WO2019035455A1 - 微生物培養システム - Google Patents

微生物培養システム Download PDF

Info

Publication number
WO2019035455A1
WO2019035455A1 PCT/JP2018/030280 JP2018030280W WO2019035455A1 WO 2019035455 A1 WO2019035455 A1 WO 2019035455A1 JP 2018030280 W JP2018030280 W JP 2018030280W WO 2019035455 A1 WO2019035455 A1 WO 2019035455A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
carriers
microorganism
culture system
culture
Prior art date
Application number
PCT/JP2018/030280
Other languages
English (en)
French (fr)
Inventor
万里 岩越
章 米谷
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to US16/638,658 priority Critical patent/US20210130766A1/en
Priority to EP18845670.1A priority patent/EP3670642A4/en
Priority to JP2019536779A priority patent/JPWO2019035455A1/ja
Priority to CN201880061258.9A priority patent/CN111108185A/zh
Publication of WO2019035455A1 publication Critical patent/WO2019035455A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/10Means for providing, directing, scattering or concentrating light by light emitting elements located inside the reactor, e.g. LED or OLED
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the present invention relates to a microorganism culture system.
  • Priority is claimed on Japanese Patent Application No. 2017-157237, filed Aug. 16, 2017, the content of which is incorporated herein by reference.
  • Microalgae such as Chlorella and microbes such as photosynthetic bacteria are considered to be very promising as a resource capable of producing energy without discharging CO 2 , and are expected to be utilized and efficiently manufactured at a commercial level There is.
  • microalgae such as Chlorella
  • it is required to produce it at the lowest possible cost.
  • a large pool or tank should be used. I need. Therefore, there is a problem such as an increase in cost due to the acquisition of the site or the enlargement of the facility.
  • Patent Document 1 in order to effectively utilize the land and improve the production amount per unit area with a simple facility, the culture solution is allowed to flow naturally onto the vertically oriented carrier surface, and microalgae etc. are produced on the carrier surface.
  • a culture system has been proposed in which a microorganism is continuously grown and the microorganism is continuously recovered from a naturally flowed culture solution.
  • the thin water film on the carrier surface corresponds to the pool water surface of the conventional method, and light (artificial light), carbon dioxide, and nutrients are obtained to perform photosynthesis.
  • a single carrier can obtain a culture amount equal to or greater than the water surface of the same area, and by parallel multi-layer equipment of the carrier, 10 times to 20 times the conventional method such as pool per same floor area You can expect a harvest. Furthermore, by stacking the units above and below, it is possible to expect to secure a culture amount of 100 times that of the conventional method per floor area.
  • Such a culture system can overcome the location restrictions limited to regions rich in sunlight, and can culture even in polar regions, underground, and even in space.
  • Patent Document 2 proposes an apparatus for culturing a photosynthetic microorganism by arranging a plurality of plate-like carriers and plate-like light sources in parallel with each other.
  • the carrier and the light source are alternately arranged in the gas phase, and the culture solution is supplied from above each carrier to each carrier.
  • the plate-like light sources are alternately arranged between the plate-like carriers, a unit culture device ("cell") in which the carriers and the light sources are combined is referred to. Even if it is attempted to secure the production capacity per floor area by arranging a plurality of cells in parallel, there is a limit in increasing the mounting density. Moreover, the light source arrange
  • the present invention provides a culture system capable of efficiently producing microorganisms with a light source which has a high efficiency of installation of the carrier and the light irradiation part, facilitates recovery of the microorganism from the carrier, and consumes less energy.
  • the microorganism culture system comprises a plate-like carrier to which a microorganism is attached, a culture solution supply unit for supplying a culture solution from above the carrier, and the microorganism that has flowed out from the carrier And a plurality of carriers, wherein a plurality of the carriers are arranged such that the surfaces of the carriers face each other or face each other at an angle so as to face each other.
  • a light irradiation unit is disposed between the outer side in the left and right and / or the outer side in the upper and lower direction of the carrier as viewed in the arrangement direction of the carrier.
  • the culture surfaces to which the microorganisms are attached of the adjacent carriers may be disposed parallel to each other in a mutually opposing state or may be disposed at a predetermined angle to each other.
  • the constant angle may be, for example, an angle of 0 ° or more and 120 ° or less.
  • the adjacent side edges of the adjacent carriers may be arranged in contact with each other or at an interval.
  • the adjacent carriers may be arranged in a substantially L shape when viewed in plan (as viewed from above), and the carriers are disposed in a zigzag as a whole when viewed in plan. It is also good.
  • the microorganism culture system according to (1) wherein the light irradiation unit is disposed to face the surface of the carrier.
  • the photon flux density is the number of photons passing through a unit area per unit time, and when no microorganism is identified, for example, a photon flux density of a wavelength from 400 nm to 700 nm generally effective for photosynthesis (photosynthetically effective photon Bundle density: PPFD) may be used as the above value.
  • the light emitting unit has a plurality of LED light bulbs (or LEDs, the same applies hereinafter) arranged in a line, and has a plurality of lenses that can be adjusted to uniformly supply light quantity to the entire surface of the carrier.
  • the microorganism culture system according to any one of (1) to (3), wherein each lens is disposed opposite to each LED bulb.
  • a linear light emitting unit may be disposed substantially parallel to the side edges between the mutually facing side edges of the adjacent carriers.
  • a linear light emitting part is arranged substantially parallel to the side edge at a position facing the valley of the L character. It is also good.
  • (6) The microorganism culture system according to any one of (1) to (5), wherein the microorganism is a microalga.
  • the microorganism culture system of the present invention has an effect that the installation efficiency of the carrier and the light source to the floor area can be enhanced. Moreover, the microorganism culture system of the present invention has an effect that microorganisms can be efficiently produced by a light irradiation part which can easily recover the microorganism from the carrier and consumes less energy.
  • FIG. 1 is a perspective view schematically showing a microorganism culture system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of FIG. 1 taken along the line AA. It is the perspective view which showed typically the arrangement
  • the culture system is a system for cultivating a microorganism in the gas phase, as schematically shown in FIG. 1 or FIG.
  • the culture solution supply unit 3 for supplying the culture solution
  • the light irradiation unit 4 for irradiating the carrier 2 with light
  • the outflow solution tank 5 for storing the culture solution containing the microorganism which has flowed out of the carrier 2
  • the outflow solution tank 5 A harvest container 6 for containing the microorganism separated from the stored culture fluid
  • a circulation channel 7 for circulating the culture fluid separated from the culture fluid stored in the effluent tank 5, a carrier 2, a culture fluid supply unit 3,
  • a case 8 covering the effluent tank 5 and the circulation flow path 7 is provided.
  • a rectangular flexible sheet S is bent in an inverted U shape at the center in the longitudinal direction to form a pair of flat carriers 2 by a pair of rectangular portions hanging down in parallel.
  • the inner or outer surface of the sheet S is the culture surface.
  • the carrier 2 is capable of adhering microorganisms and capable of flowing down while permeating the culture solution supplied from above, and having a water retention amount of 0.2 g / cm 2 or more per unit area preferable.
  • the "water retention amount” means a value measured by a water retention test described in the following examples. Water retention capacity per unit area of the carrier 2 is more preferably 0.25 g / cm 2 or more, 0.3 g / cm 2 or more is more preferable.
  • the upper limit of the water retention amount per unit area of the carrier 2 is not particularly limited, but 10 g / cm 2 or less, 8 g / cm 2 or less, 5 g / cm 2 or less, 3 g / cm 2 or less, 1 g / cm 2 or less, etc. can be selected .
  • the carrier 2 may be made of any material capable of holding microorganisms and culture fluid, and may be cloth, non-woven fabric, felt, sponge-like material, or any other porous material, but preferred examples include twisted yarn or Examples include piles of untwisted yarns. In particular, a pile of non-twisted yarn is preferred.
  • the material of the pile ground is not particularly limited, and specifically, natural fibers such as cotton, silk, hair, wool and hemp, etc. (plant fibers or animal fibers), acrylics, polyesters, nylons, vinylons, polyolefins, and Synthetic fibers such as polyurethane can be mentioned.
  • a pile is a type of weave, in which loop-like fibers (Rana / loop of thread) protrude from the ground texture of the fabric vertically and horizontally at regular intervals to say a weave covering the surface of the ground texture. Na has elasticity. Pile refers to pile-woven fabrics.
  • the carrier 2 of this embodiment is formed by bending a rectangular sheet S in an inverted U shape, but the form of the carrier 2 is a cylindrical shape or a rectangular cylindrical shape in which both ends in the longitudinal direction or width direction are connected. May be Further, the number of sheets S constituting the carrier 2 is not limited to one, and two or more sheets may be arranged in parallel.
  • the sheet S constituting the carrier 2 is hung on the horizontal portion at the upper end of the hanger H in a state of being folded in an inverted U shape, that is, folded in two from the center. It is also possible to fix the end of the carrier 2 to the hanger H and suspend it using fasteners such as clips and hooks.
  • the horizontal width of the horizontal portion at the upper end of the hanger H defines the separation distance between the culture surfaces (inner surfaces facing each other) of the pair of carriers 2 of one sheet S.
  • the hanger H is a member which allows the carrier 2 to be suspended from the lower end thereof to a desired height (for example, about 1 m), and is a bar-like fixing member 10 horizontally arranged to hang or hold the carrier 2. And leg members 11 for supporting both ends of the fixing member 10.
  • the hanger H may have a plurality of fixing members 10 in parallel.
  • the carrier 2 is attached to a rigid support member such as a frame or the like for supporting itself or provided with a fastener directly below the culture solution supply unit 3 described later and suspended by the fastener You may install by the method etc.
  • the culture fluid flows to the carrier along the fastener, so the fastener can be used as a carrier 2 can be used as a flow path for supplying the culture solution, and since the carrier 2 can be reliably installed immediately below the culture solution supply unit 3, the alignment between the culture solution supply unit 3 and the hanger is unnecessary Become.
  • the culture solution supply unit 3 of this embodiment is a horizontally disposed tubular member for releasing the culture solution and supplying it to the carrier 2, and a part thereof is a culture solution storage tank and a nutrient replenishment tank (not shown). Are connected to each other via the circulation channel 7.
  • a plurality of supply holes 3a for releasing the culture solution are formed at predetermined intervals in the axial direction on the peripheral wall of the central portion of the culture solution supply unit 3 facing the upper end of the carrier 2.
  • the supply holes 3a are disposed downward, and the culture solution is supplied to the upper end of the carrier 2 so as to have a substantially uniform water content over the entire width of the carrier 2.
  • a plurality of culture solution supply units 3 may be arranged depending on the number or arrangement of the carriers 2.
  • the flow-down speed of the carrier 2 in the culture medium can be adjusted from 5 mL / h / m 2 or more to 30000mL / h / m 2 or less.
  • This fluctuation range is in accordance with the growth of the microorganism. For example, in Chlorella, one unit grows into 4 divisions, and in 16 hours, each grows to the size before division. At the beginning of division, a small amount of nutrients is sufficient, but it is necessary to provide enough nutrients during the growing season.
  • the microorganisms can be allowed to flow down naturally continuously with the culture solution while always filling the periphery of the microorganism with fresh culture solution to maintain the growth.
  • the surface layer of the microorganism layer adhering to the carrier 2 is forcedly dropped by changing the flow rate of the culture solution or giving an impact such as vibration to the carrier 2 as needed, Photosynthesis can be activated to proliferate and increase recovery.
  • the carrier 2 is a non-pile sheet of 0.5 m 2 or more, initially set to 1000 mL / h / m 2 or more, and then gradually increase the culture solution at a flow rate of 5000 mL / h / m 2 It is necessary to For this reason, until the flow rate of the culture solution reaches 1500 mL / h / m 2 , the outflow of microorganisms also increases with the increase of the flow rate, but at 6000 mL / h / m 2 or more, the growth of the outflow slows down.
  • the flow rate of the culture solution can be calculated by the following method. During the culture, measure for 10 seconds, and during that time, measure the amount of culture fluid that has flowed out of the carrier. This operation is repeated three times to calculate the average value (mL / h) of the culture fluid volume per hour. This value can be calculated by dividing by the area of the carrier surface (mL / h / m 2 ).
  • the flow rate of the culture fluid flowing on the surface of the carrier 2 is set to a speed exceeding 1200 mL / h / m 2 , preferably 5400 mL / h / M 2 or more, more preferably 9000 mL / h / m 2 or more.
  • the upper limit of the flow rate is preferably 30000mL / h / m 2 or less, more preferably 27000mL / h / m 2 or less, more preferably 24000mL / h / m 2 or less.
  • the culture solution is not particularly limited as long as it is a dilution liquid of a culture medium which can culture the microorganism by the usual method to increase the concentration of the microorganism.
  • a general inorganic medium such as CHU medium, JM medium, MDM medium and the like can be used.
  • the medium dilutions of various media such as Gamborg B5 medium, BG11 medium, and HSM medium are preferable.
  • the medium may be supplemented with an antibiotic or the like which does not affect the growth of the microorganism.
  • the pH of the medium is preferably 4 to 10. Where possible, wastewater from various industries may also be used.
  • the light irradiator 4 of this embodiment arranges the LED light bulbs (or LEDs) in a line, and a lens for giving an appropriate irradiation angle so as to supply a light quantity almost uniformly to the surface of the carrier 2 which is an object of light irradiation It is a linear device which is disposed opposite to an LED bulb and the LED bulb and the lens are fixed to a rod-like support, and a light having a wavelength and a light quantity suitable for growth is appropriately Irradiate almost the entire surface.
  • the wavelength of the light emitted by the light irradiation unit 4 may be, for example, in the range of 380 to 780 nm. It is preferable that the light irradiation unit 4 can irradiate only red light suitable for photosynthesis to microorganisms such as microalgae which can grow only with red light. Microalgae such as Chlorella can grow well only with red light. Irradiation of light by the light irradiation unit 4 may be intermittent irradiation light of 100 to 10,000 Hz instead of continuous irradiation.
  • the light irradiation unit 4 has two carriers 2 facing one another when the carrier 2 is viewed from the side, that is, in a direction orthogonal to the arrangement direction of the carriers 2 (arrow L direction). , 2 and is disposed outside the width direction (i.e., left and right direction) of the carrier 2. It is preferable that the distance between the light irradiation part 4 and the pair of carriers 2 adjacent to each other be approximately equal.
  • the light irradiation unit 4 does not overlap the side edge of the carrier 2 when viewed from the outside in the width direction of the carrier 2, ie, the arrangement direction of the plurality of carriers 2 (arrow L direction), and the side edge of the carrier 2 Parallel to the side edge.
  • the light irradiation part 4 When the light irradiation part 4 is located outside the side edge of the carrier 2 when viewed in the arrangement direction of the carrier 2, the working efficiency at the time of recovering the microorganism from the carrier 2 can be enhanced. In addition, since the light irradiation part 4 is located as close as possible to the side edge of the carrier 2, it is possible to enhance the uniformity of the light quantity irradiated to the carrier 2.
  • Effluent tank 5 is a reservoir for the culture solution containing the microorganism that has flowed out of carrier 2, and has a box shape with a fixed depth with its upper end opened so that the culture fluid flowing down from carrier 2 can be received.
  • the culture solution containing the microorganism which has flowed out of the carrier 2 is separated by gravity in the effluent tank 5 into a precipitate containing a high concentration of the microorganism and a culture solution which is a supernatant containing almost no microorganism.
  • the harvest container 6 is a container for collecting the precipitate containing a high concentration of microorganisms separated in the effluent tank 5 from the bottom of the effluent tank 5 by opening the valve 6A.
  • the circulation channel 7 is for collecting the culture fluid (supernatant fluid) separated in the effluent tank 5 and supplying it to the carrier 2 again.
  • a pump P is provided on the circulation flow path 7 and the culture fluid thus collected is pumped up to above the carrier 2.
  • the pumped culture fluid is again supplied continuously from above the carrier 2.
  • the culture solution supplied to the carrier 2 again is the supernatant separated in the effluent tank 5, but may contain microorganisms.
  • a strainer may be provided in front of the pump P, and at least a part of the microorganisms contained in the supernatant liquid may be recovered by straining with a strainer.
  • the pump P is connected to a control device (not shown), and manual flow control by manual control or predetermined program is performed.
  • the case 8 of this embodiment has a box shape, and covers the entire of the carrier 2, the culture solution supply unit 3, the effluent solution tank 5 and the circulation channel 7.
  • the heat retention ability is further enhanced, and the surface temperature of the carrier 2 can be easily kept constant.
  • the material of the case 8 is not particularly limited, and transparent materials such as glass, acrylic, polystyrene, and vinyl chloride may be mentioned.
  • transparent materials such as glass, acrylic, polystyrene, and vinyl chloride may be mentioned.
  • the case 8 is filled with mixed air containing about 1 to 40% of CO 2, and it is preferable that the mixed air can be supplied to supplement CO 2 appropriately, and it is preferable that about 1 to 10% of If it is in the mixed air containing CO 2 , it is possible to cause many microorganisms such as microalgae to perform photosynthesis well. In addition, even when the atmosphere is ventilated, the growth of microorganisms is possible although the speed is reduced.
  • Microorganisms to be cultured in the culture system of the present invention are not particularly limited, and not only non-motile or poor photosynthetic microorganisms such as Chlorella, Synechocystis, and Spirulina, but also planktonic Euglena which exercises water with flagella. It also includes Chlamydomonas and Pleurochrysis.
  • the microorganisms to be cultured in the culture system 1 are extremely diverse. Examples of main groups of microorganisms to be cultured in the culture system 1 include, for example, the following A, B and C.
  • Eubacteria include non-oxygen photosynthetic bacteria, cyanobacteria performing oxygen-generating photosynthesis, facultative anaerobic fermenting bacteria and non-fermenting bacteria utilizing organic substances, and inorganic trophic bacteria, actinomycetes and corynebacterium bacteria. And sporulated bacteria.
  • Photosynthetic bacteria include Rhodobacter, Rhodospirillum, Chlorobium, Chloroflexus.
  • Cyanobacteria include Synechococcus, Synechocystis, Spirulina, Arthrospira, Nostok, Anabaena, Oscilatoria, Lingbia, Rockworm, and Suizenjinori.
  • facultative anaerobic fermentative bacteria examples include Escherichia coli and lactic acid bacteria.
  • Pseudomonas bacteria are mentioned as non-fermenting bacteria.
  • Hydrogenobacteria can be mentioned as inorganic trophic bacteria.
  • Streptomyces is mentioned as actinomycetes, and Bacillus subtilis is mentioned as sporulated bacteria.
  • Archaebacteria include thermophilic bacteria and highly halophilic bacteria. Thermophilic bacteria are mentioned as thermophilic bacteria, and halobacteria are mentioned as highly halophilic bacteria.
  • glutamic acid producing bacteria, lysine producing bacteria, cellulose producing bacteria and the like can be mentioned.
  • microalgae which are eukaryotic photosynthetic microorganisms.
  • the microalgae includes green algae, Treboxya algae, red algae, diatoms, haptophytes, dioptric algae, Euglena, and zooxanthellae.
  • green algae include Chlorella, Senedesmus, Chlamydomonas, Botryococcus, Haematococcus, Nannochloris, Pseudocolystis, and as Trevoxia algae, Parachlorella and Kocomixa.
  • Red seaweeds include cyanidiosisons, cyanideums, gardi areas, and porphyridium, and diatoms such as nichia, pheodactylum, kietokeros, thalasioshira, squeretonema, and fitriella.
  • Hapto algae include preurocrisis, gephyrocapsa, emiliania, isochrysis, pavlova.
  • Nannochloropsis as a true-point alga
  • Euglena as a Euglena
  • tetracelmis as a Prasino algae.
  • examples of zooxanthellae that are symbiotic algae of corals include synbiodinium.
  • fungi which are non-photosynthetic eukaryotes can be mentioned.
  • Fungi include yeast and Aspergillus.
  • hyphal culture of basidiomycetes is to be cultured.
  • algal bacteria such as green algae Aosa and Aorori, red algae Azaxanori, Amanochi, Susabinori, Iwanori, and other edible nori are also non-microorganisms.
  • moss which is a green plant is also to be cultured.
  • lichens which are symbiotic organisms, are also to be cultured.
  • Microalgae shall contain cyanobacteria.
  • the microorganism to be cultured is preferably a photosynthetic microorganism.
  • the culture system 1 essentially includes the light irradiation unit 4, but a microorganism that can grow without performing photosynthesis using the culture system 1 In the case of culturing the light emitting unit 4, the light emitting unit 4 may not be used.
  • the usage method and operation of the culture system 1 will be described.
  • the culture system 1 To start using the culture system 1, keep the microbes attached to the absorbent cotton etc. placed on the carrier 2, hang the end on the hanger H etc, or hang and hold deep.
  • water containing microorganisms may be dropped or applied directly to the carrier 2.
  • air containing about 1 to 40% of CO 2 is introduced from bottom to top.
  • the light irradiation unit 4 has a wavelength of 380 to 780 nm. It emits red light and / or white light.
  • This light irradiation is a weak light quantity (photon flux density) of about 50 ⁇ mol m ⁇ 2 s ⁇ 1 at the beginning of planting of the microorganism, and is increased to about 400 ⁇ mol m ⁇ 2 s ⁇ 1 with growth.
  • the culture solution spreads over the carrier 2 and the culture solution is further supplied from the culture solution supply unit 3, so the culture solution flows down to the effluent tank 5 from the lower end of the carrier 2.
  • the microorganism attached to the carrier 2 or cultured in the carrier 2 gradually flows out of the carrier 2 by the flow of the culture solution and flows down to the outflow tank 5 together with the culture solution.
  • the microorganism flowing down from the carrier 2 precipitates in the culture solution of the effluent tank 5, and the valve 6 A installed below the effluent tank 5 is opened and taken into the harvesting container 6.
  • the supernatant fluid of the culture fluid containing a part of the microorganism stored in the effluent fluid tank 5 is pumped up by the pump P and supplied again to the culture fluid supply unit 3 via the circulation channel 7. 2 is repeatedly supplied on.
  • the supply amount of new culture solution from the culture solution storage tank (not shown) is adjusted, and necessary from the nutrient supply tank (not shown). Nutrients are appropriately supplied to the culture solution supply unit 3 and released to the carrier 2 together with the culture solution.
  • a part of the microorganism naturally flows down from the carrier 2, but in this embodiment, the surface layer of the microorganism layer that has been established on the carrier 2 may be scraped off in response to the divisional growth of the microorganism. Thereby, photosynthesis is activated also in the lower layer microbe and division growth starts.
  • the cultured microorganism is harvested while continuously culturing the microorganism.
  • the installation intervals of the plurality of carriers 2 to be arranged can be reduced, so the installation of the plurality of carriers 2 and the light irradiation unit 4 with respect to the floor area on which the microorganism culture system 1 is installed.
  • the density can be increased.
  • the microorganism culture system 1 is also cultured on the surface of the carrier 2 because the rod-like light irradiation units 4 are arranged between the carriers 2 arranged to face each other and outside in the width direction of the carrier 2. Also in the case of scraping out the microorganisms, the light irradiation unit 4 does not get in the way, and the microorganisms can be easily recovered.
  • the microorganisms attached to the culture surface of the carrier 2 can be sufficiently irradiated with light, so that the microorganisms can be cultured with energy efficiency.
  • each LED bulb can be adjusted such that a plurality of LED bulbs are arranged in a row and the amount of light can be uniformly supplied to the entire surface of the carrier 2 regardless of the size of the surface of the carrier 2.
  • positioned in front of is used. Therefore, even if the microorganism culture system 1 irradiates light from the oblique direction of the carrier 2, a sufficient amount of light can be given, and the microorganism can be cultured surely.
  • the said embodiment showed the example in which the light irradiation part 4 was each installed corresponding to the inner surface (culture surface) of the sheet
  • seat S which comprises a pair of carrier 2 which faces a pair as shown in FIG. Since the microbes can be cultured also on the surface facing the outside of the light source, the light emitting part 4 further emits the light emitting part also between the respective carriers 2 suspended from another adjacent sheet S, as shown by phantom lines in FIG. Four may be arranged. In addition, when three or more carriers 2 are arranged, the light irradiation parts 4 and the carriers 2 can be alternately arranged as shown in FIG.
  • the light irradiation part 4 may be arranged on either or both of the outer sides in the vertical direction of the carrier 2.
  • the light irradiator 4 may be a combination of the embodiment shown in FIG. 3 and the embodiment shown in FIG. That is, the light irradiator 4 may be disposed on the outside of one or both of the left edge and the right edge of the carrier 2 and on the outside of one or both of the upper edge and the lower edge.
  • the above embodiment and its modification show an example in which the surfaces of adjacent carriers 2 are all parallel, that is, a plurality of carriers 2 are arranged in a straight line, even if the carriers 2 do not face each other Good.
  • the surfaces of the adjacent carriers 2 are not parallel, and are arranged in an L shape or zigzag at a constant angle when viewed in plan.
  • the adjacent carriers 2 are arranged so as to form approximately 90 ° in plan view.
  • the side ends P1, P2 of the adjacent carriers 2 are arranged at a small distance or in contact with each other.
  • the light irradiation part 4 is provided in the position which opposes the L-shaped valley which the side edge parts P1 and P2 of the adjacent support
  • the part 4 is provided.
  • the light irradiator 4 may be provided on the outside of.
  • the light irradiators 4 are made to face the surface of the carrier 2 in addition to the above-described functions, functions and effects, and light is more effectively generated. It is possible to perform irradiation and to improve the culture efficiency of the microorganism.
  • “To make the light irradiation unit 4 face the surface of the carrier 2” means that the light irradiation unit 4 is irradiated with light from at least a part of the light irradiation unit 4 perpendicularly to the surface of the carrier 2 It means to arrange four. As indicated by phantom lines in FIG. 5, a plurality of light irradiation units 4 may be arranged at the above-described positions.
  • the present invention is not limited to the configuration of the above embodiment.
  • the recovery of the microorganism from the culture solution stored in the effluent tank 5 may be by filtration, centrifugation or natural sedimentation. It is also good.
  • other methods such as adsorption and concentration are applied.
  • the carrier 2 may be covered with a sheet capable of appropriately retaining the carrier 2 together with the culture solution supply unit 3.
  • a translucent sheet-like member formed of a synthetic resin such as vinyl, polyethylene, or polyester is suitably used.
  • a vertically long carrier is provided, but a horizontally long carrier may be used.
  • a horizontally long carrier may be used.
  • the "water holding amount" of the carrier was measured by the following method.
  • a sample for measuring the water retention amount was prepared in a size of 3 cm ⁇ 26 cm, and the dry weight was measured.
  • the sample was placed in a container containing a sufficient amount of room temperature (for example, 23 ° C.) tap water and allowed to stand for 3 minutes to allow the sample to contain sufficient water.
  • One end of the sample in the longitudinal direction was pinched using tweezers, the sample was stretched out of the container in the vertical direction, taken up from the water surface and allowed to stand for 5 seconds, waiting for water to drip off.
  • the weight of the sample containing water was measured.
  • Example 1 Chlorella (Chlorella kessleri 11h) was cultured using a culture system 1 as shown in FIG.
  • the carrier 2 a sheet of pile ground (water holding capacity: 0.395 g / cm 2 ) woven with 50 cm wide ⁇ 120 cm long non-twisted yarn is folded in half and made to face one another. The one suspended in a letter shape was used.
  • a pump P trade name "1046" manufactured by Eheim Co., Ltd.
  • case 8 a commercially available glass case (glass thickness 3 mm) was used.
  • the light irradiation part 4 a red line type LED module (manufactured by Effect Co., Ltd.) was used.
  • the concentration of the medium was adjusted to 2 times Gambog B5 medium dilution 2 hours after the start of culture, and from the next day Gambogue B5 medium 10 times diluted, KNO 3 : 750 mg per liter of medium, nourishing agent (Gambog B5 medium 10 times diluted In the composition for reconstitution, NaH 2 PO 4 : 17 g / l, MgSO 4 : 15 g / l, (NH 4 ) 2 SO 4 : containing 13 g / l, without glucose): 5 ml, and NH 4 Cl: The medium in the effluent tank 5 was replaced once daily with medium supplemented with 50 ⁇ l. The light quantity was set to 100 ⁇ mol m ⁇ 2 s ⁇ 1 from the day after the culture was started. The surface temperature of the carrier 2 was constantly 33 to 35 ° C. during the culture.
  • the culture solution containing chlorella that had flowed out of the carrier 2 was collected in the effluent tank 5.
  • the effluent tank 5 was covered with a black cloth to prevent the growth of Chlorella in the effluent tank 5.
  • Recovery of Chlorella was carried out by scraping off the surface of the carrier 2 one to three times a day from the third day of the culture start and centrifuging the culture solution in the effluent tank 5.
  • Chlorella having a dry weight of 169.56 g / m 2 could be harvested on the fifth day from the start of culture (calculated per 1 m 2 of Carrier 2).
  • Example 2 A light source was irradiated from the lateral direction and the vertical direction in FIGS. 3 and 4 using a pile ground (water holding amount: 0.267 g / cm 2 ) woven with twisted yarn of 50 cm width ⁇ 120 cm length as the carrier 2 Chlorella was cultured in the same manner as in Example 1 except for the following, and the dry weight was calculated. As a result of the culture, Chlorella having a dry weight of 157.07 g / m 2 could be harvested on the fifth day of the culture.
  • the microorganism culture system of the present invention can increase the installation efficiency of the carrier and the light source with respect to the floor area, can easily recover the microorganism from the carrier, and can efficiently produce the microorganism in the light irradiation part with less energy consumption. The above usage is possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

この微生物培養システム(1)は、微生物を付着させる平板状の担体(2)と、担体(2)の上方から担体(2)へ培養液を供給する培養液供給部(3)と、担体(2)から流出した前記微生物を含む培養液を貯留する流出液タンク(5)とを備える。担体(2)の表面同士が正対するように、又は、角度を成して斜めに向き合うように、担体(2)が複数配置されている。担体(2)同士の間であって担体(2)の配列方向に視て担体(2)の左右方向の外側及び上下方向の外側の少なくとも一部に、光照射部(4)が設置されている。

Description

微生物培養システム
 本発明は、微生物培養システムに関する。
 本願は、2017年8月16日に、日本に出願された特願2017-157237号に基づき優先権を主張し、その内容をここに援用する。
 地球温暖化への対策として、温暖化ガスの排出を可及的に抑える取り組み等が各国の産業界に強く求められている。クロレラ等の微細藻類や光合成細菌などの微生物は、COを排出しないでエネルギー生産が可能な資源として非常に有望視されており、商業レベルでの活用及び効率的な製造に期待が寄せられている。
 クロレラ等の微細藻類をエネルギー資源その他の産業上の利用に供するためには、できるだけ低いコストで生産することが要求されるが、水中で微細藻類を大量培養する場合、大規模なプールやタンクを必要とする。したがって、用地の取得又は設備の大規模化による費用増大等の問題がある。
 特許文献1では、土地を有効活用して簡易な設備で単位面積当たりの生産量の向上を図るために、鉛直に立てた担体表面に培養液を自然流下させ、その担体表面で微細藻類等の微生物を継続して増殖させ、自然流下した培養液中から連続的に微生物を回収する培養システムが提案されている。このシステムでは、担体表面の薄い水膜が従来法のプール水面に相当し、光(人工光)・炭酸ガス・栄養素を得て光合成がなされる。このシステムを格納したユニットでは、担体一枚で同一面積の水面と同等あるいは以上の培養量を得られ、担体の並列多層装備により同一床面積当たりでプールなどの従来法の10倍~20倍の収穫を期待できる。
 さらに、前記ユニットを上下に積層することで、床面積当たりで従来手法の100倍の培養量確保も期待できる。このような培養システムによれば、太陽光の豊富な地域に限られている立地制約も克服でき、極地や地下さらには宇宙空間でも培養可能になる。
 しかし、特許文献1に記載された培養システムでは、光エネルギーの伝達効率が悪く、微生物の培養効率が低いという問題があった。
 この問題に対して、特許文献2では、板状の担体及び板状の光源を互いに平行に複数設置して、光合成微生物を培養する装置が提案されている。この装置では、担体と光源が気相中に交互に配置され、各担体の上方から各担体へ培養液が供給される。
特開2013-153744号公報 特開平6-23389号公報
 しかし、特許文献2に記載の装置では、板状の担体の間に、板状の光源を交互に配置する構成であるため、担体と光源を一組とした単位培養装置(「セル」と称されることもある)の間隔が物理的に制約され、複数セルを並列することで床面積当たりの生産能力を確保しようとしても、実装密度を高めることに限界があった。
 また、担体の間に配置された光源が邪魔になって、担体から微生物を回収し難いという課題があった。さらに、担体のほぼ全面と対向する大きな光源を用いているため、使用するエネルギーが過大となるという問題があった。
 本発明は、担体及び光照射部の設置効率が良く、担体からの微生物の回収が容易で、よりエネルギー消費が少ない光源で微生物を効率よく生産できる培養システムを提供する。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、下記の構成を有する発明を完成するに至った。
(1)本発明の第1の態様の微生物培養システムは、微生物を付着させる平板状の担体と、前記担体の上方から培養液を供給する培養液供給部と、前記担体から流出した前記微生物を含む培養液を貯留する流出液タンクとを備え、前記担体の表面同士が正対するように又は角度を成して斜めに向き合うように、前記担体が複数配置され、配置された前記複数の担体同士の間であって、前記担体の配列方向に視て前記担体の左右の外側及び/又は上下方向の外側に光照射部が設置されている。すなわち、隣り合う前記担体の、微生物を付着される培養面は、対向しあう状態で互いに平行に配置されるか、互いに一定の角度をなして配置されていてもよい。一定の角度とは、例えば、0°以上かつ120°以下の角度であってもよい。一定の角度をなして配置される場合には、隣り合う前記担体の互いに近接する側縁同士が接触または一定の隙間を空けて配置されていてもよい。その場合、隣り合う前記担体は、平面視した(上から見た)場合に略L字状に配置されていてもよいし、前記担体は平面視した場合に全体としてジグザグ状に配置されていてもよい。
(2)前記光照射部が、前記担体の表面に正対するように配置されている(1)に記載の微生物培養システム。
(3)微生物が吸収可能な波長範囲の前記担体の表面における光量子束密度が50μmolm-2-1以上である、(1)又は(2)に記載の微生物培養システム。光量子束密度は、単位時間に単位面積を通過する光量子の数であり、微生物が特定されない場合には、例えば、一般的に光合成に有効な400nmから700nmまでの波長の光量子束密度(光合成有効光量子束密度:PPFD)を上記値として使用してもよい。
(4)前記光照射部は、一列に配列された複数のLED電球(またはLED、以下同様)を有するとともに、前記担体の表面全体に均一に光量を供給するように調整できる複数のレンズを有し、各レンズが各LED電球に対向して配置されている、(1)から(3)のいずれかに記載の微生物培養システム。
(5)前記担体を前記配列方向に視た場合に、互いに対向する左右少なくとも一方の側縁で挟み込まれる位置に、前記光照射部が配置されている、(1)から(4)のいずれかに記載の微生物培養システム。隣り合う前記担体の互いに対向する側縁の間に、直線状の光照射部が前記側縁と略平行に配置されてもよい。隣り合う前記担体が平面視した場合に略L字状に配置されている場合には、L字の谷部と対向する位置に直線状の光照射部が前記側縁と略平行に配置されてもよい。
(6)微生物が微細藻類である、(1)から(5)のいずれかに記載の微生物培養システム。
 本発明の微生物培養システムは、床面積に対する担体及び光源の設置効率を高めることができるという効果を奏する。また、本発明の微生物培養システムは、担体からの微生物の回収が容易で、よりエネルギー消費の少ない光照射部で微生物を効率よく生産できるという効果を奏する。
本発明の一実施形態に係る微生物培養システムを模式的に示した斜視図である。 図1をA-A線で矢視した断面図である。 本発明の一実施形態に係る微生物培養システムの担体と光照射部の配列状態を模式的に示した斜視図である。 本発明の一実施形態に係る微生物培養システムの担体と光照射部の配列状態を模式的に示した斜視図である。 本発明の一実施形態に係る微生物培養システムの担体と光照射部の配列状態の変形例を模式的に示した平面図である。
 以下、本発明の微生物培養システムの一実施形態について図面を参照して説明する。
 本実施形態に係る培養システムは、図1又は図2に模式的に示すように、気相中で微生物を培養するためのシステムであって、略鉛直方向に配置された担体2と、担体2に培養液を供給する培養液供給部3と、担体2に光を照射する光照射部4と、担体2から流出した微生物を含む培養液を貯留する流出液タンク5と、流出液タンク5に貯留された培養液から分離した微生物を収容する収穫容器6と、流出液タンク5に貯留された培養液から分離した培養液を循環させる循環流路7と、担体2、培養液供給部3、流出液タンク5及び循環流路7を覆うケース8とを備えている。
 この実施形態では、矩形状の柔軟なシートSを長手方向の中央で逆U字状に曲げて、平行に垂れ下がった一対の矩形状の部分により、一対の平板状の担体2を形成しており、シートSの内側または外側の面が培養面とされている。担体2は、微生物を付着できるとともに、上から供給された培養液を内部に浸透させつつ流下させることが可能なもので、単位面積当たりの保水量が0.2g/cm以上であるものが好ましい。本明細書において前記「保水量」とは、後述の実施例に記載する保水性試験で測定される値を意味する。担体2の単位面積当たりの保水量は0.25g/cm以上がより好ましく、0.3g/cm以上がさらに好ましい。担体2の単位面積当たりの保水量の上限は特に限定されないが、10g/cm以下、8g/cm以下、5g/cm以下、3g/cm以下、1g/cm以下などを選択できる。
 担体2は、微生物および培養液を保持できる材質であればよく、布、不織布、フェルト、海綿状の材質、その他の多孔質材料であれば使用可能であるが、好ましい具体例としては、撚糸又は無撚糸のパイル地等が挙げられる。特に、無撚糸のパイル地が好ましい。パイル地の素材としては特に限定されず、具体的には綿、絹、毛、羊毛、および麻などの天然繊維(植物質繊維または動物質繊維)、アクリル、ポリエステル、ナイロン、ビニロン、ポリオレフィン、およびポリウレタン等の合成繊維が挙げられる。パイルとは織り方の種類で、織物の地組織から、ループ状の繊維(輪奈/loop of thread)が縦横に一定間隔毎に突き出て、地組織の表面を覆う織り方を言い、前記輪奈が弾力を有している。パイル地とは、パイル織りされた布地をいう。
 この実施形態の担体2は、長方形のシートSを逆U字状に曲げて形成されているが、担体2の形態は、長手方向もしくは幅方向の両端を連結した円筒状や角筒状であってもよい。また、担体2を構成するシートSの数は1つに限定されるものではなく、2以上を平行に並べて設けられていてもよい。
 担体2を構成するシートSは、逆U字状に折り曲げて、すなわち、中央から2つに畳んだ状態でハンガーHの上端の水平部に掛けられている。クリップやフック等の留め具を用いて、担体2の端部をハンガーHに固定し、吊り下げて設置されることも可能である。ハンガーHの上端の水平部の水平方向の幅は、一枚のシートSが構成する一対の担体2の培養面(対向しあう内面)同士の離間距離を規定する。
 ハンガーHは、その下端から所望の高さ(例えば1m前後)に担体2を吊り下げられるようにした部材であり、担体2を掛ける又は留めるために水平方向に配置された棒状の固定用部材10と、固定用部材10の両端を支持する脚部材11とを備えている。ハンガーHは、複数の固定用部材10を複数平行に有したものであってもよい。
 担体2は、上記の方法以外にも、剛性のある枠体等の支持部材に取り付けて自立させたり、後述する培養液供給部3の下方に直接留め具等を設けてこの留め具に吊り下げたりする方法等によって設置してもよい。
 後述する培養液供給部3の下方に直接、留め具等を設けて、この留め具で担体2を吊り下げた場合には、留め具を伝わって培養液が担体に流れるため、留め具を担体2に培養液を供給する流路にすることができるとともに、担体2を確実に培養液供給部3の直下に設置することができるため、培養液供給部3とハンガーとの位置合わせが不要となる。
 この実施形態の培養液供給部3は、培養液を放出して担体2に供給するための水平に配置された管状部材であり、その一部は、不図示の培養液貯留タンク及び養分補給タンクに循環流路7を介して接続されている。培養液供給部3の、担体2の上端と対向する中央部の周壁には、培養液を放出するための供給孔3aが、軸線方向に一定の間隔をおいて複数形成されている。供給孔3aは下方に向けて配置され、担体2の上端に培養液を、担体2の幅方向全域に亘ってほぼ均等な含水量となるように、供給する。培養液供給部3は、担体2の数又は配置に応じて、複数配置されていてもよい。
 培養液供給部3の培養液の供給能力は、後述する制御装置により、培養液の担体2中の流下速度を5mL/h/m以上から30000mL/h/m以下まで調整できることが望ましい。この変動幅は微生物の増殖に応じたものである。たとえばクロレラにおいては一体が成長して4分裂し、16時間でそれぞれが分裂前の大きさに成長する。分裂当初は、養分は少量で足りるが成長期には十分に与えることが必要である。これにより、微生物の周囲を常に新鮮な培養液で満たして増殖を維持しつつ、微生物を培養液とともに連続して自然流下させることができる。また、随時、培養液の流速を変化させたり、担体2に振動等の衝撃を与えたりすることにより、担体2に付着している微生物層の表層部を強制的に落下させると、下層部の光合成が活発になり増殖し回収量を増加させることができる。
 微細藻類等の微生物の安定した細胞増殖を維持し、ガス(CO)交換をしやすくするために必要な最小限の水分及び/又は養分を与えるためには、植え付け量にもよるが、例えば、担体2が0.5m以上のパイル地ではないシート体よりなる場合は、当初は1000mL/h/m以上とし、その後は徐々に増加させ、5000mL/h/mの流速で培養液を流すことが必要である。このため、培養液の流速が1500mL/h/mに至るまでは、流速の増加に伴い微生物の流出量も上昇するが、6000mL/h/m以上では流出量の伸びは鈍化する。好ましくは1500mL/h/m以上である。培養液の流速は以下の方法で算出することができる。培養中に10秒間測定し、その間に担体から流れ出た培養液の量を測定する。この操作を3回繰り返し、1時間あたりの培養液量の平均値(mL/h)を算出する。この値を担体面の面積で割ることにより算出することができる(mL/h/m)。
 流速が大きすぎると、微細藻類等の微生物が担体2に固着し難くなり、増殖率が低下する、養液相が厚くなりCOの交換が行い難くなる、又は物理的刺激により微細藻類等の微生物にストレスがかかる、といった問題が生じる。
 担体2が0.5m以上の撚糸又は無撚糸のパイル地よりなる場合には、担体2の表面を流れる培養液の流速は、1200mL/h/mを超える速度とし、好ましくは5400mL/h/m以上であり、より好ましくは9000mL/h/m以上である。前記流速の上限は、30000mL/h/m以下が好ましく、27000mL/h/m以下がより好ましく、24000mL/h/m以下がさらに好ましい。
 培養液としては、微生物を通常の方法により培養して、微生物の濃度を高めることが可能な培地の希釈液であれば、特に制限されない。培地としては、例えばCHU培地、JM培地、MDM培地などの一般的な無機培地を用いることが出来る。さらに、培地としては、ガンボーグB5培地、BG11培地、HSM培地の各種培地の希釈液が好ましい。無機培地には、窒素源としてCa(NO・4HOやKNO、NHClが、その他の主要な栄養成分としてKHPOやMgSO・7HO、FeSO・7HOなどが含まれる。培地には、微生物の生育に影響を与えない抗生物質等を添加してもよい。培地のpHは4~10が好ましい。可能な場合には、各種産業から排出される廃水等も利用してよい。
 この実施形態の光照射部4は、LED電球(またはLED)を一列に並べ、光照射の対象である担体2の表面にほぼ均一に光量を供給するように適切な照射角度を与えるレンズが各LED電球に対向して配置され、前記LED電球および前記レンズが棒状の支持体に固定された直線状の装置であり、適宜、増殖に適した波長や光量を有する光を、対向する担体2の表面のほぼ全域に照射する。
 光照射部4が照射する光の波長は、例えば、380~780nmの範囲であればよい。赤色光のみで増殖が可能な微細藻類等の微生物に対しては、光照射部4は光合成に適した赤色光のみを照射できるとよい。クロレラ等の微細藻類は赤色光のみで良好に増殖し得る。光照射部4による光の照射は、連続照射でなくとも、100~10,000Hzの間欠照射光であってもよい。
 光照射部4は、図2に示すように、担体2を側方から視て、すなわち担体2の配列方向(矢印L方向)に直交する方向に視て、正対させた2枚の担体2,2の表面間であって、担体2の幅方向(すなわち左右方向)の外側に配置されている。光照射部4と、互いに隣り合う一対の担体2との距離は、ほぼ等しいことが好ましい。光照射部4は、担体2の幅方向の外側すなわち複数の担体2の配列方向(矢印L方向)に視た場合に、担体2の側縁に重ならないように、かつ、担体2の側縁にできるだけ近い位置に、前記側縁と平行に設置されるとよい。担体2の配列方向に見て、光照射部4が担体2の側縁よりも外側に位置することにより、担体2から微生物を回収する際の作業効率を高めることができる。また、光照射部4が担体2の側縁にできるだけ近い位置にあることにより、担体2に照射される光量の均一性を高めることができる。
 流出液タンク5は、担体2から流出した微生物を含む培養液の貯留槽であり、担体2から流下する培養液を受けられるように、上端が開口した一定深さの箱形状を有する。担体2から流出した微生物を含む培養液は、重力により、流出液タンク5内において微生物を高濃度に含む沈殿と、微生物を殆ど含まない上清である培養液とに分離される。
 収穫容器6は、流出液タンク5で分離された、微生物を高濃度に含む沈殿を、流出液タンク5の底からバルブ6Aを開いて回収して収容する容器である。
 循環流路7は、流出液タンク5で分離された培養液(上清液)を回収して再度担体2に供給するためのものである。循環流路7上にはポンプPが設けてあり、これにより回収された培養液を担体2の上方まで汲み上げる。汲み上げられた培養液は再度担体2の上から連続的に供給される。再度担体2に供給される培養液は、流出液タンク5内で分離された上清であるが、微生物を含んでいてもよい。ポンプPの手前にストレーナを設け、上清液に含まれる微生物の少なくとも一部をストレーナで漉して回収してもよい。ポンプPは図示しない制御装置に接続されており、人手によるマニュアル制御または所定のプログラムによる自動流量制御がなされる。
 この実施形態のケース8は箱型をなし、担体2、培養液供給部3、流出液タンク5及び循環流路7の全体を覆っている。担体2をケース8によって覆うことにより、保温力が一層高まり、担体2の表面温度を一定に保ちやすくなる。
 ケース8の材質は特に限定されず、ガラス、アクリル、ポリスチレン、塩化ビニル等の透明なものが挙げられる。培養システム1を用いて光合成を行わずに増殖できる微生物を培養する場合は、ケース8の材質は透明である必要はない。
 ケース8内には、1~40%程度のCOを含有する混合空気が充填しており、更にCOを適宜補充すべく送入可能になっていることが好ましく、1~10%程度のCOを含有する混合空気中であれば、多くの微細藻類等の微生物に良好に光合成を行わせることができる。なお、大気を通気する場合でも微生物の増殖は、速度は遅くなるが、可能である。
[培養対象]
 本発明の培養システムで培養対象とする微生物は特に限定されず、クロレラやシネコキスティス、スピルリナのような運動性のないあるいは乏しい光合成微生物だけでなく、鞭毛で水中を運動するプランクトン性のユーグレナやクラミドモナス、プレウロクリシスも含まれる。培養システム1の培養対象となる微生物は、きわめて多様である。培養システム1の培養対象となる主な微生物群としては、例えば以下のA類、B類、C類が挙げられる。
 A類として、原核生物である真正細菌と古細菌を挙げることができる。
 真正細菌には、酸素非発生型の光合成細菌や酸素発生型光合成を行うシアノバクテリア、有機物質を利用する通性嫌気性発酵性細菌と非発酵性細菌、さらに無機栄養細菌、放線菌およびコリネバクテリウム、有胞子細菌を挙げることができる。光合成細菌には、ロドバクター、ロドスピリルム、クロロビウム、クロロフレクサスが挙げられる。シアノバクテリアにはシネココッカス、シネコキスティス、スピルリナ、アルスロスピラ、ノストック、アナベナ、オシラトリア、リングビア、イシクラゲ、スイゼンジノリが挙げられる。
 通性嫌気性発酵性細菌として大腸菌、乳酸菌が挙げられる。非発酵性細菌としてシュードモナスが挙げられる。無機栄養細菌として水素細菌が挙げられる。放線菌としてストレプトマイセスが、有胞子細菌として枯草菌が挙げられる。古細菌として好熱菌や高度好塩菌が挙げられる。好熱菌としてサーモコッカスが、高度好塩菌としてハロバクテリウムが挙げられる。その他に、グルタミン酸生産菌、リジン生産菌、セルロース生産菌などが挙げられる。
 B類として、真核光合成微生物である微細藻類を挙げることができる。
 微細藻類には、緑藻、トレボキシア藻、紅藻、珪藻、ハプト藻、真眼点藻、ユーグレナ、褐虫藻が挙げられる。
 緑藻にはクロレラ、セネデスムス、クラミドモナス、ボトリオコッカス、ヘマトコッカス、ナンノクロリス、シュードコリシスティスが、トレボキシア藻としてパラクロレラやココミクサが挙げられる。紅藻としてシアニディオシゾン、シアニディウム、ガルディエリア、ポルフィリディウムが、珪藻としてニッチア、フェオダクティルム、キートケロス、タラシオシラ、スケレトネマ、フィツリエラが挙げられる。ハプト藻として、プレウロクリシス、ゲフィロカプサ、エミリアニア、イソクリシス、パブロバが挙げられる。真眼点藻としてナンノクロロプシス、ユーグレナとしてユーグレナ、プラシノ藻としてテトラセルミスが挙げられる。さらに、サンゴの共生藻である褐虫藻としてはシンビオディニウムが挙げられる。
 C類として、非光合成真核生物である菌類を挙げることができる。菌類には酵母菌とコウジカビが挙げられる。また、担子菌類の菌糸培養は培養対象となる。
 微生物ではないが、多細胞性海藻のうち、緑藻であるアオサやアオノリ、紅藻であるアサクサノリ、アマノリ、スサビノリ、イワノリ、その他の食用ノリも培養対象となる。さらに、緑色植物であるコケ類も培養対象となる。また、共生生物である地衣類も培養対象となる。微細藻類は、シアノバクテリアを含むものとする。本発明の培養システムを用いて、例えば、オーランチオキトリウム等の光合成を行わない卵菌類を、有機廃液を用いて培養することも可能である。
 本発明においては、培養対象とする微生物は光合成微生物であることが好ましく、その場合、培養システム1は光照射部4が必須であるが、培養システム1を用いて光合成を行わずに増殖できる微生物を培養する場合は、光照射部4を使用しなくてもよい。
 次に、培養システム1の使用方法及び作用について説明する。
 培養システム1の使用を開始するには、担体2の上に載置しておいた脱脂綿等に微生物を付着させておき、その端部をハンガーH等に掛けて、又は、吊り下げて留めておく。微生物の付着方法は、微生物を含む水を担体2に直接滴下あるいは塗布してもよい。ケース8内には、下から上に向けて1~40%程度のCOを含む空気を送入しておく。
 その上で、培養液供給部3から担体2中を5mL/h/m以上の速度で流下するように培養液を連続的に供給しつつ、光照射部4より、380~780nmの波長の赤色光及び/又は白色光を照射する。この光照射は、微生物の植付当初は50μmolm-2-1程度の弱い光量(光量子束密度)とし、成長に従って400μmolm-2-1程度まで増量する。また、光合成生物の夜間に分裂をするという特性から、増殖初期には消灯時間を設けることも好ましい。この際、担体表面の液温および気温は、33~37℃に設定しておくことが好ましい。
 一定時間が経過すると、担体2に培養液が行き渡り、培養液供給部3から更に培養液が供給されるので、担体2の下端から培養液が流出液タンク5に流下する。この際、担体2に付着していた又は担体2において培養された微生物が培養液の流れによって徐々に担体2から流出し、培養液と共に流出液タンク5に流下する。
 担体2から流下した微生物は流出液タンク5の培養液中に沈殿し、流出液タンク5の下方に設置されたバルブ6Aを開いて収穫容器6に取り込まれる。
 一方、流出液タンク5内に溜められた微生物の一部を含む培養液の上清液は、ポンプPにより汲み上げられ、循環流路7を経由して培養液供給部3に再供給され、担体2上に繰り返し供給される。
 微生物を含む培養液が培養液供給部3に再供給される量に応じて、不図示の培養液貯留タンクからの新たな培養液の供給量が調整され、不図示の養分補給タンクから必要な養分が培養液供給部3に適宜供給され、培養液と共に担体2に放出される。
 上記のように微生物の一部は自然に担体2から流下するが、この実施形態では、微生物の分裂成長に応じて、担体2上に定着している微生物層の表層を削り取ってもよい。これにより、下層部の微生物も光合成が活性化され、分裂増殖が始まる。以上の動作を繰り返すことにより、微生物を連続的に培養しつつ、培養された微生物が収穫される。
 本実施形態に係る培養システム1によれば、配列する複数の担体2の設置間隔を小さくすることができるため、微生物培養システム1を設置する床面積に対する複数の担体2及び光照射部4の設置密度を高めることができる。
 また、微生物培養システム1は、互いに対向するように配置した担体2同士の間であって、担体2の幅方向両外側に棒状の光照射部4を配置したため、担体2の表面において培養された微生物を掻き出す等の場合にも、光照射部4が邪魔にならず、微生物を容易に回収できる。
 また、担体2の側部に光照射部4を配置するだけで、担体2の培養面に付着した微生物に、十分に光を照射することができるため、エネルギー効率よく微生物を培養することができる。
 また、微生物培養システム1は、複数のLED電球が一列に配置され、担体2の表面の大きさにかかわらず、担体2の表面全体に均一に光量を供給するように調整できるレンズが各LED電球の前に配置された光照射部4を用いている。したがって、微生物培養システム1は、担体2の斜め方向から光を照射しても十分な光量を与え、確実に微生物を培養することができる。
 上記実施形態では、図3に示すように、正対する一対の担体2を構成するシートSの内面(培養面)に対応して光照射部4がそれぞれ設置された例を示したが、担体2の外側を向く表面においても微生物を培養できるため、光照射部4は、図1において仮想線で示すように、隣り合う別のシートSから垂下する各担体2の間にも、更に光照射部4が配置されていてもよい。
 また、担体2が3枚以上配置されている場合には、図3に示すように光照射部4と担体2を交互に配置することができる。
 担体2が3枚以上配置されている場合、図4に示すように、光照射部4は、担体2の上下方向の外側のいずれか一方又は両方に配置してもよい。光照射部4は、図3に示す態様と図4に示す態様とを合わせた態様としてもよい。すなわち、担体2の左縁および右縁の一方または両方の外側、および上縁および下縁の一方または両方の外側に、光照射部4をそれぞれ配置してもよい。
 上記実施形態及びその変形例では、隣り合う担体2の表面が全て平行になるように、すなわち担体2を複数正対させて配列した例を示したが、担体2は互いに正対していなくてもよい。
 例えば、図5に示す実施形態では、隣り合う担体2の表面が平行ではなく、平面視した場合に一定の角度を以てL字状またはジグザグ状に配置されている。図5に示す実施形態では、隣り合う担体2が平面視して略90°をなすように配置されている。隣り合う担体2の側端部P1,P2は小さな間隔を空けるか、互いに接触して配置されている。
 隣接する担体2の側端部P1,P2がなすL形の谷部と対向する位置に、光照射部4が設けられている。すなわち、谷側の角の二等分線と、担体2の配列方向に視て担体2の左右縁をつなぐ仮想面(図5中一点鎖線で示す)と交差する位置の外側近傍に、光照射部4が設けられている。図5の位置に加えて、あるいは、図5の位置に代えて、谷側の角の二等分線と、担体2の配列方向に視て担体2の上下縁をつなぐ仮想面が交差する位置の外側に、光照射部4を設けてもよい。
 複数の担体2及び光照射部4をこのように配列すると、前述した作用、機能及び効果を奏する上に、担体2の表面に対して光照射部4を正対させてより効果的に光を照射することができ、微生物の培養効率を向上させることができるという効果を奏する。「担体2の表面に対して光照射部4を正対させる」とは、光照射部4の少なくとも一部の光が、担体2の表面に対して垂直に照射されるように、光照射部4を配置することを意味する。図5において仮想線で示すように、光照射部4は、前述した位置に複数配置されていてもよい。
 他の構成要素についても、本発明は前記実施形態の構成に限られず、例えば、流出液タンク5内に貯留した培養液からの微生物の回収は、ろ過、遠心処理、又は、自然沈降のいずれによってもよい。微生物が細胞外に排出する物質を収穫する場合には、吸着や濃縮等のその他の方法を適用する。
 担体2は、培養液供給部3と共に、担体2を適度に保温可能なシートに覆われていてもよい。この場合、シート体は、ビニール、ポリエチレン、ポリエステル等の合成樹脂により形成された透光性を有するシート状の部材が好適に用いられる。
 前記実施形態では、縦長の担体が設けられているが、横長の担体を用いてもよい。その他、本発明の趣旨を逸脱しない限り、前述した種々の構成の一部又は全部を適宜組み合わせて構成してもよい。
 以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例によって何ら限定されるものではない。
[保水性試験]
 本明細書において、担体の「保水量」は、下記の方法で測定した。
[1] 保水量を測定するサンプルは3cm×26cmの大きさで用意し、乾燥重量を測定した。
[2] 十分量の室温(例えば23℃)の水道水を入れた容器にサンプルを入れ3分間放置し、サンプルに十分に水を含ませた。
[3] ピンセットを使ってサンプルの長手方向の一端をつまみ、容器からサンプルを鉛直方向に伸ばして取り出し、水面から持ち上げた状態で5秒間静置し、水が垂れ落ちるのを待った。
[4] 水を含んだサンプルの重量を測定した。この時点で水が垂れても、垂れた水を含めた重量を測定した。
[5] [4]で測定した重量からサンプルの乾燥重量を引き、サンプル1cmあたりに含まれる水の量を算出した。
 測定は各サンプルにつき5回ずつ行い、平均値を「保水量(g/cm)」とした。
[実施例1]
 図1に示すような培養システム1を用いてクロレラ(Chlorella kessleri 11h)を培養した。
 担体2としては、幅50cm×長さ120cmの無撚糸で織りあげたパイル地(保水量:0.395g/cm)のシートを二つ折りにして正対させ、ハンガーHの部材10から逆U字状に吊り下げたものを用いた。循環流路7の下流側には、ポンプP(エーハイム社製商品名「1046」)を設けた。ケース8としては、市販のガラスケース(ガラスの厚さ3mm)を用いた。光照射部4としては、赤色ライン型LEDモジュール(株式会社イフェクト社製)を用いた。
 本培養システム1を用いて、ケース8内に下から上に向けて10容量%のCOを含む空気を1.0L/分程度の速度で導入し、それらを上から下に向けて流し、同時に、流出液タンク5内の培地にバブリングした。培養液として植物組織培養培地ガンボーグB5を50倍希釈したものにKNOを150mg/Lの濃度になるように添加した溶液を使用し、1000mL/hの速度で培養液を供給しつつ、50μmolm-2-1の強度の赤色光を図3のように左右方向から照射しながら、33~37℃でクロレラの培養を行った。培養開始時には、乾燥重量で15gのクロレラを担体2の上に載置した脱脂綿に付着させてから、培養を開始した。
 培地の濃度は、培養開始2時間後にガンボーグB5培地10倍希釈に調整し、翌日から、ガンボーグB5培地10倍希釈に、培地1LあたりKNO:750mg、栄養補強剤(ガンボーグB5培地10倍希釈に戻すための組成で、NaHPO:17g/l、MgSO:15g/l、(NHSO:13g/lを含み、グルコースは含まない):5ml、及び、NHCl:50μlを添加した培養液で、流出液タンク5の培地を毎日一度交換した。光量は、培養を開始した翌日から100μmolm-2-1とした。担体2の表面温度は、培養中一定して33~35℃であった。
 担体2から流出したクロレラを含む培養液は、流出液タンク5に集めた。流出液タンク5内でクロレラが増殖するのを防ぐため、流出液タンク5は黒い布で覆った。クロレラの回収は、培養開始3日目から1日に1~3回担体2表面を掻き落とし、流出液タンク5中の培養液を遠心処理して行った。回収したクロレラは培養液に再懸濁し、分光光度計(ベックマン社製、DU700)で測定された730nmの濁度から乾燥重量を算出した(730nmの濁度0.35=1gDW(乾燥重量)/L)。また、80℃で2時間以上乾燥させたクロレラからも乾燥重量を求めて確認した。培養の結果、培養開始から5日目で乾燥重量169.56g/mのクロレラが収穫できた(担体2の1mあたりで算出)。
[実施例2]
 担体2として、幅50cm×長さ120cmの撚糸で織りあげたパイル地(保水量:0.267g/cm)を用いて、光源は図3および図4の横方向及び上下方向から光照射した以外は、実施例1と同様にクロレラを培養し、乾燥重量を算出した。培養の結果、培養5日目で乾燥重量157.07g/m2のクロレラが収穫できた。
 本発明の微生物培養システムは、床面積に対する担体及び光源の設置効率を高めることができ、担体からの微生物の回収が容易で、エネルギー消費の少ない光照射部で微生物を効率よく生産できるから、産業上の利用が可能である。
1・・・微生物培養システム
2・・・担体
S・・・シート
H・・・ハンガー
3・・・培養液供給部
3a・・・供給孔
4・・・光照射部
5・・・流出液タンク
6・・・収穫容器
7・・・循環流路
P・・・ポンプ
8・・・ケース

Claims (8)

  1.  微生物培養システムであって、
     微生物を付着させる平板状の担体と、前記担体の上方から前記担体へ培養液を供給する培養液供給部と、前記担体から流出した前記微生物を含む培養液を貯留する流出液タンクとを備え、
     前記担体の表面同士が正対するように、又は、角度を成して斜めに向き合うように、前記担体が複数配置され、
     配置された前記複数の担体同士の間であって、前記担体の配列方向に視て前記担体の左右方向の外側及び上下方向の外側の少なくとも一部に光照射部が設置されている微生物培養システム。
  2.  前記光照射部が、前記担体の表面に正対するように配置されている請求項1に記載の微生物培養システム。
  3.  微生物が吸収可能な波長範囲の前記担体の表面における光量子束密度が50μmolm-2-1以上である請求項1又は2に記載の微生物培養システム。
  4.  前記光照射部として複数のLED電球が一列に配置されるとともに、前記担体の表面全体に均一に光量を供給するように調整できるレンズが各電球に対向して配置されている、請求項1から3のいずれか一項に記載の微生物培養システム。
  5.  隣り合う2つの担体の前記配列方向に対向し合う側縁同士の間に、前記光照射部が配置されている、請求項1から4のいずれか一項に記載の微生物培養システム。
  6.  微生物が、微細藻類である請求項1から5のいずれか一項に記載の微生物培養システム。
  7.  シートを逆U字状に曲げてつり下げることにより一対の平板状の前記担体が形成され、これら担体の互いに対向し合う両側縁の間であって、前記担体の配列方向に視て前記担体の左右方向の外側及び上下方向の外側の少なくとも一部に、前記光照射部が設置されている、請求項1から6のいずれか一項に記載の微生物培養システム。
  8.  前記担体はそれぞれ上下方向に伸びる矩形状をなし、前記担体は平面視してジグザグ形状をなすように複数配置され、前記ジグザグの谷部に対向する位置であって、前記ジグザグの山部同士を結ぶ仮想面よりも外側に、前記光照射部がそれぞれ配置されている、請求項1から6のいずれか一項に記載の微生物培養システム。
PCT/JP2018/030280 2017-08-16 2018-08-14 微生物培養システム WO2019035455A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/638,658 US20210130766A1 (en) 2017-08-16 2018-08-14 Microorganism culture system
EP18845670.1A EP3670642A4 (en) 2017-08-16 2018-08-14 MICRO-ORGANISM CULTURE SYSTEM
JP2019536779A JPWO2019035455A1 (ja) 2017-08-16 2018-08-14 微生物培養システム
CN201880061258.9A CN111108185A (zh) 2017-08-16 2018-08-14 微生物培养系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017157237 2017-08-16
JP2017-157237 2017-08-16

Publications (1)

Publication Number Publication Date
WO2019035455A1 true WO2019035455A1 (ja) 2019-02-21

Family

ID=65361937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030280 WO2019035455A1 (ja) 2017-08-16 2018-08-14 微生物培養システム

Country Status (6)

Country Link
US (1) US20210130766A1 (ja)
EP (1) EP3670642A4 (ja)
JP (1) JPWO2019035455A1 (ja)
CN (1) CN111108185A (ja)
TW (1) TWI674318B (ja)
WO (1) WO2019035455A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213633A1 (ja) * 2019-04-17 2020-10-22 日本曹達株式会社 培養装置、担体支持装置、および培養対象の製造方法
WO2020213632A1 (ja) * 2019-04-17 2020-10-22 日本曹達株式会社 培養装置、担体支持装置、および培養対象の製造方法
JP2021073965A (ja) * 2019-11-07 2021-05-20 耕 淵辺 付着藻類を用いた水産飼料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623389A (ja) 1992-03-03 1994-02-01 Ebara Infilco Co Ltd 付着性光合成微生物反応装置
JP2011509085A (ja) * 2008-01-03 2011-03-24 プロテロ インコーポレイテッド トランスジェニック光合成微生物およびフォトバイオリアクター
JP2012175964A (ja) * 2011-02-01 2012-09-13 Ihi Corp 微細藻類培養装置及び方法
JP2013153744A (ja) 2012-01-06 2013-08-15 Ccs Inc 微生物培養システム及び微生物の培養方法
JP2016131511A (ja) * 2015-01-16 2016-07-25 国立大学法人 筑波大学 藻類培養装置及び藻類培養方法
JP2017157237A (ja) 2017-06-05 2017-09-07 東芝テック株式会社 商品データ登録装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0957058A (ja) * 1995-08-25 1997-03-04 Toshiba Corp Co2 固定化装置
US6667171B2 (en) * 2000-07-18 2003-12-23 Ohio University Enhanced practical photosynthetic CO2 mitigation
AU2001280616A1 (en) * 2000-07-18 2002-01-30 Ohio University Photosynthetic carbon dioxide mitigation
KR100490641B1 (ko) * 2003-12-16 2005-05-19 인하대학교 산학협력단 다중 광생물반응기 및 이를 이용한 광합성 미생물 배양방법
CN102260629B (zh) * 2010-05-28 2014-07-30 中国科学院过程工程研究所 板式光生物反应器
KR101243110B1 (ko) * 2010-10-11 2013-03-12 조선대학교산학협력단 광생물 반응기
CN102212471B (zh) * 2011-03-15 2013-08-21 新奥科技发展有限公司 微藻高通量培养设备
CA2838953C (en) * 2011-06-13 2015-01-06 Al-G Technologies Inc. Compositions, articles, apparatuses, methods and systems relating to algae biomass
KR101222145B1 (ko) * 2011-12-29 2013-01-14 조선대학교산학협력단 태양광을 이용한 광생물 반응기
CN103937668B (zh) * 2014-04-09 2016-02-03 中南林业科技大学 念珠藻属藻类生态模拟培养系统及培养方法
CN104328031A (zh) * 2014-10-30 2015-02-04 国家开发投资公司 表面生长式培养板、培养单元、培养系统及方法
CN106467888B (zh) * 2015-08-14 2019-05-07 国投生物科技投资有限公司 栅板式光生物反应器
CN105420113B (zh) * 2015-11-17 2019-04-30 清华大学 基于毛细动力供水供营养的微藻固相附着生长培养方法
CN106047681A (zh) * 2016-06-29 2016-10-26 哈尔滨华藻生物科技开发有限公司 一种螺旋藻培育箱
CN107012072B (zh) * 2017-04-10 2023-10-31 南昌大学 一种光生物膜反应器及其在污水处理、固碳和微藻采收中的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623389A (ja) 1992-03-03 1994-02-01 Ebara Infilco Co Ltd 付着性光合成微生物反応装置
JP2011509085A (ja) * 2008-01-03 2011-03-24 プロテロ インコーポレイテッド トランスジェニック光合成微生物およびフォトバイオリアクター
JP2012175964A (ja) * 2011-02-01 2012-09-13 Ihi Corp 微細藻類培養装置及び方法
JP2013153744A (ja) 2012-01-06 2013-08-15 Ccs Inc 微生物培養システム及び微生物の培養方法
JP2016131511A (ja) * 2015-01-16 2016-07-25 国立大学法人 筑波大学 藻類培養装置及び藻類培養方法
JP2017157237A (ja) 2017-06-05 2017-09-07 東芝テック株式会社 商品データ登録装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3670642A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213633A1 (ja) * 2019-04-17 2020-10-22 日本曹達株式会社 培養装置、担体支持装置、および培養対象の製造方法
WO2020213632A1 (ja) * 2019-04-17 2020-10-22 日本曹達株式会社 培養装置、担体支持装置、および培養対象の製造方法
JP2021073965A (ja) * 2019-11-07 2021-05-20 耕 淵辺 付着藻類を用いた水産飼料

Also Published As

Publication number Publication date
EP3670642A1 (en) 2020-06-24
US20210130766A1 (en) 2021-05-06
EP3670642A4 (en) 2021-05-19
TWI674318B (zh) 2019-10-11
TW201920646A (zh) 2019-06-01
JPWO2019035455A1 (ja) 2020-09-03
CN111108185A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2019009221A1 (ja) 培養装置、担体、および培養対象回収方法
WO2019035455A1 (ja) 微生物培養システム
JP6152933B2 (ja) クロレラ培養システム及びクロレラの培養方法
CN103820318B (zh) 光生物养殖装置
CN103717728A (zh) 使用固定化藻类生产和收获藻类生物质和产物的方法
US20110065165A1 (en) Method for culturing planktonic microalgae
CN104328031A (zh) 表面生长式培养板、培养单元、培养系统及方法
JP2019033682A (ja) 微生物培養システム及び微生物の培養方法
JP2019010037A (ja) 微生物の培養及び回収方法
WO2020004388A1 (ja) 培養装置、培養ユニット、および培養対象回収方法
JP2019033678A (ja) 微生物の連続培養方法
EP3360954A1 (en) Floating biofilm
JP2019004809A (ja) 微生物の培養方法
KR101372328B1 (ko) 비닐 시트형 광생물반응기 및 이의 제작방법
JP6810669B2 (ja) 微生物培養システム
US20170166849A1 (en) Air accordion bioreactor
US20240008428A1 (en) Apparatus and method for culturing sphagnum
JP7345194B2 (ja) 培養装置、培養対象回収方法、および担体押圧ローラ
CN203999631U (zh) 光生物养殖装置
WO2020213632A1 (ja) 培養装置、担体支持装置、および培養対象の製造方法
WO2020213633A1 (ja) 培養装置、担体支持装置、および培養対象の製造方法
JP6670015B2 (ja) 微細藻類のエネルギー低消費型培養方法
DK202100791A1 (en) Bioreactor for stationary biofilms of photosynthetically active microorganisms
JP2022087852A (ja) 培養装置、担体支持装置、および培養対象の製造方法
ES2673369B2 (es) Método de cultivo y sistema de cultivo de biomasa de consorcios ad-hoc de microalgas y cianobacterias en biofilm con fines industriales.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536779

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018845670

Country of ref document: EP

Effective date: 20200316