WO2019034259A1 - Procédé d'usinage d'une couche de matériau avec un rayonnement énergétique à distribution d'énergie variable - Google Patents

Procédé d'usinage d'une couche de matériau avec un rayonnement énergétique à distribution d'énergie variable Download PDF

Info

Publication number
WO2019034259A1
WO2019034259A1 PCT/EP2017/070916 EP2017070916W WO2019034259A1 WO 2019034259 A1 WO2019034259 A1 WO 2019034259A1 EP 2017070916 W EP2017070916 W EP 2017070916W WO 2019034259 A1 WO2019034259 A1 WO 2019034259A1
Authority
WO
WIPO (PCT)
Prior art keywords
material layer
energetic
directed
spot
varied
Prior art date
Application number
PCT/EP2017/070916
Other languages
German (de)
English (en)
Inventor
Florian EIBL
Wilhelm Meiners
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V.
Priority to PCT/EP2017/070916 priority Critical patent/WO2019034259A1/fr
Publication of WO2019034259A1 publication Critical patent/WO2019034259A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2203/00Controlling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/004Tandem beams or torches, i.e. working simultaneously with several beams or torches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for processing a material layer with
  • energetic radiation in particular laser radiation
  • a plurality of separate energetic beams directed at least temporarily on the material layer and guided in a direction of movement over the material layer, wherein the material ⁇ layer is locally melted within a region to be machined to produce at least one coherent molten bath.
  • Laser radiation is carried out in many technical areas in which the surface is modified by this machining or components are to be built generatively on a substrate surface.
  • powder bed-based beam melting processes such as selective laser melting, the components are generated directly from 3D CAD models
  • a thin powder layer of typically less than 100 ⁇ thickness is applied by means of slider on a substrate plate and selectively melted in a next step with laser radiation according to the geometry information from the 3D-CAD model.
  • This cycle process allows the production of three-dimensional components with minor restrictions on the constructive complexity.
  • the compaction of the component is based on a complete melting of the powder and at least partially of the preceding layer. This achieves component densities of up to 100% and comparable mechanical properties with conventional production methods. Due to the layered
  • Manufacturing process provides selective laser melting ⁇ an almost unlimited geometric freedom and allows new design options for complex components. For industrial use of a
  • Components in a generative manufacturing process require an increase in the build-up rate, i. of the melted per unit time material volume.
  • Increase of the build-up rate precludes. To increase the build-up rate, it is also possible to increase the powder layer thickness. However, this also results in a reduced surface quality and detail resolution.
  • sheath-core strategy areas in which a high surface quality and detail resolution are required are processed with a small spot diameter, whereas inner component areas with larger layer thicknesses, spot diameters and higher laser power are produced, since only a high material density is required in these areas. This is called the sheath-core strategy
  • Laser beam source and beam deflection unit - be limited by the size of the associated scan fields. In this way, the build rate is increased without changing the actual process parameters.
  • the disadvantage here is the cost of the additional irradiation facilities and the constructive
  • WO 2016/128430 A1 discloses a device for laser processing, in which an optical system for generating a line intensity distribution is described.
  • This laser line is variable in size and can theoretically be adapted to the requirements of the construction process.
  • the intensity ⁇ distribution within the line itself is not actively influenced, but results from the properties of the radiation source and the particular optical system, ie, depending on the current line and shape - large.
  • the movement of this laser line over the building level is done by galvanometer scanner.
  • process-related aspects have a disadvantageous effect. Investigations show that when used
  • Apparatus for laser processing in which by means of an axis system, an exposure or processing head is moved over a powder bed, for example, to produce a linear intensity distribution.
  • the machining head forms by means of an optical
  • the laser beams are each generated by a separate beam source, guided by optical fibers to the processing head and modulated simultaneously to the movement of the processing ⁇ head according to the component geometry to be generated or turned on and off.
  • US 2017/0021454 A1 describes a method for generative production with laser beams, in which an array of laser spots is also used for the machining.
  • the individual laser spots are arranged in such a way that they produce spatially separate individual melt baths on the workpiece surface. In this way, the emergence of formed by interaction of several laser spots
  • the object of the present invention is a method for processing a material layer with energetic radiation, in particular
  • Laser radiation which can be used for the additive manufacturing of components and allows rapid component production without loss of surface quality and detail resolution.
  • a coherent molten bath is understood as meaning a molten bath which is formed by the interaction of several energetic rays and thus a greater extent
  • the optics of the machining head are designed such that the spots of respectively adjacent beams in the focal plane touch or overlap. It can also be used a plurality of these processing heads, which simultaneously performed on the material layer ⁇ but independent with respect to the emitted energy beams from each other
  • the proposed method is characterized in that by a variation of the radiation power and / or spot distance perpendicular to the direction of movement and / or the spot size of each directed in the area to be processed energetic beams and / or by setting a mutual offset of each in the zu
  • the molten bath bath the geometric shape of the molten bath, the molten bath depth, the molten bath depth profile,
  • adjacent beams with different radiation power can be directed into the area to be processed, without then changing this beam power during the processing of the respective material layer (spatial
  • the neighboring beams can also be processed with the same radiant power in the
  • Multispot arrays in the proposed method allows in a known manner an increase in the
  • the microstructure of the solidified material can also be influenced.
  • Melting trace is compared with a processing without such a variation or without such offset. This can be undesirable
  • a molten bath set at least partially different from each other, that the melting depth is made uniform over the area occupied by the molten bath.
  • Homogeneity of the material distribution within the melting trace can be achieved, for example, by setting a mutual offset of the energetic rays directed in each case into the region to be processed in the direction of movement, starting from a first side of the (contiguous) melt bath in the direction of the opposite one second side of the molten bath each adjacent beam has an offset in the direction of movement, and the radiant power of the energetic beams from the first side to the second side increases. In the same way, it can be influenced in such a way that the radiant power of the energetic beams is reduced or decreased from the first side to the second side.
  • a homogenization can also be targeted by appropriate adjustment or variation of the above parameters
  • Processing without such a variation of the parameters or without such an offset - are generated, for example, in one side of the fuse track or in the middle of which more material is accumulated than in the remaining area. Such redistribution may be beneficial for certain component geometries in additive manufacturing.
  • the variation of the parameters of the individual energy beams directed in each case into the area to be processed preferably takes place relatively in the proposed method
  • the proposed method is preferably used for generative production of a component in which a powdered material for the component is melted in layers according to the component geometry by irradiation with the energetic radiation, in particular for the method of selective laser melting or laser sintering.
  • laser radiation is used in the method.
  • the method is also suitable for the use of other energetic
  • Radiation such as electron beams.
  • energetic radiation can be both continuous (cw) as well as pulsed radiation, for example in the form of pulsed laser beams used.
  • the processing of the material layer takes place with the aid of a
  • Processing head from which the energetic rays are directed side by side and / or with their spots partially overlapping on the material layer, wherein the machining head moves over the material layer or the material layer relative to
  • irradiated area can be achieved.
  • Melting depth can be specifically induced.
  • the melting depth can be adapted to the component geometry to be generated, in particular within a single layer in the layered construction of
  • Radiation power of individual spots also makes it possible to influence the material distribution within the melting trace towards regions of higher or lower temperature, caused by material-dependent
  • an anti-aliasing element can be achieved by producing a melt flow.
  • Radiation power for one or more spots in the array can also be the melt pool locally increase or decrease. This can be an increase or
  • Melting trace can be achieved. Comparable effects can be achieved by enlarging or reducing the spot diameter on the material layer.
  • the edge accuracy allows for a reduction or enlargement of the overlap area between two adjacent spots. This also leads to a reduction or increase in the energy input in the overlapping area.
  • the melting or melting depth in the area between two adjacent spots can be adapted to the component geometry to be produced, in particular within a layer in the case of the layered construction of three-dimensional components. This measure also makes it possible to compensate for changed heat conduction conditions, caused by material distribution below the currently exposed layer, thereby avoiding temperature fluctuations. Furthermore, by this measure, the edge accuracy
  • the proposed method is primarily for the additive production of components, in particular for powder bed-based production techniques such as
  • the method can also be used for non-generative methods such as, for example, laser polishing, remelting or heat treatment.
  • FIG. 2 shows an example of the arrangement of the laser spots on the material layer on exposure to such a machining head
  • FIG. 3 shows an example of a mutual offset of the laser spots on the material layer in FIG.
  • Fig. 5 shows an example of the anti-aliasing
  • Fig. 6 shows an example of the influence of the variation of the spot distance in the proposed
  • Fig. 7 shows an example of the influence of the variation of the laser power with the proposed method.
  • Fig. 8 shows an example of the influence of
  • a machining head is preferably used, with which a plurality of separate laser beams are directed with their laser spots adjacent to one another or partially overlapping onto the material layer. This creates a coherent intensity distribution in the Machining plane generated, which is composed of the individual spots of the laser beams.
  • FIG. 1 shows an example of a machining head 1, with which in this example five a laser line
  • the laser spots 2 are each formed from fiber-coupled diode lasers whose radiation is guided via the optical fibers 3 to optical focusing elements 4 in the machining head 1 and focused with these focusing elements 4 onto the material layer.
  • the machining head 1 by means of linear axes in the x and y direction line by line over the material layer
  • Figure 2 shows an example of overlapping
  • Laser spots 2 as they can be generated with the machining head of Figure 1 on the material layer.
  • the spots 2 partially overlap and form a coherent line-shaped intensity distribution, which is moved in the direction of the arrow over the material layer.
  • processing area with at least two neigh ⁇ barter spots 2 of this multi-spot array is a
  • spot spacing Ay s , i and / or offset ⁇ 3 , in the direction of movement can be used in accordance with the proposed method to within the contiguous melt pool specifically to cause certain effects, as shown by way of example with reference to the melting traces of Figure 4 generated during processing.
  • This FIG. 4 shows in each case in the lower region in each case a transverse section through the material layer and in the upper area a plan view of the section
  • FIG. 4 show from left to right the result for a line array with identical power per spot, for a line array with a spot offset in the exposure direction, the power being reduced to trailing spots (here: right spots), and FIG
  • FIG. 3 schematically shows an offset of FIG
  • the melting depth profile is still approximately homogeneous, but the influences of the individual spots are to be recognized as semicircular structures.
  • the accumulation of material in the middle of the lane is clearly smoothed. This is due to the fact that by moving the spots in the exposure direction a Exposure break in the overlap areas is created, so that the respective sections can cool briefly. This affects the material distribution within the melting trace.
  • the reduction in power towards the trailing spots also results in a more uniform temperature field due to any preheat effects from the front spots.
  • FIG. 6 shows four examples in which the
  • Spot distance between two adjacent spots was varied.
  • the four partial images each represent transverse sections of the melting traces produced thereby.
  • the spot distance Ay s was gradually increased from the upper left sub-image to the lower right sub-image.
  • FIG. 7 shows the influence of the variation of
  • the laser power of the middle spot was in this case in the four sub-images, which in turn each represent a cross-section of the generated melting traces, with constant power of the respective outer spots starting from the upper left
  • Figure 8 shows a highly schematic representation, on the basis of the better adaptation enabled with the pre ⁇ chosen method to the component geometry in the manufacture dreidimensio ⁇ tional components is illustrated.
  • the left part of the figure is the left part of the figure
  • Target geometry 5 and to recognize in the right part of the figure with the conventional method using a single spot generated component 6.
  • the target geometry 5 is subdivided in a known manner into individual layers 7, which correspond to the layers in the layer structure of the three-dimensional component to be produced. Due to the illustrated
  • Target Geometry 5 is approached much better. This is achieved by suitably varying the power distribution 8 within the multispot array (here with 5 spots) and therefore within a layer to be exposed, with the proposed method, as shown in the figure for the various

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

L'invention concerne un procédé d'usinage d'une couche de matériau avec un rayonnement énergétique, lors duquel plusieurs rayons énergétiques (2) séparés les uns des autres sont dirigés au moins temporairement sur la couche de matériau et guidés dans un sens de déplacement au-dessus de la couche de matériau. La couche de matériau est fondue localement à l'intérieur d'une zone à usiner en produisant au moins un bain de fusion cohérent. Une ou plusieurs propriétés du bain de fusion et/ou d'une trace de fusion produite par solidification du bain de fusion sont influencées de manière ciblée par une variation de la puissance du rayonnement et/ou de la distance de point et/ou de la taille du point de rayons énergétiques (2) respectivement dirigés dans la zone à usiner et/ou par réglage d'un décalage réciproque dans le sens de déplacement entre les rayons énergétiques respectivement dirigés dans la zone à usiner. La durée de fabrication des éléments structuraux lors d'un procédé de fabrication additive peut ainsi être augmentée sans diminution de la qualité de la surface et une meilleure adaptation à la géométrie des éléments structuraux peut en outre être obtenue.
PCT/EP2017/070916 2017-08-18 2017-08-18 Procédé d'usinage d'une couche de matériau avec un rayonnement énergétique à distribution d'énergie variable WO2019034259A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/070916 WO2019034259A1 (fr) 2017-08-18 2017-08-18 Procédé d'usinage d'une couche de matériau avec un rayonnement énergétique à distribution d'énergie variable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/070916 WO2019034259A1 (fr) 2017-08-18 2017-08-18 Procédé d'usinage d'une couche de matériau avec un rayonnement énergétique à distribution d'énergie variable

Publications (1)

Publication Number Publication Date
WO2019034259A1 true WO2019034259A1 (fr) 2019-02-21

Family

ID=59829329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/070916 WO2019034259A1 (fr) 2017-08-18 2017-08-18 Procédé d'usinage d'une couche de matériau avec un rayonnement énergétique à distribution d'énergie variable

Country Status (1)

Country Link
WO (1) WO2019034259A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021222193A1 (fr) * 2020-04-27 2021-11-04 Blade Dynamics Lllp Traitement d'un élément composite renforcé par des fibres
EP3944915A1 (fr) * 2020-07-30 2022-02-02 The Boeing Company Réseau laser pour le traitement par fusion laser sur lit de poudre d'alliages métalliques

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2596901B1 (fr) 2011-11-24 2014-11-05 SLM Solutions GmbH Dispositif de rayonnement optique pour une installation destinée à la fabrication de pièces à usiner tridimensionnelles par rayonnement de couches de pulvérisation d'une poudre de matière brute avec un rayonnement laser
DE102013011675A1 (de) * 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur generativen Bauteilfertigung mit reduzierten thermischen Gradienten
WO2015003804A1 (fr) 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispositif et procédé de fabrication générative de composants
EP2875897B1 (fr) 2013-11-21 2016-01-20 SLM Solutions Group AG Procédé et dispositif de commande d'un système d'irradiation pour produire une pièce tridimensionnelle
WO2016128430A1 (fr) 2015-02-10 2016-08-18 Trumpf Laser- Und Systemtechnik Gmbh Dispositif d'irradiation, machine de traitement et procédé de fabrication d'une couche ou d'une sous-zone d'une couche d'une pièce tridimensionnelle
US20170021454A1 (en) 2015-06-10 2017-01-26 Ipg Photonics Corporation Multiple beam additive manufacturing
DE102015119745A1 (de) * 2015-11-16 2017-05-18 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung eines dreidimensionalen Objekts

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2596901B1 (fr) 2011-11-24 2014-11-05 SLM Solutions GmbH Dispositif de rayonnement optique pour une installation destinée à la fabrication de pièces à usiner tridimensionnelles par rayonnement de couches de pulvérisation d'une poudre de matière brute avec un rayonnement laser
DE102013011675A1 (de) * 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur generativen Bauteilfertigung mit reduzierten thermischen Gradienten
WO2015003804A1 (fr) 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispositif et procédé de fabrication générative de composants
EP2875897B1 (fr) 2013-11-21 2016-01-20 SLM Solutions Group AG Procédé et dispositif de commande d'un système d'irradiation pour produire une pièce tridimensionnelle
WO2016128430A1 (fr) 2015-02-10 2016-08-18 Trumpf Laser- Und Systemtechnik Gmbh Dispositif d'irradiation, machine de traitement et procédé de fabrication d'une couche ou d'une sous-zone d'une couche d'une pièce tridimensionnelle
US20170021454A1 (en) 2015-06-10 2017-01-26 Ipg Photonics Corporation Multiple beam additive manufacturing
DE102015119745A1 (de) * 2015-11-16 2017-05-18 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung eines dreidimensionalen Objekts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021222193A1 (fr) * 2020-04-27 2021-11-04 Blade Dynamics Lllp Traitement d'un élément composite renforcé par des fibres
EP3944915A1 (fr) * 2020-07-30 2022-02-02 The Boeing Company Réseau laser pour le traitement par fusion laser sur lit de poudre d'alliages métalliques
US11964324B2 (en) 2020-07-30 2024-04-23 The Boeing Company Laser array for laser powder bed fusion processing of metal alloys

Similar Documents

Publication Publication Date Title
EP3256285B1 (fr) Dispositif d'irradiation, machine de traitement et procédé de fabrication d'une couche ou d'une sous-zone d'une couche d'une pièce tridimensionnelle
EP3710182B1 (fr) Éclairage sélectif par couche dans la zone en surplomb lors de la fabrication additive
DE102011105045B3 (de) Verfahren zur Herstellung eines Bauteils mittels selektivem Laserschmelzen
EP3866999B1 (fr) Procédé et dispositif de fabrication d'une pièce tridimensionnelle
WO2015003804A1 (fr) Dispositif et procédé de fabrication générative de composants
WO2016110440A1 (fr) Dispositif et procédé génératif de construction par couches permettant de produire un objet tridimensionnel au moyen d'une pluralité de rayons
DE102014222302A1 (de) Herstellen eines Bauteils durch Selektives Laserschmelzen
EP3523082B1 (fr) Procédé permettant de réaliser une gravure, un marquage et/ou une inscription sur une pièce au moyen d'un traceur laser et traceur laser associé
DE102016222068A1 (de) Vorrichtung und Verfahren zur generativen Bauteilfertigung mit mehreren räumlich getrennten Strahlführungen
WO2001007239A1 (fr) Procede et dispositif pour produire des elements a partir d'une combinaison de materiaux
EP3414044B1 (fr) Procédé de production d'une partie d'une couche d'un composant tridimensionnel
EP3655183A1 (fr) Procédé pour la génération d'une région de surface cohérente, dispositif d'irradiation et machine d'usinage
DE102017206792A1 (de) Vorrichtung und Verfahren zum generativen Herstellen eines dreidimensionalen Objekts
DE102013011675A1 (de) Verfahren zur generativen Bauteilfertigung mit reduzierten thermischen Gradienten
DE10124795A1 (de) Vorrichtung und Verfahren zur Herstellung eines Werkstücks mit exakter Geometrie
EP3346314B1 (fr) Dispositif et procédé de génération d'un faisceau laser à l'aide d'un dispositif générateur de faisceau programmable
DE102016213420A1 (de) Verfahren und Vorrichtung zum generativen Herstellen eines Bauteils
WO2019034259A1 (fr) Procédé d'usinage d'une couche de matériau avec un rayonnement énergétique à distribution d'énergie variable
EP4185428A1 (fr) Dispositif de fabrication et procédé de fabrication additive d'un composant à partir d'un matériau en poudre, et procédé de production d'un profil d'intensité spécifique d'un faisceau d'énergie
DE102020209172A1 (de) Fertigungseinrichtung zum additiven Fertigen von Bauteilen aus einem Pulvermaterial, Verfahren zum Verändern eines Strahlprofils eines Energiestrahls, und Verwendung von wenigstens einem akustooptischen Deflektor
WO2021074188A1 (fr) Procédé de fonctionnement d'un dispositif de fabrication additive d'un objet tridimensionnel et procédé de création d'une fenêtre de traitement pour mettre en œuvre ledit procédé
WO2020127074A1 (fr) Procédé d'usinage d'une surface au moyen d'un rayonnement énergétique
WO2019179604A1 (fr) Dispositif et procédé servant à former un faisceau laser par un système de formation de faisceaux programmable
EP4185429A1 (fr) Dispositif de fabrication pour la fabrication additive de composants à partir d'un matériau pulvérulent, procédé pour changer un profil de faisceau d'un faisceau d'énergie, et utilisation d'au moins un déflecteur acousto-optique
DE102020209173A1 (de) Fertigungseinrichtung und Verfahren zum additiven Herstellen eines Bauteils aus einem Pulvermaterial, sowie Verfahren zum Erzeugen eines bestimmten Intensitätsprofils eines Energiestrahls

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17764514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17764514

Country of ref document: EP

Kind code of ref document: A1