를 함유하는 약학 조성물
WO2021215627A1 (ko) 락토바실러스 플란타룸 atg-k2 또는 atg-k6를 함유하는 지질관련 대사성 질환의 예방 및 치료용 조성물
WO2019088379A1 (ko) 신규 유산균 및 이의 용도
AU2020339348B2 (en) Akkermansia muciniphila EB-AMDK27 strain and use thereof
WO2019199094A1 (ko) 비만의 예방 또는 치료 효과를 가지는 신규 비피도박테리움 롱검 균주 또는 락토바실러스 람노서스 균주 및 이의 용도
WO2016093599A1 (ko) 박테로이데스 에시디페시언스를 유효성분으로 포함하는, 대사성 질환 예방 또는 치료용 약학적 조성물
WO2023055188A1 (ko) 신규 프로바이오틱스 및 이의 용도
JP7490801B2 (ja) 肝機能改善または脂肪蓄積抑制の微生物、及びその用途
KR102401535B1 (ko) 간 손상 예방, 개선, 또는 치료용 조성물
WO2021020923A1 (ko) 간 손상 예방, 개선, 또는 치료용 조성물 및 간 손상 예방, 개선, 또는 치료방법
WO2019117654A1 (ko) 신장질환 진행 억제 및 예방용 프로바이오틱스 및 이를 포함하는 신장질환 진행 억제 및 예방용 조성물
WO2021015514A1 (ko) 엔테로코쿠스 락티스를 유효성분으로 포함하는 지방간 질환의 예방, 개선 또는 치료용 조성물
WO2024048934A1 (ko) 체지방 감소용 신규 유산균 락티플랜티바실러스 플란타룸 sko-001 및 이의 용도
WO2023229394A1 (ko) 체지방 감소 활성을 갖는 인체 유래 락토바실러스 파라카제이 또는 락토바실러스 플란타룸 균주 및 이를 포함하는 혼합 조성물
WO2020045972A1 (ko) 항비만 활성을 갖는 인체 유래 락토바실러스 퍼멘툼 엠지4231 또는 락토바실러스 퍼멘툼 엠지4244 균주 및 이를 포함하는 조성물
WO2022265431A1 (ko) 대사성 질환의 예방 및 치료를 위한 락토바실러스 퍼멘텀 균주 및 조절 t 세포의 병용 투여 용도
WO2023058801A1 (ko) 락토바실러스 애시도필러스 kbl402 또는 kbl409 균주를 포함하는 장 질환 개선, 예방 또는 치료용 조성물
WO2018016806A1 (ko) 2-모노아실글리세롤 절단 효소를 이용한 간지방증 또는 비알코올성 지방간의 치료방법
WO2021261631A1 (ko) 신규한 피칼리박테리움 프로스니치 eb-fpdk9 균주 및 그의 용도
WO2023229263A1 (ko) 락토바실러스 플란타룸 nchbl-004 균주 또는 이의 배양액을 포함하는 대사성 질환 예방, 치료 또는 개선용 조성물
WO2023229282A1 (ko) 락토바실러스 쿤케이 nchbl-003 균주 또는 이의 배양액을 포함하는 대사성 질환 예방, 치료 또는 개선용 조성물
WO2021015515A1 (ko) 페디오코쿠스 이노피나투스를 유효성분으로 포함하는 지방간 질환의 예방, 개선 또는 치료용 조성물
WO2023153903A1 (ko) 엔테로코커스 패칼리스, 이의 배양액 또는 이의 사균체를 유효성분으로 포함하는 지방간 예방 또는 치료용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20848579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3148434

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022506047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022001602

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020848579

Country of ref document: EP

Effective date: 20220228

ENP Entry into the national phase

Ref document number: 2020320244

Country of ref document: AU

Date of ref document: 20200730

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022001602

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220128