WO2019035266A1 - 生物誘導装置および生物誘導ユニット - Google Patents

生物誘導装置および生物誘導ユニット Download PDF

Info

Publication number
WO2019035266A1
WO2019035266A1 PCT/JP2018/022107 JP2018022107W WO2019035266A1 WO 2019035266 A1 WO2019035266 A1 WO 2019035266A1 JP 2018022107 W JP2018022107 W JP 2018022107W WO 2019035266 A1 WO2019035266 A1 WO 2019035266A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
biological
electrodes
area
electrode
Prior art date
Application number
PCT/JP2018/022107
Other languages
English (en)
French (fr)
Inventor
洋将 古澤
Original Assignee
洋将 古澤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洋将 古澤 filed Critical 洋将 古澤
Priority to CA3058362A priority Critical patent/CA3058362C/en
Priority to US16/499,826 priority patent/US11412729B2/en
Priority to JP2019536429A priority patent/JP6618137B2/ja
Priority to EP18846431.7A priority patent/EP3669650B1/en
Priority to CN201880019189.5A priority patent/CN110430754B/zh
Publication of WO2019035266A1 publication Critical patent/WO2019035266A1/ja
Priority to PH12019502146A priority patent/PH12019502146A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/24Scaring or repelling devices, e.g. bird-scaring apparatus using electric or magnetic effects, e.g. electric shocks, magnetic fields or microwaves
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/24Scaring or repelling devices, e.g. bird-scaring apparatus using electric or magnetic effects, e.g. electric shocks, magnetic fields or microwaves
    • A01M29/28Scaring or repelling devices, e.g. bird-scaring apparatus using electric or magnetic effects, e.g. electric shocks, magnetic fields or microwaves specially adapted for insects
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a biological guidance apparatus and a biological guidance unit.
  • the power repels organisms such as pests and prevents the entry of organisms into the predetermined area.
  • the technology which made it so is known.
  • Patent Document 1 an AC power of a predetermined frequency and voltage is applied to an electrode embedded in the ground around a building or under a floor, whereby an electric field generated from the electrode repels and repels pests.
  • the technique which was made to do is disclosed. According to this technology, it is said that pests such as termites approaching from under the ground to the floor of a building can be effectively controlled and repelled.
  • the versatility of the electrode is low, and it is difficult to suppress the manufacturing cost of the electrode and the entire device.
  • the electrode once the electrode is installed, it is difficult to change the arrangement of the electrode, and therefore, it is not possible to change variously the region forming the electric field for repelling the living thing.
  • high-voltage power kills the living thing, the living thing can not be guided in a predetermined direction so that the living thing can be captured alive.
  • the present invention can be easily installed in accordance with the shape of the installation surface, and can change variously the region for forming the electric field, and It is an object of the present invention to be able to provide a bioinducer capable of guiding in a predetermined direction.
  • the bioinducing device of the present invention is a bioinducing device installed on a mounting surface, and includes a tile-like main body and a plurality of electrodes disposed on the surface of the main body. And control means capable of individually controlling the power applied to each of the plurality of electrodes using power supplied from a predetermined power supply.
  • the present invention while being able to be installed easily according to the shape of the installation surface, it is possible to change the field which forms an electric field variously, and to guide a living thing to a predetermined direction.
  • a possible bioinducer can be provided.
  • FIG. 3 is a cross-sectional view of the biological induction apparatus shown in FIG. It is a figure which shows the electrical connection structure of the biological induction apparatus which concerns on one Embodiment of this invention. It is a figure which shows an example of the information stored in the memory with which the biological induction apparatus which concerns on one Embodiment of this invention is equipped. It is a figure which shows an example of the information stored in the memory with which the biological induction apparatus which concerns on one Embodiment of this invention is equipped.
  • FIG. 1 is an external perspective view of a biological guidance apparatus 100 according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a biological guidance apparatus 100 according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the biological induction apparatus 100 shown in FIG.
  • the biological guidance apparatus 100 shown in FIGS. 1 to 3 is an apparatus installed on any installation surface (for example, ground, paved surface, floor surface, wall surface, roof, etc.).
  • the biological guidance apparatus 100 is an apparatus capable of guiding an organism such as an insect or pest moving on the installation surface to a predetermined capture area, or preventing entry of the organism into a predetermined control area.
  • the biological guidance device 100 is configured to include a main body 110, a plurality of electrodes 120, a battery 130, a control device 140, and a solar cell panel 150.
  • the direction parallel to the installation surface of the biological induction device 100 is taken as the X-axis direction and the Y-axis direction
  • the direction perpendicular to the installation surface of the biological induction device 100 is taken as the Z-axis direction .
  • the main body 110 is a tile-like member that forms the outer shape of the biological induction device 100.
  • the main body 110 incorporates other components (the electrode 120, the battery 130, the control device 140, and the solar cell panel 150).
  • an insulating material such as ceramic, porcelain, concrete, resin, glass, or wood can be used.
  • the main body 110 has a flat plate shape (thin tile shape), but the present invention is not limited to this.
  • the main body 110 may be in the form of a sheet (a thinner tile), a box (a thicker tile), or the like. Further, in the example shown in FIGS.
  • the main body 110 has a rectangular shape when viewed in plan from above (that is, has a thin rectangular parallelepiped shape), but is not limited thereto.
  • the main body 110 may have a circular shape, a polygonal shape or the like when viewed in plan from above.
  • the main body 110 may not have a hollow structure.
  • the plurality of electrodes 120 are arranged in a matrix on the surface of the main body 110.
  • Each of the plurality of electrodes 120 has a dot shape.
  • 64 electrodes 120 are arranged in a matrix of 8 ⁇ 8 on the surface of the main body 110.
  • a conductive material such as copper, copper tungsten, silver tungsten, brass, aluminum or the like can be used.
  • each electrode 120 has a rectangular shape when viewed from above, but may have another shape (for example, a circular shape).
  • the plurality of electrodes 120 can constitute a plurality of combinations, with the two electrodes 120 adjacent to each other being one combination.
  • component electrodes 120 (A 1) is adjacent to the electrode 120 (A 1), electrode 120 (B 1), electrode 120 (B 2), and one of the electrodes 120 (A 2), the combination It can.
  • one electrode and the other electrode are applied with alternating current power having different voltage polarities.
  • alternating current power having different voltage polarities is applied to the two adjacent electrodes 120, and the two adjacent electrodes 120 are Can be stimulated by AC power to living organisms in contact with
  • the combination of the electrodes 120 is not limited to the electrodes of two electrodes adjacent to each other. That is, the two electrodes 120 separated from each other may be a combination of the electrodes 120.
  • the distance between the two electrodes 120 in combination may be determined according to the size and distance of the electrodes 120 and the size of the living organism to be guided.
  • the battery 130 is disposed inside the main body 110.
  • the battery 130 is an example of the “predetermined power supply” and the “secondary battery”, and supplies power (DC power) to the control device 140.
  • the battery 130 for example, a lithium ion battery, a nickel hydrogen battery, or the like can be used.
  • the biological induction apparatus 100 may use an external power supply as the "predetermined power supply" instead of using the battery 130 (internal power supply).
  • the external power supply may be a direct current power supply (for example, an external battery or the like) or an alternating current power supply (for example, a commercial power supply or the like).
  • the battery 130 inside the main body 110 as in the present embodiment, there is no need to be aware of the connection with the external power supply when installing the biological induction device 100, so installation of the biological induction device 100 is possible. It is possible to further enhance the ease.
  • the controller 140 is disposed inside the main body 110.
  • the controller 140 is electrically connected to each of the plurality of electrodes 120 via a wire (not shown).
  • the control device 140 is an example of “control means”, and uses power supplied from the battery 130 to control power applied to each of the plurality of electrodes 120.
  • control device 140 converts the DC power supplied from battery 130 into AC power for output by a DC-AC inverter (for example, a sine wave inverter, a square wave inverter, etc.) included in control device 140. Convert. Then, the control device 140 applies the generated alternating current power to each of the plurality of electrodes 120.
  • a DC-AC inverter for example, a sine wave inverter, a square wave inverter, etc.
  • the controller 140 can individually control the power applied to each of the plurality of electrodes 120. This control is realized, for example, by the CPU (Central Processing Unit) executing a predetermined control program in the control device 140.
  • the control device 140 can apply power to all the electrodes 120 among the plurality of electrodes 120 included in the biological induction device 100, or applies power to only a specific one of the electrodes 120. You can also In any case, the controller 140 can apply power to each electrode 120 based on power settings (eg, voltage, frequency, duty ratio, etc.) suitable for controlling a specific organism. .
  • power settings eg, voltage, frequency, duty ratio, etc.
  • the controller 140 can apply power to each electrode 120 with a relatively small voltage value when the size of a particular organism is relatively small. Also, for example, the controller 140 can apply power to each of the electrodes 120 with a relatively large voltage value when the size of a specific living being is relatively large. Also, for example, the controller 140 can apply, to each electrode 120, power having a frequency and a duty ratio that are sensitive to a specific organism. The details of the control by the control device 140 will be described later with reference to FIG.
  • the control device 140 includes a memory 142.
  • the memory 142 stores a first setting table 502 and a second setting table 504.
  • the first setting table 502 power setting values preferable for controlling the living thing are set for each kind of living thing.
  • the second setting table 504 sets, for each of the plurality of electrodes 120 included in the biological induction device 100, a power setting value related to the power applied to the electrode 120. The details of the first setting table 502 and the second setting table 504 will be described later with reference to FIG.
  • the solar cell panel 150 is installed on the surface of the main body 110. When light is irradiated to the surface of the solar cell provided inside, the solar cell panel 150 generates electric power by the photovoltaic effect of the solar cell. The power generated by the solar cell panel 150 is supplied to the battery 130 and used to charge the battery 130. By providing the solar cell panel 150, the biological guidance apparatus 100 of the present embodiment can operate for a long time by the power supplied from the battery 130 without connecting to the external power supply.
  • the solar cell panel 150 is arrange
  • a plurality of biological induction devices 100 configured in this manner are installed side by side on a flat installation surface (for example, ground, pavement, floor, wall, roof, etc.), whether outdoors or indoors. Ru.
  • a flat installation surface for example, ground, pavement, floor, wall, roof, etc.
  • the bottom portion of the main body 110 is bonded to the installation surface (paved surface, floor surface, wall surface, roof, etc.) by various bonding means (eg, adhesive, mortar, double-sided tape, etc.) May be fixed to the installation surface.
  • the biological guidance apparatus 100 may be provided with a pile-like member depending from the bottom surface of the main body 110. In this case, the pile-like member is embedded in the ground to form the installation surface ) May be fixed.
  • the main body 110 has a certain thickness in the vertical direction, for example, even if the biological induction device 100 is fixed to the installation surface (the ground or the like) by embedding a part of the main body 110 in the ground. Good.
  • the bioinducer 100 may be connectable to another adjacent bioinducer 100 by various connection means.
  • FIG. 4 is a diagram showing an electrical connection configuration of the biological guidance apparatus 100 according to an embodiment of the present invention.
  • each of the plurality of electrodes 120 is electrically connected to the control device 140. Thereby, the control device 140 can apply power to each of the plurality of electrodes 120 individually.
  • a plurality of electrodes 120 the electrodes A 1, A 2, ⁇ ⁇ ⁇ , and includes a A N, electrodes B 1, B 2, ⁇ ⁇ ⁇ , and B N.
  • the controller 140 can apply alternating current power having different voltage polarities to two adjacent electrodes 120.
  • the control device 140 includes a memory 142.
  • the memory 142 stores a first setting table 502 and a second setting table 504.
  • the control device 140 can individually apply power to each of the plurality of electrodes 120 based on the first setting table 502 and the second setting table 504 stored in the memory 142.
  • control device 140 can apply power (AC power) to each of the plurality of electrodes 120 using power (DC power) supplied from battery 130.
  • a solar cell panel 150 is electrically connected to the battery 130.
  • the battery 130 is charged by the power supplied from the solar cell panel 150.
  • a fuse 160 is provided as an example of a “protection device” between each of the plurality of electrodes 120 and the control device 140. ing. Thereby, even if the biological induction apparatus 100 short-circuits the electrode 120 when foreign matter, a living thing, etc. adhere to a certain electrode 120, even if over current flows to the electrode 120, By breaking the electrode 120 out of the circuit by the fuse 160 connected to the electrode, damage to the circuit due to an overcurrent can be avoided.
  • FIG. 5 is a figure which shows an example of the information stored in the memory 142 with which the biological guidance apparatus 100 which concerns on one Embodiment of this invention is equipped.
  • FIG. 5A is a diagram showing an example of the first setting table 502 stored in the memory 142.
  • the first setting table 502 is a table in which a power setting value preferable for controlling the organism is set for each type of organism.
  • the first setting table 502 includes “voltage”, “frequency”, and “duty ratio” as data items related to the power setting value.
  • the “voltage”, “frequency”, and “duty ratio” are set to effective values for controlling the organism.
  • “voltage” is set to a voltage value that does not cause an organism to die.
  • the “duty ratio” is set to a value only when the AC power applied to the electrode 120 is a rectangular wave.
  • the inventor of the present invention has found that it is preferable to set a voltage value within the range of 0 to 12 V as the “voltage” according to the type of the organism, by a test or the like. Further, the inventor of the present invention has found that it is preferable to set a frequency value within the range of 300 to 2.0 KHz as the “frequency” according to the type of a living thing by a test or the like.
  • the first setting table 502 may be provided in an external device (for example, a personal computer, a smartphone, a tablet terminal, etc.) that can be connected to the biological induction apparatus 100.
  • the control device 140 may acquire, from the external device, a power setting value corresponding to the type of the organism to be guided or controlled.
  • the electric power setting value irrespective of the kind of biological thing is set to the 1st setting table 502. As shown in FIG. This power setting value is used when multiple types of organisms are targeted for induction or control.
  • FIG. 5B is a diagram showing an example of the second setting table 504 stored in the memory 142.
  • the second setting table 504 is a table in which a power setting value regarding the power applied to the electrode 120 is set for each of the plurality of electrodes 120 included in the biological induction device 100.
  • the second setting table 504 includes “voltage”, “frequency”, and “duty ratio” as data items related to the power setting value.
  • the bioinduction apparatus 100 applies power to the electrodes 120 in a part of the area and does not apply power to the electrodes 120 in the other part of the area.
  • power is applied to the electrodes A 1 , A 2 , B 1 , and B 2 , and power is applied to the electrodes A N and B N. It is not set.
  • the electrodes A 1 , A 2 , B 1 and B 2 “10 V” is set for “voltage”, “1.0 KHz” is set for “frequency”, and “duty ratio” "50%” is set to.
  • These power setting values correspond to the power setting values of “organism B” shown in FIG. 5A.
  • the setting for inducing or controlling the “organism B” is performed by the electrodes A 1 , A 2 , B 1 and B 2 in a partial region. It is done.
  • FIG. 6 is a flowchart showing a control procedure by the control device 140 provided in the biological guidance apparatus 100 according to an embodiment of the present invention.
  • control device 140 determines whether to specify the type of organism to be induced or controlled (step S601). Whether or not to specify the type of organism to be guided or controlled is set, for example, from an external device (for example, a personal computer, a smartphone, a tablet terminal, etc.).
  • an external device for example, a personal computer, a smartphone, a tablet terminal, etc.
  • step S601 If it is determined in step S601 that the type of the organism to be guided or controlled is not specified (step S601: No), the control device 140 sets the first setting table 502 stored in the memory 142 (FIG. 5). Reference is made to acquire power setting values (for example, voltage, frequency, and duty ratio) regardless of the type of living thing (step S602). Then, control device 140 advances the process to step S605.
  • step S601 If it is determined in step S601 that the type of the organism to be guided or controlled is not specified (step S601: No), the control device 140 sets the first setting table 502 stored in the memory 142 (FIG. 5). Reference is made to acquire power setting values (for example, voltage, frequency, and duty ratio) regardless of the type of living thing (step S602). Then, control device 140 advances the process to step S605.
  • power setting values for example, voltage, frequency, and duty ratio
  • step S601 when it is determined in step S601 that the type of the organism to be induced or controlled is specified (step S601: Yes), the control device 140 specifies the type of organism to be induced or controlled by the biological induction apparatus 100. (Step S603).
  • the type of organism to be induced or controlled by the bioinduction device 100 is set from an external device (for example, a personal computer, a smartphone, a tablet terminal, etc.).
  • control device 140 refers to the first setting table 502 (see FIG. 5) stored in the memory 142 to determine the power setting value corresponding to the type of creature specified in step S603 (for example, The voltage, frequency, and duty ratio are acquired (step S604). Then, control device 140 advances the process to step S605.
  • the control device 140 specifies the electrode 120 to which power is applied among the plurality of electrodes 120 provided in the biological induction device 100.
  • the electrode 120 to which power is applied is set from an external device (for example, a personal computer, a smartphone, a tablet terminal, or the like).
  • the electrodes 120 to which power is applied may be a specific partial electrode 120 or all electrodes 120.
  • control device 140 sets the power setting value acquired in step S602 or step S604 for each of the electrodes 120 specified in step S605 (step S606).
  • the power setting value set for each electrode 120 in step S606 is set, for example, in the second setting table 504 (see FIG. 5) stored in the memory 142.
  • control device 140 generates AC power based on the power setting value (for example, voltage, frequency, and duty ratio) set in step S606 for each electrode 120 specified in step S605, Power is applied (step S 607). Then, the control device 140 ends the series of control shown in FIG.
  • the power setting value for example, voltage, frequency, and duty ratio
  • the alternating current power applied to each electrode 120 in step S 607 may be square wave or sine wave. Further, in step S 607, the frequency of the AC power applied to each electrode 120 may change in time series with a predetermined frequency (for example, 1 KHz) as a central frequency. Thereby, the bioinducer 100 can induce or control various organisms with various peak frequencies of sensitivity to electric power by the respective electrodes 120. In this case, the frequency of the AC power applied to each electrode 120 may be switched to a plurality of predetermined frequencies in order or may be switched at random.
  • a predetermined frequency for example, 1 KHz
  • the controller 140 induces or controls a specific type of organism or a plurality of types of organisms for the electrode 120 or all the electrodes 120 in a specific partial area. Power based on the preferred power settings can be applied. As a result, a region for controlling a specific type of organism or a plurality of types of organisms is formed on part or all of the surface of the bioinducing device 100, and it is intended to move on the surface of the bioinducing device 100. When a specific type of organism or a plurality of types of organisms contact the electrode 120 in the area, power stimulation is given and escapes from the area.
  • the biological guidance apparatus 100 of this embodiment can be used also for the use of capturing a specific type of living thing or a plurality of living things in a living state.
  • the method of individually controlling the power applied to each electrode 120 is not limited to the method shown in FIG.
  • the power setting value of each electrode 120 may be directly set to the second setting table 504 (see FIG. 5) from an external device (for example, a personal computer, a smartphone, a tablet terminal or the like).
  • the power setting value of each electrode 120 may be directly switchable by a dip switch or the like provided in the control device 140.
  • FIG. 7 is a view showing a first example of the biological guiding apparatus 100 according to an embodiment of the present invention. As shown in FIGS. 7A to 7C, a plurality of biological induction devices 100 are arranged in a matrix (2 ⁇ 6 rows) on the side of the control area 20 so as to block the entry route to the control area 20. ing.
  • the colored biological induction device 100 shows the biological induction device 100 to which AC power of 5 V (a voltage value suitable for controlling the biological organism 30) is applied to each of the electrodes 120.
  • the non-colored biological induction device 100 shows the biological induction device 100 in which AC power is not applied to each electrode 120.
  • alternating current power is applied with respect to each electrode 120 in the biological induction apparatus 100 of 1 row of inner side (control area 20 side).
  • alternating current power is not applied to each electrode 120 in the outer row of biological induction devices 100. That is, in the example shown to FIG. 7A, the approach of the biological body 30 in the control area 20 can be prevented by the biological induction apparatus 100 of one row inside.
  • all the biological induction devices 100 apply 5 V AC power to each electrode 120. That is, in the example shown to FIG. 7C, the approach of the biological body 30 in the control area 20 can be prevented by all the biological guidance apparatuses 100.
  • each of the plurality of biological induction devices 100 can set whether or not to apply 5 V AC power to each electrode 120.
  • an arbitrary biological induction device 100 for example, a living organism disposed at a position where it is desired to prevent AC power may be applied to each electrode 120 only for the inductive device 100.
  • the setting of each living thing guidance device 100 can be, for example, an external device (for example, a personal computer, a smart phone, a tablet terminal, etc.) connectable with each living thing guidance device 100, dip provided for each living thing guidance device 100. It can be easily performed by a switch or the like. Moreover, the setting of each living thing guidance apparatus 100 can be performed not only when installing each living thing guidance apparatus 100 on an installation surface but also after installing each living thing guidance apparatus 100 in an installation surface.
  • an external device for example, a personal computer, a smart phone, a tablet terminal, etc.
  • FIG. 8 is a view showing a second example of the biological guiding apparatus 100 according to an embodiment of the present invention.
  • the one biological guidance apparatus 100 is arrange
  • FIG. 8A and B the one biological guidance apparatus 100 is arrange
  • the electrode 120 which is colored indicates the electrode 120 to which AC power of 5 V (a voltage value suitable for controlling the creature 30) is applied.
  • the electrode 120 which is not colored indicates the electrode 120 to which AC power is not applied.
  • the hatched electrode 120 shows the electrode 120 to which AC power of 10 V (a voltage value suitable for controlling the living thing 50) is applied.
  • alternating current power of 5 V (a voltage value suitable for controlling the organism 30) is applied to each of the electrodes 120 in the first to third, sixth and eighth rows from the top.
  • alternating current power is not applied to each electrode 120 in the fourth and fifth columns from the top.
  • the first region to the third row of electrodes 120 from the top form a first region in which the organisms 30 are controlled.
  • the electrodes 120 in the sixth to eighth rows from the top form a second region in which the organisms 30 are controlled.
  • the 3rd field where organism 30 is not controlled is formed between the 1st field and the 2nd field.
  • the living thing 30 moves in the third area avoiding the first area and the second area. Then, for example, as shown in FIG. 8A, by providing the capture area 40 on the extension of the third area, the organism 30 can be guided to the capture area 40 and the organism 30 can be captured efficiently. .
  • AC power of 10 V (a voltage value suitable for controlling the living organism 50) is applied to each electrode 120 in the first, second, seventh, and eighth rows from the top.
  • AC power of 5 V (a voltage value suitable for controlling the organism 30) is applied to each electrode 120 in the third to sixth columns from the top.
  • the first and second rows of electrodes 120 form a first region in which both the organisms 30 and 50 are controlled.
  • region where both the creature 30 and the creature 50 are controlled is formed by each electrode 120 of the 7th and 8th row from the top.
  • the 3rd field where only living thing 30 is controlled is formed between the 1st field and the 2nd field.
  • the living thing 30 can not move on the surface of the biological induction apparatus 100. That is, the living thing 30 will be controlled by the bioinducer 100 to enter the capture area 40.
  • the living thing 50 moves in the third area avoiding the first area and the second area. Then, for example, as shown in FIG. 8B, by providing the capture area 40 on the extension of the third area, the organism 50 can be guided to the capture area 40 and the organism 50 can be efficiently captured. .
  • the biological induction apparatus 100 of this embodiment can individually set the AC power to be applied to each of the electrodes 120.
  • the bioinducer 100 of the present embodiment can guide a specific organism to a target area.
  • the biological guidance apparatus 100 of a present Example can also guide
  • the setting of each electrode 120 can be easily performed by, for example, an external device (for example, a personal computer, a smartphone, a tablet terminal, etc.) connectable to the biological guidance apparatus 100, a dip switch provided in the biological guidance apparatus 100, or the like. it can. Moreover, the setting of each electrode 120 can be performed not only when installing the biological induction apparatus 100 on the installation surface, but also after installing the biological induction apparatus 100 on the installation surface.
  • an external device for example, a personal computer, a smartphone, a tablet terminal, etc.
  • FIG. 9 is a view showing a third example of the biological guiding apparatus 100 according to an embodiment of the present invention.
  • a plurality of bioinducing devices 100 are arranged in a matrix (4.times.6 rows) so as to block the approach route to the capture area 40. ing.
  • the colored biological induction device 100 shows the biological induction device 100 to which AC power of 5 V (a voltage value suitable for controlling the biological organism 30) is applied to each electrode 120. Moreover, in FIG. 9A, the biological induction apparatus 100 which is not colored is a biological induction apparatus 100 in which AC power is not applied to each electrode 120. 9B, the hatched biological induction device 100 shows the biological induction device 100 to which AC power of 10 V (a voltage value suitable for controlling the biological body 50) is applied to each of the electrodes 120.
  • each of the biological induction devices 100 in the first, second, fifth, and sixth rows from the top AC power of 5 V (a voltage value suitable for controlling the living body 30) is applied to each electrode 120 Be done.
  • alternating current power is not applied to each electrode 120.
  • the first and second rows of biological induction devices 100 from the top form a first region in which the living thing 30 is controlled.
  • region where the biological thing 30 is controlled by the biological induction apparatus 100 of 5th and 6th row from the top is formed.
  • the 3rd field where organism 30 is not controlled is formed between the 1st field and the 2nd field.
  • the living thing 30 moves in the third area avoiding the first area and the second area. Then, for example, as shown in FIG. 9A, by providing the capture area 40 on the extension of the third area, the organism 30 can be guided to the capture area 40, and the organism 30 can be efficiently captured. .
  • the 3rd field where only living thing 30 is controlled is formed between the 1st field and the 2nd field.
  • the living thing 30 can not move on the surface of the plurality of biological induction devices 100. That is, the organisms 30 are controlled by the plurality of biological induction devices 100 to enter the capture area 40.
  • the living thing 50 moves in the third area avoiding the first area and the second area. Then, for example, as shown in FIG. 9B, by providing the capture area 40 on the extension of the third area, the organism 50 can be guided to the capture area 40 to efficiently capture the organism 50. .
  • the configuration of the present embodiment it is possible to individually set the AC power to be applied to each of the biological induction devices 100.
  • the configuration of the present embodiment can guide a specific organism to a target area.
  • the configuration of the present embodiment can also guide other specific organisms to a target area while controlling the ingress of specific organisms.
  • the setting of each living thing guidance device 100 can be, for example, an external device (for example, a personal computer, a smart phone, a tablet terminal, etc.) connectable with each living thing guidance device 100, dip provided for each living thing guidance device 100. It can be easily performed by a switch or the like. Moreover, the setting of each living thing guidance apparatus 100 can be performed not only when installing each living thing guidance apparatus 100 on an installation surface but also after installing each living thing guidance apparatus 100 in an installation surface.
  • an external device for example, a personal computer, a smart phone, a tablet terminal, etc.
  • FIG. 10 is an external perspective view of a biological guidance device 100 'according to a modification of the present invention.
  • the living thing induction apparatus 100 the changes from the living thing induction apparatus 100 will be described.
  • the bioinducer 100 ' includes a plurality of electrodes 120'.
  • Each of the plurality of electrodes 120 ' has a strip shape extending along the X-axis direction in the drawing.
  • the plurality of electrodes 120 are arranged on the surface of the main body 110 in the Y-axis direction in the drawing.
  • eight electrodes 120 ' are arranged on the surface of the main body 110 in the Y-axis direction in the figure.
  • a conductive material such as copper, copper tungsten, silver tungsten, brass, aluminum or the like can be used.
  • a plurality of electrodes 120 includes a first electrode A 1, A 2, ⁇ ⁇ ⁇ , and A N, the second electrode B 1, B 2, ⁇ ⁇ ⁇ , and B N.
  • the first electrode and the second electrode are applied with AC power having different voltage polarities. For example, when AC power of a voltage of + polarity is applied to the first electrode, AC power of a voltage of-polarity is applied to the second electrode. On the contrary, when AC power of ⁇ polarity voltage is applied to the first electrode, AC power of + polarity voltage is applied to the second electrode. Further, as shown in FIG.
  • the first electrode and the second electrode are alternately arranged in the Y-axis direction in the figure.
  • two adjacent electrodes 120 are applied with alternating current power having different voltage polarities, and the living creature in contact with the adjacent two electrodes 120 can be damaged by the alternating current power.
  • Example of living thing induction device 100 ' Next, with reference to FIG. 11, an embodiment of the biological induction apparatus 100 'will be described. In this embodiment, an example in which the living thing 30 and the living thing 50 are guided to the capture area 40 by one living thing induction device 100 '(plural electrodes 120') will be described.
  • FIG. 11 is a view showing an embodiment of a biological induction apparatus 100 'according to a modification of the present invention. As shown in FIGS. 11A and 11B, one bioinducing device 100 ′ is disposed to the side of the capture area 40 so as to block the approach route to the capture area 40.
  • a colored electrode 120 ' indicates an electrode 120' to which an AC power of 5 V (a voltage value suitable for controlling the organism 30) is applied. Also, in FIG. 11A, the uncolored electrode 120 'indicates an electrode 120' to which no alternating current power is applied. Moreover, in FIG. 11B, the hatched electrode 120 'shows the electrode 120' to which AC power of 10 V (a voltage value suitable for controlling the living thing 50) is applied.
  • alternating current power of 5 V (a voltage value suitable for controlling the organism 30) is applied to the electrodes 120 'in the first to third, sixth and eighth columns from the top.
  • alternating current power is not applied to the electrodes 120 'in the fourth and fifth columns from the top.
  • the first region to the third row of electrodes 120' from the top form a first region in which the organisms 30 are controlled.
  • the second region from which the organism 30 is controlled is formed by the electrodes 120 'in the sixth to eighth rows from the top.
  • the 3rd field where organism 30 is not controlled is formed between the 1st field and the 2nd field.
  • the living thing 30 moves in the third area avoiding the first area and the second area. Then, for example, as shown in FIG. 11A, by providing the capture area 40 on the extension of the third area, the organism 30 can be guided to the capture area 40 and the organism 30 can be efficiently captured. .
  • alternating current power of 10 V (a voltage value suitable for controlling the living organism 50) is applied to the electrodes 120 'in the first, second, seventh and eighth columns from the top.
  • AC power of 5 V (a voltage value suitable for controlling organisms 30) is applied to each electrode 120 'in the third to sixth columns from the top.
  • the first and second rows of electrodes 120' form a first region in which both the organisms 30 and 50 are controlled.
  • region where both the creature 30 and the creature 50 are controlled is formed of each electrode 120 'of the 7th and 8th row from the top.
  • the 3rd field where only living thing 30 is controlled is formed between the 1st field and the 2nd field.
  • the organism 30 can not move on the surface of the bioinducer 100 '. That is, the living thing 30 will be controlled by the biological guidance apparatus 100 'to enter the capture area 40.
  • the living thing 50 moves in the third area, avoiding the first area and the second area. Then, for example, as shown in FIG. 11B, by providing the capture area 40 on the extension of the third area, the organism 50 can be guided to the capture area 40 to efficiently capture the organism 50. .
  • the biological induction apparatus 100 'of this embodiment can individually set the AC power to be applied for each of the electrodes 120'.
  • the bioinducing device 100 'of this embodiment can guide a specific organism to an area of interest.
  • the biological guidance apparatus 100 'of a present Example can also guide
  • each electrode 120 ' can be easily performed by, for example, an external device (for example, a personal computer, a smartphone, a tablet terminal, etc.) connectable to the biological guidance apparatus 100', a dip switch or the like included in the biological guidance apparatus 100 '. It can be carried out.
  • the biological guidance apparatus 100, 100 'of the present embodiment includes the tiled main body 110, the plurality of electrodes 120, 120' disposed on the surface of the main body 110, and the battery 130 (a predetermined power source Control device 140 (control means) capable of individually controlling the power applied to each of the plurality of electrodes 120 and 120 'using the power supplied from.
  • a predetermined power source Control device 140 control means capable of individually controlling the power applied to each of the plurality of electrodes 120 and 120 'using the power supplied from.
  • living thing guidance apparatus 100, 100 'of this embodiment can change the field which forms an electric field variously.
  • the biological guiding apparatus 100, 100 'of the present embodiment can guide the living thing in a predetermined direction by individually controlling the power applied to each of the plurality of electrodes 120, 120'. It is possible to create an electric field.
  • a plurality of electrodes 120 are arranged in a matrix on the surface of the main body 110.
  • the biological guidance apparatus 100 of this embodiment can make the shape of the area
  • the control device 140 applies power to the electrodes 120, 120' in a partial area of the surface of the main body 110, and the other partial area
  • an induction path can be formed on the surface of the main body 110 (a part of the other region) to induce an organism.
  • the biological guidance apparatus 100, 100 'of this embodiment can guide the biological body in a predetermined direction on the surface of the main body 110.
  • the biological guidance apparatus 100, 100 'of the present embodiment applies the first power to the electrodes 120, 120' in a partial region of the surface of the main body 110 by the control device 140, By applying a second electric power having a voltage value lower than the first electric power to the electrodes 120 and 120 'in the area of the part, the living thing is put on the surface (other part of the area) of the main body 110. It can form an induction pathway to induce. Thereby, the biological induction apparatus 100, 100 'of the present embodiment can induce a specific organism in a predetermined direction on the surface of the main body 110, and other organisms (organisms smaller than the specific organism) Control the ingress of
  • the biological guidance apparatus 100, 100 'of the present embodiment applies power based on the power setting value according to the type of living thing, to the electrodes 120, 120' in a partial region of the surface of the main body 110. be able to. Thereby, the biological guidance apparatus 100, 100 'of the present embodiment can guide a specific living thing in a predetermined direction on the surface of the main body 110.
  • the biological induction apparatus 100, 100 'of the present embodiment is configured to include, in the power setting value corresponding to the type of the living thing, a voltage value which does not lead to the death of the living thing.
  • the biological guidance apparatus 100, 100 'of this embodiment can be guided in a predetermined direction on the surface of the main body 110 without killing a specific living thing.
  • the bioinducer 100, 100 'of the present embodiment can capture a specific organism alive.
  • the biological induction apparatus 100,100 'of this embodiment can use and provide as a biological induction unit combining the said biological induction apparatus 100,100' in multiple numbers.
  • the bioinducing unit can form an electric field for inducing or controlling an organism in a wider range than using the bioinducing device 100, 100 'alone.
  • the biological induction unit can install the plurality of biological induction devices 100, 100 'according to the installation surface of more various shapes by changing the arrangement of the plurality of biological induction devices 100, 100'. .
  • the configuration (e.g., shape, size, number, arrangement, etc.) of the plurality of electrodes 120 and 120 'on the surface of the main body 110 is not limited to that described in the above embodiment.
  • one control apparatus 140 is provided with respect to one biological induction apparatus 100, 100 'in the said embodiment, it does not restrict to this.
  • one control device 140 may be provided for a plurality of biological induction devices 100 and 100 '. Further, the control device 140 may be provided outside the biological induction device 100.
  • one battery 130 is provided with respect to one biological induction apparatus 100, 100 'in the said embodiment, it does not restrict to this.
  • one battery 130 may be provided for a plurality of biological induction devices 100 and 100 '.
  • one fuse 160 is provided for one electrode 120, 120 'in the above embodiment, the present invention is not limited to this.
  • one fuse 160 may be provided for the plurality of electrodes 120 and 120 '. Further, the fuse 160 may not be provided.
  • one solar cell panel 150 is provided with respect to one biological induction apparatus 100, 100 'in the said embodiment, it does not restrict to this.
  • one solar cell panel 150 may be provided for a plurality of biological induction devices 100 and 100 '.
  • the solar cell panel 150 may be provided outside the biological induction apparatus 100. Further, the solar cell panel 150 may not be provided.
  • alternating current power is applied to each electrode 120 in the above embodiment
  • the present invention is not limited to this. That is, direct current power may be applied to each electrode 120. Also in this case, it is preferable to apply, to each of the electrodes 120, DC power having a voltage value that does not lead to the death of the organism, depending on the type of the organism to be controlled.
  • control area 22 house 30, 50 organism 40 capture area 100 biological induction device 110 main body 120 electrode 130 battery (power supply) 140 Control device (control means) 142 memory 150 solar panel 160 fuse (protective device) 502 First setting table 504 Second setting table

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Birds (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Power Engineering (AREA)
  • Catching Or Destruction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

設置面に敷設される生物誘導装置であって、タイル状の本体と、前記本体の表面に配設された複数の電極と、所定の電源から供給された電力を用いて、前記複数の電極の各々に対して印加する電力を個別に制御可能な制御手段とを備える。

Description

生物誘導装置および生物誘導ユニット
 本発明は、生物誘導装置および生物誘導ユニットに関する。
 従来、所定のエリアを取り囲むように配置された電極に対して、高電圧の電力を印加することにより、当該電力によって害虫等の生物を撃退して、所定のエリア内への生物の進入を防ぐようにした技術が知られている。
 例えば、下記特許文献1には、建物の周囲または床下の地面に埋設された電極に対して、所定の周波数および電圧の交流電力を印加し、これによって電極から発せられる電界により、害虫を防除撃退するようにした技術が開示されている。この技術によれば、地中から建物の床下に接近するシロアリ等の害虫を効果的に防除撃退できるとされている。
特開2007-274954号公報
 しかしながら、従来技術では、電極の形状を設置面の形状に合わせる必要があるため、電極の汎用性が低く、電極および装置全体の製造コストを抑制することが困難であった。また、従来技術では、一旦電極を設置してしまうと、その電極の配置を変更することは困難であり、よって、生物を撃退するための電界を形成する領域を多様に変更することができなかった。さらに、従来技術では、高電圧の電力によって生物を死滅させるため、生物を生きたまま捕獲することできるように、生物を所定の方向へ誘導することができなかった。
 本発明は、上述した従来技術の課題を解決するため、設置面の形状に合わせて容易に設置することができるとともに、電界を形成する領域を多様に変更することが可能であり、且つ、生物を所定の方向へ誘導することが可能な、生物誘導装置を提供できるようにすることを目的とする。
 上述した課題を解決するために、本発明の生物誘導装置は、設置面に敷設される生物誘導装置であって、タイル状の本体と、前記本体の表面に配設された複数の電極と、所定の電源から供給された電力を用いて、前記複数の電極の各々に対して印加する電力を個別に制御可能な制御手段とを備える。
 本発明によれば、設置面の形状に合わせて容易に設置することができるとともに、電界を形成する領域を多様に変更することが可能であり、且つ、生物を所定の方向へ誘導することが可能な、生物誘導装置を提供することができる。
本発明の一実施形態に係る生物誘導装置の外観斜視図である。 本発明の一実施形態に係る生物誘導装置の平面図である。 図2に示す生物誘導装置のA-A断面図である。 本発明の一実施形態に係る生物誘導装置の電気的接続構成を示す図である。 本発明の一実施形態に係る生物誘導装置が備えるメモリに格納される情報の一例を示す図である。 本発明の一実施形態に係る生物誘導装置が備えるメモリに格納される情報の一例を示す図である。 本発明の一実施形態に係る生物誘導装置が備える制御装置による制御の手順を示すフローチャートである。 本発明の一実施形態に係る生物誘導装置の第1実施例を示す図である。 本発明の一実施形態に係る生物誘導装置の第1実施例を示す図である。 本発明の一実施形態に係る生物誘導装置の第1実施例を示す図である。 本発明の一実施形態に係る生物誘導装置の第2実施例を示す図である。 本発明の一実施形態に係る生物誘導装置の第2実施例を示す図である。 本発明の一実施形態に係る生物誘導装置の第3実施例を示す図である。 本発明の一実施形態に係る生物誘導装置の第3実施例を示す図である。 本発明の一変形例に係る生物誘導装置の外観斜視図である。 本発明の一変形例に係る生物誘導装置の実施例を示す図である。 本発明の一変形例に係る生物誘導装置の実施例を示す図である。
 以下、図面を参照して、本発明の一実施形態について説明する。
 〔生物誘導装置100の概略構成〕
 初めに、図1~図3を参照して、生物誘導装置100の概略構成について説明する。図1は、本発明の一実施形態に係る生物誘導装置100の外観斜視図である。図2は、本発明の一実施形態に係る生物誘導装置100の平面図である。図3は、図2に示す生物誘導装置100のA-A断面図である。
 図1~図3に示す生物誘導装置100は、任意の設置面(例えば、地面、舗装面、床面、壁面、屋根等)に敷設される装置である。生物誘導装置100は、設置面上を移動する昆虫や害虫などの生物を所定の捕獲エリアへ誘導したり、所定の防除エリア内への生物の進入を防止したりすることが可能な装置である。図1~図3に示すように、生物誘導装置100は、本体110と、複数の電極120と、バッテリ130と、制御装置140と、太陽電池パネル150とを備えて構成されている。なお、各図面では、生物誘導装置100の設置面に対して平行な方向を、X軸方向およびY軸方向とし、生物誘導装置100の設置面に対して垂直な方向を、Z軸方向としている。
 本体110は、生物誘導装置100の外形をなす、タイル状の部材である。本体110は、その他の構成部品(電極120、バッテリ130、制御装置140、および太陽電池パネル150)が組み込まれる。本体110としては、例えば、陶器、磁器、コンクリート、樹脂、ガラス、木材等の絶縁素材を用いることができる。なお、図1~図3に示す例では、本体110は、平板状(薄型のタイル状)をなしているが、これに限らない。例えば、本体110は、シート状(より薄型のタイル状)、箱状(より厚みのあるタイル状)等をなすものであってもよい。また、図1~図3に示す例では、本体110は、上方から平面視したときに矩形状をなしている(すなわち、薄型の直方体形状をなしている)が、これに限らない。例えば、本体110は、上方から平面視したときに円形状、多角形状等をなすものであってもよい。また、図3に示す例では、本体110は、中空構造を有しているが、中空構造を有さないものであってもよい。
 複数の電極120は、本体110の表面において、マトリクス状に並べて配設されている。複数の電極120は、いずれも点状をなしている。図1および図2に示す例では、本体110の表面には、64個の電極120が、8×8列のマトリクス状に配設されている。電極120としては、例えば、銅、銅タングステン、銀タングステン、真鍮、アルミ等の、導電性素材を用いることができる。また、図1および図2に示す例では、各電極120は、上方から平面視したときに矩形状をなしているが、その他の形状(例えば、円形状)をなすものであってもよい。
 複数の電極120は、互いに隣接する2つの電極120を一つの組み合わせとして、複数の組み合わせを構成し得る。例えば、図2に示す例では、複数の電極120は、電極A,A,・・・,Aと、電極B,B,・・・,Bとを含んでいる。但し、Nは、1以上の整数であり、本実施形態の場合は、N=32である。この例において、電極120(A)は、当該電極120(A)と隣接する、電極120(B),電極120(B),電極120(A)のいずれかと、組み合わせを構成し得る。各組み合わせにおいて、一方の電極と他方の電極は、互いに電圧の極性が異なる交流電力が印加される。例えば、一方の電極に+極性の電圧の交流電力が印加されるとき、他方の電極に-極性の電圧の交流電力が印加される。反対に、一方の電極に-極性の電圧の交流電力が印加されるとき、他方の電極に+極性の電圧の交流電力が印加される。また、図2に示すように、複数の電極120がマトリクス状に並べて配設されている場合には、本体110の表面において、図中X軸方向および図中Y軸方向のいずれにおいても、+極性の電圧の交流電力が印加される電極と、-極性の電圧の交流電力が印加される電極とが、交互に並んで配置されるように、制御することが可能である。これにより、図中X軸方向および図中Y軸方向のいずれにおいても、隣接する2つの電極120に対し、互いに電圧の極性が異なる交流電力が印加されることとなり、当該隣接する2つの電極120に接触した生物に対して、交流電力による刺激を与えることができる。
 なお、電極120の組み合わせは、互いに隣接する2つの電極の電極に限らない。すなわち、互いに離間した2つの電極120を、電極120の組み合わせとしてもよい。例えば、電極120の大きさ,間隔と、誘導対象の生物の大きさ(特に、足を有する生物の場合は、足と足との間隔)との関係によっては、隣接する電極120同士に電圧を印加したとしても、生物がこれらの隣接する電極120に接触せずに、生物に電気的刺激を与えることができなくなる虞がある。この場合、電極120の大きさ,間隔と、誘導対象の生物の大きさとに応じて、組み合わせとする2つの電極120同士の間隔を決定するとよい。
 バッテリ130は、本体110の内部に配置されている。バッテリ130は、「所定の電源」および「二次電池」の一例であり、制御装置140に対して電力(直流電力)を供給する。バッテリ130としては、例えば、リチウムイオン電池、ニッケル水素電池等を用いることができる。なお、生物誘導装置100は、「所定の電源」として、バッテリ130(内部電源)を用いる代わりに、外部電源を用いてもよい。この場合、外部電源は、直流電源(例えば、外部バッテリ等)であってもよく、交流電源(例えば、商用電源等)であってもよい。但し、本実施形態のように、本体110の内部にバッテリ130を設けることにより、生物誘導装置100を設置する際に、外部電源との接続を意識する必要がなくなるため、生物誘導装置100の設置容易性をより高めることが可能となる。
 制御装置140は、本体110の内部に配置されている。制御装置140は、配線(図示省略)を介して、複数の電極120の各々に電気的に接続されている。制御装置140は、「制御手段」の一例であり、バッテリ130から供給された電力を用いて、複数の電極120の各々に印加する電力を制御する。具体的には、制御装置140は、バッテリ130から供給された直流電力を、当該制御装置140が備えるDC-ACインバータ(例えば、正弦波インバータ、矩形波インバータ等)により、出力用の交流電力へ変換する。そして、制御装置140は、生成された交流電力を、複数の電極120の各々に印加する。
 ここで、制御装置140は、複数の電極120の各々に対して印加する電力を、個別に制御することができる。この制御は、例えば、制御装置140において、CPU(Central Processing Unit)が所定の制御プログラムを実行することにより、実現される。例えば、制御装置140は、生物誘導装置100が備える複数の電極120のうち、全ての電極120に対して電力を印加することもできるし、特定の一部の電極120に対してのみ電力を印加することもできる。いずれの場合も、制御装置140は、特定の生物を防除するのに好適な電力設定値(例えば、電圧、周波数、デューティ比等)に基づく電力を、各電極120に対して印加することができる。
 例えば、制御装置140は、特定の生物のサイズが比較的小さい場合には、比較的小さい電圧値を有する電力を、各電極120に対して印加することができる。また、例えば、制御装置140は、特定の生物のサイズが比較的大きい場合には、比較的大きい電圧値を有する電力を、各電極120に対して電力を印加することができる。また、例えば、制御装置140は、特定の生物にとって感受性の高い周波数およびデューティ比を有する電力を、各電極120に対して印加することができる。なお、制御装置140による制御の詳細については、図6を用いて後述する。
 なお、制御装置140は、メモリ142を備えている。メモリ142には、第1の設定テーブル502および第2の設定テーブル504が格納される。第1の設定テーブル502は、生物の種類毎に、当該生物を防除するのに好ましい電力設定値が設定される。第2の設定テーブル504は、生物誘導装置100が備える複数の電極120の各々に対して、当該電極120に印加する電力に関する電力設定値が設定される。なお、第1の設定テーブル502および第2の設定テーブル504の詳細については、図5を用いて後述する。
 太陽電池パネル150は、本体110の表面に設置されている。太陽電池パネル150は、内部に設けられた太陽電池の表面に光が照射されると、当該太陽電池の光起電力効果により、電力を発生する。太陽電池パネル150によって発生された電力は、バッテリ130に供給されて、バッテリ130の充電に用いられる。本実施形態の生物誘導装置100は、太陽電池パネル150を設けたことにより、外部電源に接続することなく、バッテリ130から供給された電力による、長時間の動作が可能となっている。なお、図2に示す例では、本体110の表面上における、複数の電極120が設けられていない領域に、太陽電池パネル150が配置されているが、これに限らない。例えば、太陽電池パネル150上に、複数の電極120が設けられてもよい。この場合、太陽電池パネル150は、本体110の表面上の全面に亘って設けられてもよい。
 例えば、このように構成された生物誘導装置100は、屋外および屋内を問わず、平面状の設置面(例えば、地面、舗装面、床面、壁面、屋根等)に対して、複数並べて敷設される。この際、生物誘導装置100は、各種接着手段(例えば、接着剤、モルタル、両面テープ等)によって、本体110の底面部分が、設置面(舗装面、床面、壁面、屋根等)に接着されることにより、設置面に固定されてもよい。また、例えば、生物誘導装置100は、本体110の底面から垂下する杭状の部材が設けられてもよく、この場合、当該杭状の部材が地中に埋め込まれることによって、設置面(地面等)に固定されてもよい。また、例えば、生物誘導装置100は、本体110が上下方向にある程度の厚みを有する場合には、本体110の一部が地中に埋め込まれることによって、設置面(地面等)に固定されてもよい。また、例えば、生物誘導装置100は、各種連結手段により、隣接する他の生物誘導装置100と互いに連結可能であってもよい。
 〔生物誘導装置100の電気的接続構成〕
 次に、図4を参照して、生物誘導装置100の電気的接続構成について説明する。図4は、本発明の一実施形態に係る生物誘導装置100の電気的接続構成を示す図である。
 図4に示すように、制御装置140には、複数の電極120の各々が電気的に接続されている。これにより、制御装置140は、複数の電極120の各々に対して、個別に電力を印加することができる。
 また、図4に示すように、複数の電極120は、電極A,A,・・・,Aと、電極B,B,・・・,Bとを含んでいる。制御装置140は、互いに隣接する2つの電極120に対して、互いに電圧の極性が異なる交流電力を印加することができる。
 また、図4に示すように、制御装置140は、メモリ142を備えている。メモリ142には、第1の設定テーブル502および第2の設定テーブル504が格納される。制御装置140は、メモリ142に格納されている第1の設定テーブル502および第2の設定テーブル504に基づいて、複数の電極120の各々に対して、個別に電力を印加することができる。
 また、図4に示すように、制御装置140には、バッテリ130が電気的に接続されている。これにより、制御装置140は、バッテリ130から供給される電力(直流電力)を用いて、複数の電極120の各々に対して、電力(交流電力)を印加することができる。
 また、図4に示すように、バッテリ130には、太陽電池パネル150が電気的に接続されている。これにより、バッテリ130は、太陽電池パネル150から供給される電力により、充電されるようになっている。
 また、図4に示すように、本実施形態の生物誘導装置100は、複数の電極120の各々に対して、制御装置140との間に、「保護装置」の一例として、ヒューズ160が設けられている。これにより、生物誘導装置100は、ある電極120に対して異物や生物等が付着することにより、その電極120が短絡して、その電極120に過電流が流れてしまった場合であっても、その電極に接続されたヒューズ160によって、その電極120を回路から遮断することにより、過電流による回路の損壊を回避することができるようになっている。
 〔メモリ142に格納される情報の一例〕
 図5は、本発明の一実施形態に係る生物誘導装置100が備えるメモリ142に格納される情報の一例を示す図である。
 図5Aは、メモリ142に格納される、第1の設定テーブル502の一例を示す図である。第1の設定テーブル502は、生物の種類毎に、当該生物を防除するのに好ましい電力設定値が設定されるテーブルである。図5Aに示す例では、第1の設定テーブル502は、電力設定値に関するデータ項目として、「電圧」、「周波数」、および「デューティ比」を含んでいる。「電圧」、「周波数」、および「デューティ比」には、生物を防除するのに有効な値が設定される。特に、「電圧」には、生物が死滅するに至らない程度の電圧値が設定される。なお、「デューティ比」は、電極120に印加される交流電力が矩形波によるものである場合にのみ値が設定される。
 ここで、本発明の発明者は、「電圧」には、生物の種類に応じて、0~12Vの範囲内の電圧値を設定することが好ましいことを、試験等によって見出している。また、本発明の発明者は、「周波数」には、生物の種類に応じて、300~2.0KHzの範囲内の周波数値を設定することが好ましいことを、試験等によって見出している。
 なお、第1の設定テーブル502は、生物誘導装置100と接続可能な外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)に設けられてもよい。この場合、例えば、制御装置140は、誘導または防除する生物の種類に対応する電力設定値を、外部機器から取得するようにしてもよい。
 また、図5Aに示す例では、第1の設定テーブル502には、生物の種類を問わない電力設定値が設定されている。この電力設定値は、複数の種類の生物を、誘導または防除の対象とする場合に用いられる。
 図5Bは、メモリ142に格納される、第2の設定テーブル504の一例を示す図である。第2の設定テーブル504は、生物誘導装置100が備える複数の電極120の各々に対して、当該電極120に印加する電力に関する電力設定値が設定されるテーブルである。図5Bに示す例では、第2の設定テーブル504は、電力設定値に関するデータ項目として、「電圧」、「周波数」、および「デューティ比」を含んでいる。
 ここで、本実施形態の生物誘導装置100は、一部の領域内の電極120に対して電力を印加し、他の一部の領域内の電極120に対して電力を印加しないようにすることができる。例えば、図5Bに示す例では、電極A,A,B,Bに対しては、電力を印加する設定がなされており、電極A,Bに対しては、電力を印加しない設定がなされている。特に、電極A,A,B,Bに対しては、「電圧」に「10V」が設定されており、「周波数」に「1.0KHz」が設定されており、「デューティ比」に「50%」が設定されている。これらの電力設定値は、図5Aに示す「生物B」の電力設定値に対応するものである。すなわち、図5Bに示す例では、第2の設定テーブル504において、一部の領域内の電極A,A,B,Bによって、「生物B」を誘導または防除するための設定がなされている。
 〔制御装置140による制御の手順〕
 図6は、本発明の一実施形態に係る生物誘導装置100が備える制御装置140による制御の手順を示すフローチャートである。
 まず、制御装置140は、誘導または防除の対象とする生物の種類を特定するか否かを判断する(ステップS601)。誘導または防除の対象とする生物の種類を特定するか否かは、例えば、外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)から設定される。
 ステップS601において、誘導または防除の対象とする生物の種類を特定しないと判断された場合(ステップS601:No)、制御装置140は、メモリ142に格納されている第1の設定テーブル502(図5参照)を参照することにより、生物の種類を問わない電力設定値(例えば、電圧、周波数、およびデューティ比)を取得する(ステップS602)。そして、制御装置140は、ステップS605へ処理を進める。
 一方、ステップS601において、誘導または防除の対象とする生物の種類を特定すると判断された場合(ステップS601:Yes)、制御装置140は、生物誘導装置100によって誘導または防除する生物の種類を特定する(ステップS603)。例えば、生物誘導装置100によって誘導または防除する生物の種類は、外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)から設定される。
 次に、制御装置140は、メモリ142に格納されている第1の設定テーブル502(図5参照)を参照することにより、ステップS603で特定された生物の種類に対応する電力設定値(例えば、電圧、周波数、およびデューティ比)を取得する(ステップS604)。そして、制御装置140は、ステップS605へ処理を進める。
 ステップS605では、制御装置140は、生物誘導装置100が備える複数の電極120のうち、電力を印加する電極120を特定する。例えば、電力を印加する電極120は、外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)から設定される。なお、電力を印加する電極120は、特定の一部の電極120であってもよく、全ての電極120であってもよい。
 次に、制御装置140は、ステップS605で特定された各電極120に対し、ステップS602またはステップS604で取得された電力設定値を設定する(ステップS606)。ステップS606において各電極120に対して設定された電力設定値は、例えば、メモリ142に格納されている第2の設定テーブル504(図5参照)に設定される。
 次に、制御装置140は、ステップS605で特定された各電極120に対し、ステップS606で設定された電力設定値(例えば、電圧、周波数、およびデューティ比)に基づく交流電力を生成し、当該交流電力を印加する(ステップS607)。そして、制御装置140は、図6に示す一連の制御を終了する。
 ステップS607において、各電極120に印加される交流電力は、矩形波によるものであってもよく、正弦波によるものであってもよい。また、ステップS607において、各電極120に印加される交流電力の周波数は、所定の周波数(例えば、1KHz)を中心周波数として、時系列に変化するものであってもよい。これにより、生物誘導装置100は、電力に対する感受性のピーク周波数が様々である多様な生物を、各電極120によって誘導または防除することができる。なお、この場合、各電極120に印加される交流電力の周波数は、予め定められた複数の周波数に順に切り換えられてもよく、ランダムに切り換えられてもよい。
 図6に示した制御により、制御装置140は、特定の一部の領域内の電極120、または、全ての電極120に対して、特定の種類の生物または複数の種類の生物を誘導または防除するのに好適な電力設定値に基づく電力を、印加することができる。これにより、生物誘導装置100の表面上の一部または全部に、特定の種類の生物または複数の種類の生物を防除するための領域が形成され、生物誘導装置100の表面上を移動しようとする特定の種類の生物または複数の種類の生物は、当該領域内の電極120に接触すると、電力による刺激が与えられ、当該領域から逃げ出すこととなる。但し、各電極120に印加される電力は、特定の種類の生物または複数の種類の生物を死滅させるに至らない電圧値に基づくものであるため、特定の種類の生物または複数の種類の生物は、当該領域において死滅することなく、当該領域から逃げ出すこととなる。よって、本実施形態の生物誘導装置100は、特定の種類の生物または複数の種類の生物を生きたまま捕獲する、という用途にも利用することが可能である。
 なお、各電極120に対して印加する電力を個別に制御する方法は、図6に示した方法に限らない。例えば、各電極120の電力設定値は、外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)から、第2の設定テーブル504(図5参照)に対して、直接設定されてもよい。また、各電極120の電力設定値は、制御装置140に設けられたディップスイッチ等により、直接切り換え可能であってもよい。
 〔生物誘導装置100の第1実施例〕
 次に、図7を参照して、生物誘導装置100の第1実施例について説明する。この第1実施例では、生物誘導装置100によって、家屋22を含む防除エリア20内への生物30の進入を防止する例を説明する。
 図7は、本発明の一実施形態に係る生物誘導装置100の第1実施例を示す図である。図7A~Cに示すように、防除エリア20の側方には、当該防除エリア20への進入経路を遮るように、複数の生物誘導装置100がマトリクス状(2×6列)に並べて配置されている。
 なお、図7A~Cにおいて、着色がなされている生物誘導装置100は、各電極120に対して5V(生物30の防除に好適な電圧値)の交流電力が印加される生物誘導装置100を示す。一方、図7A~Cにおいて、着色がなされていない生物誘導装置100は、各電極120に対して交流電力が印加されない生物誘導装置100を示す。
 図7Aに示す例では、内側(防除エリア20側)の1列の生物誘導装置100は、各電極120に対して5Vの交流電力が印加される。一方、外側の1列の生物誘導装置100は、各電極120に対して交流電力が印加されない。すなわち、図7Aに示す例では、内側の1列の生物誘導装置100によって、防除エリア20内への生物30の進入を防ぐことができる。
 図7Bに示す例では、外側の1列の生物誘導装置100は、各電極120に対して5Vの交流電力が印加される。一方、内側の1列の生物誘導装置100は、各電極120に対して交流電力が印加されない。すなわち、図7Bに示す例では、外側の1列の生物誘導装置100群によって、防除エリア20内への生物30の進入を防ぐことができる。
 図7Cに示す例では、全ての生物誘導装置100は、各電極120に対して5Vの交流電力が印加される。すなわち、図7Cに示す例では、全ての生物誘導装置100によって、防除エリア20内への生物30の進入を防ぐことができる。
 本実施例において、複数の生物誘導装置100の各々は、各電極120に対して5Vの交流電力を印加するか否かを、設定することが可能である。これにより、本実施例では、図7A~Cに示したように、複数の生物誘導装置100のうち、任意の生物誘導装置100(例えば、生物30の進入を防ぎたい位置に配置されている生物誘導装置100)のみに対して、各電極120に対して交流電力が印加されるようにすることができる。
 なお、本実施例において、各生物誘導装置100の設定は、例えば、各生物誘導装置100と接続可能な外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)、各生物誘導装置100が備えるディップスイッチ等によって、容易に行うことができる。また、各生物誘導装置100の設定は、各生物誘導装置100を設置面に設置するときだけでなく、各生物誘導装置100を設置面に設置した後も、行うことが可能である。
 〔生物誘導装置100の第2実施例〕
 次に、図8を参照して、生物誘導装置100の第2実施例について説明する。この第2実施例では、1つの生物誘導装置100(複数の電極120)によって、捕獲エリア40へ生物30および生物50を誘導する例を説明する。
 図8は、本発明の一実施形態に係る生物誘導装置100の第2実施例を示す図である。図8A,Bに示すように、捕獲エリア40の側方には、当該捕獲エリア40への進入経路を遮るように、1つの生物誘導装置100が配置されている。
 なお、図8A,Bにおいて、着色がなされている電極120は、5V(生物30の防除に好適な電圧値)の交流電力が印加される電極120を示す。また、図8Aにおいて、着色がなされていない電極120は、交流電力が印加されない電極120を示す。また、図8Bにおいて、ハッチングがなされている電極120は、10V(生物50の防除に好適な電圧値)の交流電力が印加される電極120を示す。
 図8Aに示す例では、上から1~3,6~8列目の各電極120に対して、5V(生物30の防除に好適な電圧値)の交流電力が印加される。一方、上から4,5列目の各電極120に対しては、交流電力が印加されない。これにより、生物誘導装置100の表面上においては、上から1~3列目の各電極120によって、生物30が防除される第1の領域が形成される。また、上から6~8列目の各電極120によって、生物30が防除される第2の領域が形成される。そして、第1の領域と第2の領域との間に、生物30が防除されない第3の領域が形成される。その結果、生物30は、生物誘導装置100の表面上において、第1の領域および第2の領域を避けて、第3の領域を移動するようになる。そして、例えば、図8Aに示すように、第3の領域の延長線上に、捕獲エリア40を設けることにより、生物30を捕獲エリア40へ誘導して、生物30を効率的に捕獲することができる。
 図8Bに示す例では、上から1,2,7,8列目の各電極120に対して、10V(生物50の防除に好適な電圧値)の交流電力が印加される。一方、上から3~6列目の各電極120に対しては、5V(生物30の防除に好適な電圧値)の交流電力が印加される。これにより、生物誘導装置100の表面上においては、上から1,2列目の各電極120によって、生物30および生物50の双方が防除される第1の領域が形成される。また、上から7,8列目の各電極120によって、生物30および生物50の双方が防除される第2の領域が形成される。そして、第1の領域と第2の領域との間に、生物30のみが防除される第3の領域が形成される。その結果、生物30は、生物誘導装置100の表面上を移動することができなくなる。すなわち、生物30は、生物誘導装置100によって、捕獲エリア40への進入が防除されることとなる。一方、生物50は、生物誘導装置100の表面上において、第1の領域および第2の領域を避けて、第3の領域を移動するようになる。そして、例えば、図8Bに示すように、第3の領域の延長線上に、捕獲エリア40を設けることにより、生物50を捕獲エリア40へ誘導して、生物50を効率的に捕獲することができる。
 このように、本実施例の生物誘導装置100は、電極120毎に、印加する交流電力を個別に設定することが可能である。これにより、本実施例の生物誘導装置100は、図8Aに示したように、特定の生物を、目的のエリアへ誘導することができる。また、本実施例の生物誘導装置100は、図8Bに示すように、特定の生物の進入を防除しつつ、他の特定の生物を、目的のエリアへ誘導することもできる。
 なお、各電極120の設定は、例えば、生物誘導装置100と接続可能な外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)、生物誘導装置100が備えるディップスイッチ等によって、容易に行うことができる。また、各電極120の設定は、生物誘導装置100を設置面に設置するときだけでなく、生物誘導装置100を設置面に設置した後も、行うことが可能である。
 〔生物誘導装置100の第3実施例〕
 次に、図9を参照して、生物誘導装置100の第3実施例について説明する。この第3実施例では、複数の生物誘導装置100によって、捕獲エリア40へ生物30および生物50を誘導する例を説明する。
 図9は、本発明の一実施形態に係る生物誘導装置100の第3実施例を示す図である。図9A,Bに示すように、捕獲エリア40の側方には、当該捕獲エリア40への進入経路を遮るように、複数の生物誘導装置100がマトリクス状(4×6列)に並べて配置されている。
 なお、図9A,Bにおいて、着色がなされている生物誘導装置100は、各電極120に対して5V(生物30の防除に好適な電圧値)の交流電力が印加される生物誘導装置100を示す。また、図9Aにおいて、着色がなされていない生物誘導装置100は、各電極120に対して交流電力が印加されない生物誘導装置100を示す。また、図9Bにおいて、ハッチングがなされている生物誘導装置100は、各電極120に対して10V(生物50の防除に好適な電圧値)の交流電力が印加される生物誘導装置100を示す。
 図9Aに示す例では、上から1,2,5,6列目の各生物誘導装置100においては、各電極120に対して5V(生物30の防除に好適な電圧値)の交流電力が印加される。一方、上から3,4列目の各生物誘導装置100においては、各電極120に対して交流電力が印加されない。これにより、本実施例においては、上から1,2列目の各生物誘導装置100によって、生物30が防除される第1の領域が形成される。また、上から5,6列目の各生物誘導装置100によって、生物30が防除される第2の領域が形成される。そして、第1の領域と第2の領域との間に、生物30が防除されない第3の領域が形成される。その結果、本実施例において、生物30は、第1の領域および第2の領域を避けて、第3の領域を移動するようになる。そして、例えば、図9Aに示すように、第3の領域の延長線上に、捕獲エリア40を設けることにより、生物30を捕獲エリア40へ誘導して、生物30を効率的に捕獲することができる。
 図9Bに示す例では、上から1,2,5,6列目の生物誘導装置100においては、各電極120に対して10V(生物50の防除に好適な電圧値)の交流電力が印加される。一方、上から3,4列目の各生物誘導装置100においては、各電極120に対して5V(生物30の防除に好適な電圧値)の交流電力が印加される。これにより、本実施例においては、上から1,2列目の各生物誘導装置100によって、生物30および生物50の双方が防除される第1の領域が形成される。また、上から5,6列目の各生物誘導装置100によって、生物30および生物50の双方が防除される第2の領域が形成される。そして、第1の領域と第2の領域との間に、生物30のみが防除される第3の領域が形成される。その結果、生物30は、複数の生物誘導装置100の表面上を移動することができなくなる。すなわち、生物30は、複数の生物誘導装置100によって、捕獲エリア40への進入が防除されることとなる。一方、生物50は、複数の生物誘導装置100の表面上において、第1の領域および第2の領域を避けて、第3の領域を移動するようになる。そして、例えば、図9Bに示すように、第3の領域の延長線上に、捕獲エリア40を設けることにより、生物50を捕獲エリア40へ誘導して、生物50を効率的に捕獲することができる。
 このように、本実施例の構成では、生物誘導装置100毎に、印加する交流電力を個別に設定することが可能である。これにより、本実施例の構成は、図9Aに示したように、特定の生物を、目的のエリアへ誘導することができる。また、本実施例の構成は、図9Bに示すように、特定の生物の進入を防除しつつ、他の特定の生物を、目的のエリアへ誘導することもできる。
 なお、本実施例において、各生物誘導装置100の設定は、例えば、各生物誘導装置100と接続可能な外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)、各生物誘導装置100が備えるディップスイッチ等によって、容易に行うことができる。また、各生物誘導装置100の設定は、各生物誘導装置100を設置面に設置するときだけでなく、各生物誘導装置100を設置面に設置した後も、行うことが可能である。
 〔生物誘導装置100の変形例〕
 次に、図10を参照して、生物誘導装置100の変形例について説明する。この変形例では、生物誘導装置100とは電極の形状および配置が異なる、生物誘導装置100’について説明する。図10は、本発明の一変形例に係る生物誘導装置100’の外観斜視図である。なお、以降の説明では、生物誘導装置100に関し、生物誘導装置100からの変更点について説明する。
 図10に示すように、生物誘導装置100’は、複数の電極120’を備えている。複数の電極120’の各々は、図中X軸方向に沿って延伸する帯状をなしている。複数の電極120は、本体110の表面において、図中Y軸方向に並べて配設されている。図10に示す例では、本体110の表面には、8本の電極120’が、図中Y軸方向に並べて配設されている。電極120’としては、例えば、銅、銅タングステン、銀タングステン、真鍮、アルミ等の、導電性素材を用いることができる。
 複数の電極120’は、第1の電極A,A,・・・,Aと、第2の電極B,B,・・・,Bとを含んでいる。但し、Nは、1以上の整数であり、本変形例の場合は、N=4である。第1の電極および第2の電極は、互いに電圧の極性が異なる交流電力が印加される。例えば、第1の電極に+極性の電圧の交流電力が印加されるとき、第2の電極に-極性の電圧の交流電力が印加される。反対に、第1の電極に-極性の電圧の交流電力が印加されるとき、第2の電極に+極性の電圧の交流電力が印加される。また、図10に示すように、本体110の表面においては、第1の電極と第2の電極とが、図中Y軸方向に交互に並べて配置されている。これにより、隣接する2つの電極120が、互いに電圧の極性が異なる交流電力が印加されるものとなり、当該隣接する2つの電極120に接触した生物に対して、交流電力によるダメージを与えることができる。
 〔生物誘導装置100’の実施例〕
 次に、図11を参照して、生物誘導装置100’の実施例について説明する。この実施例では、1つの生物誘導装置100’(複数の電極120’)によって、捕獲エリア40へ生物30および生物50を誘導する例を説明する。
 図11は、本発明の一変形例に係る生物誘導装置100’の実施例を示す図である。図11A,Bに示すように、捕獲エリア40の側方には、当該捕獲エリア40への進入経路を遮るように、1つの生物誘導装置100’が配置されている。
 なお、図11A,Bにおいて、着色がなされている電極120’は、5V(生物30の防除に好適な電圧値)の交流電力が印加される電極120’を示す。また、図11Aにおいて、着色がなされていない電極120’は、交流電力が印加されない電極120’を示す。また、図11Bにおいて、ハッチングがなされている電極120’は、10V(生物50の防除に好適な電圧値)の交流電力が印加される電極120’を示す。
 図11Aに示す例では、上から1~3,6~8列目の各電極120’に対して、5V(生物30の防除に好適な電圧値)の交流電力が印加される。一方、上から4,5列目の各電極120’に対しては、交流電力が印加されない。これにより、生物誘導装置100’の表面上においては、上から1~3列目の各電極120’によって、生物30が防除される第1の領域が形成される。また、上から6~8列目の各電極120’によって、生物30が防除される第2の領域が形成される。そして、第1の領域と第2の領域との間に、生物30が防除されない第3の領域が形成される。その結果、生物30は、生物誘導装置100’の表面上において、第1の領域および第2の領域を避けて、第3の領域を移動するようになる。そして、例えば、図11Aに示すように、第3の領域の延長線上に、捕獲エリア40を設けることにより、生物30を捕獲エリア40へ誘導して、生物30を効率的に捕獲することができる。
 図11Bに示す例では、上から1,2,7,8列目の各電極120’に対して、10V(生物50の防除に好適な電圧値)の交流電力が印加される。一方、上から3~6列目の各電極120’に対しては、5V(生物30の防除に好適な電圧値)の交流電力が印加される。これにより、生物誘導装置100’の表面上においては、上から1,2列目の各電極120’によって、生物30および生物50の双方が防除される第1の領域が形成される。また、上から7,8列目の各電極120’によって、生物30および生物50の双方が防除される第2の領域が形成される。そして、第1の領域と第2の領域との間に、生物30のみが防除される第3の領域が形成される。その結果、生物30は、生物誘導装置100’の表面上を移動することができなくなる。すなわち、生物30は、生物誘導装置100’によって、捕獲エリア40への進入が防除されることとなる。一方、生物50は、生物誘導装置100’の表面上において、第1の領域および第2の領域を避けて、第3の領域を移動するようになる。そして、例えば、図11Bに示すように、第3の領域の延長線上に、捕獲エリア40を設けることにより、生物50を捕獲エリア40へ誘導して、生物50を効率的に捕獲することができる。
 このように、本実施例の生物誘導装置100’は、電極120’毎に、印加する交流電力を個別に設定することが可能である。これにより、本実施例の生物誘導装置100’は、図11Aに示したように、特定の生物を、目的のエリアへ誘導することができる。また、本実施例の生物誘導装置100’は、図11Bに示すように、特定の生物の進入を防除しつつ、他の特定の生物を、目的のエリアへ誘導することもできる。
 なお、各電極120’の設定は、例えば、生物誘導装置100’と接続可能な外部機器(例えば、パーソナルコンピュータ、スマートフォン、タブレット端末等)、生物誘導装置100’が備えるディップスイッチ等によって、容易に行うことができる。また、各電極120’の設定は、生物誘導装置100’を設置面に設置するときだけでなく、生物誘導装置100’を設置面に設置した後も、行うことが可能である。
 以上説明したように、本実施形態の生物誘導装置100,100’は、タイル状の本体110と、本体110の表面に配設された複数の電極120,120’と、バッテリ130(所定の電源)から供給された電力を用いて、複数の電極120,120’の各々に対して印加する電力を個別に制御可能な制御装置140(制御手段)とを備えている。
 これにより、本実施形態の生物誘導装置100,100’は、設置面の形状に合わせて容易に設置することができるとともに、電界を形成する領域を多様に変更することができる。また、本実施形態の生物誘導装置100,100’は、複数の電極120,120’の各々に対して印加する電力を個別に制御することにより、生物を所定の方向へ誘導することができるように、電界を形成することが可能である。
 特に、本実施形態の生物誘導装置100は、本体110の表面において、複数の電極120がマトリクス状に配設されている。これにより、本実施形態の生物誘導装置100は、電界を形成する領域の形状を、より多様化することができる。このため、本実施形態の生物誘導装置100は、生物を誘導する方向を、より多様化することができる。
 また、本実施形態の生物誘導装置100,100’は、制御装置140により、本体110の表面における一部の領域内の電極120,120’に対して電力を印加し、他の一部の領域内の電極120,120’に対して電力を印加しないことにより、本体110の表面上(他の一部の領域)に、生物を誘導する誘導経路を形成することができる。これにより、本実施形態の生物誘導装置100,100’は、本体110の表面上において、生物を所定の方向へ誘導することができる。
 また、本実施形態の生物誘導装置100,100’は、制御装置140により、本体110の表面における一部の領域内の電極120,120’に対して第1の電力を印加し、他の一部の領域内の電極120,120’に対して第1の電力よりも電圧値が低い第2の電力を印加することにより、本体110の表面上(他の一部の領域)に、生物を誘導する誘導経路を形成することができる。これにより、本実施形態の生物誘導装置100,100’は、本体110の表面上において、特定の生物を所定の方向へ誘導することができるとともに、他の生物(特定の生物よりも小さい生物)の進入を防除することができる。
 また、本実施形態の生物誘導装置100,100’は、本体110の表面における一部の領域内の電極120,120’に対して、生物の種類に応じた電力設定値に基づく電力を印加することができる。これにより、本実施形態の生物誘導装置100,100’は、本体110の表面上において、特定の生物を所定の方向へ誘導することができる。
 特に、本実施形態の生物誘導装置100,100’は、生物の種類に応じた電力設定値に、生物が死滅するに至らない電圧値を含めるようにしている。これにより、本実施形態の生物誘導装置100,100’は、本体110の表面上において、特定の生物を死滅させることなく、所定の方向へ誘導することができる。よって、本実施形態の生物誘導装置100,100’は、特定の生物を、生きたまま捕獲することが可能である。
 なお、本実施形態の生物誘導装置100,100’は、当該生物誘導装置100,100’を複数組み合わせて、生物誘導ユニットとして利用および提供することが可能である。生物誘導ユニットは、生物誘導装置100,100’を単体で利用するよりも、より広範囲に、生物を誘導または防除するための電界を形成することができる。また、生物誘導ユニットは、複数の生物誘導装置100,100’の配置を変更することにより、より多様な形状の設置面に合わせて、複数の生物誘導装置100,100’を設置することができる。
 以上、本発明の好ましい実施形態について詳述したが、本発明はこれらの実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形又は変更が可能である。
 例えば、本体110の表面上における複数の電極120,120’の構成(例えば、形状、サイズ、数、配列等)は、上記実施形態で説明したものに限らない。
 また、上記実施形態では、1つの生物誘導装置100,100’に対して、1つの制御装置140を設けるようにしているが、これに限らない。例えば、複数の生物誘導装置100,100’に対して、1つの制御装置140を設けるようにしてもよい。また、制御装置140を、生物誘導装置100の外部に設けるようにしてもよい。
 また、上記実施形態では、1つの生物誘導装置100,100’に対して、1つのバッテリ130を設けるようにしているが、これに限らない。例えば、複数の生物誘導装置100,100’に対して、1つのバッテリ130を設けるようにしてもよい。
 また、上記実施形態では、1つの電極120,120’に対して、1つのヒューズ160を設けるようにしているが、これに限らない。例えば、複数の電極120,120’に対して、1つのヒューズ160を設けるようにしてもよい。また、ヒューズ160を設けない構成としてもよい。
 また、上記実施形態では、1つの生物誘導装置100,100’に対して、1つの太陽電池パネル150を設けるようにしているが、これに限らない。例えば、複数の生物誘導装置100,100’に対して、1つの太陽電池パネル150を設けるようにしてもよい。また、太陽電池パネル150を、生物誘導装置100の外部に設けるようにしてもよい。また、太陽電池パネル150を設けない構成としてもよい。
 また、上記実施形態では、各電極120に対して交流電力を印加するようにしているが、これに限らない。すなわち、各電極120に対して直流電力を印加するようにしてもよい。この場合も、防除対象の生物の種類に応じて、その生物が死滅するに至らない電圧値を有する直流電力を、各電極120に対して印加することが好ましい。
 本国際出願は、2017年8月15日に出願した日本国特許出願第2017-156934号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。
 20 防除エリア
 22 家屋
 30,50 生物
 40 捕獲エリア
 100 生物誘導装置
 110 本体
 120 電極
 130 バッテリ(電源)
 140 制御装置(制御手段)
 142 メモリ
 150 太陽電池パネル
 160 ヒューズ(保護装置)
 502 第1の設定テーブル
 504 第2の設定テーブル

Claims (12)

  1.  設置面に敷設される生物誘導装置であって、
     タイル状の本体と、
     前記本体の表面に配設された複数の電極と、
     所定の電源から供給された電力を用いて、前記複数の電極の各々に対して印加する電力を個別に制御可能な制御手段と
     を備えたことを特徴とする生物誘導装置。
  2.  前記本体の表面において、前記複数の電極がマトリクス状に配設されている
     を備えたことを特徴とする請求項1に記載の生物誘導装置。
  3.  前記複数の電極の各々に対して、保護装置が設けられている
     ことを特徴とする請求項1に記載の生物誘導装置。
  4.  前記所定の電源として、二次電池を備えたことを特徴とする請求項1に記載の生物誘導装置。
  5.  前記二次電池の充電に利用可能な電力を出力する太陽電池パネルを備えたことを特徴とする請求項4に記載の生物誘導装置。
  6.  前記制御手段は、
     前記本体の表面における一部の領域内の前記電極に対して電力を印加し、他の一部の領域内の前記電極に対して電力を印加しないことにより、前記他の一部の領域に、生物を誘導する誘導経路を形成する
     ことを特徴とする請求項1に記載の生物誘導装置。
  7.  前記制御手段は、
     前記本体の表面における一部の領域内の前記電極に対して第1の電力を印加し、他の一部の領域内の前記電極に対して前記第1の電力よりも電圧値が低い第2の電力を印加することにより、前記他の一部の領域に、生物を誘導する誘導経路を形成する
     ことを特徴とする請求項1に記載の生物誘導装置。
  8.  前記制御手段は、
     前記一部の領域内の前記電極に対して、前記生物の種類に応じた電力設定値に基づく電力を印加する
     ことを特徴とする請求項6または7に記載の生物誘導装置。
  9.  前記生物の種類に応じた電力設定値は、前記生物が死滅するに至らない電圧値を含む
     ことを特徴とする請求項8に記載の生物誘導装置。
  10.  請求項1に記載の生物誘導装置を複数備えたことを特徴とする生物誘導ユニット。
  11.  前記複数の生物誘導装置が敷設される設置面において、
     一部の領域内の前記生物誘導装置に対して電力を印加し、他の一部の領域内の前記生物誘導装置に対して電力を印加しないことにより、前記他の一部の領域に、生物を誘導する誘導経路を形成する
     ことを特徴とする請求項10に記載の生物誘導ユニット。
  12.  前記複数の生物誘導装置が敷設される設置面において、
     一部の領域内の前記生物誘導装置に対して第1の電力を印加し、他の一部の領域内の前記生物誘導装置に対して前記第1の電力よりも電圧値が低い第2の電力を印加することにより、前記他の一部の領域に、生物を誘導する誘導経路を形成する
     ことを特徴とする請求項10に記載の生物誘導ユニット。
PCT/JP2018/022107 2017-08-15 2018-06-08 生物誘導装置および生物誘導ユニット WO2019035266A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3058362A CA3058362C (en) 2017-08-15 2018-06-08 Organism inducing device and organism inducing unit
US16/499,826 US11412729B2 (en) 2017-08-15 2018-06-08 Organism inducing device and organism inducing unit
JP2019536429A JP6618137B2 (ja) 2017-08-15 2018-06-08 生物誘導装置および生物誘導ユニット
EP18846431.7A EP3669650B1 (en) 2017-08-15 2018-06-08 Organism inducing device and organism inducing unit
CN201880019189.5A CN110430754B (zh) 2017-08-15 2018-06-08 生物诱导装置以及生物诱导单元
PH12019502146A PH12019502146A1 (en) 2017-08-15 2019-09-19 Organism inducing device and organism inducing unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-156934 2017-08-15
JP2017156934 2017-08-15

Publications (1)

Publication Number Publication Date
WO2019035266A1 true WO2019035266A1 (ja) 2019-02-21

Family

ID=65362295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022107 WO2019035266A1 (ja) 2017-08-15 2018-06-08 生物誘導装置および生物誘導ユニット

Country Status (7)

Country Link
US (1) US11412729B2 (ja)
EP (1) EP3669650B1 (ja)
JP (1) JP6618137B2 (ja)
CN (1) CN110430754B (ja)
CA (1) CA3058362C (ja)
PH (1) PH12019502146A1 (ja)
WO (1) WO2019035266A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186314A1 (ja) * 2021-03-05 2022-09-09 シャープ株式会社 虫誘導方法及び虫誘導装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239842A (ja) * 1988-06-17 1990-02-08 Contech Electron Inc 小動物に侵入を忌避させる装置
JP2002000164A (ja) * 2000-06-23 2002-01-08 Kansai Research Institute 害虫の駆除方法
JP2003204749A (ja) * 2002-01-11 2003-07-22 Suematsu Denshi Seisakusho:Kk 屋内用小動物忌避装置
JP2007274954A (ja) 2006-04-05 2007-10-25 Yamaguchi Univ シロアリ等の防除撃退装置及び方法
US20110023792A1 (en) * 2009-08-01 2011-02-03 Peter Osypka Method and device for deterring earth-bound animals and/or birds
JP2017156934A (ja) 2016-03-01 2017-09-07 東芝テック株式会社 情報処理装置及びプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3633001A (en) * 1969-11-05 1972-01-04 Bel Art Products Apparatus for measuring the activity of laboratory animals
US5460123A (en) * 1993-04-23 1995-10-24 The United States Of America As Represented By The Secretary Of Agriculture Electroshock repulsion of waterfowl, aquatic animals, and small mammals
US6223464B1 (en) 1999-11-08 2001-05-01 Nelson M Nekomoto Apparatus for repelling ground termites
CN2418683Y (zh) * 2000-04-19 2001-02-14 卢孝伟 超声驱虫害防治器
JP3773199B2 (ja) * 2001-04-23 2006-05-10 順三 豊田 鼠駆除用電撃シート、電撃殺鼠システム及び電撃殺鼠方法
DE202004006747U1 (de) * 2004-04-27 2004-09-02 Pollmann, Walter Vorrichtung zur Abwehr von Tieren
US7389744B2 (en) 2006-03-29 2008-06-24 Jingxi Zhang Method and apparatus for tracking a laboratory animal location and movement
CN202535985U (zh) * 2012-04-25 2012-11-21 李建新 电子变频螨虫驱除器
GB2521817A (en) * 2013-11-20 2015-07-08 Geoffrey Graham Sore Pest Control Arrangement
WO2017076843A1 (en) * 2015-11-02 2017-05-11 Koninklijke Philips N.V. Ultrasound transducer array, probe and system
CN205337317U (zh) * 2016-01-28 2016-06-29 江苏绿能环保集成木屋有限公司 一种感应式防治白蚁装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239842A (ja) * 1988-06-17 1990-02-08 Contech Electron Inc 小動物に侵入を忌避させる装置
JP2002000164A (ja) * 2000-06-23 2002-01-08 Kansai Research Institute 害虫の駆除方法
JP2003204749A (ja) * 2002-01-11 2003-07-22 Suematsu Denshi Seisakusho:Kk 屋内用小動物忌避装置
JP2007274954A (ja) 2006-04-05 2007-10-25 Yamaguchi Univ シロアリ等の防除撃退装置及び方法
US20110023792A1 (en) * 2009-08-01 2011-02-03 Peter Osypka Method and device for deterring earth-bound animals and/or birds
JP2017156934A (ja) 2016-03-01 2017-09-07 東芝テック株式会社 情報処理装置及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3669650A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186314A1 (ja) * 2021-03-05 2022-09-09 シャープ株式会社 虫誘導方法及び虫誘導装置

Also Published As

Publication number Publication date
PH12019502146A1 (en) 2020-06-08
CA3058362A1 (en) 2019-02-21
CN110430754B (zh) 2022-05-17
US20200022357A1 (en) 2020-01-23
CN110430754A (zh) 2019-11-08
JPWO2019035266A1 (ja) 2019-11-21
EP3669650A4 (en) 2021-05-19
US11412729B2 (en) 2022-08-16
EP3669650B1 (en) 2021-12-08
EP3669650A1 (en) 2020-06-24
CA3058362C (en) 2021-07-27
JP6618137B2 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
RU2565252C2 (ru) Индукционная система электропитания
WO2008048677A3 (en) Electrified ceiling framework
WO2010057026A3 (en) Rechargeable stimulation lead, system, and method
EP1796235A3 (en) An equipotential zone for work on energised conductors
ES2311383B1 (es) Circuito de dispositivo de calentamiento.
RU2011140822A (ru) Способ подачи питания, устройство подачи питания и система подачи питания
WO2012056025A3 (en) Circuit for applying heat and electrical stimulation
JP2017530806A5 (ja)
RU2015112695A (ru) Прозрачное электронное дисплейное табло, способное производить равномерный оптический выход
WO2013125091A1 (ja) 送電装置及び送電制御方法
US20150249346A1 (en) Wireless power receiving device, wireless power sending device, and wireless power transfer system
WO2019035266A1 (ja) 生物誘導装置および生物誘導ユニット
EP2199872A3 (en) Developer supply device
KR102152515B1 (ko) 1차 디바이스와 2차 디바이스 사이의 전기 연결을 구축하기 위한 접촉 시스템
US20150222203A1 (en) Electrostatic energy-harvesting device having 3-dimensional cone shape
JP2011026692A5 (ja)
US11524594B2 (en) Contact system for establishing an electric connection between a vehicle and a power supply
US10314709B2 (en) Bone regeneration device
JP6837662B2 (ja) 水生生物誘導装置、水生生物誘導システム、および水槽
CN205560494U (zh) 一种背光模组及显示装置
CN210099825U (zh) 一种工业自动化生产用静电吸附装置
Lee et al. Towards a three-phase time-multiplexed planar power transmission to distributed implants
JP2004235112A (ja) 電磁波を減少させる電力導体
KR20100088971A (ko) 멀티탭
KR102635130B1 (ko) 송전선 안전 조명 장치 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536429

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3058362

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018846431

Country of ref document: EP

Effective date: 20200316