WO2019035423A1 - 電気抵抗溶接用電極および気密維持方法 - Google Patents

電気抵抗溶接用電極および気密維持方法 Download PDF

Info

Publication number
WO2019035423A1
WO2019035423A1 PCT/JP2018/030085 JP2018030085W WO2019035423A1 WO 2019035423 A1 WO2019035423 A1 WO 2019035423A1 JP 2018030085 W JP2018030085 W JP 2018030085W WO 2019035423 A1 WO2019035423 A1 WO 2019035423A1
Authority
WO
WIPO (PCT)
Prior art keywords
face
movable end
guide pin
hole
end surface
Prior art date
Application number
PCT/JP2018/030085
Other languages
English (en)
French (fr)
Inventor
青山 省司
青山 好高
Original Assignee
青山 省司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青山 省司 filed Critical 青山 省司
Priority to CN201880052517.1A priority Critical patent/CN111050985B/zh
Priority to US16/629,058 priority patent/US11453082B2/en
Priority to RU2020106715A priority patent/RU2757657C2/ru
Priority to EP18846518.1A priority patent/EP3670065B1/en
Priority to CA3069109A priority patent/CA3069109A1/en
Publication of WO2019035423A1 publication Critical patent/WO2019035423A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/14Projection welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3009Pressure electrodes
    • B23K11/3018Cooled pressure electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0205Non-consumable electrodes; C-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent

Definitions

  • the present invention relates to an electrode for electrical resistance welding and a method for maintaining airtightness, in which the end face of a sliding portion made of a synthetic resin material is in close contact with or separated from the inner end face formed in the electrode body to ventilate and shut off cooling air.
  • the electrode for electrical resistance welding described in JP-A-2002-248578, JP-A-2017-006982, JP-A-2017-047469, and JP-A-2017-136639 have large diameter holes in the electrode main body.
  • a guide hole consisting of a medium diameter hole and a small diameter hole is formed, and a sliding portion made of a synthetic resin material with a guide pin is fitted in the guide hole, and the sliding portion is formed on the inner end face formed in a part of the guide hole.
  • the end surfaces formed in the above are in close contact with each other to block the flow of cooling air, and the end surfaces are separated from the inner end surface to flow the cooling air.
  • JP 2002-248578 A JP, 2017-006982, A JP, 2017-047469, A JP, 2017-136639, A
  • the present invention is provided to solve the above-mentioned problems, and raises the surface pressure of the movable end surface formed on the sliding portion made of a synthetic resin material, thereby causing the harmful effects associated with the intervention of the minute metal pieces. It is an object of the present invention to eliminate the misalignment and to substantially eliminate misalignment and inclination of the guide pin by selecting the sliding state of the sliding portion.
  • a circular cross-section electrode body is constructed using a metallic material such as a copper alloy
  • a guide pin having a circular cross section which protrudes from the end face of the electrode body on which the steel plate component is mounted and penetrates the lower hole of the steel plate component is made of a heat resistant hard material such as a metal material or a ceramic material
  • a slide portion having a circular cross section, which is slidably fitted in a guide hole formed in the electrode main body and in which a guide pin is inserted at a central portion, is made of a synthetic resin material
  • the guide hole is composed of a large diameter hole, a medium diameter hole and a small diameter hole,
  • the large diameter portion formed in the sliding portion is fitted into the large diameter hole in a state in which it can slide with substantially no gap
  • the medium diameter portion formed in the sliding portion is fitted in the medium diameter hole in a state where it can slide with substantially no gap
  • the stationary inner end face and the movable end face are disposed on an imaginary plane in which the central axes of the electrode bodies intersect perpendicularly,
  • the length in the central axis direction of the electrode body in which the medium diameter portion is fitted into the medium diameter hole is set to be shorter than the length at which the guide pin retracts during welding,
  • a pressing means for pressing the movable end face against the stationary inner end face is disposed in the guide hole;
  • the width dimension of the movable end surface seen in the diameter direction of the electrode body is less than half the thickness dimension of the large diameter portion at the place where the guide pin is inserted, thereby reducing the area of the movable end surface
  • the pressing force of the movable end face against the end face is increased, and a minute metal piece entering the close contact area between the movable end face and the stationary inner end face is pushed into the base material of the sliding portion from the movable end face;
  • the width dimension of the movable end as viewed in the diameter direction of the electrode body is less than
  • the width dimension of the movable end surface viewed in the diameter direction of the electrode body is less than half the thickness dimension of the large diameter portion where the guide pin is inserted. For this reason, the area of the movable end surface is reduced to increase the pressing force of the movable end surface against the stationary inner end surface, and the minute metal pieces that have entered the close contact portion between the movable end surface and the stationary inner end surface It is pushed into the material.
  • the contact area of the movable end surface with the stationary inner end surface is reduced, the pressure per unit area, that is, the surface pressure is increased. Therefore, the minute metal pieces reaching the close contact portion are sandwiched between the stationary inner end surface which is a metal surface and the movable end surface which is a surface made of a synthetic resin material, and the metal pieces are embedded in the base material of the soft sliding portion. And no air gap is formed between the stationary inner end surface and the movable end surface.
  • the metal piece is embedded in the base material of the soft sliding portion, and no air gap is formed between the stationary inner end surface and the movable end surface. Air tightness can be secured and economic loss due to air leakage can be avoided. Furthermore, if the air leakage continues, noise is generated by the air blow and the working environment of the worker is deteriorated. However, the environmental improvement is achieved by maintaining the above-mentioned airtightness.
  • the area of the movable end surface made of synthetic resin material is reduced to increase the surface pressure, and the small metal piece is strongly pressed against the movable end surface, and the metal piece is embedded in the base material of the sliding portion from the movable end surface.
  • the width dimension of the movable end face as viewed in the diameter direction of the electrode body is less than half the thickness dimension of the large diameter portion where the guide pin is inserted. For this reason, the thickness dimension of the middle diameter portion is set large, and acts to receive the external force acting on the guide pin in the diameter direction of the electrode body.
  • the sliding part has two parts, the large diameter part and the medium diameter part, sliding in the large diameter hole and the medium diameter hole, so the sliding part where the guide pin is integrated is in a state of two-point support It has become. Therefore, even if an external force is applied to the guide pin protruding from the end face of the electrode body due to a collision of steel plate parts or the like in the diametrical direction of the electrode body, the amount of inclination displacement of the guide pin or the sliding portion is substantially It does not matter. Therefore, the tight contact between the stationary inner end face and the movable end face is not impaired, and reliable airtight maintenance can be ensured.
  • the diameter of the medium diameter part approaches the diameter of the large diameter part, whereby the diameter of the medium diameter part can be set large.
  • the thickness of the medium diameter part can also be made as large as possible. Therefore, since the external force in the diametrical direction is received by the medium diameter portion having a large diameter and an increased thickness, elastic deformation in the middle diameter portion can be reduced, and the amount of inclination displacement of the guide pin and the sliding portion can be reduced. It can be at a level that is practically problem free. In particular, it is effective to reduce the amount of elastic deformation by increasing the diameter.
  • Such an increase in thickness and diameter of the medium-diameter portion is realized in correlation with reducing the width dimension of the movable end surface. That is, the increase in the thickness and the diameter of the medium diameter portion and the increase in the surface pressure of the movable end surface are compatible with each other.
  • Fine irregularities are left on the surface of the movable end face by cutting finish processing, injection molding, etc., but the convex portion of the uneven portion pressed against the stationary inner end face is crushed by the above-mentioned surface pressure improvement. As a result, the adhesion between the synthetic resin end face and the metal end face can be improved.
  • the invention according to claim 2 is The electrical resistance welding according to claim 1, wherein a ratio of a width dimension of the movable end surface to a thickness dimension of the large diameter portion at a position where a guide pin is inserted is less than 0.5 to 0.3 or more. It is an electrode.
  • the width dimension of the movable end surface is half or more of the thickness dimension of the large diameter portion where the guide pin is inserted, that is, the ratio is 0.5 or more, the contact area of the annular movable end surface becomes excessive. Such surface pressure increase and pressing of the metal piece are not satisfactorily achieved.
  • the upper limit side is preferably less than 0.5.
  • the contact area of the movable end face becomes too small, the sealing area of the cooling air becomes insufficient, the sealing action becomes slow, and it is not preferable in terms of airtightness maintenance.
  • the lower limit side is preferably 0.3 or more.
  • a circular cross-section electrode body is constructed using a metallic material such as a copper alloy
  • a guide pin having a circular cross section which protrudes from the end face of the electrode body on which the steel plate component is mounted and penetrates the lower hole of the steel plate component is made of a heat resistant hard material such as a metal material or a ceramic material
  • a slide portion having a circular cross section, which is slidably fitted in a guide hole formed in the electrode main body and in which a guide pin is inserted at a central portion, is made of a synthetic resin material
  • the guide hole is composed of a large diameter hole, a medium diameter hole and a small diameter hole,
  • the large diameter portion formed in the sliding portion is fitted into the large diameter hole in a state in which it can slide with substantially no gap
  • the medium diameter portion formed in the sliding portion is fitted in the medium diameter hole in a state where it can slide with substantially no gap
  • the stationary inner end face and the movable end face are disposed on an imaginary plane in which the central axes of the electrode bodies intersect perpendicularly,
  • the length in the central axis direction of the electrode body in which the medium diameter portion is fitted into the medium diameter hole is set to be shorter than the length at which the guide pin retracts during welding,
  • a pressing means for pressing the movable end face against the stationary inner end face is disposed in the guide hole;
  • the width dimension of the movable end surface seen in the diameter direction of the electrode body is less than half the thickness dimension of the large diameter portion at the place where the guide pin is inserted, thereby reducing the area of the movable end surface Increase the pressing force of the movable end face against the end face, and push the tiny metal piece that has entered the close contact area between the movable end face and the stationary inner end face from the movable end face into the base material of the sliding part
  • the width dimension of the movable end as viewed in the diameter direction of the electrode body is less than half the thickness dimension of
  • the effect of the invention of the airtight maintenance method is the same as the effect of the above-mentioned electrode for electrical resistance welding.
  • FIG. 1B is a cross-sectional view taken along the line BB in FIG. 1A showing the dimensional relationship of W1 to W3. It is a longitudinal cross-sectional view of a local portion showing the dimensional relationship of W1 to W3. It is sectional drawing which shows the pressing-in state of a metal piece. It is a partial top view of the movable end face which shows existence of a metal piece. It is sectional drawing which shows the state before a metal piece is pushed. It is sectional drawing which shows the state after the metal piece was pushed in. It is sectional drawing in the case of a projection bolt.
  • 1A-4 illustrate an embodiment of the present invention.
  • the electrode body 1 made of a copper alloy conductive metal material such as chromium copper has a cylindrical shape, is circular in cross section, and has the fixing portion 2 inserted into the stationary member 11 and the steel plate component 3 mounted thereon
  • the cap portion 4 to be formed is coupled at the screw portion 5 to form the electrode body 1 having a circular cross section.
  • a guide hole 6 having a circular cross section is formed in the electrode body 1, and the guide hole 6 is formed in the cap portion 4 smaller in diameter than the large diameter hole 7 formed in the fixed portion 2 and the large diameter hole 7.
  • the medium diameter hole 8 and a small diameter hole 9 smaller than the medium diameter hole 8 are formed, and the large diameter hole 7, the medium diameter hole 8 and the small diameter hole 9 are coaxially aligned on the central axis OO of the electrode main body 1 It is arranged in the state.
  • a small diameter hole 9 having a diameter smaller than that of the middle diameter hole 8 is provided on the central axis OO.
  • the guide pin 12 having a circular cross section which protrudes from the end face of the electrode body 1 on which the steel plate part 3 is mounted and penetrates the lower hole 10 of the steel plate part 3 is made of heat resistant hard material such as metal material or ceramic material such as stainless steel. It is configured.
  • a resin having excellent heat resistance and abrasion resistance among polyamide resins it is also possible to use a resin having excellent heat resistance and abrasion resistance among polyamide resins.
  • the guide pin 12 is inserted into the central portion of the sliding portion 13 so that the guide pin 12 and the sliding portion 13 are integrated.
  • a structure for integrating the guide pin 12 into the sliding portion 13 a method of molding the guide pin 12 together at the time of injection molding of the sliding portion 13, a method of providing a coupling bolt structure portion to the guide pin 12, etc.
  • Various things can be adopted.
  • the latter is the type of joint bolt structure.
  • a bolt 14 is integrally formed at the lower end portion of the guide pin 12 so that the bolt 14 penetrates the bottom member 15 of the sliding portion 13 and the washer 16 is assembled and tightened by the lock nut 17.
  • the sliding portion 13 has an insulating function so that when the movable electrode 18 paired with the electrode main body 1 operates and a welding current is supplied, the current flows only from the welding projection 20 of the nut 19 to the steel plate part 3 Plays.
  • the nut 19 is for projection welding, and a screw hole 28 is formed at the center of the square main body, and welding protrusions 20 are provided at four corners.
  • the open end of the screw hole 28 is engaged with the tapered portion 21 of the guide pin 12.
  • the compression coil spring 22 is fitted between the washer 16 and the inner bottom surface of the guide hole 6, and the tension acts on the sliding portion 13.
  • Reference numeral 23 denotes an insulating sheet fitted in the inner bottom surface of the guide hole 6.
  • the tension of the compression coil spring 22 establishes pressure contact of the movable end surface with the stationary inner end surface described later.
  • the compression coil spring 22 is a pressurizing means, and it is also possible to use the pressure of compressed air instead.
  • a large diameter portion 24 and a medium diameter portion 25 are formed in the sliding portion 13, and a guide pin 12 having a diameter smaller than that of the middle diameter portion 25 is integrated.
  • the large diameter portion 24 is fitted in the large diameter hole 7 in a state where the large diameter portion 24 can slide with substantially no gap with the inner surface of the large diameter hole 7, and the middle diameter portion 25 is the inner surface of the middle diameter hole 8. And is fitted into the large diameter hole 8 in a slidable manner with substantially no gap therebetween.
  • a ventilation gap 26 through which cooling air passes when the guide pin 12 is pushed down is formed between the small diameter hole 9 and the guide pin 12 by the guide pin 12 which penetrates the small diameter hole 9 and protrudes from the end face of the electrode body 1. Yes.
  • the length in the central axis line OO direction of the electrode body in which the medium diameter portion 25 is fitted into the medium diameter hole 8 is set to be shorter than the length at which the guide pin 12 retracts at the time of welding.
  • the tapered portion 27 is formed on the upper portion of the medium diameter portion 25 and the length in the central axis OO direction in which the medium diameter portion 25 is fitted into the medium diameter hole 8 includes the tapered portion 27.
  • There is no length L2. Therefore, the length L2 in the central axis line OO direction of the electrode body in which the medium diameter portion 25 is fitted into the medium diameter hole 8 is set shorter than the length L1 at which the guide pin 12 recedes during welding. .
  • a vent 29 is formed to guide the cooling air to the guide hole 6.
  • a concave groove in the direction of the central axis OO can be formed on the outer peripheral surface of the large diameter portion 24.
  • the flat portion 30 in the direction of the central axis OO is formed on the outer peripheral surface of the large diameter portion 24 to form the air passage 31 constituted by the flat surface 30 and the arc shaped inner surface of the large diameter hole 7. It is done.
  • Such flat portions 30 are formed at an interval of 90 degrees, and air passages are provided at four places.
  • An annular stationary inner end surface 32 is formed at the boundary between the medium diameter hole 8 of the guide hole 6 and the large diameter hole 7. Further, an annular movable end face 33 is formed at the boundary between the medium diameter portion 25 and the large diameter portion 24 of the sliding portion 13.
  • the stationary inner end face 32 and the movable end face 33 are disposed on a virtual plane where the central axis OO of the electrode body 1 intersects perpendicularly, and the tension of the compression coil spring 22 causes the movable end face 33 to be annular relative to the stationary inner end face 32 It adheres in the state, and sealing of cooling air is made by this adhesion.
  • the width of the stationary inner end face 32 seen in the diameter direction of the electrode main body 1 is large, but the width of the place where the movable end face 33 is in close contact is narrow. The area is considered small. This close contact width is W1 described later.
  • the width dimension W1 of the movable end face 33 viewed in the diameter direction of the electrode main body 1 is a dimension obtained by subtracting the thickness dimension W2 of the middle diameter portion 25 from the thickness dimension W3 of the large diameter portion 24 as seen in FIG. 2A. It is a value.
  • the thickness dimension of the large diameter portion 24 where the guide pin 12 is inserted is W3.
  • the thickness dimension of the medium diameter part 25 of the location where the guide pin 12 is inserted is W2. Since the sliding portion 13 is fitted into the large diameter hole 7 and the medium diameter hole 8, the thickness of the sliding portion 13 is the thickness dimension of the large diameter portion 24 at the place where the guide pin 12 is inserted. It is divided into W3 and a thickness dimension W2 of the medium diameter portion 25 viewed in the diameter direction of the electrode main body 1.
  • the contact area of the movable end face 33 is reduced by the cross-sectional area of the air passage 31 as apparent from FIG. 2A and the like.
  • the reduction of the width dimension W1 of the movable end surface 33 generated by the formation of the air passage 31 is determined so as not to impair the sealing of the cooling air.
  • FIG. 2A for the sake of clarity, hatching of the metal cross-sectional portion and satin of the synthetic resin portion are not described.
  • each part varies depending on the size of the electrode.
  • a square projection nut 19 measuring 12 mm in length and width and 7.2 mm in thickness is subjected to electric resistance welding to the steel plate part 3 with a thickness of 0.7 mm.
  • each part of the electrode for welding such a projection nut 19 is as follows.
  • ⁇ Diameter dimension of guide pin 12 9.4 mm ⁇
  • Dimensions of large diameter part 24 17.8 mm ⁇
  • Thickness dimension W3 of large diameter part of guide pin insertion point W 4.2 mm ⁇
  • the width dimension W1 of the movable end surface 33 seen in the diameter direction of the electrode body 1 is less than half the thickness dimension W3 of the large diameter portion 24 at the place where the guide pin 12 is inserted.
  • the ratio of is 0.43.
  • the minute metal pieces 34 scattered from the fusion zone are usually in the form of rounded particles having a diameter of about 0.1 to 0.2 mm or particles having angular portions.
  • a metal piece 34 reaches the movable end face 33 for some reason as described above, it stops in a state of being attached to the surface of the movable end face 33.
  • the air flow of cooling air continues even at this stop, but the metal piece 34 is stopped on the surface of the movable end face 33 because the metal piece 34 is made of synthetic resin material and movable as shown in FIG. 3C. It is considered to be partially buried in the end face 33 or sticking out and sticking out.
  • the seating area of the movable end face 33 is a close contact area to the stationary inner end face 32.
  • This area is a portion where the width dimension of the movable end face 33 viewed in the diameter direction of the electrode body 1 is a position where the guide pin 12 is inserted. It is less than half the thickness dimension of the large diameter portion 24, and as a specific numerical value in the present embodiment, W1 / W3 is set to 0.43. By setting it as such 0.43, the width dimension of movable end face 33 becomes smaller, and the total contact area of movable end face 33 is set smaller.
  • the pressing force per unit area ie, the surface pressure
  • the minute metal pieces 34 which reach the close contact portion have the stationary inner end face 32 which is a metal surface and the movable end face 33 which is a synthetic resin material surface.
  • the stationary inner end surface 32 and the movable end surface 33 so that the metal piece 34 is embedded in the base material of the soft sliding portion 13 without being formed. Airtightness is maintained, and cooling air is prevented from leaking.
  • the width dimension of the movable end surface 33 becomes significantly smaller, and the total contact area of the movable end surface 33 is set to be significantly smaller.
  • the pressing force per unit area ie, the surface pressure
  • the minute metal pieces 34 which reach the close contact portion have the stationary inner end face 32 which is a metal surface and the movable end face 33 which is a synthetic resin material surface.
  • the metal piece 34 is embedded in the base material of the soft sliding portion 13.
  • the adhesion width W1 of the movable end surface 33 becomes too short, and it becomes difficult to secure a sufficient sealing action.
  • the dimension in the width direction of the movable end surface 33 becomes short, the phenomenon that the large metal piece 34 adheres in a state of crossing the width W 1 of the movable end surface 33 occurs. The thing which is not buried is seen.
  • a groove-shaped void was formed in the width direction of the movable end face 33 due to the deformation of the synthetic resin material at the time of burial. Due to these phenomena, it has been recognized that air leakage occurs even if the movable end face 33 is in close contact with the stationary inner end face 32, and airtight maintenance can not be achieved.
  • the diameter of the medium diameter portion 25 is advantageous to make the diameter of the medium diameter portion 25 as large as possible and to make the thickness as large as possible.
  • the increase in thickness and the increase in diameter of the medium diameter portion 25 are achieved by setting the width dimension W1 of the movable end surface 33 to less than half of the thickness dimension W3 of the large diameter portion 24.
  • the guide pin 12 When the operator's hand is upset and the steel plate part 3 collides with the guide pin 12 in the diameter direction of the electrode main body 1, the guide pin 12 tries to tilt, but movable so that the diameter of the medium diameter portion 25 becomes large. Since the width dimension W1 of the end face 33 is set, the force per unit area acting on the cylindrical surface of the medium diameter portion 25 is reduced, and the inclination angle does not become a substantial problem. Furthermore, the amount of compressive deformation of the medium diameter portion 25 is also reduced by the reduction of the force, which is effective for reducing the inclination angle.
  • the projection bolt 36 is constituted by a shaft portion 37 formed with an external thread, a circular flange 38 integrated with the shaft portion 37, and a welding projection 39 provided on the lower surface of the flange 38.
  • the guide pin 12 has a tubular hollow shape and is provided with a receiving hole 40 into which the shaft 37 is inserted. The rest of the configuration is the same as in the previous case, including parts not shown, and members of similar functions are denoted by the same reference numerals.
  • FIG. 1A shows a state in which the movable end surface 33 is in close contact with the stationary inner end surface 32 by the tension of the compression coil spring 22 to seal the flow of the cooling air. At this time, if a minute metal piece 34 is interposed between the movable end face 33 and the stationary inner end face 32, airtightness is maintained by the pushing operation described in FIG.
  • the medium diameter portion 25 which has entered the medium diameter hole 8 comes out of the medium diameter hole 8 to form a cooling air passage.
  • the cooling air passes through the vent 29, the air passage 31, the medium diameter hole 8 and the venting gap 26, and is dissipated to the outside through the gap between the lower surface of the nut 19 and the steel plate part 3.
  • impurities such as spatters are eliminated in the direction away from the electrodes.
  • an air passage is initially formed by the tapered portion 27. Due to the inclination of the taper portion 27, an air passage having a large flow passage area is formed at an early stage, which is suitable for reliable cooling air flow.
  • the guide pin 12 returns, the medium diameter portion 25 smoothly enters the medium diameter hole 8 by the guide function of the tapered portion 27. The same operation is performed for the projection bolt 36 shown in FIG.
  • the width dimension W1 of the movable end surface 33 as viewed in the diameter direction of the electrode main body 1 is less than half the thickness dimension W3 of the large diameter portion 24 in the portion where the guide pin 12 is inserted. For this reason, the area of the movable end face 33 is reduced to increase the pressing force of the movable end face 33 against the stationary inner end face 32, and the minute metal piece 34 entering the close contact portion between the movable end face 33 and the stationary inner end face 32 33 is pushed into the base material of the sliding portion 13.
  • the minute metal piece 34 which has reached the close contact position is sandwiched between the stationary inner end face 32 which is a metal surface and the movable end face 33 which is a surface made of a synthetic resin material. In the state of being embedded in the base material, no air gap is formed between the stationary inner end surface 32 and the movable end surface 33.
  • the cooling air circulates vigorously and minute metal pieces 34 and carbides etc. It is emitted from the melting point to the outside of the electrode.
  • a minute metal piece 34 that is vigorously scattered from the melting portion due to rapid air expansion collides with the outer peripheral surface of the guide pin 12 and bounces back, or the air It may move against the flow and reach the movable end face 33.
  • Such a phenomenon is considered to be possible because the dynamic pressure of the air flow acting on the metal piece 34 is low when the metal piece 34 is too small, so that it is possible to move against the air flow.
  • the metal piece 34 is embedded in the base material of the soft sliding portion 13 so that an air gap is formed between the stationary inner end surface 32 and the movable end surface 33.
  • complete airtightness can be maintained, and economic loss due to air leakage can be avoided.
  • noise is generated by the air blow and the working environment of the worker is deteriorated.
  • the environmental improvement is achieved by maintaining the above-mentioned airtightness.
  • the area of the movable end surface 33 made of synthetic resin material is reduced to increase the surface pressure, and the small metal piece 34 is strongly pressed against the movable end surface 33 so that the metal piece 34 slides from the movable end surface 33 It sinks into the thirteen base metals.
  • the width dimension W1 of the movable end surface 33 as viewed in the diameter direction of the electrode main body 1 is less than half the thickness dimension W3 of the large diameter portion 24 in the portion where the guide pin 12 is inserted. For this reason, the thickness dimension of the middle diameter portion 25 is set large, and it acts to receive the external force acting on the guide pin 12 in the diameter direction of the electrode main body 1.
  • the sliding portion 13 has two portions of the large diameter portion 24 and the medium diameter portion 25 sliding on the large diameter hole 7 and the medium diameter hole 8, so the sliding portion 13 where the guide pin 12 is integrated is , It is in the state of two points support. Therefore, even if an external force acts on the guide pin 12 protruding from the end face of the electrode body 1 due to a collision of the steel plate part 3 or the like, the inclination of the guide pin 12 or the sliding portion 13 The amount of displacement does not matter substantially. Therefore, the tight contact between the stationary inner end surface 32 and the movable end surface 33 is not lost, and reliable airtight maintenance can be ensured.
  • the diameter of the middle diameter portion 25 approaches the diameter of the large diameter portion 24, whereby the diameter of the middle diameter portion 25 can be set large.
  • the thickness of the medium diameter portion 25 can be made as large as possible. Therefore, since the external force in the diameter direction is received by the medium diameter portion 25 having a large diameter and an increased thickness, elastic deformation in the middle diameter portion 25 can be reduced, and the guide pin 12 and the sliding portion 13 The amount of tilt displacement can be made to a level that is substantially problem free. In particular, it is effective to reduce the amount of elastic deformation by increasing the diameter.
  • Such thickness expansion and diameter expansion of the middle diameter portion 25 are realized in correlation with the reduction of the width dimension W1 of the movable end surface 33. That is, the increase in the thickness and the diameter of the medium diameter portion 25 and the increase in the surface pressure of the movable end surface 33 are compatible with each other.
  • the ratio of the width dimension W1 of the movable end surface 33 to the thickness dimension W3 of the large diameter portion 24 in the portion where the guide pin 12 is inserted is less than 0.5 to 0.3 or more.
  • the ratio is 0.5 or more
  • adhesion of the annular movable end surface 33 The area is too large, and the increase in surface pressure and the pushing of the metal piece 34 as described above are not satisfactorily achieved.
  • the upper limit side is preferably less than 0.5.
  • the contact area of the movable end face 33 becomes too small, the sealing area of the cooling air becomes insufficient and the sealing action becomes slow, which is not preferable in terms of airtightness maintenance.
  • the lower limit side is preferably 0.3 or more.
  • a circular cross-section electrode body is constructed using a metallic material such as a copper alloy
  • a guide pin having a circular cross section which protrudes from the end face of the electrode body on which the steel plate component is mounted and penetrates the lower hole of the steel plate component is made of a heat resistant hard material such as a metal material or a ceramic material
  • a slide portion having a circular cross section, which is slidably fitted in a guide hole formed in the electrode main body and in which a guide pin is inserted at a central portion, is made of a synthetic resin material
  • the guide hole is composed of a large diameter hole, a medium diameter hole and a small diameter hole,
  • the large diameter portion formed in the sliding portion is fitted into the large diameter hole in a state in which it can slide with substantially no gap
  • the medium diameter portion formed in the sliding portion is fitted in the medium diameter hole in a state where it can slide with substantially no gap
  • the stationary inner end face and the movable end face are disposed on an imaginary plane in which the central axes of the electrode bodies intersect perpendicularly,
  • the length in the central axis direction of the electrode body in which the medium diameter portion is fitted into the medium diameter hole is set to be shorter than the length at which the guide pin retracts during welding,
  • a pressing means for pressing the movable end face against the stationary inner end face is disposed in the guide hole;
  • the width dimension of the movable end surface seen in the diameter direction of the electrode body is less than half the thickness dimension of the large diameter portion at the place where the guide pin is inserted, thereby reducing the area of the movable end surface Increase the pressing force of the movable end face against the end face, and push the tiny metal piece that has entered the close contact area between the movable end face and the stationary inner end face from the movable end face into the base material of the sliding part
  • the width dimension of the movable end as viewed in the diameter direction of the electrode body is less than half the thickness dimension of
  • the effect of the example of the airtight maintenance method is the same as the effect of the above-mentioned electrode for electrical resistance welding.
  • the surface pressure of the movable end face formed on the sliding portion made of synthetic resin material is increased, and the adverse effects caused by the intervention of the minute metal pieces are eliminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

ガイド孔6は大径孔7と中径孔8と小径孔9によって構成される。ガイド孔6に嵌め込まれている摺動部13は合成樹脂材料で構成され、摺動部13の大径部24が摺動できる状態で大径孔7に嵌め込まれ、中径部25が摺動できる状態で中径孔8に嵌め込まれる。ガイド孔6の静止内端面32に対して、摺動部13の可動端面33が密着するように構成される。可動端面の幅寸法W1を、大径部24の厚さ寸法W3の半分未満とすることにより、可動端面33の加圧力を高めて、微小な金属片34が可動端面33から摺動部13の母材内に押し込まれるように構成すると共に、中径部25の厚さ寸法を大きく設定する。

Description

電気抵抗溶接用電極および気密維持方法
 この発明は、電極本体内に形成した内端面に合成樹脂材料製の摺動部の端面が、密着したり離れたりして冷却空気の通気と遮断を行う、電気抵抗溶接用電極および気密維持方法に関している。
 特開2002-248578号公報、特開2017-006982号公報、特開2017-047469号公報、特開2017-136639号公報に記載されている電気抵抗溶接用電極は、電極本体内に大径孔、中径孔、小径孔からなるガイド孔が形成され、ガイドピン付きの合成樹脂材料製の摺動部がガイド孔に嵌め込まれており、ガイド孔の一部に形成した内端面に摺動部に形成した端面が密着して冷却空気の流通を遮断し、また、上記内端面から上記端面が離れて冷却空気の流通を行う。
特開2002-248578号公報 特開2017-006982号公報 特開2017-047469号公報 特開2017-136639号公報
 上記特許文献に記載されている技術においては、合成樹脂材料製の摺動部に形成した端面の密着面積について、その面積の大きさや密着箇所に入ってきた微小な金属片の処理に関する考察がなされていない。また、摺動部の摺動状態によってガイドピンの芯ずれや傾きを最少化することに関しても、何ら考察がなされていない。これらの事項が原因になって、上記特許文献に記載されている電極においては、冷却空気の気密性を確実に維持できる耐用期間が短くなっている。
 本発明は、上記の問題点を解決するために提供されたもので、合成樹脂材料製の摺動部に形成された可動端面の面圧を高めて、微小な金属片の介入にともなう弊害をなくすとともに、摺動部の摺動状態を選定してガイドピンの芯ずれや傾きを実質的に消去することを目的とする。
 請求項1記載の発明は、
 断面円形の電極本体が銅合金のような金属材料を用いて構成され、
 鋼板部品が載置される電極本体の端面から突出し、鋼板部品の下孔を貫通する断面円形のガイドピンが、金属材料またはセラミック材料などの耐熱硬質材料で構成され、
 電極本体に形成されているガイド孔に摺動できる状態で嵌め込まれているとともに、中心部にガイドピンが差し込まれている断面円形の摺動部が合成樹脂材料で構成され、
 ガイド孔は大径孔と中径孔と小径孔によって構成され、
 摺動部に形成した大径部が、実質的に隙間がなくて摺動できる状態で大径孔に嵌め込まれ、
 摺動部に形成した中径部が、実質的に隙間がなくて摺動できる状態で中径孔に嵌め込まれ、
 小径孔を貫通したガイドピンによって、ガイドピンが押し下げられたとき冷却空気が通過する通気隙間を小径孔とガイドピンの間に形成し、
 ガイド孔の中径孔と大径孔の境界部に形成された静止内端面に対して、摺動部の中径部と大径部の境界部に形成された可動端面が密着するように構成されているとともに、静止内端面と可動端面は電極本体の中心軸線が垂直に交わる仮想平面上に配置してあり、
 中径部が中径孔に嵌まり込んでいる電極本体の中心軸線方向の長さは、溶接時にガイドピンが後退する長さよりも短く設定してあり、
 可動端面を静止内端面に押し付ける加圧手段がガイド孔内に配置され、
 電極本体の直径方向で見た可動端面の幅寸法が、ガイドピンが差し込まれている箇所の大径部の厚さ寸法の半分未満とされることにより、可動端面の面積を小さくして静止内端面に対する可動端面の加圧力を高めて、可動端面と静止内端面の密着箇所に進入してきた微小な金属片が可動端面から摺動部の母材内に押し込まれるように構成し、
 電極本体の直径方向で見た可動端面の幅寸法が、ガイドピンが差し込まれている箇所の大径部の厚さ寸法の半分未満とされることにより、中径部の厚さ寸法を大きく設定して、電極本体の直径方向にガイドピンに対して作用する外力を受け止めるように構成したことを特徴とする電気抵抗溶接用電極である。
 電極本体の直径方向で見た可動端面の幅寸法が、ガイドピンが差し込まれている箇所の大径部の厚さ寸法の半分未満とされている。このため、可動端面の面積を小さくして静止内端面に対する可動端面の加圧力を高めて、可動端面と静止内端面の密着箇所に進入してきた微小な金属片が可動端面から摺動部の母材内に押し込まれる。
 静止内端面に対する可動端面の密着面積が小さくなるので、単位面積あたりの加圧力、すなわち面圧が大きくなる。したがって、密着箇所に到達した微小な金属片は、金属表面である静止内端面と合成樹脂材料製表面である可動端面の間で挟み付けられ、金属片は軟らかい摺動部の母材中に埋め込まれた状態になり、静止内端面と可動端面の間に空隙が形成されることがない。
 ガイドピンが押し下げられて、可動端面が静止内端面から離隔して両端面間に空隙が形成されると、冷却空気が勢いよく流通し、微小な金属片や炭化物などは気流で溶融局部から電極外へ発散される。通常はこのような発散であるが、金属溶融の際に、急激な空気膨張で溶融部から勢いよく飛散した微小な金属片がガイドピンの外周面に衝突して跳ね返されたりして空気流に逆らって移動し、可動端面に到達することがある。このような現象は、金属片が微小であると金属片に作用する空気流の動圧が低くなるために、空気流に逆らって移動することが可能になるものと考えられる。このような金属片が可動端面の表面に付着していると、ガイドピンが待機位置に戻ったときに、静止内端面と可動端面の間に空隙が形成され、冷却空気の流通を封止することができなくなる。上述のような金属片の異常な挙動は、冷却空気の流通が健全に維持されていれば、通常は発生しないのであるが、上述のような何らかの原因により、低い確率で発生することがある。
 しかしながら、本願発明においては上述のように、金属片は軟らかい摺動部の母材中に埋め込まれた状態になり、静止内端面と可動端面の間に空隙が形成されることがないため、完全な気密維持が確保でき、空気漏洩による経済的損失が回避できる。さらに、空気漏れが継続していると、空気噴出に伴う騒音が発生し、作業者の就労環境が悪化するのであるが、上記のような気密維持によって、環境改善がなされる。
 つまり、合成樹脂材料製可動端面の面積を小さくして面圧を高めることと、微小金属片を強く可動端面に押し付けることを相乗させて、金属片が可動端面から摺動部の母材へめり込むのである。
 電極本体の直径方向で見た可動端面の幅寸法は、ガイドピンが差し込まれている箇所の大径部の厚さ寸法の半分未満とされている。このため、中径部の厚さ寸法を大きく設定して、電極本体の直径方向にガイドピンに対して作用する外力を受け止めるように作用する。
 摺動部は、大径部と中径部の2箇所が大径孔や中径孔に摺動しているので、ガイドピンが一体化されている摺動部は、2点支持の状態になっている。したがって、鋼板部品の衝突などによって、電極本体の端面から突き出ているガイドピンに対して、電極本体の直径方向に外力が作用しても、ガイドピンや摺動部の傾き変位量は実質的に問題にはならない。したがって、静止内端面と可動端面との密着が損なわれるようなことがなく、確実な気密維持が確保できる。
 さらに、中径部の直径が大径部の直径に近づき、それによって中径部の直径を大きく設定できる。同時に、中径部の肉厚もできるだけ大きくすることができる。したがって、大径化されるとともに肉厚が増大した中径部によって直径方向の外力を受けるので、中径部における弾性変形を少なくすることができて、ガイドピンや摺動部の傾き変位量を実質的に問題がないレベルにすることができる。とくに、大径化による弾性変形量の低減が効果的である。このような中径部の肉厚拡大や直径の拡大は、可動端面の幅寸法を小さくすることに相関して実現している。つまり、中径部の肉厚拡大や直径の拡大と、可動端面の面圧増大が両立している。
 可動端面の表面には切削仕上げ加工やインジェクション成型などによって微細な凹凸が残存しているが、上記の面圧向上によって、静止内端面に押し付けられた凹凸部分の凸部が押し潰された状態になって、合成樹脂端面と金属端面の密着性向上が確保できる。
 請求項2記載の発明は、
 ガイドピンが差し込まれている箇所の前記大径部の厚さ寸法に対する前記可動端面の幅寸法の比が、0.5未満~0.3以上とされている請求項1記載の電気抵抗溶接用電極である。
 可動端面の幅寸法が、ガイドピンが差し込まれている箇所の大径部の厚さ寸法の半分以上、すなわち上記比が0.5以上になると、環状の可動端面の密着面積が過大となり、上述のような面圧増大と金属片の押し込みが満足に達成されない。上限側は、0.5未満が良好である。一方、上記比が0.3を下回ると、可動端面の密着面積が過小となり、冷却空気の封止面積が不足して封止作用が緩慢になり、気密性維持の面で好ましくない。下限側は、0.3以上が良好である。
 請求項3記載の発明は、
 断面円形の電極本体が銅合金のような金属材料を用いて構成され、
 鋼板部品が載置される電極本体の端面から突出し、鋼板部品の下孔を貫通する断面円形のガイドピンが、金属材料またはセラミック材料などの耐熱硬質材料で構成され、
 電極本体に形成されているガイド孔に摺動できる状態で嵌め込まれているとともに、中心部にガイドピンが差し込まれている断面円形の摺動部が合成樹脂材料で構成され、
 ガイド孔は大径孔と中径孔と小径孔によって構成され、
 摺動部に形成した大径部が、実質的に隙間がなくて摺動できる状態で大径孔に嵌め込まれ、
 摺動部に形成した中径部が、実質的に隙間がなくて摺動できる状態で中径孔に嵌め込まれ、
 小径孔を貫通したガイドピンによって、ガイドピンが押し下げられたとき冷却空気が通過する通気隙間を小径孔とガイドピンの間に形成し、
 ガイド孔の中径孔と大径孔の境界部に形成された静止内端面に対して、摺動部の中径部と大径部の境界部に形成された可動端面が密着するように構成されているとともに、静止内端面と可動端面は電極本体の中心軸線が垂直に交わる仮想平面上に配置してあり、
 中径部が中径孔に嵌まり込んでいる電極本体の中心軸線方向の長さは、溶接時にガイドピンが後退する長さよりも短く設定してあり、
 可動端面を静止内端面に押し付ける加圧手段がガイド孔内に配置され、
 電極本体の直径方向で見た可動端面の幅寸法が、ガイドピンが差し込まれている箇所の大径部の厚さ寸法の半分未満とされることにより、可動端面の面積を小さくして静止内端面に対する可動端面の加圧力を高めて、可動端面と静止内端面の密着箇所に進入してきた微小な金属片を、可動端面から摺動部の母材内に押し込み、
 電極本体の直径方向で見た可動端面の幅寸法が、ガイドピンが差し込まれている箇所の大径部の厚さ寸法の半分未満とされることにより、中径部の厚さ寸法を大きく設定して、電極本体の直径方向にガイドピンに対して作用する外力を、中径部において受け止めることを特徴とする電気抵抗溶接用電極の気密維持方法である。
 気密維持方法の発明の効果は、上記電気抵抗溶接用電極の効果と同じである。
電極全体の縦断面図である。 図1AのB-B断面図である。 図1AのC-C断面図である。 W1~W3の寸法関係を示す図1AのB-B断面図である。 W1~W3の寸法関係を示す局部の縦断面図である。 金属片の押し込み状態を示す断面図である。 金属片の存在を示す可動端面の部分的な平面図である。 金属片が押し込まれる前の状態を示す断面図である。 金属片が押し込まれた後の状態を示す断面図である。 プロジェクションボルトの場合の断面図である。
 つぎに、本発明に係る電気抵抗溶接用電極および気密維持方法を実施するための形態を説明する。
 図1A~図4は、本発明の実施例を示す。
 最初に、電極本体について説明する。
 クロム銅のような銅合金製導電性金属材料で作られた電極本体1は、円筒状の形状であり、断面円形とされ、静止部材11に差し込まれる固定部2と、鋼板部品3が載置されるキャップ部4がねじ部5において結合されて、断面円形の電極本体1が形成されている。電極本体1には断面円形のガイド孔6が形成され、このガイド孔6は、固定部2に形成された大径孔7と、この大径孔7よりも小径でキャップ部4に形成された中径孔8、この中径孔8よりも小径の小径孔9が形成され、大径孔7、中径孔8、小径孔9は、電極本体1の中心軸線O-O上に整列した同軸状態で配置されている。この中径孔8よりもさらに小径な小径孔9が中心軸線O-O上に設けてある。
 鋼板部品3が載置される電極本体1の端面から突出し、鋼板部品3の下孔10を貫通する断面円形のガイドピン12が、ステンレス鋼のような金属材料またはセラミック材料などの耐熱硬質材料で構成されている。
 また、後述のように、ガイド孔6に対して摺動状態で進退する断面円形の摺動部13が耐熱性に優れた絶縁性合成樹脂材料、例えば、ポリテトラフルオロエチレン[商品名=テフロン(登録商標)]によって構成されている。別の材料として、ポリアミド樹脂の中から、耐熱性、耐摩耗性にすぐれた樹脂を採用することも可能である。
 つぎに、ガイドピンと摺動部の一体化部品を説明する。
 摺動部13の中心部にガイドピン12を差し込んで、ガイドピン12と摺動部13の一体化が図られている。ガイドピン12を摺動部13に一体化する構造としては、摺動部13のインジェクション成型時に、ガイドピン12を一緒にモールドインする方法や、ガイドピン12に結合ボルト構造部を設ける方法など、種々なものが採用できる。
 ここでは、後者の結合ボルト構造部のタイプである。
 すなわち、ガイドピン12の下端部にこれと一体的にボルト14が形成され、摺動部13の底部材15にボルト14を貫通し、ワッシャ16を組み付けてロックナット17で締め付けてある。摺動部13は、電極本体1と対をなす可動電極18が動作して溶接電流が通電されたときに、電流がナット19の溶着用突起20から鋼板部品3にのみ流れるように、絶縁機能を果たしている。
 なお、ナット19はプロジェクション溶接用であり、四角い本体の中央にねじ孔28が形成され、四隅に溶着用突起20が設けてある。ねじ孔28の開口端がガイドピン12のテーパ部21に係合している。このようにナット19が鋼板部品3から浮上した状態になっているので、可動電極18が進出する溶接時に、ガイドピン12が後退する長さL1が存置してある。
 圧縮コイルスプリング22は、ワッシャ16とガイド孔6の内底面の間に嵌め込まれており、その張力が摺動部13に作用している。なお、符号23は、ガイド孔6の内底面に嵌め込んだ絶縁シートを示している。圧縮コイルスプリング22の張力が、後述の静止内端面に対する可動端面の加圧密着を成立させている。圧縮コイルスプリング22は、加圧手段であり、これに換えて圧縮空気の圧力を利用することも可能である。
 つぎに、摺動部各部とガイド孔各部の嵌め合い対応関係を説明する。
 摺動部13には、大径部24と中径部25が形成され、中径部25よりも小径のガイドピン12が一体化されている。大径部24が、大径孔7の内面との間に実質的に隙間がなくて摺動できる状態で大径孔7に嵌め込んであり、中径部25が、中径孔8の内面との間に実質的に隙間がなくて摺動できる状態で大径孔8に嵌め込んである。このような「・・実質的に隙間がなくて摺動できる状態・・」というのは、摺動部13に電極本体1の直径方向の力を作用させても、隙間感覚のあるカタカタといったがたつき感触がなく、しかも中心軸線O-O方向の摺動が可能な状態を意味している。小径孔9を貫通して電極本体1の端面から突き出ているガイドピン12によって、ガイドピン12が押し下げられたとき冷却空気が通過する通気隙間26が、小径孔9とガイドピン12の間に形成してある。
 中径部25が中径孔8に嵌まり込んでいる電極本体の中心軸線O-O方向の長さは、溶接時にガイドピン12が後退する長さよりも短く設定してある。この実施例では、中径部25の上部にテーパ部27が形成され、中径部25が中径孔8に嵌まり込んでいる中心軸線O-O方向の長さは、テーパ部27を含まない長さL2である。したがって、中径部25が中径孔8に嵌まり込んでいる電極本体の中心軸線O-O方向の長さL2は、溶接時にガイドピン12が後退する長さL1よりも短く設定してある。ガイドピン12が押し下げられると、最初に、テーパ部27と中径孔8の間に通気隙間が形成される。
 つぎに、冷却空気の断続構造を説明する。
 冷却空気をガイド孔6に導く通気口29が形成してある。大径部24と大径孔7の摺動箇所の空気通路を確保するために、大径部24の外周面に中心軸線O-O方向の凹溝を形成することもできるが、ここでは図1Bに示すように、大径部24の外周面に中心軸線O-O方向の平面部30を形成して、平面部30と大径孔7の円弧型内面で構成された空気通路31が形成されている。このような平面部30を90度間隔で形成して、4箇所に空気通路を設けている。
 ガイド孔6の中径孔8と大径孔7の境界部に環状の静止内端面32が形成されている。また、摺動部13の中径部25と大径部24の境界部に環状の可動端面33が形成されている。静止内端面32と可動端面33は電極本体1の中心軸線O-Oが垂直に交わる仮想平面上に配置してあり、圧縮コイルスプリング22の張力によって可動端面33が静止内端面32に対して環状状態で密着し、この密着によって冷却空気の封止がなされている。
 図2Bに示すように、電極本体1の直径方向で見た静止内端面32の幅は大きいのであるが、可動端面33が密着している箇所の幅は狭くなっており、可動端面33の密着面積は小さなものとされている。この密着幅が、後述のW1である。
 つぎに、可動端面の幅寸法について説明する。
 電極本体1の直径方向で見た可動端面33の幅寸法W1は、図2Aに見られるように、大径部24の肉厚寸法W3から、中径部25の肉厚寸法W2を引いた寸法値である。ガイドピン12が差し込まれている箇所の大径部24の厚さ寸法がW3である。そして、ガイドピン12が差し込まれている箇所の中径部25の厚さ寸法がW2である。摺動部13は、大径孔7と中径孔8に嵌まり込んでいるので、摺動部13の肉厚は、ガイドピン12が差し込まれている箇所の大径部24の厚さ寸法W3と、電極本体1の直径方向で見た中径部25の厚さ寸法W2に区分される。
 なお、可動端面33の密着面積は、図2Aなどから明らかなように、空気通路31の断面積の分が少なくなっている。この空気通路31の形成によって発生する可動端面33の幅寸法W1の減少は、冷却空気の封止を損なわないように定めてある。さらに、図2Aにおいては、見やすくするために、金属断面部のハッチングや合成樹脂製部の梨地の記載を行っていない。
 つぎに、各部の寸法について説明する。
 各部の寸法は、電極の大きさ規模によって様々である。ここでは、縦・横各12mm、厚さ7.2mmの四角いプロジェクションナット19を厚さ0.7mmの鋼板部品3に電気抵抗溶接をするものである。
 このようなプロジェクションナット19を溶接する電極の各部寸法の一例は、つぎのとおりである。
・ガイドピン12の直径寸法=9.4mm
・大径部24の外形寸法  =17.8mm
・ガイドピン差し込み箇所の大径部の厚さ寸法W3=4.2mm
・中径部25の外形寸法  =14.3mm
・電極本体の直径方向で見た可動端面の幅寸法W1=1.8mm
・大径部の厚さ寸法W3に対する可動端面の幅寸法W1の比=0.43
・中径部25が中径孔8に嵌まり込んでいる長さL2=2.4mm
・溶接時にガイドピンが後退する長さL1=4.4mm
 電極本体1の直径方向で見た可動端面33の幅寸法W1は、ガイドピン12が差し込まれている箇所の大径部24の厚さ寸法W3の半分未満とされており、ここではW3に対するW1の比が0.43である。
 つぎに、微小な金属片の挙動について説明する。
 ガイドピンが押し下げられて、可動端面が静止内端面から離隔して両端面間に空隙が形成されると、冷却空気が勢いよく流通し、微小な金属片や炭化物などは気流で溶融局部から電極外へ発散される。通常はこのような発散であるが、金属溶融の際に、急激な空気膨張で溶融部から勢いよく飛散した微小な金属片がガイドピンの外周面に衝突して跳ね返されたりして空気流に逆らって移動し、可動端面に到達することがある。このような現象は、金属片が微小であると金属片に作用する空気流の動圧が低くなるために、空気流に逆らって移動することが可能になるものと考えられる。このような金属片が可動端面の表面に付着していると、ガイドピンが待機位置に戻ったときに、静止内端面と可動端面の間に空隙が形成され、冷却空気の流通を封止することができなくなる。上述のような金属片の異常な挙動は、冷却空気の流通が健全に維持されていれば、通常は発生しないのであるが、上述のような何らかの原因により、低い確率で発生することがある。
 溶融部から飛散した微小な金属片34は、通常、直径0.1~0.2mm程度の丸みのある粒状や角張った部分を有する粒状であったりする。このような金属片34が前述のような何らかの原因で可動端面33に到達すると、可動端面33の表面に付着したような状態で停止する。この停止時においても冷却空気の気流が継続しているが、金属片34が可動端面33の表面に停止しているのは、図3Cに示すように、金属片34が合成樹脂材料製の可動端面33に部分的に埋没したり、突き刺さって突き出ていたりするため、と考えられる。
 このような図3Cの状態で摺動部13が押し上げられると、可動端面33が金属製表面を有する静止内端面32に押し付けられ、可動端面33から突き出ている金属片34は、可動端面33の母材内へ押し込まれる。すなわち、可動端面33側は合成樹脂製であるから、金属片34は相対的に摺動部13の母材内へ埋没させられるのである。このような埋没状態が図3Dに示してある。
 可動端面33の着座面積は、静止内端面32に対する密着面積であるが、この面積は、電極本体1の直径方向で見た可動端面33の幅寸法が、ガイドピン12が差し込まれている箇所の大径部24の厚さ寸法の半分未満であり、本実施例における具体的数値としては、W1/W3が0.43とされている。このような0.43とすることにより、可動端面33の幅寸法が小さくなり、可動端面33の密着総面積が小さく設定される。これにともなって、単位面積あたりの加圧力、すなわち面圧が大きくなり、密着箇所に到達した微小な金属片34は、金属表面である静止内端面32と合成樹脂材料製表面である可動端面33の間で挟み付けられ、金属片34は軟らかい摺動部13の母材中に埋め込まれた状態になり、静止内端面32と可動端面33の間に空隙が形成されることがなく、確実な気密維持がなされ、冷却空気の空気漏れが防止される。
 W1/W3を0.43に設定して、鋼板部品3にナットを溶接するテストを行った結果、10万回の溶接、すなわちナット10万個の溶接を行っても空気漏れが発生しなかったので、自動車の車体組み立て工程等での使用に耐えられるものと、判断される。また、W1/W3を0.45や0.48に設定した場合も、同様なテスト結果がえられた。
 W1/W3が0.5以上になると、可動端面33の密着面積が過大になり、それに伴う面圧低下によって、金属片34を可動端面33の表面から、摺動部13の母材中に押し込む力が不足する。このような不足が発生すると、ガイドピン12が突き出た状態にあるとき、可動端面33と静止内端面32との間に空隙が形成され、空気漏れが発生した。したがって、W1/W3は0.5未満に設定するのが適切である。
 逆に、下限側の値としてW1/W3を0.26とすることにより、可動端面33の幅寸法が著しく小さくなり、可動端面33の密着総面積が大幅に小さく設定される。これにともなって、単位面積あたりの加圧力、すなわち面圧が大きくなり、密着箇所に到達した微小な金属片34は、金属表面である静止内端面32と合成樹脂材料製表面である可動端面33の間で挟み付けられ、金属片34は軟らかい摺動部13の母材中に埋め込まれた状態となる。
 しかしながら、可動端面33の幅方向寸法が短くなるので、可動端面33の密着幅W1が過短となって、十分な封止作用の確保が困難になる。また、可動端面33の幅方向寸法が短くなると、大きな金属片34が可動端面33の幅W1を横断した状態で付着したりする現象が発生したときには、金属片34が可動端面33の表面に完全に埋没しないものが見られた。また、埋没しても、埋没時の合成樹脂材料の変形により可動端面33の幅方向に溝状の空隙が形成される状態が確認された。これらの現象により、静止内端面32に可動端面33が密着しても、空気漏れが発生し、気密維持が達成できていないことが認められた。
 W1/W3を0.26に設定して、上述のようにナット溶接テストを行った結果、2.5万回前後の溶接回数から空気漏れが発生した。この発生原因は、上記のW1の過短現象であると考えられる。また、W1/W3を0.28に設定した場合も、好ましくないテスト結果となった。
 一方、W1/W3が0.3以上であると、可動端面33の密着面積が適正に小さくなり、それに伴う面圧増加によって、金属片34を可動端面33の表面から、摺動部13の母材中に押し込む力が適正値として十分にえられるものと、判断される。合わせて、上記のW1の過短現象に伴う空気漏れは回避できた。したがって、W1/W3は0.3以上に設定するのが適切である。
 つぎに、中径部の緩衝的機能を説明する。
 ガイドピン12に作用する直径方向の外力を受け止めるためには、中径部25の直径を少しでも大きくするとともに、肉厚を少しでも大きくすることが有利である。中径部25の肉厚拡大と直径の拡大は、可動端面33の幅寸法W1を大径部24の厚さ寸法W3の半分未満とすることにより達成されている。
 作業者の手元が狂ったりして、鋼板部品3が電極本体1の直径方向からガイドピン12に衝突すると、ガイドピン12が傾こうとするが、中径部25の直径が大きくなるように可動端面33の幅寸法W1が設定されているので、中径部25の円筒面に作用する単位面積当たりの力が少量化されて、上記傾き角度が実質的の問題にならない程度となる。さらに、上記力の少量化によって、中径部25の圧縮変形量も少量化され、傾き角度低減にとって有効である。
 つぎに、他の事例を説明する。
 上記事例はプロジェクションナットの場合であるが、図4に示した事例はプロジェクションボルトの場合である。プロジェクションボルト36は、雄ねじが形成された軸部37、軸部37と一体になっている円形のフランジ38、フランジ38の下面に設けた溶着用突起39によって構成されている。ガイドピン12は管状の中空形状であり、軸部37が挿入される受入孔40が設けてある。それ以外の構成は、図示されていない部分も含めて先の事例と同じであり、同様な機能の部材には同一の符号が記載してある。
 つぎに、上記電極の動作について説明する。
 図1Aは、圧縮コイルスプリング22の張力で可動端面33が静止内端面32に密着し、冷却空気の流通を封じている状態である。このときに、万一、微小な金属片34が可動端面33と静止内端面32の間に介在していると、図3において説明した押し込み動作で気密が維持される。
 可動電極18が進出して間隔L1が消滅すると、中径孔8に入り込んでいる中径部25が中径孔8から抜け出して、冷却空気の通路が形成される。冷却空気は通気口29、空気通路31、中径孔8、通気空隙26を経て、ナット19の下面と鋼板部品3との間の空隙を通って外部へ発散する。この空気流によって、スパッタなどの不純物が電極から離隔する方向へ排除される。ガイドピン12が押し下げられると、最初にテーパ部27によって空気通路が形成される。テーパ部27の傾斜によって流路面積の大きな空気通路が初期の段階で形成され、確実な冷却空気の流通にとって好適である。また、ガイドピン12が戻るときには、テーパ部27のガイド機能によって中径部25が円滑に中径孔8に進入する。図4に示したプロジェクションボルト36の場合も同じ動作である。
 以上に説明した実施例の作用効果は、つぎのとおりである。
 電極本体1の直径方向で見た可動端面33の幅寸法W1は、ガイドピン12が差し込まれている箇所の大径部24の厚さ寸法W3の半分未満とされている。このため、可動端面33の面積を小さくして静止内端面32に対する可動端面33の加圧力を高めて、可動端面33と静止内端面32の密着箇所に進入してきた微小な金属片34が可動端面33から摺動部13の母材内に押し込まれる。
 静止内端面32に対する可動端面33の密着面積が小さくなるので、単位面積あたりの加圧力、すなわち面圧が大きくなる。したがって、密着箇所に到達した微小な金属片34は、金属表面である静止内端面32と合成樹脂材料製表面である可動端面33の間で挟み付けられ、金属片34は軟らかい摺動部13の母材中に埋め込まれた状態になり、静止内端面32と可動端面33の間に空隙が形成されることがない。
 ガイドピン12が押し下げられて、可動端面33が静止内端面32から離隔して両端面間に空隙が形成されると、冷却空気が勢いよく流通し、微小な金属片34や炭化物などは気流で溶融局部から電極外へ発散される。通常はこのような発散であるが、金属溶融の際に、急激な空気膨張で溶融部から勢いよく飛散した微小な金属片34がガイドピン12の外周面に衝突して跳ね返されたりして空気流に逆らって移動し、可動端面33に到達することがある。このような現象は、金属片34が微小であると金属片34に作用する空気流の動圧が低くなるために、空気流に逆らって移動することが可能になるものと考えられる。このような金属片34が可動端面33の表面に付着していると、ガイドピン12が待機位置に戻ったときに、静止内端面32と可動端面33の間に空隙が形成され、冷却空気の流通を封止することができなくなる。上述のような金属片34の異常な挙動は、冷却空気の流通が健全に維持されていれば、通常は発生しないのであるが、上述のような何らかの原因により、低い確率で発生することがある。
 しかしながら、本実施例においては上述のように、金属片34は軟らかい摺動部13の母材中に埋め込まれた状態になり、静止内端面32と可動端面33の間に空隙が形成されることがないため、完全な気密維持が確保でき、空気漏洩による経済的損失が回避できる。さらに、空気漏れが継続していると、空気噴出に伴う騒音が発生し、作業者の就労環境が悪化するのであるが、上記のような気密維持によって、環境改善がなされる。
 つまり、合成樹脂材料製可動端面33の面積を小さくして面圧を高めることと、微小金属片34を強く可動端面33に押し付けることを相乗させて、金属片34が可動端面33から摺動部13の母材へめり込むのである。
 電極本体1の直径方向で見た可動端面33の幅寸法W1は、ガイドピン12が差し込まれている箇所の大径部24の厚さ寸法W3の半分未満とされている。このため、中径部25の厚さ寸法を大きく設定して、電極本体1の直径方向にガイドピン12に対して作用する外力を受け止めるように作用する。
 摺動部13は、大径部24と中径部25の2箇所が大径孔7や中径孔8に摺動しているので、ガイドピン12が一体化されている摺動部13は、2点支持の状態になっている。したがって、鋼板部品3の衝突などによって、電極本体1の端面から突き出ているガイドピン12に対して、電極本体1の直径方向に外力が作用しても、ガイドピン12や摺動部13の傾き変位量は実質的に問題にはならない。したがって、静止内端面32と可動端面33との密着が損なわれるようなことがなく、確実な気密維持が確保できる。
 さらに、中径部25の直径が大径部24の直径に近づき、それによって中径部25の直径を大きく設定できる。同時に、中径部25の肉厚もできるだけ大きくすることができる。したがって、大径化されるとともに肉厚が増大した中径部25によって直径方向の外力を受けるので、中径部25における弾性変形を少なくすることができて、ガイドピン12や摺動部13の傾き変位量を実質的に問題がないレベルにすることができる。とくに、大径化による弾性変形量の低減が効果的である。このような中径部25の肉厚拡大や直径の拡大は、可動端面33の幅寸法W1を小さくすることに相関して実現している。つまり、中径部25の肉厚拡大や直径の拡大と、可動端面33の面圧増大が両立している。
 可動端面33の表面には切削仕上げ加工やインジェクション成型などによって微細な凹凸が残存しているが、上記の面圧向上によって、静止内端面32に押し付けられた凹凸部分の凸部が押し潰された状態になって、合成樹脂端面と金属端面の密着性向上が確保できる。
 ガイドピン12が差し込まれている箇所の大径部24の厚さ寸法W3に対する可動端面33の幅寸法W1の比が、0.5未満~0.3以上とされている。
 可動端面33の幅寸法W1が、ガイドピン12が差し込まれている箇所の大径部24の厚さ寸法W3の半分以上、すなわち上記比が0.5以上になると、環状の可動端面33の密着面積が過大となり、上述のような面圧増大と金属片34の押し込みが満足に達成されない。上限側は、0.5未満が良好である。一方、上記比が0.3を下回ると、可動端面33の密着面積が過小となり、冷却空気の封止面積が不足して封止作用が緩慢になり、気密性維持の面で好ましくない。下限側は、0.3以上が良好である。
 電気抵抗溶接用電極の気密維持方法は、
 断面円形の電極本体が銅合金のような金属材料を用いて構成され、
 鋼板部品が載置される電極本体の端面から突出し、鋼板部品の下孔を貫通する断面円形のガイドピンが、金属材料またはセラミック材料などの耐熱硬質材料で構成され、
 電極本体に形成されているガイド孔に摺動できる状態で嵌め込まれているとともに、中心部にガイドピンが差し込まれている断面円形の摺動部が合成樹脂材料で構成され、
 ガイド孔は大径孔と中径孔と小径孔によって構成され、
 摺動部に形成した大径部が、実質的に隙間がなくて摺動できる状態で大径孔に嵌め込まれ、
 摺動部に形成した中径部が、実質的に隙間がなくて摺動できる状態で中径孔に嵌め込まれ、
 小径孔を貫通したガイドピンによって、ガイドピンが押し下げられたとき冷却空気が通過する通気隙間を小径孔とガイドピンの間に形成し、
 ガイド孔の中径孔と大径孔の境界部に形成された静止内端面に対して、摺動部の中径部と大径部の境界部に形成された可動端面が密着するように構成されているとともに、静止内端面と可動端面は電極本体の中心軸線が垂直に交わる仮想平面上に配置してあり、
 中径部が中径孔に嵌まり込んでいる電極本体の中心軸線方向の長さは、溶接時にガイドピンが後退する長さよりも短く設定してあり、
 可動端面を静止内端面に押し付ける加圧手段がガイド孔内に配置され、
 電極本体の直径方向で見た可動端面の幅寸法が、ガイドピンが差し込まれている箇所の大径部の厚さ寸法の半分未満とされることにより、可動端面の面積を小さくして静止内端面に対する可動端面の加圧力を高めて、可動端面と静止内端面の密着箇所に進入してきた微小な金属片を、可動端面から摺動部の母材内に押し込み、
 電極本体の直径方向で見た可動端面の幅寸法が、ガイドピンが差し込まれている箇所の大径部の厚さ寸法の半分未満とされることにより、中径部の厚さ寸法を大きく設定して、電極本体の直径方向にガイドピンに対して作用する外力を、中径部において受け止めるものである。
 気密維持方法の実施例の効果は、上記電気抵抗溶接用電極の効果と同じである。
 上述のように、本発明の電極や気密維持方法によれば、合成樹脂材料製の摺動部に形成された可動端面の面圧を高めて、微小な金属片の介入にともなう弊害をなくすとともに、摺動部の摺動状態を選定してガイドピンの芯ずれや傾きを実質的に消去する。したがって、自動車の車体溶接工程や、家庭電化製品の板金溶接工程などの広い産業分野で利用できる。
符号の説明
 1  電極本体
 6  ガイド孔
 7  大径孔
 8  中径孔
 9  小径孔
12  ガイドピン
13  摺動部
18  可動電極
19  プロジェクションナット
24  大径部
25  中径部
26  通気隙間
29  通気口
31  空気通路
32  静止内端面
33  可動端面
34  金属片
36  プロジェクションボルト
40  受入孔
W1  可動端面の幅寸法
W2  中径部の厚さ寸法
W3  大径部の厚さ寸法
L1  ガイドピンの後退長さ
L2  中径部の挿入長さ

Claims (3)

  1.  断面円形の電極本体が銅合金のような金属材料を用いて構成され、
     鋼板部品が載置される電極本体の端面から突出し、鋼板部品の下孔を貫通する断面円形のガイドピンが、金属材料またはセラミック材料などの耐熱硬質材料で構成され、
     電極本体に形成されているガイド孔に摺動できる状態で嵌め込まれているとともに、中心部にガイドピンが差し込まれている断面円形の摺動部が合成樹脂材料で構成され、
     ガイド孔は大径孔と中径孔と小径孔によって構成され、
     摺動部に形成した大径部が、実質的に隙間がなくて摺動できる状態で大径孔に嵌め込まれ、
     摺動部に形成した中径部が、実質的に隙間がなくて摺動できる状態で中径孔に嵌め込まれ、
     小径孔を貫通したガイドピンによって、ガイドピンが押し下げられたとき冷却空気が通過する通気隙間を小径孔とガイドピンの間に形成し、
     ガイド孔の中径孔と大径孔の境界部に形成された静止内端面に対して、摺動部の中径部と大径部の境界部に形成された可動端面が密着するように構成されているとともに、静止内端面と可動端面は電極本体の中心軸線が垂直に交わる仮想平面上に配置してあり、
     中径部が中径孔に嵌まり込んでいる電極本体の中心軸線方向の長さは、溶接時にガイドピンが後退する長さよりも短く設定してあり、
     可動端面を静止内端面に押し付ける加圧手段がガイド孔内に配置され、
     電極本体の直径方向で見た可動端面の幅寸法が、ガイドピンが差し込まれている箇所の大径部の厚さ寸法の半分未満とされることにより、可動端面の面積を小さくして静止内端面に対する可動端面の加圧力を高めて、可動端面と静止内端面の密着箇所に進入してきた微小な金属片が可動端面から摺動部の母材内に押し込まれるように構成し、
     電極本体の直径方向で見た可動端面の幅寸法が、ガイドピンが差し込まれている箇所の大径部の厚さ寸法の半分未満とされることにより、中径部の厚さ寸法を大きく設定して、電極本体の直径方向にガイドピンに対して作用する外力を受け止めるように構成したことを特徴とする電気抵抗溶接用電極。
  2.  ガイドピンが差し込まれている箇所の前記大径部の厚さ寸法に対する前記可動端面の幅寸法の比が、0.5未満~0.3以上とされている請求項1記載の電気抵抗溶接用電極。
  3.  断面円形の電極本体が銅合金のような金属材料を用いて構成され、
     鋼板部品が載置される電極本体の端面から突出し、鋼板部品の下孔を貫通する断面円形のガイドピンが、金属材料またはセラミック材料などの耐熱硬質材料で構成され、
     電極本体に形成されているガイド孔に摺動できる状態で嵌め込まれているとともに、中心部にガイドピンが差し込まれている断面円形の摺動部が合成樹脂材料で構成され、
     ガイド孔は大径孔と中径孔と小径孔によって構成され、
     摺動部に形成した大径部が、実質的に隙間がなくて摺動できる状態で大径孔に嵌め込まれ、
     摺動部に形成した中径部が、実質的に隙間がなくて摺動できる状態で中径孔に嵌め込まれ、
     小径孔を貫通したガイドピンによって、ガイドピンが押し下げられたとき冷却空気が通過する通気隙間を小径孔とガイドピンの間に形成し、
     ガイド孔の中径孔と大径孔の境界部に形成された静止内端面に対して、摺動部の中径部と大径部の境界部に形成された可動端面が密着するように構成されているとともに、静止内端面と可動端面は電極本体の中心軸線が垂直に交わる仮想平面上に配置してあり、
     中径部が中径孔に嵌まり込んでいる電極本体の中心軸線方向の長さは、溶接時にガイドピンが後退する長さよりも短く設定してあり、
     可動端面を静止内端面に押し付ける加圧手段がガイド孔内に配置され、
     電極本体の直径方向で見た可動端面の幅寸法が、ガイドピンが差し込まれている箇所の大径部の厚さ寸法の半分未満とされることにより、可動端面の面積を小さくして静止内端面に対する可動端面の加圧力を高めて、可動端面と静止内端面の密着箇所に進入してきた微小な金属片を、可動端面から摺動部の母材内に押し込み、
     電極本体の直径方向で見た可動端面の幅寸法が、ガイドピンが差し込まれている箇所の大径部の厚さ寸法の半分未満とされることにより、中径部の厚さ寸法を大きく設定して、電極本体の直径方向にガイドピンに対して作用する外力を、中径部において受け止めることを特徴とする電気抵抗溶接用電極の気密維持方法。
PCT/JP2018/030085 2017-08-17 2018-08-10 電気抵抗溶接用電極および気密維持方法 WO2019035423A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880052517.1A CN111050985B (zh) 2017-08-17 2018-08-10 电阻焊用电极和气密维持方法
US16/629,058 US11453082B2 (en) 2017-08-17 2018-08-10 Electric resistance welding electrode and method for maintaining airtightness
RU2020106715A RU2757657C2 (ru) 2017-08-17 2018-08-10 Электрод для контактной сварки и способ поддержания герметичности
EP18846518.1A EP3670065B1 (en) 2017-08-17 2018-08-10 Electric resistance welding electrode and method of maintaining airtightness
CA3069109A CA3069109A1 (en) 2017-08-17 2018-08-10 Electric resistance welding electrode and method for maintaining airtightness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017170664A JP6395068B1 (ja) 2017-08-17 2017-08-17 電気抵抗溶接用電極および気密維持方法
JP2017-170664 2017-08-17

Publications (1)

Publication Number Publication Date
WO2019035423A1 true WO2019035423A1 (ja) 2019-02-21

Family

ID=63668481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030085 WO2019035423A1 (ja) 2017-08-17 2018-08-10 電気抵抗溶接用電極および気密維持方法

Country Status (7)

Country Link
US (1) US11453082B2 (ja)
EP (1) EP3670065B1 (ja)
JP (1) JP6395068B1 (ja)
CN (1) CN111050985B (ja)
CA (1) CA3069109A1 (ja)
RU (1) RU2757657C2 (ja)
WO (1) WO2019035423A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7021425B2 (ja) * 2019-02-07 2022-02-17 省司 青山 電気抵抗溶接電極およびその冷却方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118774A (ja) * 1996-10-19 1998-05-12 Yoshitaka Aoyama ガイドピン付きのプロジェクション溶接電極
JP2002248578A (ja) 2001-12-08 2002-09-03 Yoshitaka Aoyama 電気抵抗溶接用の電極
JP2015147246A (ja) * 2014-02-04 2015-08-20 青山 省司 空気噴射式の電気抵抗溶接電極
JP2017006982A (ja) 2015-06-23 2017-01-12 青山 省司 電気抵抗溶接用電極
JP2017047469A (ja) 2015-09-01 2017-03-09 青山 省司 電気抵抗溶接用電極
JP2017136639A (ja) 2016-02-02 2017-08-10 青山 省司 電気抵抗溶接用電極

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1530379A1 (ru) * 1987-05-25 1989-12-23 Всесоюзный Научно-Исследовательский И Проектно-Конструкторский Институт Электроагрегатов И Передвижных Электростанций Устройство дл контактной приварки гайки к детал м с отверстием
SU1738549A2 (ru) * 1990-09-17 1992-06-07 Горьковский Автомобильный Завод Устройство дл контактной точечной сварки
US6008463A (en) * 1996-05-11 1999-12-28 Aoyama; Yoshitaka Resistance welding electrode with guide pin
US5705784A (en) * 1996-05-11 1998-01-06 Aoyama; Yoshitaka Electrode for electric resistance welding
JPH106033A (ja) * 1996-06-22 1998-01-13 Yoshitaka Aoyama 溶接電極のガイドピン
US6750419B2 (en) * 2002-10-08 2004-06-15 Doben Limited Resistance welding electrode
JP5967443B2 (ja) * 2013-09-05 2016-08-10 青山 省司 電気抵抗溶接用電極

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118774A (ja) * 1996-10-19 1998-05-12 Yoshitaka Aoyama ガイドピン付きのプロジェクション溶接電極
JP2002248578A (ja) 2001-12-08 2002-09-03 Yoshitaka Aoyama 電気抵抗溶接用の電極
JP2015147246A (ja) * 2014-02-04 2015-08-20 青山 省司 空気噴射式の電気抵抗溶接電極
JP2017006982A (ja) 2015-06-23 2017-01-12 青山 省司 電気抵抗溶接用電極
JP2017047469A (ja) 2015-09-01 2017-03-09 青山 省司 電気抵抗溶接用電極
JP2017136639A (ja) 2016-02-02 2017-08-10 青山 省司 電気抵抗溶接用電極

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3670065A4

Also Published As

Publication number Publication date
US20200189022A1 (en) 2020-06-18
RU2757657C2 (ru) 2021-10-19
RU2020106715A3 (ja) 2021-08-13
RU2020106715A (ru) 2021-08-13
US11453082B2 (en) 2022-09-27
CN111050985B (zh) 2021-07-30
EP3670065B1 (en) 2022-10-12
JP2019034335A (ja) 2019-03-07
JP6395068B1 (ja) 2018-09-26
EP3670065A4 (en) 2021-06-09
CA3069109A1 (en) 2019-02-21
EP3670065A1 (en) 2020-06-24
CN111050985A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
CA2215710C (en) Electrode for welding
EP1052412B1 (en) Accumulator and manufacturing process thereof
US10632562B2 (en) Electrode for electric resistance welding
WO2019035423A1 (ja) 電気抵抗溶接用電極および気密維持方法
US5705784A (en) Electrode for electric resistance welding
GB2384543A (en) Charge valve in a high pressure air conditioning system
JP6481826B2 (ja) 電気抵抗溶接用電極
JP6493848B1 (ja) 電気抵抗溶接電極の冷却空気断続方法
JP2015051457A (ja) 電気抵抗溶接用電極
US6750419B2 (en) Resistance welding electrode
JP2017136639A (ja) 電気抵抗溶接用電極
JP4394523B2 (ja) 溶接継ぎ手とその製造方法
JP6929507B2 (ja) 電気抵抗溶接用電極
CN111590255B (zh) 用于排气设备的探针接管
JP6929508B2 (ja) 電気抵抗溶接用電極
JP2017136638A (ja) 電気抵抗溶接用電極
JP4862077B2 (ja) 液圧式機械のためのバルブ装置
JP2017074616A (ja) 電気抵抗溶接用電極
WO2021171864A1 (ja) 電気抵抗溶接電極
JP4382720B2 (ja) 異形フランジ付き小物部品の抵抗溶接機
JP2017202520A (ja) 電気抵抗溶接用電極
JP7017716B2 (ja) 電気抵抗溶接用電極
JP2020199548A (ja) 電気抵抗溶接電極における複合型ガイドピン
JP2017030048A (ja) 電気抵抗溶接用電極
JP6086351B2 (ja) 空気噴射式の電気抵抗溶接電極

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3069109

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018846518

Country of ref document: EP

Effective date: 20200317